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Abstract: In this paper we develop a sure independence screening method
based on hypothesis testing (HT-SIS) in a general nonparametric regres-
sion model. The ranking utility is based on a powerful test statistic for the
hypothesis of predictive significance of each available covariate. The sure
screening property of HT-SIS is established, demonstrating that all active
predictors will be retained with high probability as the sample size in-
creases. The threshold parameter is chosen in a theoretically justified man-
ner based on the desired false positive selection rate. Simulation results sug-
gest that the proposed method performs competitively against procedures
found in the literature of screening for several models, and outperforms
them in some scenarios. A real dataset of microarray gene expressions is
analyzed.
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1. Introduction

In recent years, fast advances in technology and data collection have facilitated
the acquisition of high-dimensional data in several areas of research. The chal-
lenge arises when the number of predictors is larger than the sample size, which
can be found for example in studies with genomic microarrays, high frequency
functional MRI or imaging decoding. Several regularization methods can be
used to perform variable selection in such situations, including the LASSO [17],
the SCAD [7], the LARS [6], the elastic net [24] and the Dantzig selector [4].
Although these methods yield good results for high-dimensional data, when the
number of predictors is ultra-high they may not perform well due to computa-
tional problems or statistical accuracy. In order to deal with these challenges,
it becomes necessary to develop methods that reduce the dimensionality of the
predictor space from an ultra-high scale to a relatively high scale.
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Fan and Lv [8] were pioneers in studying theoretical aspects for the idea of
screening out unimportant predictors in a regression model. They introduced the
concept of sure independence screening (SIS), that is, with probability tending
to 1, a well chosen subset of the predictors will contain the true set of predictors
that contribute to the underlying model. The theoretical properties of this pro-
cedure were obtained under the strong assumption of a linear model. However,
if this assumption is not accurate, predictors with high predictive significance
whose effects are nonlinear might not be detected.

In order to identify nonlinear effects in a regression model, Fan, Feng and Song
(2011) [11] considered nonparametric independence screening (NIS) with an ad-
ditive model, ranking the utility of the covariates with Em2

j (Xj), where mj =
E(Y |Xj), the projection of Y onto Xj . For multi-index models Zhu, Li, Li and
Zhu (2011) [23] used E[xE{I(Y < y)|x}] as the population utility measure for

a covariate, estimating it with the statistic (1/n)
∑n

j [(1/n)
∑n

i XiI(Yi < Yj)]
2
.

Several other authors have recently developed methods for variations of linear
and nonlinear models, see for instance [13], [9], [10], [12], [18], [21], [14] and [22].
However, little is found in the literature regarding screening for fully nonpara-
metric regression models. Li, Zhong and Zhu (2012) [15] innovatively considered
a model-free sparse regression whose active predictors are those which F (Y |X)
is functionally dependent on. In order to allow for arbitrary regression relation-
ship, they used the distance correlation (DC-SIS) between each covariate and
the response variable as the ranking for screening.

In this paper we propose a novel screening method that, differently from the
focus of the procedures in the literature, is based on a test statistic for the
hypothesis that each available predictor has predictive significance. The signal
strength of active predictors is based on the variance of the marginal nonpara-
metric regression function. We use a powerful nonparametric test proposed by
Zambom and Akritas (2014) [20] to compute the marginal utility of each pre-
dictor. New asymptotic theory is developed in order to establish the rates of
convergence of the test statistic with a new Berry Essen type bound for its
distribution and exponential convergence rates for the variance estimator. The
proposed method is performed under a very general heteroscedastic nonpara-
metric regression model, which does not require strong assumptions such as
linearity or additivity of the mean regression function. Moreover, due to the
fact that the predictors are ranked using a test statistic, a meaningful choice of
the threshold parameter can be made, a fundamental advantage over the ad-hoc
approaches in other procedures in the literature.

The remaining of the paper is as follows. In Section 2 we present the non-
parametric regression model and preliminary asymptotic properties of the test
statistic. The screening method HT-SIS and its sure independence properties
are examined in Section 3. Section 4 describes a procedure to select the thresh-
old parameter in order to maintain a desired false positive rate. Section 5
presents a comparison of the performance of HT-SIS, the parametric SIS and
the model-free DC-SIS and finally a microarray dataset is analyzed in Sec-
tion 6.
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2. The model and preliminary results

Let Y denote the response variable, X = (X1, . . . , Xd) the vector of available
predictors, and with some abuse of notation, let Xki be the i-th observation of
the k-th covariate. Assume that the data come from the heteroscedastic non-
parametric regression model

Y = m(X) + σ(X)ε, (1)

where ε is the independent error with E(ε) = 0 and constant variance (w.l.o.g.
assume Var(ε) = 1), uncorrelated with X. When the dimension d of the vector
of covariates is high, it is often assumed that the regression model is sparse, in
the sense that, there is a unique subset of indices I0 such that the regression
function m(·) is influenced only by those predictors whose indices are in I0.
Hence, we define I0 ⊆ {1, . . . , d} such that the true underlying model is

Y = m(XI0) + σ(X)ε.

Note that the variance function σ(·) is not restricted to the set of predictors
in I0, for we are only interested in selecting predictors that have predictive
significance, that is, those that contribute to the underlying mean regression
function.

There are several procedures in the literature for testing whether a covariate
has no predictive value. The most common idea is to test for a constant con-
ditional expectation of the response given the covariate. The majority of the
literature proposes tests which assume homoscedasticity and hence become lib-
eral under heteroscedasticity. Thus, a covariate with no predictive value stands
a good chance of being selected as a predictor if the variance function, or even
other aspects of the conditional distribution of the response, are not constant
with respect to the covariate. Based on a sample of n iid observations from model
(1), we propose ranking the utility of the covariates using, marginally, the test
statistic introduced by Zambom and Akritas (2014) [20]. We now briefly recall
the test statistic and its main properties. For the marginal regression model
Y = mk(Xk) + σk(Xk)εk, consider the null hypothesis

Hk
0 : mk(xk) = Ck, k = 1, . . . , d, (2)

for a constant Ck. Let (Yi, Xki), i = 1, . . . , n represent data from a high-dimen-
sional one-way ANOVA design with Yi being the observation at “level” Xki.
Because of the ANOVA requirement of more than one observation per cell, each
cell is augmented with neighboring observations in the following way. Consider
that Xki is arranged in order of magnitude. Define the augmented cell Xki to
consist of Yi and the Yj ’s corresponding to the (p − 1)/2 Xkj ’s on either side
of Xki, for a fixed odd constant p. Then, the set of indices j composing the
augmented cell Xki can be written as

W k
i =

{
� : |F̂Xk

(Xk�)− F̂Xk
(Xki)| ≤

p− 1

2n

}
, (3)
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where F̂Xk
is the empirical distribution function of Xk, so that W k

i defines the
augmented cell corresponding to Xki. The test statistic for the hypothesis in (2)
is based on the high-dimensional one-way ANOVA type test statistic

Tk =MSTk −MSEk =
p

n− 1

n∑
i=1

(Yi. − Y..)
2 − 1

np− n

n∑
i=1

∑
j∈Wk

i

(Yj − Yi.)
2, (4)

where Yi. = (1/p)
∑

j∈Wk
i
Yj and Y.. = (1/np)

∑n
i=1

∑
j∈Wk

i
Yj . Note that Tk

can be written in a quadratic form as Tk = YT
WkAYWk where YWk is the

vector of (n− p+ 1)p augmented observations

YWk = (Yi, i ∈ W k
1 , . . . , Yi, i ∈ W k

n )
T (5)

in the high-dimensional one-way ANOVA and the matrix A is

A =
np− 1

n(n− 1)p(p− 1)
⊕n

i=1 J¯p
− 1

n(n− 1)p
J
¯np

− 1

n(p− 1)
I
¯np

, (6)

where I
¯r

is an identity matrix of dimension r, J
¯r

is a rxr matrix of 1’s and ⊕ is
the Kronecker sum or direct sum.

