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Abstract: In this paper we present a simple partitioning based technique
to refine the statistical analysis of classification algorithms. The core of our
idea is to divide the input space into two parts such that the first part
contains a suitable vicinity around the decision boundary, while the sec-
ond part is sufficiently far away from the decision boundary. Using a set
of margin conditions we are then able to control the classification error
on both parts separately. By balancing out these two error terms we ob-
tain a refined error analysis in a final step. We apply this general idea to
the histogram rule and show that even for this simple method we obtain,
under certain assumptions, better rates than the ones known for support
vector machines, for certain plug-in classifiers, and for a recently analyzed
tree based adaptive-partitioning ansatz. Moreover, we show that a margin
condition which sets the critical noise in relation to the decision bound-
ary makes it possible to improve the optimal rates proven for distributions
without this margin condition.
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1. Introduction

Given a dataset D := ((x1, y1), . . . , (xn, yn)) of observations drawn in an i.i.d.
fashion from a probability measure P on X × Y , where X ⊂ R

d and Y :=
{−1, 1}, the learning goal of binary classification is to find a decision function
fD : X → {−1, 1} such that for new data (x, y) we have fD(x) = y with high
probability.

The problem of classification is, apart from regression, one of the most con-
sidered problems in learning theory and many classical learning methods have
been presented in the literature such as histogram rules, nearest neighbor meth-
ods or moving window rules. A general reference for these methods is [4]. Several
more recent methods use trees to build a classifier, for example the random for-
est algorithm, introduced in [3], makes a prediction by a majority vote over a
collection of random forest trees. Another example is the tree based adaptive-
partitioning algorithm, presented in [2]. Here, a classifier is picked by empirical
risk minimization over a nested sequence (Sm)m≥1 of families of sets which
is based on dyadic or decorated tree partitions. Examples of non-tree based
algorithms are described in [1] and [7]. There, the final classifier is found by
empirical risk minimization over a suitable grid of plug-in rules or is derived
by plug-in kernel, partitioning or nearest neighbor classification rules. Another
non-tree based algorithm is, for example, the support vector machine (SVM),
which solves a regularized empirical risk minimization problem over a reproduc-
ing kernel Hilbert space H. For more details on statistical properties of SVM
for classification we refer the reader to [10, Chapter 8].

In this paper we discuss a partitioning based technique to analyse the sta-
tistical properties of classification algorithms. In particular we show for the his-
togram rule that under certain assumptions this technique leads to rates, which
are faster than the rates obtained in [1, 2, 7], and [10]. To be more precise, we
divide the input space X into two overlapping regions that are adjustable by a
parameter r in such a way that one set, which we will denote by Nr, contains
points near the decision boundary, whereas the other set Fr contains those that
are sufficiently far away from the decision boundary. We examine the excess
risks over these two sets separately by applying an oracle inequality for empiri-
cal risk minimizers on both parts. It turns out that we have no approximation
error on Fr and that we obtain, under a suitable assumption which relates crit-
ical noise to the decision boundary, an optimal variance bound on Fr, which in
turn leads to an O(n−1) behavior of the excess risk on Fr. However, this bound
still depends on the parameter r, namely it increases for r → 0. In contrast, our
bound on the risk on Nr decreases for r → 0. By balancing out these two risks
with respect to r we obtain a refined bound on X under additional assumptions
describing the concentration of mass around the decision boundary.

A more detailed discussion on this technique and the statistical results, which
include rate adaptivity, are presented in Section 3. Moreover, a comparison of
the resulting learning rates to the ones known for the SVM, for certain plug-in
classification rules and the tree based adaptive-partitioning algorithm described
in [2] can be found at the end of Section 4. In particular, we show that the
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above mentioned assumption that relates the location of critical noise to the
decision boundary has an essential influence on our learning rates such that we
outperform under a common set of assumptions the optimal rates obtained for
the classifier in [1]. Furthermore, we show that if we omit the latter assumption,
we obtain exactly the optimal rate of [1]. We note that all proofs are deferred
to Section 5.

2. General assumptions

To describe our learning goal we consider in the following the classification
loss L := Lclass : Y × R → [0,∞), defined by L(y, t) := 1(−∞,0](y · signt) for
y ∈ Y, t ∈ R, where 1(−∞,0] denotes the indicator function on (−∞, 0]. We define
the risk of a measurable estimator f : X → R by

RL,P (f) :=

∫
X×Y

L(y, f(x)) dP (x, y)

and the empirical risk by

RL,D(f) :=
1

n

n∑
i=1

L(yi, f(xi)),

where D := 1
n

∑n
i=1 δ(xi,yi) denotes the average of Dirac measures δ(xi,yi) at

(xi, yi). The smallest possible risk

R∗
L,P := inf

f : X→R

RL,P (f)

is called the Bayes risk, and a measurable function f∗
L,P : X → R so that

RL,P (f
∗
L,P ) = R∗

L,P holds is called Bayes decision function. Recall that the
Bayes decision function f∗

L,P for the classification loss is given by sign(2P (y =
1|x) − 1) for x ∈ X, where P ( · |x) is a regular conditional probability on Y
given x.
Let us now briefly describe a particular histogram rule. To this end, let A =
(Aj)j≥1 be a partition of Rd into cubes of side length s ∈ (0, 1] andX := [−1, 1]

d
.

For x ∈ X we denote by A(x) the unique cell of A with x ∈ A(x) and call the
map hP,s : X → Y defined by

hP,s(x) :=

{
−1 if fP,s(x) < 0,

1 if fP,s(x) ≥ 0,
(1)

where fP,s(x) := P (A(x) × {1}) − P (A(x) × {−1}), infinite sample histogram
rule. For a dataset D we further write

fD,s(x) :=
1

n

n∑
i=1

1{yi=+1}1A(x)(xi)−
1

n

n∑
i=1

1{yi=−1}1A(x)(xi).
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Thus, the empirical histogram is defined by hD,s := signfD,s. We define the set
F by

F :=

⎧⎨
⎩

∑
Aj∩[−1,1]d �=∅

cj1Aj : cj ∈ {−1, 1}

⎫⎬
⎭ .

Then, it is easy to show that the empirical histogram rule hD,s is an empirical
risk minimizer over F for the classification loss, that means

RL,D(hD,s) = inf
f∈F

RL,D(f).

Since we aim in a further step to examine the risk on subsets of X consisting of
cells, we have to specify the loss on those subsets. Therefore, we define for an
arbitrary index set J ⊂ { 1, . . . ,m } the set

TJ :=
⋃
j∈J

Aj (2)

and the related loss LTJ
: X × Y × R → [0,∞) by

LTJ
(x, y, t) := 1⋃

j∈J Aj
(x)Lclass(y, t). (3)

Furthermore, we define the risk over TJ by

RLTJ
,P (f) :=

∫
X×Y

LTJ
(x, y, f(x)) dP (x, y)

and define the shortcut LTJ
◦ f := LTJ

(x, y, f(x)).
We denote by Pn the product measure of the probability measure P . As

mentioned in the introduction, we have to make assumptions on P to obtain
rates. Therefore, we recall some notions from [10, Chapter 8] which describe
the behavior of P in the vicinity of the decision boundary. To this end, let
η : X → [0, 1], defined by η(x) := P (y = 1|x) for x ∈ X, be a version of
the posterior probability of P , that is, that the probability measures P ( · |x)
form a regular conditional probability of P. Clearly, if we have η(x) = 0 resp.
η(x) = 1 for x ∈ X we observe the label y = −1 resp. y = 1 with probability
1. Otherwise, if, e.g., η(x) ∈ [1/2, 1) we observe the label y = −1 with the
probability 1−η(x) ∈ (0, 1/2] and we call the latter probability noise. Obviously,
in the worst case this probability equals 1/2 and we define the set containing
those x ∈ X by X0 := {x ∈ X : η(x) = 1/2 }. Furthermore, we write

X1 := {x ∈ X : η(x) > 1/2 },
X−1 := {x ∈ X : η(x) < 1/2 }.

Then, the function Δη : X → [0,∞] defined by

Δη(x) :=

⎧⎪⎨
⎪⎩
d(x,X1) ifx ∈ X−1,

d(x,X−1) ifx ∈ X1,

0 otherwise,

(4)
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where d(x,A) := infx′∈A d(x, x′), is called distance to the decision boundary.
This helps us to describe the mass of the marginal distribution PX of P around
the decision boundary by the following exponents. We say that P has margin
exponent (ME) α ∈ (0,∞] if there exists a constant cME > 0 such that

PX({Δη(x) < t}) ≤ (cMEt)
α

for all t > 0. Descriptively, the ME α measures the amount of mass close to the
decision boundary. Therefore, large values of α are better since they reflect a
low concentration of mass in this region, which makes the classification easier.
Furthermore, we say that P has margin-noise exponent (MNE) β ∈ (0,∞] if
there exists a constant cMNE > 0 such that∫

{Δη<t}
|2η(x)− 1| dPX(x) ≤ (cMNEt)

β

for all t > 0. The MNE β measures the mass and the noise, that means the
amount of points x ∈ X with η(x) ≈ 1/2, around the decision boundary. That
is, we have high MNE β if we have low mass and/or high noise around the
decision boundary. Next, we say that the distance to the decision boundary Δη

controls the noise from below by the exponent γ if there exist a γ ∈ [0,∞) and
a constant cLC > 0 with

Δγ
η(x) ≤ cLC|2η(x)− 1| (5)

for PX -almost all x ∈ X. That means, if η(x) is close to 1/2 for some x ∈ X,
this x is close to the decision boundary. For examples of typical values of these
exponents and relations between them we refer the reader to [10, Chapter 8].

