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Abstract: Variable selection is a widely studied problem in high dimen-
sional statistics, primarily since estimating the precise relationship between
the covariates and the response is of great importance in many scientific dis-
ciplines. However, most of theory and methods developed towards this goal
for the linear model invoke the assumption of iid sub-Gaussian covariates
and errors. This paper analyzes the theoretical properties of Sure Indepen-
dence Screening (SIS) (Fan and Lv [20]) for high dimensional linear models
with dependent and/or heavy tailed covariates and errors. We also intro-
duce a generalized least squares screening (GLSS) procedure which utilizes
the serial correlation present in the data. By utilizing this serial correla-
tion when estimating our marginal effects, GLSS is shown to outperform
SIS in many cases. For both procedures we prove sure screening properties,
which depend on the moment conditions, and the strength of dependence
in the error and covariate processes, amongst other factors. Additionally,
combining these screening procedures with the adaptive Lasso is analyzed.
Dependence is quantified by functional dependence measures (Wu [49]), and
the results rely on the use of Nagaev-type and exponential inequalities for
dependent random variables. We also conduct simulations to demonstrate
the finite sample performance of these procedures, and include a real data
application of forecasting the US inflation rate.

MSC 2010 subject classifications: Primary 62F07; secondary 62J07.
Keywords and phrases: High-dimensional statistics, sparsity, lasso, time
series, functional dependence measure, variable selection, Nagaev inequal-
ity, sure independence screening.

Received May 2017.

1. Introduction

With the advancement of data acquisition technology, high dimensionality is
a characteristic of data being collected in fields as diverse as health sciences,
genomics, neuroscience, astronomy, finance, and macroeconomics. Applications
where we have a large number of predictors for a relatively small number of
observations are becoming increasingly common. For example, in disease clas-
sification we usually have thousands of variables, such as expression of genes,
which are collected, while the sample size is usually in the tens. Other examples
include fMRI data, where the number of voxels can number in the thousands
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and far outnumber the observations. For an overview of high dimensionality
in economics and finance, see [22]. For the biological sciences, see [24, 5] and
references therein. The main goals in these situations according to [4] are:

• To construct as effective a method as possible to predict future observa-
tions.

• To gain insight into the relationship between features and response for sci-
entific purposes, as well as hopefully, to construct an improved prediction
method.

More formally we are dealing with the case where

y = Xβ + ε (1)

with y = (Y1, . . . , Yn)
T

being an n-vector of responses, X = (x1, . . . ,xn)
T

being an n×pn random design matrix, and ε = (ε1, . . . , εn)
T
is a random vector

of errors. In addition, when the dimensionality of the predictors (pn) is large
we usually make the assumption that the underlying coefficient vector (β) is
sparse. Sparsity is a characteristic that is frequently found in many scientific
applications [20],[31]. For example, in disease classification it is usually the case
that only a small amount of genes are relevant to predicting the outcome.

Indeed, there are a wealth of theoretical results and methods that are devoted
to this issue. Our primary focus is on screening procedures. Sure Independence
Screening (SIS) as originally introduced in [20], was applicable to the linear
model, and is based on a ranking of the absolute values of the marginal correla-
tions of the predictors with the response. This method allows one to deal with
situations in which the number of predictors is of an exponential order of the
number of observations, which they termed as ultrahigh dimensionality. Further
work on the topic has expanded the procedure to cover the case of generalized
linear models [25], non-parametric additive models [19], Cox proportional haz-
ards model [18], single index hazard rate models [27], and varying coefficient
models [23]. Model-free screening methods have also been developed. For ex-
ample; screening using distance correlation was analyzed in [35], a martingale
difference correlation approach was introduced in [42], additional works include
[57], [30] among others. For an overview of works related to screening proce-
dures, one can consult [37]. The main result introduced with these methods is
that, under appropriate conditions, we can reduce the predictor dimension from
size pn = O (exp (nα)), for some α < 1, to a size dn, while retaining all the
relevant predictors with probability approaching 1.