Remark 1. Simulations suggest that the choice of the window size p has little
influence on the performance of the test, as long as it is not too small or too
large. Choosing p < 5 tends to make the test procedure liberal, while a large
value of p has the opposite effect. In simulations we used p = 11. A way to
gain confidence in the choice of p in any practical situation is to run the test
after randomly permuting the observed response variables among the covariate
values, in order to induce the validity of the null hypothesis.

To obtain insight on the properties of Tk for ranking the utility of Xk in the
nonparametric regression, we recall the following theorem

Theorem 1. (Zambom and Akritas, 2014 [20]) Assume that σ2
k(xk) is Lipschitz

continuous, supx σ
2
k(xk) < ∞, the marginal density fXk

of Xk is uniformly
continuous and bounded away from 0 and E(ε4k) < ∞. Then under H0 in (2),
the asymptotic distribution of the test statistic in (4) is given by

n1/2(MSTk −MSEk)
d→ N (0, vk) ,

where vk = [2p(2p− 1)τ2k ]/[3(p− 1)] and τk =
∫ [

σ2
k(xk)

]2
fXk

(xk)dxk.

In order to estimate vk, assume that the response values Yi, i = 1, . . . , n
are sorted according to Xk, in other words, assume that Yi is the observation
corresponding to Xk(i), where Xk(i) is the i-th largest observation of the sample
Xk1, . . . , Xkn. Then, a consistent estimator of vk (see Lemmas 2 and 3) is

v̂k =
2p(2p− 1)

3(p− 1)

1

4(n− 3)

n−2∑
j=2

(Yj − Yj−1)
2(Yj+2 − Yj+1)

2. (7)
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Note that both MSTk and MSEk are averages and converge to constants. Un-
der the null hypothesis (2), both converge to the same constant. Under local
alternatives, Zambom and Akritas [20] showed that the asymptotic distribution
of the test statistic is Normal with mean given by pVar(mk(Xk)). The hypoth-
esis is hence rejected for large values of the test statistic, so that it is expected
that Tk is a useful statistic to rank the utility of each predictor.

3. The screening procedure and main results

The Hypothesis Testing Nonparametric Independence Screening (HT-SIS)
procedure consists of selecting a superset of indices Î that contains the index
set I0 with probability increasing to one as the sample size increases. The chal-
lenge addressed in screening is to deal with the situation where the number of
predictors d greatly exceeds the sample size n. Define the superset Î as

Î =

{
k :

Tk√
v̂k

≥ cpn−α, 1 ≤ k ≤ d

}
, (8)

where c and α are threshold parameters defined in condition C8 below and p
is the window size defined in (3). Note that in Section 4 we set cpn−α = λn

and provide a method for choosing λn. In order to establish the sure screening
properties of HT-SIS, consider the following conditions. For any 1 ≤ i, j ≤ n
and some s > 0

C1 : sup
d

max
1≤k≤d

E(exp{sσ2
k(Xki)ε

2
ki}) < ∞

C2 : sup
d

max
1≤k≤d

E(exp{sm2
k(Xki)}) < ∞

C3 : sup
d

max
1≤k≤d

E(exp{sσk(Xki)εkiσk(Xkj)εkj}) < ∞

C4 : sup
d

max
1≤k≤d

E(exp{smk(Xki)mk(Xkj)}) < ∞

C5 : sup
d

max
1≤k≤d

E(exp{sσk(Xki)εkimk(Xki)}) < ∞

C6 : mk(·) and σk(·) are Lipschitz continuous for k = 1, . . . , d

C7 : fXk
(·), k = 1, . . . , d, are bounded away from 0.

where fXk
is the density of Xk, with support in Xk. Conditions C1-C7 are nec-

essary for the derivation of Theorem 2 and supporting Lemmas 1 - 3. Conditions
C1-C5 are similar to condition C1 in Li, Zhong and Zhu (2012) [15], which re-
quire finite expected values of exponential functions of σk(Xk)εk and mk(Xk).
These conditions follow if σ2

k(·) and mk(·) are bounded uniformly. Conditions
C6 and C7 are usual conditions in nonparametric regression (see for example
Fan, Feng and Song, 2011 [11]), where C7 for example follows for distributions
with compact support.

In all theoretical results that follow, the constants in the O(·) notation may
depend, as indicated, on the expected value of functions of σk(Xk) and mk(Xk),
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and hence also on fXk
. We denote these constants by Cσ, Cmσ. Their exacts ex-

pressions are suppressed for ease of notation. Note that these constants, although
sometimes with the same subscript, may take different values at each appear-
ance. In the following lemma, we establish the rate at which the test statistic
Tk converges in probability to its expected value.

Lemma 1. Under conditions C1-C5, for any 0 < γ < 1/2 − α, there exists
constants c1 > 0 and c2 > 0 such that

P ( max
1≤k≤d

|Tk −E(Tk)| ≥ cn−α)≤O(d[exp(−c1n
1−2(γ+α))+nCmσ exp(−c2n

γ)]).

Note that for an active predictor Xk, k ∈ I0, we expect the value of Tk not
to be too small, or at least larger than most of those of inactive predictors. For
the sure independence screening property of HT-SIS, we require the following
condition

C8 : min
k∈I0

Var(mk(x)) ≥ 2cn−α,

for some constant c and 0 ≤ α < 1/2. Condition C8 is similar to condition 3 of
Fan and Lv (2008) [8] where it is assumed that the true correlation between the
predictor and the response is above a certain threshold. In the present case, we
assume that the signal strength, measured by the variance of mk(·), is not too
small, however, intuitively, it is 0 if the relationship of Xk and Y is constant.

In Lemmas 2 and 3 we explore the rate of convergence of v̂k, used to stan-
dardize the proposed raking utility Tk (see Theorem 1). Note that Lemma 3
establishes the consistency of v̂k as n goes to infinity. Using these lemmas and
in connection with Lemma 1, we can show the sure screening property of HT-
SIS, which is stated in Theorem 2.

Lemma 2. Let v̂k in (7) be the estimator of vk. Under conditions C6 and C7
we have that

E(v̂k) = vk +O

(
Cσk

cfkn

)
,

where Cσk
is the Lipschitz constant for σk(·), and cfk = infx∈Xk

fk(x).

Lemma 3. Let v̂k in (7) be the estimator of vk. Under conditions C1 and C7,
there exists constants c1 > 0 and c2 > 0 such that

P ( max
1≤k≤d

|
√
v̂k −√

vk| ≥ cn−α) ≤ O(d[exp(−c1n
1−2(γ+α)) + nCσ exp(−c2n

γ)]).

Theorem 2. Under conditions C1-C8, for 0 < γ + α < 1/2, there exists con-
stants c1 > 0 and c2 > 0 such that for any ε > 0

P (I0 ⊆ Î) ≥ 1−O
(
d0

[
exp
(
−c1n

1−2(γ+α)
)
+ nCmσ exp(−c2n

γ)
])

− ε,

where d0 is the cardinality of I0.
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Because the true model is assumed to be sparse, where only a small number
d0 of the predictors have predictive significance, Theorem 2 demonstrates that
all significant predictors will be retained with high probability. Note that the
theorem holds even when the number of covariates in the model is allowed to
increase with the sample size n at an exponential rate.

Remark 2. All screening methods face challenges such as failing to identify im-
portant predictors that are marginally independent but maybe jointly correlated
with the response or selecting spurious variables, that is, selecting unimportant
predictors that are correlated with important predictors. An iterative version
of HT-SIS, similar to the iterative versions of SIS, DC-SIS or NIS can easily be
implemented in order to alleviate such issues. The asymptotic properties of the
iterative versions of these methods is an interesting topic for further analysis.