Finally, in order to describe the region of the decision boundary in a more
geometrical way, we say according to [6, 3.2.14(1)] that a general set T ⊂ X is
m-rectifiable for an integerm > 0 if there exists a Lipschitzian function mapping
some bounded subset of Rm onto T . Furthermore, we denote by ∂XT the relative
boundary of T in X. Moreover, we denote by Hd−1 the (d − 1)-dimensional
Hausdorff measure on R

d, see [6, Introduction]. The following lemma, which is
based on [9, Lemma A.10.4], describes the Lebesgue measure of the decision
boundary in terms of the Hausdorff measure. Its result will be necessary for the
analysis of the main theorem in Section 3.

Lemma 2.1. Let X := [−1, 1]
d
and P be a probability measure on X ×{−1, 1}

with fixed version η : X → [0, 1] of its posterior probability. Moreover, let λd

be the d-dimensional Lebesgue measure and Hd−1 be the (d − 1)-dimensional
Hausdorff measure on R

d. Furthermore, let X0 = ∂XX1 with Hd−1(X0) > 0
and let X0 be (d − 1)-rectifiable. Then, there exists a δ∗ > 0 such that for all
δ ∈ (0, δ∗] we have

λd({x ∈ X |Δη(x) ≤ δ }) ≤ 4Hd−1({x ∈ X | η(x) = 1/2 }) · δ.
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3. Oracle inequality and learning rates

Our goal is to find an upper bound for the excess risk RL,P (hD,s)−R∗
L,P . The

idea is to split X into two overlapping sets and to find a bound on the risks over
these sets by using information on P . To this end, we denote the set of indices
of cubes that intersect X by

J := { j ≥ 1 |Aj ∩ [−1, 1]
d �= ∅ }.

Next, we split this set into cubes that lie near the decision boundary and into
cubes that are bounded away from the decision boundary. To be more precisely,
we define, for r > 0 and a version η for which the assumptions at the end of
Section 2 hold, the set of indices of cubes near the decision boundary by

Jr
N := { j ∈ J | ∀x ∈ Aj : Δη(x) ≤ 3r }

and the set of indices of cubes that are sufficiently bounded away by

Jr
F := { j ∈ J | ∀x ∈ Aj : Δη(x) ≥ r }.

Moreover, we write

Nr :=
⋃

j∈Jr
N

Aj , (6)

Fr :=
⋃

j∈Jr
F

Aj . (7)

The next lemma shows that we are able to assign all x ∈ Aj with j ∈ Jr
F either

to the class X−1 or to X1. Furthermore, we need to set geometric requirements
to ensure that X ⊂ Nr ∪ Fr.

Lemma 3.1. Let A = (Aj)j≥1 be a partition of Rd into cubes of side length

s ∈ (0, 1] and let X := [−1, 1]
d
. For r ≥ s/2 define the sets Nr and Fr by (6)

and (7). Then, the following statements are true:

i) We have either Aj ∩X1 = ∅ or Aj ∩X−1 = ∅ for j ∈ Jr
F .

ii) If X0 = ∂XX1 = ∂XX−1, we have X ⊂ Nr ∪ Fr.

Lemma 3.1 ii) leads to a helpful splitting of the excess risk as the following
lemma shows.

Lemma 3.2. Under the assumptions of Lemma 3.1 ii) we have

RL,P (hD,s)−R∗
L,P

≤
(
RLNr ,P

(hD,s)−R∗
LNr ,P

)
+
(
RLFr ,P

(hD,s)−R∗
LFr ,P

)
.

That means, we can bound the excess risk RL,P (hD,s) − R∗
L,P if we find

bounds on the excess risks over the sets Nr and Fr. For that purpose, we use
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an oracle inequality for empirical risk minimizer separately on both error terms,
see [10, Theorem 7.2]. This is possible, since the following lemma shows that,
considering the loss LTJ

for any set TJ constructed as in (2), the empirical
histogram rule hD,s is still an empirical risk minimizer over F .

Lemma 3.3. Consider for an arbitrary index set J ⊂ { 1, . . . ,m } the set TJ :=⋃
j∈J Aj and the related loss LTJ

: X × Y × R → [0,∞) defined in (3). Then,
the empirical histogram rule hD,s is an empirical risk minimizer over F for the
loss LTJ

, that means

RLTJ
,D(hD,s) = inf

f∈F
RLTJ

,D(f).

Before we state our oracle inequality we discuss in a more detailed way the
improvement that we gained by our separation technique described above. First,
we make no approximation error on the set Fr, which consists of cells that are
sufficiently bounded away from the decision boundary. This follows from the
circumstance that hD,s learns correctly on those cells. We refer the reader to
Part 1 of the proof of Lemma 3.5 for details. Second, the main refinement arises
from the fact that we achieve, under the condition that the decision boundary
controls the noise from below, a bound on Fr of the form

EP (L ◦ f − L ◦ f∗
L,P )

2 ≤ V · EP (L ◦ f − L ◦ f∗
L,P )

θ

with the best possible exponent, θ = 1. Here, V is a positive constant. The
latter bound is known in the literature as variance bound. This bound plays an
important part in the analysis of the risk terms since we have small variance if
the right-hand side of the latter inequality is small. This relation is shown in
detail in the next lemma.

Lemma 3.4. Let X := [−1, 1]
d
and P be a probability measure on X ×{−1, 1}

with fixed version η : X → [0, 1] of its posterior probability. Assume that the
associated distance to the decision boundary Δη controls the noise from below
by the exponent γ ∈ [0,∞) and consider for some fixed r > 0 the set Fr, defined
in (7). Furthermore, let L := Lclass be the classification loss and let f∗

L,P be a
fixed Bayes decision function. Then, for all measurable f : X → {−1, 1} we have

EP (LFr ◦ f − LFr ◦ f∗
L,P )

2 ≤ cLC

rγ
EP (LFr ◦ f − LFr ◦ f∗

L,P ).

We remark that the right-hand side of the variance bound on Fr depends on
the separation parameter r. This dependence is also reflected in the risk term on
Fr. In particular, we show in Part 1 of the proof of Theorem 3.5 by applying [10,
Theorem 7.2] on the risk term on the set Fr that the improvements mentioned
above lead to

RLFr ,P
(hD,s)−R∗

LFr ,P
≤ 32c̃(8d+1s−d + τ)

rγn

with probability Pn ≥ 1−e−τ , where τ ≥ 1 and c̃ is a positive constant. Whereas
this error term increases for r → 0, the error term on the set Nr behaves exactly
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the opposite way, that is, it decreases for r → 0. In fact, bounding the risk on
Nr requires additional knowledge of the behavior of P in the vicinity of the
decision boundary. By applying [10, Theorem 7.2] on the risk on the set Nr we
show in Part 2 of the proof of Theorem 3.5 under the assumption that P has
ME α and MNE β that

RLNr ,P
(hD,s)−R∗

LNr ,P
≤ 6(cMNEs)

β + 4

(
8V (c̄rs−d + τ)

n

) α+γ
α+2γ

holds with probability Pn ≥ 1 − e−τ . Here, c̄ is a positive constant, τ ≥ 1 and
V is the prefactor of the variance bound on Nr, shown in the second part of the
proof. We refer the reader to the proof of Theorem 3.5 for exact constants. If
we balance the obtained risk terms over Nr and Fr with respect to r, we obtain
the oracle inequality presented in the following theorem. For this purpose, we
define the positive constant

c̃α,γ,d :=

(
16γ(α+ 2γ) · 8d+1 max{cLC, 2γ} · (α+ γ)−1

ĉ
α+γ
α+2γ

) α+γ
α+γ+γ(α+2γ)

, (8)

which depends on α, γ and d and where

ĉ := 32max{12Hd−1({η = 1/2}), 1} ·max

{
1,

α+ γ

γ
c

αγ
α+γ

ME

(γcLC
α

) α
α+γ

}
.