Another widely used class of methods is based on the penalized least squares
approach. An overview of these methods is provided in [21] and [5]. Examples
of methods in this class are the Lasso [45], and the adaptive Lasso [58]. Various
theoretical results have been discovered for these class of methods. They broadly
fall into analyzing the prediction error |X(β̂ − β)|22, parameter estimation error

|β̂ − β|1, model selection consistency, as well as limiting distributions of the
estimated parameters (see [9] for a comprehensive summary). Using screening
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procedures in conjunction with penalized least squares methods, such as the
adaptive Lasso, presents a powerful tool for variable selection. Variable screening
can allow us to quickly reduce the parameter dimension pn significantly, which
weakens the assumptions needed for model selection consistency of the adaptive
Lasso [29, 39].

A key limitation of the results obtained for screening methods, is the as-
sumption of independent observations. In addition, it is usually assumed that
the covariates and the errors are sub-Gaussian (or sub-exponential). However,
there are many examples of real world data where these assumptions are vi-
olated. Data which is observed over time and/or space such as meteorological
data, longitudinal data, economic and financial time series frequently exhibit co-
variates and/or errors which are serially correlated. One specific example is the
case of fMRI time series, where there can exist a complicated spatial-temporal
dependence structure in the errors and the covariates (see [48]). Another exam-
ple is in forecasting macroeconomic indicators such as GDP or inflation rate,
where we have large number of macroeconomic and financial time series, along
with their lags, as possible covariates. Examples of heavy tailed and dependent
errors and covariates can be found most prominently in financial, insurance and
macroeconomic data.

These examples stress why it is extremely important for variable selection
methods to be capable of handling scenarios where the assumption of indepen-
dent sub-Gaussian (or sub-exponential) observations is violated. Some works
related to this goal for the Lasso include [46], which extended the Lasso to
jointly model the autoregressive structure of the errors as well as the covariates.
However, their method is applicable only to the case where pn < n, and they
assume an autoregressive structure where the order of the process is known.
Whereas [53] studied the theoretical properties of the Lasso assuming a fixed
design in the case of heavy tailed and dependent errors. Additionally [3], and [33]
investigated theoretical properties of the Lasso for high-dimensional Gaussian
processes. Most recently [39] analyzed the adaptive Lasso for high dimensional
time series while allowing for both heavy tailed covariate and errors processes,
with the additional assumption that the error process is a martingale difference
sequence.

Some works related to this goal for screening methods include [36], which
allows for heavy tailed errors and covariates. Additionally [10], [54], and [57]
also relax the Gaussian assumption, with the first two requiring the tails of the
covariates and the response to be exponentially light, while the latter allows for
heavy tailed errors provided the covariates are sub-exponential. Although these
works relax the moment and distributional assumptions on the covariates and
the response, they still remain in the framework of independent observations. A
few works have dealt with correlated observations in the context of longitudinal
data (see [13],[56]). However, the dependence structure of longitudinal data is
too restrictive to cover the type of dependence present in most time series. Most
recently [12] proposed a non-parametric kernel smoothing screening method
applicable to time series data. In their work they assume a sub-exponential
response, covariates that are bounded and have a density, as well as assuming
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the sequence {(Yi,xi)} is strong mixing, with the additional assumption that the
strong mixing coefficients decay geometrically. These assumptions can be quite
restrictive; they exclude, for example, heavy tailed time series, and discrete
valued time series which are common in fields such as macroeconomics, finance,
neuroscience, amongst others [16].

In this work, we study the theoretical properties of SIS for the linear model
with dependent and/or heavy tailed covariates and errors. This allows us to
substantially increase the number of situations in which SIS can be applied.
However, one of the drawbacks to using SIS in a time series setting is that the
temporal dependence structure between observations is ignored. In an attempt
to correct this, we introduce a generalized least squares screening (GLSS) pro-
cedure, which utilizes this additional information when estimating the marginal
effect of each covariate. By using GLS to estimate the marginal regression coeffi-
cient for each covariate, as opposed to OLS used in SIS, we correct for the effects
of serial correlation. Our simulation results show the effectiveness of GLSS over
SIS, is most pronounced when we have strong levels of serial correlation and
weak signals. Using the adaptive Lasso as a second stage estimator after apply-
ing the above screening procedures is also analyzed. Probability bounds for our
combined two stage estimator being sign consistent are provided, along with
comparisons between our two stage estimator and the adaptive Lasso as a stand
alone procedure.