4. The choice of the threshold parameter

Since Fan and Lv [8] introduced the notion of sure screening, several research
studies have explored the theoretical and asymptotic properties of screening
methods. However, in the majority of papers, the choice of the threshold pa-
rameter is not carefully addressed. Instead of setting a threshold for the ranking
utility, most methods fix the maximum number of predictors to be kept after
the screening procedure, for instance n/log(n) or even n− 1. These choices are
ad-hoc and provide no meaningful interpretation, but do address the practical
objective of ending up with fewer predictor than the sample size.

A characteristic only found in variable selection procedures based on test
statistics is the possibility to control the False Positive Rate or the False Dis-
covery Rate [1]. This idea was used by Zhao and Li (2012) [21] for the case
of screening in linear Cox models based on a test statistic for the coefficients
βj ’s. For the linear regression model where the number of covariates is allowed
to grow with n, Bunea, Wegkamp and Auguste (2006) [3] proposed a variable
selection method based on FDR and showed that it is consistent in selecting
the set of significant predictors. The p-values of these test statistics can be used
to guarantee that the expected false positive rate will be below a chosen level.
In this section we establish theoretical support for the choice of the threshold
parameter when applying HT-SIS based on FDR. The asymptotic normality
of the test statistic Tk provides a direct choice of the threshold parameter in
connection with the cumulative distribution function.

Recall that I0 is estimated by Î in (8). Write Î as

Î =

{
k :

Tk√
v̂k

≥ λn, 1 ≤ k ≤ d

}
,

so that λn is the threshold parameter to be chosen. If the true model I0 has size
|I0| = d0, the expected false positive rate is

E

(
|Î ∩ Ic0 |
|Ic0 |

)
=

1

d− d0

∑
k∈Ic

0

P

(
Tk√
v̂k

≥ λn

)
. (9)
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By Theorem 1 and the consistency of the estimator v̂k, n
1/2Tk/

√
v̂k has an

asymptotic standard Normal distribution, and the expected false positive rate
is controlled at (1−Φ(n1/2λn)), where Φ is the cumulative function of a standard
Normal.

In order to have the false positive rate (# false positives)/(#negatives) de-
crease when the sample size increases, fix the number of false positives r we
are willing to tolerate in the screening procedure. Then the false positive rate
r/(d−d0) decreases with the sample size since d is allowed to increase with n (see
the rate in Theorem 3). Now by conservatively setting the expected false positive
rate as (1−Φ(n1/2λn)) = r/d < r/(d−d0), we obtain λn = n−1/2Φ−1(1− r/d).
A similar idea was also used in Zhao and Li (2012). Theorem 3 establishes the
bounds for the expected false positive rate of the proposed screening method
using the Berry-Essen-type bound for Tk derived in Lemma 5.

Lemma 4. Under assumption C1, for k ∈ Ic0 we have

n1/2[YT
Wk

AYWk
− (YWk

− CkIN )TAd(YWk
− CkIN )] = Op

( μσk

n1/2

)
,

where μσk
= E(σ2

k(Xk)), and Ad is the block diagonal matrix Ad = diag{B1, . . . ,
Bn}, with Bi = (J

¯ p − I
¯p)/(n(p− 1)).

Lemma 5. Under conditions C6-C7, for k ∈ Ic0 we have

sup
x

|P (n1/2(YWk
− CkIN )TAd(YWk

− CkIN )/
√
vk ≤ x)− Φ(x)| ≤ Cσn

−3/10.

Theorem 3. Under conditions C1-C8, for the choice of threshold parameter
λn = n−1/2Φ−1(1 − r/d) and log(d) = O(n1−2α), then there exists a constant
c > 0 such that

E

(
|Î ∩ Ic0 |
|Ic0 |

)
≤ r

d
+ Cσn

−3/10,

while the sure independence property (Theorem 2) holds.

Theorem 3 establishes that the false positive rate is maintained close to the
nominal level chosen r/d, while retaining all active predictors with high prob-
ability. The rate at which the number of predictors d is allowed to increase
with the sample size is comparable to those of Fan and Lv (2008) [8], where
log(d) = O(nξ), for some ξ > 0 (Condition 1).

Note that the False Discovery Rate is defined as the expected value of |Î ∩
Ic0 |/|Î|. Moreover, |Î ∩ Ic0 |/|Î| can be written as the product of the false positive
rate |Î ∩ Ic0 |/|Ic0 | and |Ic0 |/|Î|. Because |Ic0 |/|Î| < d/|Î|, the False Discovery Rate
can be controlled at r/|Î| conditionally on |Î|, as long as the false positive rate
is controlled at r/d.

5. Simulation study

In this section we analyze the performance of HT-SIS with simulation stud-
ies for 7 different models. For comparison purposes, the well known Sure In-
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dependence Screening (SIS) [8], the Distance Correlation Sure Independence
Screening (DC-SIS) [15] and the Nonparametric Independence Screening (NIS)
[11] are also evaluated. All results were obtained in R (www.r-project.org), us-
ing packages NonpModelCheck, SIS and energy for HT-SIS, SIS and DC-SIS
respectively.

We follow the simulation scenarios of Li, Zhong and Zhu (2012) [15], where
we generate X = (X1, . . . , Xd) from a Normal distribution with zero mean and
covariance matrix Σ = (σij)d×d with σij = 0.8|i−j|, and error term ε ∼ N(0, 1).
Because Normally distributed covariates are used in most variable selection lit-
erature, they are used in this simulation section despite the fact that they do
not meet condition C7. In consequence, m1(X1) = E(Y |X1) does not meet
conditions C1-C5 for all models considered except Model 5. This is because
the expected value of exponential functions of terms with order higher than 2
do not exist for Normal random variables (E(esX

3

) diverges for X Normally
distributed). Hence, the results of this simulation section demonstrate the ro-
bustness of the proposed method against departures from conditions C1-C5 and
C7. We consider n = 200 and d = 1000 or 3000 and repeat the experiment 1000
times. The following criteria is used to evaluate the performance of the screening
methods:

1. S: the minimum model size to include all active predictors. We report the
5%, 25%, 50%, 75% and 95% quantiles of S out of 1000 replications.

2. Ps: the proportion that an individual active predictor is selected for a
given model size |Î| in the 1000 replications.

3. Pa: the proportion that all active predictors are selected for a given model
size |Î| in the 1000 replications.

We consider the following models:

1 : Y = 2β1X1X2 + 3β21(X12 < 0) + 2β3X22 + ε,

2 : Y = 2β1X1X2 + 2β2X22 + 3β3sin(X12) + ε

3 : Y = 2β1β2X1cos(X2) + 2β3X22 + 3β4sin(X12) + (X1 +X2)ε

4 : Y = 2 log(|X1|) + 2X2 +X12 + sin(X12) + 2X2
22 + ε

5 : Y = X2
1 − 10 cos(2πX1) +X2

2 − 10 cos(2πX2) +X2
12 − 10 cos(2πX12)

+X2
22 − 10 cos(2πX22) + (X40 +X50)ε

6 : Y = −10 cos(2πX1)− 10 cos(2πX2)− 10 cos(2πX12)− 10 cos(2πX22) + ε

7 : Y = 2β1X1X2 + 5β21(0 < X12 < 0.2) + 5β21(1 < X12 < 1.2) + 2β3X22+ε

We generate βj = (−1)U (a+|Z|), for j =1, 2, 3 and 4, where a = 4log(n)/
√
n,

U ∼ Bernoulli(0.4), Z ∼ N(0, 1). Table 1 presents the results of S and Tables
2 and 3 show the results of Ps and Pa for d = 1000 and d = 3000 respectively.
For comparison purposes, the size of the superset is set to |Î| = n/log(n) = 38
as suggested by Fan and Lv or |Î| = #{Tk ≥ λn}, corresponding to the false
positive rate of 0.05.