Theorem 3.5. Let A = (Aj)j≥1 be a partition of Rd into cubes of side length

s ∈ (0, 1]. Let X := [−1, 1]
d
and P be a probability measure on X × {−1, 1}

with fixed version η : X → [0, 1] of its posterior probability. Assume that the
associated distance to the decision boundary Δη controls the noise from below
by the exponent γ ∈ [0,∞) and assume as well that P has MNE β ∈ (0,∞] and
ME α ∈ (0,∞]. Furthermore, let X0 = ∂XX1 = ∂XX−1 with Hd−1(X0) > 0
and let X0 be (d− 1)-rectifiable. Let L be the classification loss and let for fixed
n ≥ 1 and τ ≥ 1 the bounds

s ≤ c̃
(1+γ)(α+γ)+γ2

(1+γ)(α+γ)+γ2+dγ

α,γ,d

( τ
n

) γ

(1+γ)(α+γ)+γ2+dγ
, (9)

and

sdn ≥ τ

(
c̃α,γ,d

min{ δ∗

3 , 1}

) (1+γ)(α+γ)+γ2

γ

(10)

be satisfied, where the constant c̃α,γ,d is defined by (8) and the constant δ∗ > 0
is the one of Lemma 2.1. Then, there exists a constant cα,γ,d > 0 such that

RL,P (hD,s)−R∗
L,P ≤ 6 (cMNEs)

β
+ cα,γ,d

( τ

sdn

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

(11)

holds with probability Pn ≥ 1− 2e−τ , where the constant cα,γ,d only depends on
α, γ and d.
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The proof shows that the constants cα,γ,d is given by

cα,γ,d := 128 · 8d+1 max{cLC, 2γ} ·max

{
γ(α+ 2γ)

α+ γ
, 1

}
· c̃−γ

α,γ,d. (12)

By choosing an appropriate sequence of sn in dependence of our data length
n and setting a constraint on the MNE β we state learning rates in the next
theorem. Prior to that, we define with κ := (1+ γ)(α+ γ) the positive constant

c̃α,β,γ,τ,d :=

⎛
⎝d · κ · cα,γ,d · τ

(1+γ)(α+γ)

κ+γ2

6βcβMNE(κ+ γ2)

⎞
⎠

κ+γ2

β(κ+γ2)+dκ

that depends on α, β, γ, τ and d and where cα,γ,d is the constant from (12).

Theorem 3.6. Assume that X and P satisfy the assumptions of Theorem 3.5
for β ≤ γ−1κ, where κ := (1 + γ)(α + γ). In addition, assume that the side
length sn in Theorem 3.5 is given by

sn = c̃α,β,γ,τ,dn
− κ

β(κ+γ2)+dκ .

Then, there exists a constant cα,β,γ,τ,d > 0 such that for all n ≥ n0

RL,P (hD,sn)−R∗
L,P ≤ cα,β,γ,τ,dn

− βκ

β(κ+γ2)+dκ

holds with probability Pn ≥ 1− 2e−τ , where n0 and the constant cα,β,γ,τ,d only
depend on τ, α, β, γ and d.

The proof of the latter theorem shows that the constant cα,β,γ,τ,d is given by

cα,β,γ,τ,d := 2max

{
d · κ

β(κ+ γ2)
, 1

}
cα,γ,δ · τ

κ
κ+γ2 · c̃

− dκ
κ+γ2

α,β,γ,τ,d.

Furthermore, we remark that the constraint on the MNE β in Theorem 3.6 is
set to secure that the chosen side length sn fulfils assumption (9). If we omit
this constraint we have to choose another sn. For this sn we would not be able
to balance the two terms in the right-hand side of the excess risk in Theorem
3.5. Since our examples in Section 4 fulfil this constraint we did not consider
other choices of sn.

To obtain the rates we have to know the parameters describing P . However, it
is also possible to obtain the rates in Theorem 3.6 by the following data splitting
ansatz, a hold-out procedure whose concept is similar to the one described in
[10, Chapter 6.5]. Let (Sn) be a sequence of finite subsets Sn ⊂ (0, 1]. For a
dataset D := ((x1, y1), . . . , (xn, yn)) we define the sets

D1 := ((x1, y1), . . . , (xk, yk)),

D2 := ((xk+1, yk+1), . . . , (xn, yn)),
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where k := �n
2 �+ 1 and n ≥ 4. Then, we use D1 as a training set and compute

hD1,s for s ∈ Sn and use D2 to determine s∗D2
∈ Sn such that

s∗D2
:= argmin

s∈Sn

RL,D2(hD1,s).

The resulting decision function is hD1,s∗D2
and a learning method producing

this decision function is called training validation histogram rule (TV-HR). The
following lemma shows that the TV-HR learns with the same rate as in Theorem
3.6 without knowing the parameters describing P .

Theorem 3.7. Assume that X and P satisfy the assumptions of Theorem 3.5
for β ≤ γ−1κ, where κ := (1+ γ)(α+ γ). Let Sn be a finite subset of (0, 1] such
that Sn is a n−1/d-net of (0, 1]. Assume that the cardinality of Sn grows at most
polynomially in n. Then, the TV-HR learns with rate

n
− βκ

β(κ+γ2)+dκ .

4. Comparison of rates

In order to compare our rate obtained in Theorem 3.6 to the ones known from
[1, 2, 7] and [10], we set in the following reasonable sets of common assumptions.
Besides our geometric assumption on X, namely

(i) X0 is (d− 1)-rectifiable with Hd−1(X0) > 0 and X0 = ∂XX1 = ∂XX−1,

we make the following two assumptions on P :

(ii) P has ME α ∈ (0,∞],
(iii) there exists a γ ∈ [0,∞) and constants cLC, cUC > 0 such that for all

x ∈ X we have

a) cLC|2η(x)− 1| ≥ Δγ
η(x),

b) cUC|2η(x)− 1| ≤ Δγ
η(x).

Here, assumption (iii)a coincides with the definition in (5). Furthermore, as-
sumption (iii)b shows that we have an upper control by Δη on the noise, which
is up to a constant a kind of inverse to (iii)a. Then, [10, Lemma 8.17] shows
under the assumptions (ii) and (iii)b that P has MNE β = α + γ. Hence, we
find by Theorem 3.6 with κ := (1 + γ)(α+ γ) and a suitable cell-width sn that
hD,sn learns with a rate with exponent

β(1+γ)(α+γ)
β[(1+γ)(α+γ)+γ2]+d(1+γ)(α+γ) =

(α+γ)(1+γ)(α+γ)
(α+γ)[(1+γ)(α+γ)+γ2]+d(1+γ)(α+γ)

= (1+γ)(α+γ)
(1+γ)(α+γ)+γ2+d(1+γ) .

A simple transformation shows that this exponent equals

(1+γ)(α+γ)
(1+γ)(α+γ)+γ2+d(1+γ) =

α+γ

α+γ+
γ2

1+γ+d

= α+γ

α+2γ+
γ2

1+γ+d−γ

= α+γ

α+2γ+d− γ
1+γ

. (13)
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First, we compare the rate with exponent (13) to the rate achieved by support
vector machines (SVM) for the hinge loss by assuming that (i), (ii) and (iii)
hold. For this purpose, [10, Chapter 8.3 (8.18)] shows that the best possible
rate for SVMs using Gaussian kernels is obtained by

n− α+γ
α+2γ+d+ρ,

where ρ > 0 is an arbitrary small number. Hence, our rate in (13) is better by
− γ

1+γ in the denominator. For the typical value of γ = 1, indicating a moderate

control of noise by the decision boundary, our rate is better by −1/2 in the
denominator.

Second, we compare our rates to the ones for certain plug-in classifiers, see
[1, 7], and to the rates obtained by the classification algorithms, described in
[2]. In the cases of [1] and [2] the authors assume that P has a noise exponent
(NE) q ∈ [0,∞], that is, that there exist a constant cNE > 0 such that

PX({x ∈ X : |2η(x)− 1| < ε}) ≤ (cε)q (14)

for all ε > 0, c.f. [10, Definition 8.22]. Since (14) measures the amount of critical
noise and does not locate noise we call this exponent noise exponent in contrast
to [8] and the mentioned authors, who call this exponent margin exponent. The
authors of [7] assume a weaker version of (14) on P , however, the latter implies
this weak version, see [5, Section 2]. We compare our rates under a different
assumption set as in the first comparison to SVMs. To this end, we impose in
addition to (i), (ii) and (iii)a that

(iv) η is Hölder-continuous for some γ ∈ (0, 1].

Then, we find under condition (iv) with Lemma A.2 that assumption (iii)b is
fulfilled with exponent γ and thus we assume in the following that (iii)a holds
for the same γ. Note that in (iv) we have γ ∈ (0, 1], whereas in the case of (iii)
we have γ ∈ [0,∞). Moreover, under assumptions (ii) and (iii)a we find with
[10, Exercise 8.5] that the noise exponent in (14) holds with

q =
α

γ
. (15)

By assuming (i), (ii), (iii)a and (iv) our rate yields the same exponent as in
(13), that is

α+γ

α+2γ+d− γ
1+γ

. (16)

Furthermore, the plug-in classifiers based on kernel, partitioning or nearest
neighbor regression estimates shown in [7, Theorem 1, 3 and 5] yield under
these assumptions and thus in particular with (15) the rate

n− α+γ
α+3γ+d , (17)
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such that our rate is better by −γ(2+γ)
1+γ in the denominator. The authors were

able to improve the rate given in (17) by making in addition the assumption that
PX has a density with respect to the Lebesgue measure, which is bounded away
from zero, see [7, Theorem 2, 4 and 6]. Under this condition and (i), (ii), (iii)a
and (iv) the classifiers yield the rate

n− α+γ
2γ+d .

Hence, our rate with exponent (13) is better if our margin exponent α fulfils
α < γ

1+γ . We have small margin exponent α, for example, if we have much mass
around the decision boundary, that is, the density is unbounded in this region.
We remark that the authors obtained rates under the Hölder assumption (iv),
a weak margin assumption, and improved them as discussed above by making
the assumption that PX has a density which is bounded away from zero.