Compared to previous work, we place no restrictions on the distribution of
the covariate and error processes besides existence of a certain number of finite
moments. In order to quantify dependence, we rely on the functional dependence
measure framework introduced by [49], rather than the usual strong mixing
coefficients. Comparisons between functional dependence measures and strong
mixing assumptions are discussed in section 2. For both GLSS and SIS, we
present the sure screening properties and show the range of pn can vary from the
high dimensional case, where pn is a power of n, to the ultrahigh dimensional
case discussed in [20]. We detail how the range of pn and the sure screening
properties are affected by the strength of dependence and the moment conditions
of the errors and covariates, the strength of the underlying signal, and the
sparsity level, amongst other factors.

The rest of the paper is organized as follows: Section 2 reviews the functional
and predictive dependence measures which will allow us to characterize the
dependence in the covariate (xi, i = 1, ..., n) and error processes. We also discuss
the assumptions placed on structure of the covariate and error processes; these
assumptions are very mild, allowing us to represent a wide variety of stochastic
processes which arise in practice. Section 3 presents the sure screening properties
of SIS under a range of settings. Section 4 introduces the GLSS procedure and
presents its sure screening properties. Combining these screening procedures
with the adaptive Lasso will discussed in Section 5. Section 6 covers simulation
results, while section 7 discusses an application to forecasting the US inflation
rate. Lastly, concluding remarks are in Section 8, and the proofs for all the
results follow in the appendix.
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2. Preliminaries

We shall assume the error sequence is a strictly stationary, ergodic process with
the following form:

εi = g (. . . , ei−1, ei) (2)

Where g(·) is a real valued measurable function, and ei are iid random vari-
ables. This representation includes a very wide range of stochastic processes
such as linear processes, their non-linear transforms, Volterra processes, Markov
chain models, non-linear autoregressive models such as threshold auto-regressive
(TAR), bilinear, GARCH models, among others (for more details see [50],[49]).
This representation allows us to use the functional and predictive dependence
measures introduced in [49]. The functional dependence measure for the error
process is defined as the following:

δq(εi) = ||εi − g (F∗
i ) ||q = (E|εi − g (F∗

i ) |q)1/q (3)

where F∗
i = (. . . , e−1, e

∗
0, e1, . . . , ei) with e∗0, ej , j ∈ Z being iid. Since we are

replacing e0 by e∗0, we can think of this as measuring the dependency of εi
on e0 as we are keeping all other inputs the same. The cumulative functional
dependence measure is defined as Δm,q(ε) =

∑∞
i=m δq(εi). We assume weak

dependence of the form:

Δ0,q(ε) =

∞∑
i=0

δq(εi) < ∞ (4)

The predictive dependence measure is related to the functional dependence mea-
sure, and is defined as the following:

θq(εl) = ||E (εl|F0)− E (εl|F−1) ||q = ||P0εl||q (5)

where Fi = (. . . , e−1, e0, e1, . . . , ei) with ei, i ∈ Z being iid. The cumulative pre-
dictive dependence measure is defined as Θq(ε) =

∑∞
l=0 θq(εl), and by Theorem

1 in [49] we obtain Θq(ε) ≤ Δ0,q(ε).
Similarly the covariate process is of the form:

x
(n)
i = h

(
. . . ,η

(n)
i−1,η

(n)
i

)
(6)

Where η
(n)
i ∈ Rpn , i ∈ Z, are iid random vectors, h(·) = (h1(·) . . . , hpn(·)),

x
(n)
i = (Xi1, ..., Xipn) and Xij = hj(...,η

(n)
i−1,η

(n)
i ). The superscript (n) denotes

that the dimension of vectors is a function of n, however for presentational clarity
we suppress the superscript (n) from here on and use xi and ηi instead. Let
H∗

i = (. . . ,η−1,η
∗
0 ,η1, . . . ,ηi). As before the functional dependence measure is