As expected, SIS has low performance in capturing the significance of pre-
dictors with nonlinear effects and hence its minimum model size S is in general
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Table 1

Minimum model size S.

d = 1000

Model test 5% 25% 50% 75% 95%

1 HT-SIS 4 6 9 25 171.5

DC-SIS 5 8 12 18 35

NSIS 4 6 9 17 113.3

SIS 18.9 105 378 728 954

2 HT-SIS 4 6 10 26.2 185.2

DC-SIS 6 10 14 21 44

NSIS 4 5 7 11 21.6

SIS 22.9 117.5 386.5 691.2 941

3 HT-SIS 5 8 16 59.2 383.3

DC-SIS 7 12 20.5 47.2 192.2

NSIS 4 6 9 15 54

SIS 32.9 184.5 426.5 696 943

4 HT-SIS 4 5 6 11 35

DC-SIS 5 7 10 13 16

NSIS 4 5 6 8 13

SIS 17 79.7 302.5 618 925.1

5 HT-SIS 4 4 4 4 6

DC-SIS 121 220 326 445 641.1

NSIS 127.9 338.2 567.5 799 953

SIS 403.8 692.7 838 923 989

6 HT-SIS 4 4 4 4 8

DC-SIS 198.1 329 436 548.5 715.7

NSIS 420.8 701 843 935 989

SIS 482.1 699 843 928.5 989 2

7 HT-SIS 4 6 10 29 206

DC-SIS 11 23 66 197.2 567

NSIS 13 43 154 399.5 820

SIS 75.9 348 642 845 980

much larger than that of other methods. For models 1 through 3, the results
HT-SIS, DC-SIS and NSIS are similar up to the 50-th percentile. At the 75-th
percentile, NSIS seems to obtain lower model sizes than the other methods,
with DC-SIS and HT-SIS following with somewhat larger sizes. For model 4
HT-SIS, DC-SIS and NSIS perform similarly up to the 75-th percentile. For
models 2 through 4, NSIS maintains a small model size at the 95-th percentile
while DC-SIS and HT-SIS obtain larger sizes, however NSIS and HT-SIS have a
larger 95-th percentile for model 1. For models 5 through 7 the 95-th percentile
obtained by HT-SIS is by far the lowest. Although the first three models seem
to cause a rapid increase in HT-SIS’s model size from the 75-th to the 95-th
percentiles, the proportions Ps of HT-SIS are maintained high, only slightly
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Table 1

(continued)

d = 3000

Model test 5% 25% 50% 75% 95%

1 HT-SIS 4 6 11 53.6 652.1

DC-SIS 5 9 14 21 82.6

NSIS 4 6 9 18 260.5

SIS 22.7 291 1116 2200 2838

2 HT-SIS 4 6 12 39 528.1

DC-SIS 5 10 16 23 86.2

NSIS 4 5 7 11 32.1

SIS 24 363 1084 2181 2873

3 HT-SIS 4 8 19 95 920

DC-SIS 6 14 27 75 553.8

NSIS 4 6 9 16 137.3

SIS 92 552 1163 2008 2836.8

4 HT-SIS 4 5 7 12.5 85.4

DC-SIS 5 7 9 13 18

NSIS 4 5 6 8 16

SIS 21 182.5 758 1743 2822.2

5 HT-SIS 4 4 4 4 9

DC-SIS 363.85 670.5 989 1353.5 1870.4

NSIS 333.1 957.5 1662 2338 2859

SIS 1190 2011.8 2491 2765.2 2962.1

6 HT-SIS 4 4 4 4 9

DC-SIS 575 973 1291 1625 2122

NSIS 1188 2068 2500 2771 2949

SIS 1189 2136 2557 2799 2962

7 HT-SIS 4 6 13 58.2 663.1

DC-SIS 13 50 173.5 587.7 1801.2

NSIS 16 111 435 1175 2397

SIS 178 953 1913.5 2560 2936

lower in average than those of DC-SIS and NSIS. This suggests that the high
95-th percentile of S using HT-SIS for the first three models is due to the fact
that one of the important predictors may have been assigned a very low rank
5% of the generated datasets. It is important to notice that for models 5 and 6
SIS, NSIS and DC-SIS fail to identify any of the important predictors in their
top ranked probably due to the high frequency of the sine and cosine functions.
On the other hand, it can be seen from Tables 2 and 3 that HT-SIS captures
their significance at least 99% of the time, keeping an extremely low model size
S at all percentiles. Finally, the proportion of time that the two-peak effect of
X12 in model 7 is selected by HT-SIS is on average 83.5%, considerably higher
than the 31.7% on average achieved by DC-SIS and 24% buy NSIS.
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Table 2

Proportions Ps and Pa. d = 1000

|Î| = n/log(n) |Î| = #{Tk ≥ λn}
Ps Pa Ps Pa

Model test X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

1 HT-SIS .97 .96 .87 .97 .80 .98 .97 .89 .97 .82

DC-SIS .97 .98 .98 1 .95 .98 .98 .98 1 .96

NSIS 1 1 .88 .99 .88 1 1 .89 .99 .88

SIS .17 .17 .92 .99 .10 .21 .21 .93 .99 .14

2 HT-SIS .94 .94 .96 .94 .81 .96 .96 .97 .94 .84

DC-SIS .95 .96 .99 .99 .93 .97 .98 .99 .99 .96

NCSIS 1 1 .98 .99 .97 1 1 .98 .99 .97

SIS .14 .16 .99 .99 .11 .17 .19 .99 .99 .13

3 HT-SIS .90 .85 .92 .92 .67 .93 .87 .94 .93 .72

DC-SIS .97 .74 .99 .98 .72 .97 .80 .99 .98 .78

NSIS .99 .97 .97 .98 .93 .99 .98 .98 .98 .94

SIS .68 .11 .99 .98 .05 .72 .14 .99 .98 .07

4 HT-SIS 1 .99 .95 .99 .95 1 .99 .96 1 .96

DC-SIS 1 1 1 .99 .99 1 1 1 .99 .99

NSIS 1 1 .99 1 .99 1 1 .99 1 .99

SIS 1 1 1 .15 .15 1 1 1 .17 .17

5 HT-SIS 1 1 .99 .99 .99 1 1 .99 .99 .99

DC-SIS .20 .21 .12 .10 0 .19 .22 .11 .10 .01

NSIS .41 .41 .15 .14 .01 .41 .40 .15 .14 .01

SIS .04 .05 .05 .04 0 .03 .05 .04 .04 0

6 HT-SIS 1 .99 1 1 .99 1 .99 1 1 .99

DC-SIS .08 .06 .07 .09 0 .08 .07 .08 .09 0

NSIS .02 .04 .04 .04 0 .03 .03 .03 .04 0

SIS .03 .02 .03 .04 0 .03 .02 .04 .05 0

7 HT-SIS .98 .96 .86 .98 .79 .98 .97 .86 .98 .80

DC-SIS .99 .98 .37 1 .35 .99 .98 .41 1 .39

NSIS 1 1 .22 .99 .22 1 1 .25 .99 .25

SIS .16 .15 .20 1 .01 .16 .16 .23 1 .02

6. Real data application

In this section we apply the proposed screening method to the cardiomyopa-
thy dataset. This dataset has been studied in Segal, Dahlquist, and Conklin
(2003) [16], Hall and Miller (2009) [13] and Li, Zhong and Zhu (2012) [15] and
is composed of n = 30 observations of d = 6319 gene expressions in mice. The
objective is to identify which genes contribute the most for the overexpression of
Ro1, a G protein-coupled receptor. For comparison and visualization purposes,
we only display the top 8 ranked predictors using HT-SIS and DC-SIS. Note
that if one wishes to keep the size of the superset |Î| smaller than n = 30, any
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Table 3