Next, we compare our rates to the ones obtained by the classifier resulting
from the classification method given in [2, Section 5]. Therefore, we consider in
addition to (i), (iii)a and (iv) for example that

(v) PX is the uniform distribution.

Under the condition that (i) and (v) hold, we find with Lemma 2.1 that as-
sumption (ii) is fulfilled for α = 1. Then, we obtain in (15) that q = 1

γ . Again,

we find with Lemma A.2 that assumption (iii)b is fulfilled with exponent γ and
assume again that (iii)a holds for the same γ. Hence, the conditions (i) and
(iii)a, (iv) and (v) yield in (16) a rate with exponent

1+γ

1+2γ+d− γ
1+γ

(18)

for our method. Furthermore, [2, Corollary 5.2(ii)] shows that the classifier men-
tioned in [2, Section 5] yields the rate

(
(logn)

1
2+d

n

) 1+γ
2γ+d

. (19)

Hence, our rate is worse by 1
1+γ . However, the rate given in (19) is also compa-

rable under a more generic assumption set in which we do not fix an example of
PX . Indeed, if we assume the conditions (i), (ii), (iii)a and (iv), then, our rate
with exponent (16) holds and [2, Corollary 5.2(i)] shows that their classifier
obtains the rate

(
logn

n

) α+γ
α+2γ+d

. (20)

Thus, our rate with exponent (16) is again better by − γ
1+γ in the denominator.

Finally, we compare our rates to the ones obtained for the plug-in classifier
defined by [1, (4.1) with p = ∞] under the conditions (i), (iii)a, (iv) and
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(vi) PX has a uniformly bounded density.

Analogously as above one can show with (i) and (vi) with Lemma 2.1 that we
have MNE α = 1. Under these conditions our rate with exponent (18) holds.
The classifier in [1, (4.1) with p = ∞] achieves the rate

n− 1+γ
1+2γ+d (21)

in expectation and we find that our rate is better by − γ
1+γ in the denominator.

We remark at this point that [1, Theorem 4.1 and 4.3] proved that the classifier
achieves this rate under a different assumption set, namely under (iv), (vi) and
the assumption that P has NE q ∈ [0,∞]. The classifier then achieves the rate

n− γ(q+1)
γ(q+2)+d (22)

and for this set of assumptions the rate is optimal (in a minimax sense). Our
assumptions, namely (i), (iii)a, (iv) and (vi) imply the assumptions of [1], but,
this is not a contradiction since our assumptions are a subset of the assumptions
of [1].

Our improvement arises from assumption (iii)a since it forces critical noise
(η ≈ 1/2) to be located close to the decision boundary and as we will see
down below this assumption has an essential influence on the NE q. To be more
precisely, there are two sources for slow learning rates. The first one is the ap-
proximation error around the decision boundary, the second one is the existence
of critical noise. Assumption (iii)a forces both to be in the same region such
that both effects cannot independently occur, which in turn leads to better rates
compared to [1]. In other words, with assumption (iii)a we exclude distributions
that have regions of critical noise that are far away from the decision boundary.
Be aware that this does not mean that we consider only distributions without
noisy regions bounded away from the decision boundary. In Fig. 1 we present
two examples which make this situation more clear. Areas of noise that are, for
example, located in the set X1 in Fig. 1 (a) resp. in the set X−1 in Fig. 1 (b)
are still allowed under (iii)a whereas the areas of critical noise in the particular
other set are permitted.

To make this heuristic argument more precise we take a look at Theorem
3.5 and its proof and show that if we omit assumption (iii)a and thus consider
the assumptions taken in [1], we match the optimal rate in (22). To this end,
we consider in addition to (i) the above mentioned assumptions of [1], that
is (iv), (vi) and the NE q. Since we do not assume (iii)a we cannot use this
assumption to obtain a variance bound on the set Fr, which is bounded away
from the decision boundary (e.g., Lemma 3.4). Hence, the separation technique
we used in the proof would make no sense any more, but we are able to bound
the excess risk on the whole set by Part 2 in the proof of Theorem 3.5, where
we bounded the excess risk on the set Nr that is close to the decision boundary.
This situation corresponds to the fact that our set Fr is empty (letting go
r → ∞). There are two points that change in Part 2 of the proof. First, we have
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Fig 1. Examples of η with regions of critical noise (η ≈ 1/2) far away from the decision
boundary. The size of these regions has an essential influence on the NE q. Since assumption
(iii)a disallow areas of critical noise far away from the decision boundary we obtain a better
noise exponent and hence, better rates. Note that areas of noise as in (a) in the lower right
corner or in (b) in the lower left corner are still allowed.
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no variance bound as in (38), but we can apply [10, Theorem 8.24], a general
variance bound, and obtain

EP (h
N
f0)

2 ≤ Ṽ
(
EPh

N
f0

)θ
,

where θ := q
q+1 and where Ṽ is a positive constant. Second, we can bound the

cardinality |F| in (40) as in Part 1 and yield with some calculations as in Part
3 for the overall excess risk

RL,P (hD,s)−R∗
L,P ≤ 6 (cMNEs)

β
+ c

( τ

sdn

) 1
2−θ

,

where c > 0 is a constant and τ ≥ 1. Then, minimizing over s yields for our
learning method the rate

n− γ(q+1)
γ(q+2)+d ,

which matches the in [1, Theorem 4.1 and 4.3] proven optimal rate (22). We fur-
ther remark that instead of the Hölder assumption (iv) the weaker assumption
(iii)b is sufficient for Theorem 3.5 and the above modified one.

If we consider now in addition to the assumptions in [1] that (i) and (iii)a
hold, we find that our rate improves immediately since we can directly apply
Theorem 3.5 and thus obtain exactly the rate with exponent (18) which is better
by − γ

1+γ . In summary, taking in consideration assumption (iii)a influences the
noise exponent in a good way since we exclude distributions that have critical
noise far away from the decision boundary. This leads to better learning rates.

Finally, we remark that for our results as well as for the results from [1, 2, 7]
and [10] less assumptions are sufficient and in the comparisons above we tried
to formulate reasonable sets of common assumptions.

5. Proofs

Proof of Lemma 2.1: For a set T ⊂ X and δ > 0 we define as in [9] the sets

T+δ := {x ∈ X | d(x, T ) ≤ δ },
T−δ := X \ (X \ T )+δ.

Since X1 := {x ∈ X | η(x) ≤ 1/2 } is bounded and measurable, we find with [9,
Lemma A.10.3] and the proof of [9, Lemma A.10.4(ii)] that there exists a δ∗ > 0,
such that for all δ ∈ (0, δ∗] we have

λd(X+δ
1 \X−δ

1 ) ≤ 4Hd−1(∂XX1) · δ = 4Hd−1(X0) · δ. (23)

Next, we show that

{x ∈ X |Δη(x) ≤ δ } ⊂ X+δ
1 \X−δ

1 ∪X0. (24)
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For this purpose, we remark that according to (4) we have

{x ∈ X |Δη(x) ≤ δ }
= {x ∈ X1 | d(x,X−1) ≤ δ } ∪ {x ∈ X−1 | d(x,X1) ≤ δ } ∪X0.

Let us first show that {x ∈ X1 | d(x,X−1) ≤ δ } ⊂ X+δ
1 \ X−δ

1 . To this end,
consider an x ∈ X1 with d(x,X−1) ≤ δ, where we check at once that x ∈ X+δ

1 .
Now, assume that x ∈ X−δ

1 = X \(X \X1)
+δ. Then, we find that x /∈ (X \X1)

+δ

such that d(x,X \ X1) = d(x,X−1 ∪ X0) > δ. Hence, x /∈ X−δ
1 . Next, let us

show that {x ∈ X−1 | d(x,X1) ≤ δ } ⊂ X+δ
1 \ X−δ

1 . To this end, consider an
x ∈ X−1 with d(x,X1) ≤ δ. Then, it is clear that x ∈ X+δ

1 by definition of X+δ
1 .

Furthermore, x /∈ X−δ
1 since X−δ

1 = X \ (X−1)
+δ ⊂ X1. Having showed (24),

we find together with the fact that λd(X0) = 0 since X0 is (d − 1)- rectifiable
that

λd({x ∈ X |Δη(x) ≤ δ }) ≤ λd(X+δ
1 \X−δ

1 ).

Finally, with (23) and the fact that X0 = ∂XX1 we find that

λd({x ∈ X |Δη(x) ≤ δ }) ≤ λd(X+δ
1 \X−δ

1 )

≤ 4Hd−1(X0) · δ
= 4Hd−1({x ∈ X | η(x) = 1/2 }) · δ

for all δ ∈ (0, δ∗].

Proof of Lemma 3.1:

i) We assume for Aj with j ∈ Jr
F that we have an x1 ∈ Aj ∩ X1 �= ∅ and

an x−1 ∈ Aj ∩ X−1 �= ∅. Then, the connecting line x−1x1 from x−1 to
x1 is contained in Aj since Aj is convex and we have ‖x−1 − x1‖∞ ≤ s.
Moreover, since Δη(x) ≥ r for all x ∈ Fr we have that x ∈ X1 ∪ X−1.
Next, pick an m > 1 such that

t0 = 0, tm = 1, ti =
i

m

and

xi := tix−1 + (1− ti)x1

for i = 0, . . . ,m. Clearly, xi ∈ x−1x1 and xi ∈ X−1 ∪X1. Since x0 ∈ X1

and xm ∈ X−1, there exists an i with xi ∈ X1 and xi+1 ∈ X−1 and we
find that

‖xi − xi+1‖∞ ≥ Δη(xi) ≥ r.