δq(Xij) = ||Xij − hj (H∗
i ) ||q and the cumulative dependence measure for the

covariate process is defined as:

Φm,q(x) =
∞∑

i=m

max
j≤pn

δq(Xij) < ∞ (7)
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The representations (2), and (6), along with the functional and predictive de-
pendence measures have been used in various works including [52],[55], and
[53] amongst others. Compared to strong mixing conditions, which are often
difficult to verify, the above dependence measures are easier to interpret and
compute since they are related to the data generating mechanism of the under-
lying process [50]. In many cases using the functional dependence measure also
requires less stringent assumptions. For example, consider the case of a linear
process, εi =

∑∞
j=0 fjei−j , with ei iid. Sufficient conditions for a linear process

to be strong mixing involve: the density function of the innovations (ei) being of
bounded variation, restrictive assumptions on the decay rate of the coefficients
(fj), and invertibility of the process (see Theorem 14.9 in [14] for details). Ad-
ditional conditions are needed to ensure strong mixing if the innovations for the
linear process are dependent [17].

As a result many simple processes can be shown to be non-strong mixing.
A prominent example involves an AR(1) model with iid Bernoulli (1/2) inno-
vations: εi = ρεi−1 + ei is non-strong mixing if ρ ∈ (0, 1/2] [2]. These cases
can be handled quite easily in our framework, since we are not placing distri-
butional assumptions on the innovations, ei, such as the existence of a den-
sity. For linear processes with iid innovations, representation (2) clearly holds
and (4) is satisfied if

∑∞
j=0 |fj | < ∞. For dependent innovations, suppose we

have: ei = h(. . . , ai−1, ai), where h(·) is a real valued measurable function and
ai, i ∈ Z, are iid. Then εi =

∑∞
j=0 fjei−j , has a causal representation, and

satisfies (4) if:
∑∞

i=0 δq(ei) < ∞, and
∑∞

j=0 |fj | < ∞ (see [51]).

3. SIS with dependent observations

Sure Independence Screening, as introduced by Fan and Lv [20], is a method of
variable screening based on ranking the magnitudes of the pn marginal regres-
sion estimates. Under appropriate conditions, this simple procedure is shown to
possess the sure screening property. The method is as follows, let:

ρ̂ = (ρ̂1, . . . , ρ̂pn), where ρ̂j = (

n∑
t=1

X2
tj)

−1(

n∑
t=1

XtjYt) (8)

Therefore, ρ̂j is the OLS estimate of the linear projection of Yt onto Xtj . Now
let

M∗ = {1 ≤ i ≤ pn : βi �= 0} (9)

and let |M∗| = sn << n be the size of the true sparse model. We then sort the
elements of ρ̂ by their magnitudes. For any given γn, define a sub-model

M̂γn = {1 ≤ i ≤ pn : |ρ̂i| ≥ γn} (10)

and let |M̂γn | = dn be the size of the selected model. The sure screening property

states that for an appropriate choice of γn, we have P
(
M∗ ⊂ M̂γn

)
→ 1.
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Throughout this paper let: Yt =
∑pn

i=1 Xtiβi + εt, xt = (Xt1, ..., Xtpn), Σ =
cov(xt), and Xk be kth column of X. In addition, we assume V ar(Yt),
V ar(Xtj) = O(1), ∀j ≤ pn. Note that xt can contain lagged values of Yt.
Additionally, let ρj = (E(X2

tj))
−1E(XtjYt), and Mγn = {1 ≤ i ≤ p : |ρi| ≥ γn}.

For a vector a = (a1, ..., an), sgn(a) denotes its sign vector, with the conven-
tion that sgn(0) = 0, and |a|pp =

∑n
i=1 |ai|p. For a square matrix A, let λmin(A)

and λmax(A), denote the minimum eigenvalue, and maximum eigenvalue respec-
tively. For any matrix A, let ||A||∞, and ||A||2 denote the maximum absolute
row sum of A, and the spectral norm of A respectively. Lastly we will use C, c
to denote generic positive constants which can change between instances.