Proportions Ps and Pa. d = 3000

|Î| = n/log(n) |Î| = #{Tk ≥ λn}
Ps Pa Ps Pa

Model test X1 X2 X12 X22 ALL X1 X2 X12 X22 ALL

1 HT-SIS .95 .93 .85 .94 .73 .97 .95 .88 .95 .78

DC-SIS .96 .97 .95 1 .90 .98 .98 .95 1 .92

NSIS 1 .99 .85 .98 .83 1 .99 .89 .99 .88

SIS .12 .13 .88 1 .08 .16 .17 .90 1 .10

2 HT-SIS .91 .91 .94 .92 .74 .93 .94 .95 .94 .80

DC-SIS .91 .92 1 .99 .88 .96 .96 1 .99 .94

NSIS .99 .99 .98 .98 .96 .99 .99 .99 .98 .97

SIS .09 .11 .99 .99 .07 .13 .15 .99 .99 .11

3 HT-SIS .91 .80 .92 .89 .63 .92 .85 .93 .91 .70

DC-SIS .95 .62 .99 .99 .61 .97 .73 .99 .99 .71

NSIS .97 .96 .97 .97 .89 .97 .97 .98 .97 .92

SIS .59 .04 .96 .99 .02 .66 .09 .97 .99 .04

4 HT-SIS 1 .99 .92 .99 .90 1 .99 .93 .99 .93

DC-SIS 1 1 1 .99 .99 1 1 1 .99 .99

NSIS 1 1 .99 .99 .99 .99 .99 .99 .99 .99

SIS .99 1 .99 .09 .09 1 1 .99 .13 .13

5 HT-SIS .99 .99 .99 .99 .98 1 .99 1 .99 .99

DC-SIS .07 .08 .04 .03 0 .10 .12 .06 .05 0

NSIS .25 .25 .08 .08 0 .31 .31 .11 .10 0

SIS .02 .02 .02 .01 0 .02 .03 .02 .01 0

6 HT-SIS .99 1 .99 .99 .99 .99 1 .99 .99 .99

DC-SIS .02 .01 .02 .02 0 .03 .02 .03 .03 0

NSIS .01 .01 .01 .01 0 .01 .02 .01 .02 0

SIS .01 .01 .01 .01 0 .01 .01 .01 .01 0

7 HT-SIS .95 .95 .79 .96 .68 .96 .96 .83 .96 .74

DC-SIS .97 .98 .21 1 .2 .99 .98 .28 1 .28

NSIS 1 1 .12 .99 .12 1 1 .17 .99 .17

SIS .12 .11 .10 .99 .01 .15 .14 .15 .99 .02

choice of the number of false positives (less than 30) would correspond to keep-
ing the false positive rate less than 0.5%. Figures 1 and 2 show the scatterplots
of Ro1 and expression levels of the 8 most influential genes (left to right and
top to bottom) ranked according to HT-SIS and DC-SIS respectively. In order
to help visualize the relationships between Ro1 and the predictors, we added to
each graph a cubic spline fit curve and the lowess (locally weighted polynomial
regression) fit curve.

Note that, according to HT-SIS, the most influential gene is Msa.2400.0,
which is ranked seventh with DC-SIS. On the other hand, DC-SIS ranks first
gene Msa.2134.0, which is ranked second according to HT-SIS. To compare the
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Fig 1. Scatterplot of Ro1 and the expression of the top 8 genes ranked with HT-SIS and spline
(dashed) and lowess (solid) fit curves.

Fig 2. Scatterplot of Ro1 and the expression of the top 8 genes ranked with DC-SIS and spline
(dashed) and lowess (solid) fit curves.

predictive significance of each method’s top ranked gene, we fit a nonparametric
model using penalized regression splines with a bandwidth chosen with general-
ized cross validation. The nonparametric regression of Ro1 on Msa.2134.0, DC-
SIS’s top ranked gene, yields an adjusted R2 = 0.657 and deviance explained
0.698, much lower values compared to R2 = 0.807 and deviance explained 0.865
for regressing Ro1 on Msa.2400.0, HT-SIS’s top ranked gene. This criterium
suggests that the most influential gene is in fact Msa.2400.0. Since a fully non-
parametric model suffers from the curse of dimensionality, it is unfeasible to
fit a nonparametric (or even an additive) model using all the top eight ranked
genes with only n = 30 observations in this dataset. In that case, for an ele-
mentary insight into the results of the screening methods, we look at the fits
resulting from a nonparametric additive model with the top 3 ranked genes for
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each method using package mgcv from the R software (the addition of a fourth
predictor is unfeasible due to the lack of degrees of freedom). HT-SIS obtained
an adjusted R2 = 0.944 and deviance explained 0.975 while DC-SIS achieves
0.98 and 0.992 for the same measures respectively. Although DC-SIS achieves
somewhat better results, it is clear that both methods perform comparably in
ranking the most influential genes, with very high deviance explained. Note that
the addition of more genes to the additive model would surely increase the R2

and the explained deviance. Hence, the supersets obtained by HT-SIS and DC-
SIS, although slightly different, consist of genes with high predictive significance
with respect to Ro1.

7. Discussion

In this paper we propose a screening method based on a test statistic for the hy-
pothesis that a covariate is influential in the prediction of the response variable.
The sure independence screening property is demonstrated using a nonpara-
metric heteroscedastic regression model. Simulations suggest that the proposed
method performs well even with highly correlated predictors. However, improved
versions of screening methods have been widely studied in the literature. The
original idea proposed by Fan and Lv (2008) [8] is to first choose a smaller
set of predictors with high predictive significance, and then iteratively, choose
a subsequent small set of predictors that is significantly related to the residu-
als obtained from the modeling of the previous set with the response. Following
such idea, an iterative HT-SIS can be easily adapted to screening nonparametric
models, improving the inclusion of predictors that have little or no marginal pre-
dictive significance, but jointly with other predictors yield a significant model.
Theoretical aspects of such iterative method need a more detailed appraisal.

A meaningful choice of the threshold parameter is derived and theoretically
justified through the control of the false positive rate of the selection. It is inter-
esting to note that the proposed procedure for choosing the threshold parameter
is based only on the number of predictors d and the allowed false discovery rate.
This fundamentally differs from the ad-hoc choices used in the literature, which
are based solely on the sample size n. As observed in the microarray analysis
in Section 6, for real situations with ultra-high predictor space and very small
sample size, the proposed method for choosing the threshold parameter may
suggest a screened superset with size larger than n. Depending on the objective
of the screening, a lower false positive rate might be selected in order to keep
the size of the screened superset below n. Overall, choosing the number of pre-
dictors to retain when performing variable screening is a difficult challenge that
still needs further investigation.

Appendix

Throughout the appendix and the proofs herein, the notations C, c, c1 and c2 are
generic constants, which may take different values at each appearance. Moreover,
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we use Cσ, Cm and Cmσ, which may take different values at each appearance,
to denote a constant that depends on the functions σk(·), k = 1, . . . , d. Ck may
be different for instance when depending on different moments of σk(·).

A.1. Auxiliary lemmas

Lemma 6. Let X1, . . . , Xn be i.i.d. random variables with distribution FX sat-
isfying condition C7 and let X(1), . . . , X(n) be the corresponding order statistics.
Then

|FX(X(k))− FX(X(k−p))| = Op

(
1

n

)
.

Proof. Note that FX(X(1)), . . . , FX(X(n)) are order statistics of a Uniform dis-
tribution on (0,1), and hence FX(X(k)) ∼ Beta(k, n + 1 − k). Thus, for any
ε > 0

P (n|FX(X(k))− FX(X(k−p))| ≥ M) ≤
nE|FX(X(k))− FX(X(k−p))|

M2

=
nE[FX(X(k))]− E[FX(X(k−p))]

M2

=
n(k/(n− 1)− (k − p)/(n− 1))

M2
< ε,

for the M = 2p/
√
ε and any n > 2. This completes the proof of Lemma 6.