On the other hand,

‖xi − xi+1‖∞ =
1

m
‖x−1 − x1‖∞ ≤ s

m
≤ 2r

m

such that r ≤ 2r
m , which is not true for m ≥ 3. Hence, we can not have an

x1 ∈ Aj ∩X1 �= ∅ and an x−1 ∈ Aj ∩X−1 �= ∅ for j ∈ Jr
F .



Classification rates under refined margin conditions 809

ii) We define the set of indices

Jr
C := { j ∈ J | ∃ x̃ ∈ Aj : Δη(x̃) < r }

and define the set

Cr :=
⋃

j∈Jr
C

Aj .

Since X ⊂ Fr ∪ Cr, it suffices to show that Cr ⊂ Nr. To show the latter
we fix an x ∈ Cr. If x ∈ X0 we immediately have Δη(x) = 0 < 3r, hence
we assume w.l.o.g. that x ∈ X1. Then, there exists a j ∈ Jr

C such that
x ∈ Aj . Furthermore, there exists an x∗ ∈ Aj with Δη(x

∗) < r and we
find with X0 = ∂XX1 = ∂XX−1 that

Δη(x) = inf
x′∈X−1

‖x− x′‖∞

≤ inf
x′∈X−1

(‖x− x∗‖∞ + ‖x∗ − x′‖∞)

≤ s+Δη(x
∗)

< s+ r,

where ‖ · ‖∞ is the supremum norm in R
d. Since s ≤ 2r, it follows that

Δη(x) ≤ 3r and therefore x ∈ Nr.

Proof of Lemma 3.2: Under the assumptions of Lemma 3.1 ii) we find that
X ⊂ Nr ∪ Fr. Since the excess risk is non-negative we then have

RL,P (f)−R∗
L,P

=

∫
X×Y

L(y, f(x)− f∗(x)) dP (x, y)

=

∫
X

∫
Y

L(y, f(x)− f∗(x))P (dy|x)dPX(x)

≤
∫
Nr∪Fr

∫
Y

L(y, f(x)− f∗(x))P (dy|x)dPX(x)

=

∫
Nr

∫
Y

L(y, f(x)− f∗(x))P (dy|x)dPX(x)

+

∫
Fr

∫
Y

L(y, f(x)− f∗(x))P (dy|x)dPX(x)

=
(
RLNr ,P

(hD,s)−R∗
LNr ,P

)
+
(
RLFr ,P

(hD,s)−R∗
LFr ,P

)
.
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Proof of Lemma 3.3: For f ∈ F we have

RLTJ
,D(f)

=

∫
X×Y

LTJ
(x, y, f(x)) dD(x, y)

=
∑
j∈J

∫
Aj×Y

Lclass(y, f(x)) dD(x, y).

Next, we take a closer look at the risk on a single cell Aj for j ∈ J . That is,

∫
Aj×Y

Lclass(y, f(x)) dD(x, y) =
1

n

n∑
i=1

1Aj (xi)1yi �=cj ,

where cj ∈ {−1, 1} is the label of the cell Aj . The risk on a cell is the smaller the
less often we have yi �= cj such that the best classifier on a cell is the one which
decides by majority. This is true for the histogram rule by definition. Since the
risk is zero on Aj with j �∈ J , the histogram rule minimizes the risk with respect
to LTJ

.

Proof of Lemma 3.4: We define hf := LFr ◦ f − LFr ◦ f∗
L,P for a measurable

f : X → {−1, 1}. Since (LFr ◦ f − LFr ◦ f∗
L,P )

2 = 1Fr

|f−f∗
L,P |
2 we obtain

EP (hf − EPhf )
2

≤ EP (hf )
2

= EP (LFr ◦ f − LFr ◦ f∗
L,P )

2

=
1

2
EP1Fr |f − f∗

L,P |.

For x ∈ Fr we have Δη(x) ≥ r and thus we find with our lower-control assump-
tion that

rγ ≤ Δγ
η(x) ≤ cLC |2η(x)− 1|

and therefore

1 ≤ cLCr
−γ |2η(x)− 1|.

By using 1Fr

|f−f∗|
2 = 1(X−1�{f<0})∩Fr

, where � denotes the symmetric differ-
ence defined by C�D := (C \ D) ∪ (D \ C) for sets C,D ⊂ X and by using
Lemma A.1 we obtain for the variance bound

EP (hf − EPhf )
2 ≤ 1

2

∫
1Fr(x)|f(x)− f∗

L,P (x)|dPX(x)

≤ cLC

2rγ

∫
1Fr(x)|2η(x)− 1||f(x)− f∗

L,P (x)|dPX(x)
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=
cLC

rγ

∫
(X−1�{f<0})∩Fr

|2η(x)− 1|dPX(x)

=
cLC

rγ
(RLFr ,P

(f)−R∗
LFr ,P

)

=
cLC

rγ
EPhf .

Proof of Theorem 3.5: We define the set of cubes Nr and Fr as in (6), (7)
for the choice of

r := c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ)

, (25)

where

θ :=
α

α+ γ
. (26)

With (25) we find that s ≤ r. To see the latter, we remark that

s ≤ c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ) ⇐⇒ s

1+γ(2−θ)+d(1−θ)
1+γ(2−θ) ≤ c̃α,γ,d

( τ
n

) 1−θ
1+γ(2−θ)

⇐⇒ s ≤
(
c̃α,γ,d

( τ
n

) 1−θ
1+γ(2−θ)

) 1+γ(2−θ)
1+γ(2−θ)+d(1−θ)

and conclude by replacing θ by (26) that s ≤ r holds if

s ≤ c̃
(1+γ)(α+γ)+γ2

(1+γ)(α+γ)+γ2+dγ

α,γ,d

( τ
n

) γ

(1+γ)(α+γ)+γ2+dγ
,

which equals (9). Hence, we are able to split the excess risk RL,P (hD,s)−R∗
L,P

according to Lemma 3.2 by

RL,P (hD,s)−R∗
L,P

≤
(
RLNr ,P

(hD,s)−R∗
LNr ,P

)
+
(
RLFr ,P

(hD,s)−R∗
LFr ,P

)
.

(27)

The rest of the proof is structured in three parts, where we establish error bounds
on Nr and Fr in the first two parts and combine the results obtained in the third
and last part of the proof. In the following we write N := Nr and F := Fr and
keep in mind, that these sets depend on a parameter r. Furthermore, we write
hD := hD,s.

Part 1: In the first part we establish an oracle inequality for RLF ,P (hD,s)−
R∗

LF ,P . Therefore we define hF
f := LF ◦ f − LF ◦ f∗

LF ,P and find that

‖hF
f ‖∞ = ‖LF ◦ f − LF ◦ f∗

LF ,P ‖∞ ≤ 1

for all f ∈ F . Furthermore, with Lemma 3.4 we obtain

EP (h
F
f )

2 ≤ cLC
rγ

EPh
F
f ≤ c1

rγ
EPh

F
f , (28)
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where c1 := max{cLC, 2γ}. We observe that rγ ≤ c1, since with assumption

(10), where we rewrite the exponent by (1+γ)(α+γ)+γ2

γ = 1+γ(2−θ)
1−θ , we find

r = c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ)

≤ c̃α,γ,d

⎛
⎝(min{ δ∗

3 , 1}
c̃α,γ,d

) 1+γ(2−θ)
1−θ

⎞
⎠

1−θ
1+γ(2−θ)

= min

{
δ∗

3
, 1

}
≤ 1

and therefore rγ ≤ 2γ ≤ c1. As we conclude from Lemma 3.3 that hD is an
empirical risk minimizer over F for the loss LF , we are able to use [10, Theo-
rem 7.2], an improved oracle inequality for ERM. We obtain for all fixed τ ≥ 1
and n ≥ 1 that

RLF ,P (hD)−R∗
LF ,P < 6(R∗

LF ,P,F −R∗
LF ,P ) +

32c1(log(|F|+ 1) + τ)

rγn

holds with probability Pn ≥ 1 − e−τ , where R∗
LF ,P,F := inff∈F RLF ,P (f).

Next, we refine the right-hand side of this oracle inequality. Obviously we have
|F| ≤ 2|J|. We bound the the cardinality |J | by using a volume comparison

argument. To this end, we define the set J̃ := { j ≥ 1 |Aj ∩ 2 [−1, 1]
d �= ∅ } and

observe that
⋃

j∈J Aj ⊂
⋃

j∈J̃ Aj ⊂ 4B
d∞
. Then,

|J |sd = λd

⎛
⎝⋃

j∈J

Aj

⎞
⎠ ≤ λd

⎛
⎝⋃

j∈J̃

Aj

⎞
⎠ ≤ λd

(
4B
d∞

)
= 8d,

such that we deduce with |J | ≤ 8ds−d that

log(|F|+ 1) ≤ log(28
ds−d

+ 1)

≤ log(2 · 28ds−d

)

= log(28
ds−d+1)

= (8ds−d + 1)log(2)

≤ 8ds−d + 1

≤ 8d+1s−d.