3.1. SIS with dependent, heavy tailed covariates and errors

To establish sure screening properties, we need the following conditions:

Condition A: |ρk| ≥ c1n
−κ for k ∈ M∗, κ < 1/2

Condition B: E(εt), E(Xtj), E(Xtjεt) = 0 ∀j, t.

Condition C: Assume the error and the covariate processes have representa-
tions (2), and (6) respectively. Additionally, we assume the following decay rates
Φm,r(x) = O(m−αx),Δm,q(ε) = O(m−αε), for some αx, αε > 0, q > 2, r > 4
and τ = qr

q+r > 2.
Condition A is standard in screening procedures, and it assumes the marginal

signals of the active predictors cannot be too small. Condition B assumes the
covariates and the errors are contemporaneously uncorrelated. This is signifi-
cantly weaker than independence between the error sequence and the covariates
usually assumed. Condition C presents the structure, dependence and moment
conditions on the covariate and error processes. Notice that higher values of
αx, αε indicate weaker temporal dependence.

Examples of error and covariate processes which satisfy Condition C are: If εi
is a linear process, εi =

∑∞
j=0 fjei−j with ei iid and

∑∞
j=0 |fj | < ∞ then δq(εi) =

|fi|||e0 − e∗0||q. If fi = O(i−β) for β > 1 we have Δm,q = O(m−β+1) and αε =
β− 1. We have a geometric decay rate in the cumulative functional dependence
measure, if εi satisfies the geometric moment contraction (GMC) condition, see
[41]. Conditions needed for a process to satisfy the GMC condition are given in
Theorem 5.1 of [41]. Examples of processes satisfying the GMC condition include
stationary, causal finite order ARMA, GARCH, ARMA-GARCH, bilinear, and
threshold autoregressive processes, amongst others (see [50] for details).

For the covariate process, if we assume xi is a vector linear process: xi =∑∞
l=0 Alηi−l. Where Al are pn × pn coefficient matrices and ηi = (ηi1, . . . , ηipn)

are iid random vectors with cov(ηi) = Ση. For simplicity, assume ηi,j(j =
1, . . . , pn) are identically distributed, then

δq(Xij) = ||Ai,jη0 −Ai,jη
∗
0 ||q ≤ 2|Ai,j |||η0,1||q (11)
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where Ai,j is the jth column of Ai. If ||Ai||∞ = O(i−β) for β > 1, then Φm,q =
O(m−β+1).

In particular for stable VAR(1) processes, xt = B1xt−1 + ηt, Φm,q(x) =

O(||B̃1||m2 ) [11]. For stable VAR(k) processes, xt =
∑k

i=1 Bixt−i + ηt, we can

rewrite this as a VAR(1) process, x̃t = B̃1x̃t−1 + η̃t, with:

x̃t =

⎡
⎢⎢⎢⎣

xt

xt−1

...
xt−k+1

⎤
⎥⎥⎥⎦
kp×1

B̃1 =

⎛
⎜⎜⎜⎝
B1 · · · Bk−1 Bk

Ipn · · · 0 0
...

. . .
...

...
0 · · · Ipn 0

⎞
⎟⎟⎟⎠

kp×kp

η̃t =

⎡
⎢⎢⎢⎣
ηt

0
...
0

⎤
⎥⎥⎥⎦
kp×1

(12)

And by section 11.3.2 in [38], the process x̃t is stable if and only if xt is
stable. Therefore if B̃1 is diagonalizable, we have O(am), where a represents the
largest eigenvalue in magnitude of B̃1. And by the stability of xt, a ∈ (0, 1).
Additional examples of error and covariate processes which satisfy Condition C
are given in [52] and [53] respectively.

Define α = min(αx, αε) and let ω = 1 if αx > 1/2−2/r, otherwise ω = r/4−
αxr/2. Let ι = 1 if α > 1/2−1/τ , otherwise ι = τ/2−τα. Additionally, letKε,q =
supm≥0(m+1)αεΔm,q(ε) and Kx,r = maxj≤pn supm≥0(m+1)αx

∑∞
i=m δr(Xij).