Lemma 7. For neighboring observations xki and xkj such that |F̂Xk
(xki) −

F̂Xk
(xkj)| ≤ p−1

2n for a constant p, and any Lipschitz continuous function g(x),
under condition C7 we have that

|g(xkj)− g(xki)| = Op

(
Mg

cfkn

)

uniformly in i, j = 1, . . . , n.

Proof. First note that by the Lipschitz continuity and the Mean Value Theorem,
for |xki| ≤ cn, |xkj | ≤ cn we have

|g(xkj)− g(xki)| ≤ Mg|xkj − xki| ≤ Mg|FXk
(xkj)− FXk

(xki)|/fXk
(x̃ij)

≤ Mg|FXk
(xkj)− FXk

(xki)|/fXk
(cn),

≤ Mg|FXk
(xkj)− FXk

(xki)|/cfk ,

for some Lipschitz constant Mg, where cfk = infx∈Xk
fXk

(x), and x̃ij is between

xkj and xki. Thus, for xki and xkj such that |F̂Xk
(xki)− F̂Xk

(xkj)| ≤ p−1
2n , we

have

|g(xkj)− g(xki)| ≤ Mg
|FXk

(xkj)− FXk
(xki)|

cfk
= Op

(
Mg

cfkn

)

where the last equality follows from Lemma 6 and assumption C7.
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A.2. Proofs of lemmas and theorems

Proof of Lemma 1

The subscript k is dropped from the test statistic Tk and the univariate functions
mk(x) and σk(x) throughout the proof for ease of notation (not to be confused
with the multivariate functions m(x) and σ(x) in equation (1)). Letting ξi =
Yi −m(Xi), we can write

T = MST −MSE = YT
WAYW = ξTWAξW + 2mT

WAξW +mT
WAmW , (10)

where YW is the vector of (n− p+ 1)p augmented observations

YW = (Yi, i ∈ W1, . . . , Yi, i ∈ Wn)
T (11)

in the one-way ANOVA, ξW and mW are defined as in (11) but using ξi and
m(Xi) instead of Yi, and the matrix A is defined as in (6). After some algebra,
we can write the first term on the right hand side of (10) as

ξTWAξW =
(np− 1)

n(n− 1)p(p− 1)

n∑
i=1

⎡
⎣ n∑
j=1

ξjI(j ∈ Wi)

⎤
⎦
2

− p

n(n− 1)

[
n∑

i=1

ξi

]2
− p

n(p− 1)

n∑
i=1

ξ2i := T1 − T2 − T3, (12)

and note that we can write

T1 = cn1

⎡
⎣ 1
n

n∑
i=1

n∑
j=1

ξ2j I(j ∈ Wi) +
1

n

n∑
i=1

n∑
j1 �=j2

ξj1ξj2I(j1, j2 ∈ Wi)

⎤
⎦

= cn1T
∗
11 + cn1T

∗
12,

T2 + T3 =
p

n(n− 1)

∑
i

∑
j �=i

ξiξj +
p(p− 1) + p(n− 1)

n(n− 1)(p− 1)

n∑
i=1

ξ2i

=
p

n(n− 1)

∑
i

∑
j �=i

ξiξj + cn2
1

n

n∑
i=1

ξ2i := pT ∗
2 + cn2T

∗
3 ,

where cn1 = (np − 1)/[(n − 1)p(p − 1)] → 1/(p − 1) and cn2 = [p(p − 1) +
p(n − 1)]/[(n − 1)(p − 1)] → p/(p − 1), which do not influence the asymptotic
convergence rates of the test statistic.

Here we follow steps similar to those in Li, Zhong, and Zhu (2012). We first
deal with T ∗

3 . Decompose T ∗
3 into two parts

T ∗
3 = T ∗

3a + T ∗
3b =

1

n

n∑
i=1

ξ2i I(ξ
2
i ≤ M) +

1

n

n∑
i=1

ξ2i I(ξ
2
i > M),
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where M will be specified later. By the Markov Inequality and the fact that ξi
are i.i.d., for any ε > 0 and t > 0

P (T ∗
3a − E(T ∗

3a) ≥ ε) ≤ exp{−tε} exp{−tE(T ∗
3a)}E(exp{tT ∗

3a})

= exp{−tε} exp{−tE(T ∗
3a)}En

(
exp

{
t

n
ξ21I(ξ

2
1 ≤ M)

})

= exp{−tε}En

(
exp

{
t

n

(
ξ21I(ξ

2
1 ≤ M)− E(T ∗

13a)
)})

≤ exp{−tε+ t2M2/(8n)},

where the last inequality follows from Lemma 5.6.1A in Serfling (1980).
Choosing t = 4εn/M2 we have

P (T ∗
3a − E(T ∗

3a) ≥ ε) ≤ exp{−4ε2n/M2 + 16ε2nM2/M48} = exp{−2ε2n/M2},

and by the symmetry of T ∗
3a P (|T ∗

3a − E(T ∗
3a)| ≥ ε) ≤ 2 exp{(−2ε2n/M2}.

Now we investigate T ∗
3b. Note that for any c2 > 0,

E2(T ∗
3b) ≤ E(ξ4i )P (ξ2i > M) ≤ E(ξ4i )E(exp{c2ξ2i })/ exp{c2M}

= E(σ4(Xi)ε
4
i )E(exp{sσ2(Xi)ε

2
i }) exp{−c2M}.

In view of assumptions C1-C5 and C8, if we chooseM = cnγ for 0 < γ < 1/2−k,
then E(T ∗

3b) ≤ ε/2 when n is sufficiently large. Consequently

P (|T ∗
3b − E(T ∗

3b)| > ε) ≤ P (|T ∗
3b| > ε/2) ≤ P (∪{ξ2i > M})

≤ nP (ξ2 > M) = nP (exp(c2ξ
2) > exp(c2M))

≤ n exp{−c2M}E(exp{c2σ2(Xi)ε
2
i })

≤ nCσ exp{−c2M},

where Cσ is a constant that depends on the moments of σk(·), and hence

P (|T ∗
3 − E(T ∗

3 )| ≥ 2ε) ≤ 2 exp(−2ε2n1−2γ) + nCσ exp(−c2n
γ).

For T ∗
2 we write

T ∗
2 = T ∗

2a + T ∗
2b =

1

n(n− 1)

∑
i=1

∑
j �=i

ξiξjI(|ξiξj | ≤ M)

+
1

n(n− 1)

∑
i=1

∑
j �=i

ξiξjI(|ξiξj | > M).

Note that E(T ∗
2 ) = 0. Since T ∗

2 is a (symmetric) U-statistic of second order,

using the fact that P (T ∗
2a ≥ ε) ≤ e−tεE(e

∑
i=1

∑
j �=i ξiξjI(0≤ξiξj≤M)/(n(n−1))),

with steps similar to those for T ∗
3 , for constants c1 > 0 and c2 > 0

P (|T ∗
2 − E(T ∗

2 )| ≥ 2ε) ≤ 2 exp(−c1ε
2n1−2γ) + nCσ exp(−c2n

γ),
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and because all windows Wi are of finite size (p), we have

P (|T ∗
11 − E(T ∗

11)| ≥ 2ε) ≤ 2 exp(−c1ε
2n1−2γ) + nCσ exp(−c2n

γ).

Consider now T ∗
12. Write

T ∗
12 =

1

n

n∑
i=1

Ai +
1

n

n∑
i=1

Bi

where Ai =
∑n

j1 �=j2
ξj1ξj2I(j1, j2 ∈ Wi)I(|ξj1ξj2 | ≤ M) and

Bi =
∑n

j1 �=j2
ξj1ξj2I(j1, j2 ∈ Wi)I(|ξj1ξj2 | > M). Define

Uni = A(i−1)(6p)+1 + . . .+A(i−1)(6p)+3p

Vni = A(i−1)(6p)+3p+1 + . . .+Ai(6p).