Thus,

RLF ,P (hD)−R∗
LF ,P < 6(R∗

LF ,P,F −R∗
LF ,P ) +

32c1(8
d+1s−d + τ)

rγn
(29)

holds with probability Pn ≥ 1− e−τ .
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Finally, we have to bound the approximation error R∗
LF ,P,F − R∗

LF ,P =
inff∈F RLF ,P (f)−R∗

LF ,P . We find with hP,s ∈ F and Lemma A.1 that

R∗
LF ,P,F −R∗

LF ,P ≤ RLF ,P (hP,s)−R∗
LF ,P

=

∫
(X1�{hP,s≥0})∩F

|2η − 1| dPX

=
∑
j∈Jr

F

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX

= 0,

(30)

since PX((X1�{hP,s ≥ 0})∩Aj) = 0 for each j ∈ Jr
F . To see the latter, we first

remark that the latter set contains those x ∈ Aj for that either hP,s(x) ≥ 0 and
η(x) ≤ 1/2 or hP,s(x) < 0 and η(x) > 1/2. Since we have Aj ⊂ X−1 ∪ X1 we
can ignore the case η(x) = 1/2. Furthermore, we know by Lemma 3.1 i) that
either Aj ∩X−1 = ∅ or Aj ∩X1 = ∅. Let us first consider the case Aj ∩X−1 = ∅
and thus Aj ⊂ X1. According to the definition of the histogram rule, cf. (1), we
find for all x ∈ Aj that hP,s(x) = 1, since

fP,s(x)

= P (Aj(x)× {1})− P (Aj(x)× {−1})

=

∫
Aj

∫
Y

1Aj×{1}(x, y)P (dy|x)dPX(x)

−
∫
Aj

∫
Y

1Aj×{−1}(x, y)P (dy|x)dPX(x)

=

∫
Aj

1Aj×{1}(x, 1)η(x)dPX(x)−
∫
Aj

1Aj×{−1}(x,−1)(1− η(x))dPX(x)

=

∫
Aj

2η(x)− 1dPX(x)

≥ 0.

Obviously we have η(x) ≥ 1/2 and hP,s(x) = 1 for all x ∈ Aj . Analogously we
can show for cells with Aj∩X1 = ∅ for j ∈ Jr

F that η(x) ≤ 1/2 and hP,s(x) = −1
for all x ∈ Aj . Hence, PX((X1�{hP,s ≥ 0}) ∩ Aj) = 0 for all j ∈ Jr

F and the
approximation error vanishes on the set F .

Altogether, for the oracle inequality on F we obtain with (29) and (30) that

RLF ,P (hD)−R∗
LF ,P <

32c1(8
d+1s−d + τ)

rγn
(31)

holds with probability Pn ≥ 1− e−τ .
Part 2: In the second part we establish an oracle inequality for RLN ,P (hD)−

R∗
LN ,P , again by using [10, Theorem 7.2]. Analogously to Part 1 we define

hN
f := LN ◦ f − LN ◦ f∗

LN ,P for f ∈ F and find ‖hN
f ‖∞ ≤ 1. Since (hN

f0
)2 =
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1N
|f−f∗

L,P |
2 = 1(X−1�{f<0})∩N we find with [Appendix, Lemma A.1] that

EP (h
N
f0)

2

=
1

2

∫
N

|f0(x)− f∗
LN ,P (x)|dPX(x)

=
1

2

∫
N∩{|2η−1|≥t}

|f0(x)− f∗
LN ,P (x)|dPX(x)

+
1

2

∫
N∩{|2η−1|<t}

|f0(x)− f∗
LN ,P (x)|dPX(x)

≤ 1

2t

∫
N∩{|2η−1|≥t}

|2η(x)− 1||f0(x)− f∗
LN ,P (x)|dPX(x)

+ PX({x ∈ N : |2η(x)− 1| < t})

≤ 1

2t

∫
N

|2η(x)− 1||f0(x)− f∗
LN ,P (x)|dPX(x)

+ PX({x ∈ N : |2η(x)− 1| < t})
≤ t−1

EPh
N
f0 +min{PX(N), PX({x ∈ X : |2η(x)− 1| < t})}

(32)

for all t > 0. We turn our attention to the minimum and note that by the
definition of N we have

PX(N) ≤ PX({Δη(x) ≤ 3r}). (33)

For x ∈ X with |2η(x)−1| < t by the definition of the lower control we conclude
from

Δγ
η(x)

cLC
≤ |2η(x)− 1| < t.

that

Δη(x) ≤ (cLCt)
1
γ

and consequently

{x ∈ X : |2η(x)− 1| < t} ⊂ {x ∈ X : Δη(x) ≤ (cLCt)
1
γ }. (34)

Then, we find by (33), (34) and by the definition of the margin exponent that

min{PX(N), PX({x ∈ X : |2η(x)− 1| < t})}
≤ min{PX({Δη(x) ≤ 3r}), PX({x ∈ X : Δη(x) ≤ (cLCt)

1
γ })}

≤ min{(cME3r)
α, cαME(cLCt)

α
γ }.

(35)

Combining (35) with (32) we obtain

EP (h
N
f0 − EPh

N
f0)

2 ≤ t−1
EPh

N
f0 +min{(cME3r)

α, cαME(cLCt)
α
γ }

≤ t−1
EPh

N
f0 + cαME(cLCt)

α
γ .

(36)
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Minimizing the right-hand side of (36) yields

min
t>0

(
t−1

EPh
N
f0 + cαME(cLCt)

α
γ

)
= c2

(
EPh

N
f0

) α
α+γ ,

where c2 := α+γ
γ c

αγ
α+γ

ME

(
γcLC

α

) α
α+γ , such that with

V := max{1, c2} (37)

and (26) we have

EP (h
N
f0)

2 ≤ t−1
EPh

N
f0 + cME(cγt

1
γ )α = c2

(
EPh

N
f0

) α
α+γ ≤ V

(
EPh

N
f0

)θ
. (38)

Note, that the definition of V yields V
1

2−θ ≥ 1. Since hD is an ERM over F for
the loss LN due to Lemma 3.3, by using [10, Theorem 7.2] we obtain for fixed
τ ≥ 1 and n ≥ 1 that

RLN ,P (hD)−R∗
LN ,P

< 6(R∗
LN ,P,F −R∗

LN ,P ) + 4

(
8V (log(|F|+ 1) + τ)

n

) 1
2−θ (39)

holds with probability Pn ≥ 1−e−τ . In order to refine the right-hand side in (39),
we establish a bound on the cardinality |F| = 2|JA| and on the approximation
error. To bound the mentioned cardinality we use the fact that N is contained
in a tube around the decision line, that is

⋃
j∈JN

Aj ⊂ {Δη(x) ≤ 3r}, see (6).
We remark that 3r ≤ δ∗ holds, where δ∗ is the constant from Lemma 2.1, since
with assumption (10) we have

3r = 3c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ) ≤ 3min

{
δ∗

3
, 1

}
≤ δ∗.

Then, with Lemma 2.1 we find that

λd({Δη(x) ≤ 3r}) ≤ 12Hd−1({η = 1/2})r

and we obtain

|JA|sd = λd

⎛
⎝ ⋃

j∈JA

Aj

⎞
⎠ ≤ λd({Δη(x) ≤ 3r}) ≤ 12Hd−1({η = 1/2})r.

This yields to

|JA| ≤ 12Hd−1({η = 1/2})rs−d = c3rs
−d,
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where c3 := 12Hd−1({η = 1/2}). By r ≥ s ≥ sd we hence conclude that

log(|F|+ 1) ≤ log(2c3rs
−d

+ 1)

≤ log(2 · 2c3rs−d

)

= log(2c3rs
−d+1)

= (c3rs
−d + 1)log(2)

≤ c3rs
−d + rs−d

≤ c4rs
−d,

(40)

where c4 := 2max{12Hd−1({η = 1/2}), 1}. Thus, (39) changes to

RLN ,P (hD)−R∗
LN ,P ≤ 6(R∗

LN ,P,F −R∗
LN ,P ) + 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

(41)

with probability Pn ≥ 1− e−τ .

Finally, we have to bound the approximation error R∗
LN ,P,F −R∗

LN ,P in (41).
For f0 = hP,s we have with Lemma A.1 that

RLN ,P (hP,s)−R∗
LN ,P =

∫
(X1�{hP,s≥0})∩N

|2η − 1| dPX

=
∑
j∈Jr

N

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX .

We split Jr
N in indices where cells do not intersect the decision line and those

which do by

Jr
N1

:= { j ∈ Jr
N |PX(Aj ∩X1) = 0 ∨ PX(Aj ∩X−1) = 0 }

Jr
N2

:= { j ∈ Jr
N |PX(Aj ∩X1) > 0 ∧ PX(Aj ∩X−1) > 0 }.

such that

∑
j∈Jr

N

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX

=
∑

j∈Jr
N1

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX

+
∑

j∈Jr
N2

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX .

We notice that, as in the calculation of the approximation error in Part 1,
the first sum vanishes since PX((X1�{hP,s ≥ 0}) ∩ Aj) = 0 for all j ∈ Jr

N1
.