Given Condition C, it follows that Kε,q,Kx,r < ∞. For ease of presentation we
let:

ϑn =
snn

ωKr
x,r

(n/sn)r/2−rκ/2
+

nιKτ
x,rK

τ
ε,q

nτ−τκ
+ exp

(
− n1−2κ

s2nK
4
x,r

)
+ exp

(
− n1−2κ

K2
x,rK

2
ε,q

)
(13)

The following theorem gives the sure screening properties, and provides a
bound on the size of the selected model:

Theorem 1. Suppose Conditions A,B,C hold.

(i) For any c2 > 0, we have:

P

(
max
j≤pn

|ρ̂j − ρj | > c2n
−κ

)
≤ O(pnϑn)

(ii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snϑn)

(iii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
|M̂γn | ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnϑn)
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In Theorem 1 we have two types of bounds, for large n the polynomial
terms dominate, whereas for small values of n the exponential terms dominate.

The covariate dimension (pn) can be as large as o(min( sn(n/sn)
r/2−rκ/2

nω , nτ−τκ

nι )).
The range of pn depends on the dependence in both the covariate and the er-
ror processes, the strength of the signal (κ), the moment condition, and the
sparsity level (sn). If we assume sn = O(1), r = q, and α ≥ 1/2 − 2/r then
pn = o(nr/2−rκ/2−1). For the case of iid errors and covariates, we would replace
Kx,r,Kε,q in Theorem 1 with maxj≤pn ||Xij ||r/2 and ||εi||q respectively. There-
fore for the case of weaker dependence in the covariate and error processes (i.e.
αx > 1/2−2/r and α > 1/2−1/ε), our range for pn is reduced only by a constant
factor. However, our range for pn is significantly reduced in the case of stronger
dependence in the error or covariate processes (i.e. either αx < 1/2 − 2/r or
αε < 1/2− 2/q). For instance if αx = αε and q = r, our range for pn is reduced
by a factor of nr/4−αr/2 in the case of stronger dependence.

In the iid setting, to achieve sure screening in the ultrahigh dimensional case,
[20] assumed the covariates and errors are jointly normally distributed. Future
works applicable to the linear model, such as [25],[19] among others, relaxed
this Gaussian assumption, but generally assumed the tails of the covariates and
errors are exponentially light. Compared to the existing results for iid obser-
vations, our moment conditions preclude us from dealing with the ultrahigh
dimensional case. However, our setting is far more general in that it allows for
dependent and heavy tailed covariates and errors. In addition, we allow for the
covariates and error processes to be dependent on each other, with the mild
restriction that E(Xtjεt) = 0, ∀j ≤ pn.

3.2. Ultrahigh dimensionality under dependence

It is possible to achieve the sure screening property in the ultrahigh dimensional
setting with dependent errors and covariates. However, we need to make stronger
assumptions on the moments of both the error and covariate processes. Until
now we have assumed the existence of a finite qth moment, which restricted the
range of p to a power of n. If the error and covariate processes are assumed to
follow a stronger moment condition, such as Δ0,q(ε) < ∞ and Φ0,q(x) < ∞ for
arbitrary q > 0, we can achieve a much larger range of pn which will cover the
ultrahigh dimensional case discussed in [20]. More formally, we have:

Condition D: Assume the error and the covariate processes have representa-
tions (2), and (6) respectively. Additionally assume υx = supq≥2 q

−α̃xΦ0,q(x) <

∞ and υε = supq≥2 q
−α̃εΔ0,q(ε) < ∞, for some α̃x, α̃ε ≥ 0.