Then

1

n

n∑
i=1

Ai =
1

n

n/(6p)∑
i=1

Uni +
1

n

n/(6p)∑
i=1

Vni,

where Uni, i = 1, . . . , n/(6p), are independent and also Vni, i = 1, . . . , n/(6p),
are independent. Thus, by the Markov and Cauchy Schwarz inequalities and
the choice of t = 4εn/M2 and a constant c3 = 1/(12p3(p− 1)2),

P

(
1

n

n∑
i=1

(Ai − E(Ai)) ≥
ε

c3

)
≤ e−

tε
c3 E(e

t
n

∑n
i=1(Ai−E(Ai)))

= e−
tε
c3 E(e

t
n

∑n/(6p)
i=1 (Ui−E(Ui))e

t
n

∑n/(6p)
i=1 (Vi−E(Vi)))

≤ e−
tε
c3

√
E(e

2t
n

∑n/(6p)
i=1 (Ui−E(Ui)))E(e

2t
n

∑n/(6p)
i=1 (Vi−E(Vi)))

= e−
tε
c3

√
En/(6p)(e

2t
n (U1−E(U1)))En/(6p)(e

2t
n (V1−E(V1)))

= e−
tε
c3 exp

{
n

6p

4t2

n2
(3p)2p2(p− 1)2M2/8

}

= exp

{
− tε

c3
+

t2

8c3n
M2

}
= exp

{
− 4ε2n

M2c3
+

2ε2n

M2c3

}
.

Using steps similar to those for T ∗
3b, under assumptions C1-C5 and C8, with

the choice of M = cnγ , for a constant c2 > 0

P

(∣∣∣∣∣ 1n
n∑

i=1

Bi − E(Bi)

∣∣∣∣∣ > ε

)
≤ nCσ exp(−c2M),

and hence

P (|T ∗
12 − E(T ∗

12)| ≥ ε) ≤ 2 exp

{
− 2ε2n

M2c3

}
+ nCσ exp(−c2M),
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so that

P (|T1 − T2 − T3 − E(T1 − T2 − T3)| ≥ ε)

≤ P (|T1 − E(T1)| ≥ ε) + P (|T2 − E(T2)| ≥ ε) + P (|T3 − E(T3)| ≥ ε)

= O(exp(−c1ε
2n1−2γ) + nCσ exp(−c2n

γ)).

Using similar steps, it is easy to show that the second and last terms on the
right hand side of (10) have the same convergence rates, that is

P (|mT
WAξW − E(mT

WAξW )| ≥ ε) ≤ O(exp(−c1ε
2n1−2γ) + nCmσ exp(−c2n

γ)),

and

P (|mT
WAmW − E(mT

WAmW )| ≥ ε) ≤ O(exp(−c1ε
2n1−2γ) + nCm exp(−c2n

γ)).

Let ε = cn−α, where 0 < α < 1/2− γ. Thus

P ( max
k=1,...,d

|Tk − E(Tk)| ≥ cn−α) ≤ d max
k=1,...,d

P (|Tk − E(Tk)| ≥ cn−α)

≤ O(d[exp(−c1n
1−2(γ+α)) + nCmσ exp(−c2n

γ)]).

Proof of Lemma 2

Using Lemma 7, we have

E(v̂k|Xk = xk) = E

⎡
⎣ 1

4(n− 3)

n−2∑
j=2

(Yj − Yj−1)
2(Yj+2 − Yj+1)

2|Xk = xk

⎤
⎦

=
1

4(n− 3)

n−2∑
j=2

E
[
(σ2

k(xkj) + σ2
k(xk(j−1)))×

×(σ2
k(xk(j+2)) + σ2

k(xk(j+1)))|Xk = xk

]

=
1

n− 3

n−2∑
j=2

E[σ4
k(xkj)|Xk = xk] +Op

(
Cσk

cfkn

)
,

where Cσk
is the Lipschitz constant for σk(·), and cfk = infx∈Xk

fk(x). Taking
the expected value with respect to Xk completes the proof of Lemma 2, since

the expected value of the Op(·) term is O
(

Cσk

cfkn

)
by steps similar to those in

Lemma 6.

Proof of Lemma 3

First note that for any ε > 0

P (|
√
v̂k −√

vk| ≥ ε) = P

(
|v̂k − vk|

|
√
v̂k +

√
vk|

≥ ε

)
≤ P (|v̂k − vk| ≥ εL) ,
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where L is the lower bound for vk, that is vk ≥ L.
Let A = {(Yj − Yj−1)

2(Yj+2 − Yj+1)
2 ≤ M} and write

v̂k =
2p(2p− 1)

3(p− 1)

1

4(n− 3)

n−2∑
j=2

(Yj − Yj−1)
2(Yj+2 − Yj+1)

2

=
2p(2p− 1)

3(p− 1)

1

4(n− 3)

n−2∑
j=2

(Yj − Yj−1)
2(Yj+2 − Yj+1)

2I(A)

+
2p(2p− 1)

3(p− 1)

1

4(n− 3)

n−2∑
j=2

(Yj − Yj−1)
2(Yj+2 − Yj+1)

2I(Ac) := v̂k1 + v̂k2.

Let vk = vk1+vk2, where vk1 and vk2 are the decomposition of vk corresponding
to the decomposition v̂k = v̂k1 + v̂k2. Using steps similar to those for term T12

in the proof of Lemma 1, one can show that, for constants c1 > 0 and c2 > 0,
there exists a constant Cσ such that

P (|v̂k1 − vk1| ≥ ε) ≤ 2 exp
{
−c1ε

2n/M2
}

and

P (|v̂k2 − vk2| > ε) ≤ nCσ exp{−c2M},

so that

P (|v̂k − vk)| ≥ 2ε) ≤ 2 exp(−c1ε
2n1−2γ) + nCσ exp(−c2n

γ).

Let ε = cn−α, where 0 < α < 1/2− γ. Thus

P ( max
k=1,...,d

|v̂k − vk| ≥ cn−α) ≤ d max
k=1,...,d

P (|v̂k − vk| ≥ cn−α)

≤ O(d[exp(−c1n
1−2(γ+α)) + nCσ exp(−c2n

γ)]).

This completes the proof of Lemma 3.

Proof of Theorem 2

By Lemma 1 we have P (|Tk − E(Tk)| ≥ cn−α) ≤ O(exp(−c1n
1−2(γ+α)) +

nCσ exp(−c2n
γ)), and by Lemma 3, we have P (|

√
v̂k − √

vk| ≥ cn−α) ≤
O(exp(−c1n

1−2(γ+α)) + nCσ exp(−c2n
γ)). Hence the convergence rate of

Tk/
√
v̂k −E(Tk)/

√
vk has the same form. Using condition C8 and Lemma 3.0.9

in Zambom and Akritas (2014) we have, for any ε′ > 0, taking ε = ε′/d0,

P (I0 ⊆ Î) ≥ P (max
k∈I0

|Tk/
√
v̂k −Var(mk(x))/

√
vk| ≤ cn−α)

= 1− P (max
k∈I0

|Tk/
√
v̂k −Var(mk(x))/

√
vk| ≥ cn−α)

= 1− d0P (|Tk/
√
v̂k −Var(mk(x))/

√
vk| ≥ cn−α)

= 1− d0P (|Tk/
√
v̂k − E(Tk)/

√
vk +Op(n

−1/2)| ≥ cn−α)
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≥ 1− d0P (|Tk/
√
v̂k − E(Tk)/

√
vk| ≥ cn−α −Op(n

−1/2))

= 1− d0P ({|Tk/
√
v̂k − E(Tk)/

√
vk| ≥ cn−α −Op(n

−1/2)} ∩
∩{Op(n

−1/2) ≤ cn−1/2})
−d0P (Op(n

−1/2) > cn−1/2)

≥ 1−O
(
d0

[
exp
(
−c1n

1−2(γ+α)
)
+ nCmσ exp(−c2n

γ)
])

− ε,

where d0 is the cardinality of I0, and the last inequality follows from Lemma 1
and the definition of Op(n

−1/2) for a constant c.