Moreover, we remark that Jr
N2

only contains cells of width s that intersect the
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decision boundary. Hence, by using the margin-noise assumption we find

RLN ,P (hP,s)−R∗
LN ,P =

∑
j∈Jr

N2

∫
(X1�{hP,s≥0})∩Aj

|2η − 1| dPX

≤
∫
{Δη(x)≤s}

|2η − 1| dPX

≤ (cMNEs)
β
.

(42)

Altogether for the oracle inequality on N with (41) we find that

RLN ,P (hD)−R∗
LN ,P ≤ 6 (cMNEs)

β
+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

(43)

holds with probability Pn ≥ 1− e−τ .

Part 3: In the last part we combine the results obtained in Part 1, the oracle
inequality on F and Part 2, the oracle inequality on N . That means, with the
separation in (27) we obtain with (31) and (43) for the oracle inequality on X
that

RL,P (hD,s)−R∗
L,P

≤
(
RLN ,P (hD,s)−R∗

LN ,P

)
+
(
RLF ,P (hD,s)−R∗

LF ,P

)
≤ 6 (cMNEs)

β
+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

+
32c1(8

d+1s−d + τ)

rγn

(44)

holds with probability Pn ≥ 1 − 2e−τ . Since s ∈ (0, 1] and r ≥ s, we find that
rs−d ≥ 1. Together with the fact s−d, τ ≥ 1 and c4 ≥ 1 it follows that

RL,P (hD,s)−R∗
L,P

≤ 6 (cMNEs)
β
+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

+
32c1(8

d+1s−d + τ)

rγn

≤ 6 (cMNEs)
β
+ 4

(
8V (c4τrs

−d + c4τrs
−d)

n

) 1
2−θ

+
32c1(8

d+1τs−d + τs−d)

rγn

≤ 6 (cMNEs)
β
+ 4

(
c5τrs

−d

n

) 1
2−θ

+
c6τs

−d

rγn

≤ 6 (cMNEs)
β
+ r

1
2−θ 4

( c5τ
sdn

) 1
2−θ

+
c6τ

rγsdn
,

where c5 := 32V max{12Hd−1({η = 1/2}), 1} and c6 := 64 · 8d+1 max{cLC , 2
γ}.

Thus, inserting r, defined in (25), with the choice of c̃α,γ,d :=
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(
(γ(2−θ)c6)

2−θ

42−θc5

) 1
1+γ(2−θ)

minimizes the right-hand side and yields

RL,P (hD,s)−R∗
L,P

≤ 6 (cMNEs)
β
+ r

1
2−θ 4

( c5τ
sdn

) 1
2−θ

+
c6τ

rγsdn

= 6 (cMNEs)
β
+ 4(c̃α,γ,dc5)

1
2−θ

( τ

sdn

) 2−θ+γ(2−θ)
(1+γ(2−θ))(2−θ)

+
c6

c̃γα,γ,d

( τ

sdn

) 1+γ
1+γ(2−θ)

= 6 (cMNEs)
β
+

⎛
⎝ c̃

1+γ(2−θ)
2−θ

α,γ,d 4c
1

2−θ

5 + c6

c̃γα,γ,d

⎞
⎠( τ

sdn

) 1+γ
1+γ(2−θ)

= 6 (cMNEs)
β
+

(
γ(2− θ)c6 + c6

c̃γα,γ,d

)( τ

sdn

) 1+γ
1+γ(2−θ)

≤ 6 (cMNEs)
β
+

(
2c6 max{γ(2− θ), 1}

c̃γα,γ,d

)( τ

sdn

) 1+γ
1+γ(2−θ)

and we find again by inserting θ that

RL,P (hD,s)−R∗
L,P ≤ 6 (cMNEs)

β
+ cα,γ,d

( τ

sdn

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

(45)

holds with probability Pn ≥ 1 − 2e−τ , where cα,γ,d := 2c6 max{γ(2−θ),1}
c̃γα,γ,d

=

2c6 max{ γ(α+2γ)
α+γ ,1}

c̃γα,γ,d
.

Proof of Theorem 3.6:We begin by proving that the chosen sequence sn satis-

fies assumptions (9) and (10). To this end, we define nτ,α,β,γ,d :=
(

c̃α,β,γ,τ,d

c1

) 1
ζ1

with c1 := c̃
κ+γ2

κ+γ2+dγ

α,γ,d τ
γ

κ+γ2+dγ , where c̃α,γ,d is the constant from Theorem 3.5,

and ζ1 := κ(κ+γ2+dγ)−γ(β(κ+γ2)+dκ)
(β(κ+γ2)+dκ)(κ+γ2+dγ) . We remark that ζ1 ≥ 0 since we find by

β ≤ γ−1(1 + γ)(α+ γ) that

κ(κ+ γ2 + dγ)− γ(β(κ+ γ2) + dκ) = κ2 + kγ2 − γβκ− βγ3

≥ κ2 + κγ2 − κ2 − κγ2

= 0.

Then, for n ≥ nτ,α,β,γ,d a simple calculation shows that the latter is equivalent
to

c1n
− γ

κ+γ2+dγ ≥ c̃α,β,γ,τ,dn
− κ

β(κ+γ2)+dκ ,

which equals assumption (9) with sn := c̃α,β,γ,τ,dn
− κ

β(κ+γ2)+dκ . To see that

assumption (10) is satisfied we define ñτ,α,β,γ,d :=
(

c2
c̃α,β,γ,τ,d

) 1
ζ2

with c2 :=
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τ
1
d

(
c̃α,γ,d

min{ δ∗
3 ,1}

)κ+γ2

dγ

, where c̃α,γ,d is the constant from Theorem 3.5, δ∗ the one

from Lemma 2.1 and where ζ2 := β(κ+γ2)
d(β(κ+γ2)+dκ) . Then, a simple transformation

shows again that for all n ≥ ñτ,α,β,γ,d we find

c̃α,β,γ,τ,dn
− κ

(β(κ+γ2)+dκ) ≥ c2n
− 1

d ,

which equals assumption (10) with sn := c̃α,β,γ,τ,dn
− κ

(β(κ+γ2)+dκ) .
Finally, we obtain for all n ≥ n0 := �max{nτ,α,β,γ,d, ñτ,α,β,γ,d}� by inserting

our chosen sequence sn, satisfying (9) and (10), in (11) that

RL,P (hD,sn)−R∗
L,P

≤ 6(cMNEsn)
β + cα,γ,d

(
τ

sdnn

) κ
κ+γ2

= 6cβMNEc̃
β
α,β,γ,τ,dn

− βκ

β(κ+γ2)+dκ + cα,γ,dτ
κ

κ+γ2 c̃
− dκ

κ+γ2

α,β,γ,τ,dn
− βκ

β(κ+γ2)+dκ

=

⎛
⎜⎝6cβMNEc̃

β(κ+γ2)+dκ

κ+γ2

α,β,γ,τ,d + cα,γ,dτ
κ

κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

⎞
⎟⎠n

− βκ

β(κ+γ2)+dκ

=

⎛
⎝ dκ

β(κ+γ2)cα,γ,dτ
κ

κ+γ2 + cα,γ,dτ
κ

κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

⎞
⎠n

− βκ

β(κ+γ2)+dκ

≤

⎛
⎝2max

{
dκ

β(κ+γ2) , 1
}
cα,γ,δτ

κ
κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

⎞
⎠n

− βκ

β(κ+γ2)+dκ

= cα,β,γ,τ,dn
− βκ

β(κ+γ2)+dκ

holds with probability Pn ≥ 1− 2e−τ , where cα,β,γ,τ,d :=

2max
{

dκ
β(κ+γ2) , 1

}
cα,γ,δτ

κ
κ+γ2 · c̃

− dκ
κ+γ2

α,β,γ,τ,d.

Proof of Theorem 3.7: Let s∗n behave as sn in Theorem 3.6, that is s∗n ∼
n
− κ

β(κ+γ2)+dκ . We assume that Sn := {s(n)1 , . . . , s
(n)
l } and s

(n)
i−1 < s

(n)
i for i ∈

{2, . . . , l}. Since Sn is a n−1/d-net we have

s
(n)
i − s

(n)
i−1 ≤ 2n−1/d. (46)

Furthermore, there exists indices i ∈ {1, . . . , l} such that s
(n)
i−1 ≤ s∗n ≤ s

(n)
i . An

analogous calculation as at the beginning of the proof of Theorem 3.6 shows

then that s
(n)
i−1 and s

(n)
i satisfy assumption (9) and (10) for sufficiently large n.