By Theorem 3 in [53], Condition D implies the tails of the covariate and error
processes are exponentially light. There are a wide range of processes which sat-
isfy the above condition. For example, if εi is a linear process: εi =

∑∞
j=0 fjei−j

with ei iid and
∑∞

l=0 |fl| < ∞ then Δ0,q(εl) = ||e0 − e∗0||q
∑∞

l=0 |fl|. If we as-
sume e0 is sub-Gaussian, then α̃ε = 1/2, since ||e0||q = O(

√
q). Similarly if ei is
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sub-exponential we have α̃ε = 1. More generally, for εi =
∑∞

j=0 fje
p
i−j , if ei is

sub-exponential, we have α̃ε = p. Similar results hold for vector linear processes
discussed previously.

Condition D is primarily a restriction on the rate at which ||εi||q,
maxj≤pn ||Xij ||q increase as q → ∞. We remark that, for any fixed q, we are not
placing additional assumptions on the temporal decay rate of the covariate and
error processes besides requiring Δ0,q(ε),Φ0,q(x) < ∞. In comparison, in the ul-
trahigh dimensional setting, [12] requires geometrically decaying strong mixing
coefficients, in addition to requiring sub-exponential tails for the response. As an
example, if we assume εi =

∑∞
j=0 fjei−j , geometrically decaying strong mixing

coefficients would require the coefficients, fj , to decay geometrically. Whereas
in Condition D, the only restrictions we place on the coefficients, fj , is absolute
summability.

Theorem 2. Suppose Conditions A,B,D hold. Define α̃′ = 2
1+2α̃x+2α̃ε

, and

α̃ = 2
1+4α̃x

.

(i) For any c2 > 0 we have:

P

(
max
j≤pn

|ρ̂j − ρj | > c2n
−κ

)
≤O

(
snpn exp

(
−n1/2−κ

υ2
xsn

)α̃
)

+O

(
pn exp

(
−n1/2−κ

υxυε

)α̃′)

(ii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O

(
s2n exp

(
−n1/2−κ

υ2
xsn

)α̃
)

−O

(
sn exp

(
−n1/2−κ

υxυε

)α̃′)

(iii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
|M̂γn | ≤ O(n2κλmax(Σ))

)
≥ 1−O

(
snpn exp

(
−n1/2−κ

υ2
xsn

)α̃
)

−O

(
pn exp

(
−n1/2−κ

υxυε

)α̃′)

From Theorem 2, we infer the covariate dimension (pn) can be as large as

o(min[exp
(

Cn1/2−κ

sn

)α̃

/sn, exp(Cn1/2−κ)α̃
′
]). As in Theorem 1, the range of pn

depends on the dependence in both the covariate and the error processes, the
strength of the signal (κ), the moment condition, and the sparsity level (sn).
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For the case of iid covariates and errors, we would replace υx and υε with
μr/2 = maxj≤pn ||Xij ||r/2 and ||εi||q respectively. In contrast to Theorem 1,
temporal dependence affects our range of pn only by a constant factor.

If we assume sn = O(1), and both the covariate and error processes are sub-

Gaussian we obtain pn = o(exp(n
1−2κ

3 )), while for sub-exponential distributions

we obtain pn = o(exp(n
1−2κ

5 )). In contrast, Fan and Lv [20], assuming indepen-
dent observations, allow for a larger range pn = o(exp(n1−2κ). However, their
work relied critically on the Gaussian assumption. Fan and Song [25], relax the
Gaussian assumption by allowing for sub-exponential covariates and errors, and
our rates are similar to theirs up to a constant factor. Additionally, in our work
we relax the sub-exponential assumption, provided the tails of the covariates
and errors are exponentially light.

4. Generalized least squares screening (GLSS)

Consider the marginal model:

Yt = Xtkρk + εt,k (14)

where ρk is the linear projection of yt onto Xtk. In SIS, we rank the magnitudes
of the OLS estimates of this projection. In a time series setting, if we are con-
sidering the marginal model (14) it is likely the case that the marginal errors
(εt,k) will be serially correlated. This holds even if we assume that the errors
(εt) in the full model (1) are serially uncorrelated. A procedure which accounts
for this serial correlation, such as Generalized Least Squares (GLS), will provide
a more efficient estimate of ρk.