Proof of Lemma 4

We omit the proof of this Lemma, as it follows using arguments similar to those
in Wang, Akritas and Van Keilegom (2008).

Proof of Lemma 5

Assume without loss of generality that the constant Ck in (2) is equal to 0. Note
that

√
nYT

Wk
AdYWk

=

√
n

n(p− 1)

n∑
i=1

n∑
j1 �=j2

Yj1Yj2I(j1, j2 ∈ Wi) =
1√
n

n∑
i=1

Di,

where Di =
∑

j1 �=j2
Yj1Yj2I(j1, j2 ∈ Wi)/(p − 1). Since Di are dependent (on

only a few other Di), we will make use of the block Markov techinique to show
normality of the test statistic. Write

Eni = D(i−1)(nβ+3p)+1 + . . .+D(i−1)(nβ+3p)+nβ

Fni = D(i−1)(nβ+3p)+nβ+1 + . . .+Di(nβ+3p),

where 0 < β < 1 is a constant. The choice of beta determines the rate of
convergence of the test statistic to the normal distribution and the rate at
which the small blocks composed by Fni go to 0. Now we have

√
nYT

Wk
AdYWk

=
1√
n

rn∑
i=1

Eni +
1√
n

rn∑
i=1

Fni,

where rn ∼ n/(nβ + 3p). Note that

P

(∣∣∣∣∣ 1√
n

rn∑
i=1

Fni

∣∣∣∣∣ ≥ ε

)
≤

rn∑
i=1

P
(
|Fni| ≥ ε

√
nr−1

n

)
≤ KCσε

−4n−2r5n

= O(Cσε
−4n5(1−β)−2),
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where the last inequality follows from the Markov’s inequality and assumptions
C1 - C5. Hence

1√
n

rn∑
i=1

Fi = Op(Cσε
−4n5(1−β)−2).

It is easy to establish the Lyapunov condition for
∑rn

i=1 Ei/
√
n (see Zambom

and Akritas 2014). Note that E(Ei) = 0. Write

sup
x

∣∣∣P (√nYT
Wk

AdYWk
/
√
vk ≤ x

)
− Φ(x)

∣∣∣
= sup

x

∣∣∣P
(

rn∑
i=1

Eni/
√
nvk +

rn∑
i=1

Fni/
√
nvk ≤ x

)
− Φ(x)

∣∣∣
≤ sup

x

∣∣∣P
(

rn∑
i=1

Eni/
√
nvk ≤ x

)
− Φ(x)

∣∣∣
+sup

x

∣∣∣P
(

rn∑
i=1

Eni√
nvk

+

rn∑
i=1

Fni√
nvk

≤ x

)
− P

(
rn∑
i=1

Eni√
nvk

≤ x

)∣∣∣ (13)
Using the Berry Essen theorem (Berry, 1941), the first term in (13) is bounded

by a term of order O(r
−1/2
n E(|Eni|3)V ar(Eni)

−3/2). We have

V ar(Eni) = E(E2
ni) = E

[ nβ∑
i=1

nβ∑
j=1

∑
k1 �=k2,�1 �=�2

Yk1Yk2Y�1Y�2 ×

×I(k1, k2 ∈ Wi)I(�1, �2 ∈ Wj)
]
,

which is only different from 0 if Yk1Yk2Y�1Y�2 consists of two pairs of equal
observations. Hence, the order of V ar(Eni) is O(nβCσ). Using similar steps,
and the fact that (Cauchy Schwarz)

E
(
|Eni|3

)
= E

⎛
⎝|

nβ∑
i=1

Di|3
⎞
⎠ ≤

√√√√√E

⎡
⎣( nβ∑

i=1

Di

)4
⎤
⎦E

⎡
⎣( nβ∑

i=1

Di

)2
⎤
⎦

it can be shown that E(|Eni|3) is of order O(n3β/2Cσ). Hence, the Berry Essen
bound for the first term in (13) is O(Cσn

−(1/2)(1−β)+3β/2−(3/2)β) =
O(Cσn

β/2−1/2).
For any ε > 0, the second term in (13) is equal to

sup
x

∣∣∣∣∣ P

(
rn∑
i=1

Eni/
√
nvk +

rn∑
i=1

Fni/
√
nvk ≤ x, |

rn∑
i=1

Fni/
√
n| ≥ ε

)

+P

(
rn∑
i=1

Eni/
√
nvk +

rn∑
i=1

Fni/
√
nvk ≤ x, |

rn∑
i=1

Fni/
√
n| ≤ ε

)
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−P

(
rn∑
i=1

Eni/
√
nvk ≤ x

)∣∣∣∣∣
≤ sup

x
P

(
|

rn∑
i=1

Fni/
√
n| ≥ ε

)

+sup
x

∣∣∣∣∣P
(

rn∑
i=1

Eni/
√
nvk ≤ x− ε/

√
vk

)
− P

(
rn∑
i=1

Eni/
√
nvk ≤ x

)∣∣∣∣∣
+sup

x

∣∣∣∣∣P
(

rn∑
i=1

Eni/
√
nvk ≤ x+ ε/

√
vk

)
− P

(
rn∑
i=1

Eni/
√
nvk ≤ x

)∣∣∣∣∣
For a choice of 0 < β large enough say β = 9/10 and ε = n−(β−3/5) = n−3/10,

we have convergence of P (|(1/n)
∑rn

i=1 Fni| ≥ ε) of order O(Cσn
4(3/10)+5(1−β)−2

= O(Cσn
−3/10).

Proof of Theorem 3

For the proof of this Theorem, we follow Zhao and Li (2012). We have

P (I0 ⊆ Î) = P (min
k∈I0

|Tk/
√
v̂k| ≥ λn) = 1− P (min

k∈I0
|Tk/

√
v̂k| < λn)

≥ 1− P (max
k∈I0

|Tk/
√

v̂k −Var(mk(x))/
√
vk| ≥ 2cn−α − λn),

where the last inequality follows from the fact that 2cn−α − |Tk/
√
v̂k| ≤

|Tk/
√
v̂k −Var(mk(x))/

√
vk|, which follows from assumption C8. For any λn ≤

cn−α, Theorem 2 holds. For the choice of λn = n−1/2Φ−1(1− r/d), this entails

n−1/2Φ−1(1− r/d) ≤ cn−α ⇐⇒ d ≤ r(1− Φ(cn1/2−α))−1

Using the fact that 1 − Φ(x) ≤ x−1 exp(−x2/2), this inequality is satisfied if
d ≤ r exp{c2n1−2α/2}.

Without loss of generality, consider the constant Ck in (2) to be equal to 0.
Note that for k ∈ Ic0 , n

1/2Tk/v̂k = n1/2YT
Wk

AYWk
/v̂k we can use Lemma 4 and

Lemma 5, to find

sup
x

|P (n1/2YT
Wk

AYWk
/
√
vk ≤ x)− Φ(x)| ≤ Cσn

−3/10,

for a constant Cσ. Then (9) implies that

E

(
|Î ∩ Ic0 |
|Ic0 |

)
≤ 1

d− d0

∑
k∈Ic

0

(1− Φ(γn) + Cσn
−3/10).

The theorem follows if we choose γn = n−1/2Φ−1(1− r/d).
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