Hence, we find for s ∈ {s(n)i−1, s
(n)
i } with Theorem 3.5 that

RL,P (hD1,s)−R∗
L,P ≤ 6 (cMNEs)

β
+ cα,γ,d

( τ

sdk

) κ
κ+γ2

. (47)
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holds with P k ≥ 1 − 4e−τ . Since hD1,s∗D2
is an ERM we find with [10, Theo-

rem 7.2, Theorem 8.24 and Exercise 8.5] and τn := τ + log(1 + 2|Sn|) that

RL,P (hD1,s∗D2
)−R∗

L,P

< 6 inf
s∈Sn

(
RL,P (hD1,s)−R∗

L,P

)
+ 4

(
8cα,γτn
n− k

) α+γ
α+2γ

≤ inf
s∈{s(n)

i−1,s
(n)
i }

(
RL,P (hD1,s)−R∗

L,P

)
+ 4

(
8cα,γτn
n− k

) α+γ
α+2γ

(48)

holds with Pn−k ≥ 1 − e−τ . Combining (47) and (48) we obtain with k ≥ n/2
and n− k = n/2 + n/2− k ≥ n/4 that

RL,P (hD1,s∗D2
)−R∗

L,P

≤ 6 inf
s∈{s(n)

i−1,s
(n)
i }

(
6 (cMNEs)

β
+ cα,γ,d

(
2τ

sdn

) κ
κ+γ2

)
+ 4

(
32cα,γτn

n

) α+γ
α+2γ

≤ c1

(
inf

s∈{s(n)
i−1,s

(n)
i }

(
sβ +

(
2τ

sdn

) κ
κ+γ2

)
+
(τn
n

) α+γ
α+2γ

)

holds with Pn ≥ 1− (1 + 4)e−τ . With Lemma A.3 we find that

RL,P (hD1,s∗D2
)−R∗

L,P

≤ c1

(
inf

s∈{s(n)
i−1,s

(n)
i }

(
sβ +

(
2τ

sdn

) κ
κ+γ2

)
+
(τn
n

) α+γ
α+2γ

)

≤ c2

⎛
⎝(s∗n)

β
+

(
2τ

(s∗n)
d
n

) κ
κ+γ2

+
(τn
n

) α+γ
α+2γ

+ n− β
d

⎞
⎠

≤ c2

⎛
⎝(s∗n)

β
+

(
2τn

(s∗n)
d
n

) κ
κ+γ2

+

(
2τn
n

) α+γ
α+2γ

+ n− β
d

⎞
⎠

(49)

holds with Pn ≥ 1− 5e−τ . Next, it is easy to verify with β ≤ γ−1κ that

(
2τn
s̃dnn

) κ
κ+γ2

≥
(
2τn
n

) α+γ
α+2γ

such that we can omit the latter right-hand side term in (49). Hence, we have
that

RL,P (hD1,s∗D2
)−R∗

L,P

≤ c2

⎛
⎝(s∗n)

β
+

(
2τn

(s∗n)
d
n

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

+

(
2τn
n

) α+γ
α+2γ

+ n− β
d

⎞
⎠
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≤ c3

⎛
⎝(s∗n)

β
+

(
2τn

(s∗n)
d
n

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

+ n− β
d

⎞
⎠

≤ c3

(
n
− βκ

β(κ+γ2)+dκ + n− β
d

)
≤ c4 · n− βκ

β(κ+γ2)+dκ

holds with Pn ≥ 1− 5e−τ , where in the last step we used that

βκ

β(κ+ γ2) + dκ
≤ βκ

dκ
=

β

d
.

Appendix A: Appendix

Lemma A.1. Let Y := {−1, 1} and P be a probability measure on X × Y .
For η(x) := P (y = 1|x), x ∈ X define the set X1 := {x ∈ X | η(x) > 1/2 }.
Let L be the classification loss and consider for A ⊂ X the loss LA(x, y, t) :=
1A(x)L(y, t), where y ∈ Y, t ∈ R. For a measurable f : X → R we then have

RLA,P (f)−R∗
LA,P =

∫
(X1�{f≥0})∩A

|2η(x)− 1|dPX(x),

where � denotes the symmetric difference.

Proof of Lemma A.1: It is well known, e.g., [10, Example 3.8], that

RLA,P (f)−R∗
LA,P

=

∫
A

|2η(x)− 1| · 1(−∞,0)((2η(x)− 1)signf(x))dPX(x).
(50)

Next, for PX -almost all x ∈ A we have

1(−∞,0]((2η(x)− 1)signf(x)) = 1 ⇔ (2η(x)− 1)signf(x) ≤ 0.

The latter is true if for x ∈ A holds that f(x) < 0 and η(x) > 1/2 or that
f(x) ≥ 0 and η(x) ≤ 1/2 or that η(x) = 1/2. However, for η(x) = 1/2 we have
|2η(x) − 1| = 0 and hence this case can be ignored. Then, the latter obviously
equals the set (X1�{f ≥ 0}) ∩A and we obtain in (50)

RLA,P (f)−R∗
LA,P =

∫
(X1�{f≥0})∩A

|2η(x)− 1|dPX(x).

Lemma A.2. Let X := [−1, 1]
d
and P be a probability measure on X×{−1, 1}

with fixed version η : X → [0, 1] of its posterior probability. Then, if η is Hölder-
continuous with exponent γ, we have that Δη controls the noise from above with
exponent γ, that means there exists a constant cUC > 0 such that

|2η(x)− 1| ≤ cUCΔ
γ
η(x)

for PX-almost all x ∈ X.
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Proof of Lemma A.2: Fix w.l.o.g. an x ∈ X1. Then, η(x) > 1/2. Since η is
Hölder-continuous with exponent γ, there exists a constant c > 0 such that we
have

|2η(x)− 1| = 2|η(x)− 1/2| ≤ 2|η(x)− η(x′)| ≤ 2c(d(x, x′))γ

for all x′ ∈ X−1 and hence

|2η(x)− 1| ≤ 2c inf
x̃∈X−1

(d(x, x̃))γ = cUCΔ
γ
η(x),

where cUC := 2c. Obviously, the last inequality holds immediately for x ∈ X
with η(x) = 1/2.

Lemma A.3. Let β, γ, κ, τ be as in Theorem 3.6 and let Sn := {s(n)1 , . . . , s
(n)
l }

and s
(n)
i−1, s

(n)
i ∈ Sn for i ∈ {1, . . . , l} be given as in the beginning of the proof of

Theorem 3.7. Furthermore, let c1, c2 > 0 be constants. Then, we have

inf
s∈{s(n)

i−1,s
(n)
i }

(
6 (c1s)

β
+ c2

(
2τ

sdn

) κ
κ+γ2

)

≤ 6 (c1s
∗
n)

β
+ c2

(
2τ

(s∗n)
d
n

) κ
κ+γ2

+ 6

(
2c1
n1/d

)β

.

Proof of Lemma A.3: For δ > 0 we fix s̃ ∈ (0, 1] such that

6 (c1s̃)
β
+ c2

(
2τ

(s̃)
d
n

) κ
κ+γ2

≤ 6 (c1s
∗
n)

β
+ c2

(
2τ

(s∗n)
d
n

) κ
κ+γ2

+ δ,

where s∗n is given as in the proof of Theorem 3.7. Then, we find that s
(n)
i−1 ≤ s̃ ≤

s
(n)
i and with (46) that

s̃ ≤ s
(n)
i ≤ s̃+ 2n−1/d.

Hence,

6
(
c1s

(n)
i

)β
+ c2

⎛
⎜⎝ 2τ(

s
(n)
i

)d
n

⎞
⎟⎠

κ
κ+γ2

≤ 6
(
c1(s̃+ 2n1/d)

)β
+ c2

(
2τ

(s̃)
d
n

) κ
κ+γ2

≤ 6 (c1s̃)
β
+ c2

(
2τ

(s̃)
d
n

) κ
κ+γ2

≤ (c1s
∗
n)

β
+ c2

(
2τ

(s∗n)
d
n

) κ
κ+γ2

+ δ + 6

(
2c1
n1/d

)β
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and finally

inf
s∈{s(n)

i−1,s
(n)
i }

(
6 (c1s)

β
+ c2

(
2τ

sdn

) κ
κ+γ2

)

≤ 6 (c1s
∗
n)

β
+ c2

(
2τ

(s∗n)
d
n

) κ
κ+γ2

+ 6

(
2c1
n1/d

)β

.
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[5] Döring, M., Györfi, L. and Walk, H. (2015). Exact rate of conver-

gence of kernel-based classification rule In Challenges in Computational
Statistics and Data Mining 605 71–91. Springer International Publishing.
MR3408541

[6] Federer, H. (1969). Geometric measure theory. Springer. MR0257325
[7] Kohler, M. and Krzyzak, A. (2007). On the rate of convergence of

local averaging plug-in classification rules under a margin condition. IEEE
Trans. Inf. Theor. 53 1735–1742. MR2317135

[8] Massart, P. and Nedelec, E. (2006). Risk bounds for statistical learn-
ing. Ann. Statist. 34 2326–2366. MR2291502

[9] Steinwart, I. (2015). Fully adaptive density-based clustering. Ann.
Statist. 43 2132–2167. MR3396981

[10] Steinwart, I. and Christmann, A. (2008). Support Vector Machines.
Springer. MR2450103

http://www.ams.org/mathscinet-getitem?mr=MR2336861
http://www.ams.org/mathscinet-getitem?mr=3269976
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=MR3408541
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2317135
http://www.ams.org/mathscinet-getitem?mr=MR2291502
http://www.ams.org/mathscinet-getitem?mr=3396981
http://www.ams.org/mathscinet-getitem?mr=2450103

	Introduction
	General assumptions
	Oracle inequality and learning rates
	Comparison of rates
	Proofs
	Appendix
	Acknowledgement
	References