We first motivate our method by considering a simple univariate model. As-
sume Yt = βXt + εt and the errors follow an AR(1) process, εt = ρεt−1 + θt,
where θt, and Xt are iid standard Gaussian. We set β = .5, n = 200, and esti-
mate the model using both OLS and GLS for values of ρ ranging from .5 to .95.
The mean absolute errors for both procedures is plotted in figure 1. We observe
that the performance of OLS steadily deteriorates for increasing values of ρ,
while the performance of GLS stays constant. This suggests that a screening
procedure based on GLS estimates will be most useful in situations where we
have weak signals and high levels of serial correlation.

The infeasible GLS estimate for ρk is:

β̃M
k = (XT

k Σ
−1
k Xk)

−1XT
k Σ

−1
k y (15)

Where Xk is the kth column of X, and Σk = (γi−j,k)1≤i,j≤n is the auto-
covariance matrix of εk = (εt,k, t = 1, ..., n). Given that Σk needs to be esti-
mated to form our GLS estimates, we use the banded autocovariance matrix
estimator introduced in [52], which is defined as:

Σ̂k,ln =
(
γ̂i−j,k1|i−j|≤ln

)
1≤i,j≤n

(16)
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Fig 1. GLS vs OLS error comparison for values of ρ between .5 and .95 incrementing by .05.
Absolute error averaged over 200 replications.

Where ln is our band length, γ̂r,k = 1
n

∑n−|r|
t=1 ε̂t,k ε̂t+|r|,k, with ε̂t,k = yt−Xtkρ̂k,

and ρ̂k is the OLS estimate of ρk. Our GLS estimator is now:

β̂M
k = (XT

k Σ̂
−1
k,ln

Xk)
−1XT

k Σ̂
−1
k,ln

y (17)

When E(εk|Xk) = 0, by the Gauss-Markov theorem it is clear that β̃M
k is

efficient relative to the OLS estimator. [1] showed that under non-stochastic
regressors and appropriate conditions on the error process, a two stage sieve
type GLS estimator has the same limiting distribution as the infeasible GLS
estimator β̃M

k . In the appendix, we provide the appropriate conditions under

which our GLS estimator, β̂M
k , and the infeasible GLS estimate, β̃M

k , have the
same asymptotic distribution.

For positive definite Σk, the banded estimate for Σk is not guaranteed to
be positive definite, however it is asymptotically positive definite (see Lemma
1). For small samples, we can preserve positive definiteness by using the ta-
pered estimate: Σ̂k ∗ Rln , where Rln is a positive definite kernel matrix, and
∗ denotes coordinate-wise multiplication. For example, we can choose Rln =

(max(1− |i−j|
ln

, 0))1≤i,j≤n. We need the following conditions for the sure screen-
ing property to hold:

Condition E: Assume the marginal error process, εt,k, is a stationary AR(Lk)

process, εt,k =
∑Lk

i=1 αiεt−i,k + et. Where Lk < K < ∞, ∀k ≤ pn.

Condition F: For k ∈ M∗, κ < 1/2: βM
k = E(yt −

∑Lk

i=1 αiyt−i)(Xt,k −∑Lk

i=1 αiXt−i,k)/(E(Xt,k −
∑Lk

i=1 αiXt−i,k)
2) ≥ c6n

−κ.

Condition G: Assume E(Xtk), E(εt), E(XT
k Σ

−1
k ε) = 0

Condition H: Assume εt,k, εt are of the form (2), and the covariate process
is of the form (6). Additionally we assume the following decay rates Δm,q(ε) =
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O(m−αε), Φm,r(x) = O(m−αx), χm,q′ =
∑∞

i=m maxk≤pn δq(εi,k) = O(m−α), for
some αx, αε > 0, α = min(αx, αε), and q′ = min(q, r) ≥ 4.

Condition I: Assume εt,k, εt are of the form (2), and the covariate process
is of the form (6). Additionally assume υx = supq≥4 q

−α̃xΦ0,q(x) < ∞, υε =

supq≥4 q
−α̃εΔ0,q(ε) < ∞, φ = supq≥4 q

−ϕχ0,q < ∞ for some α̃x, α̃ε ≥ 0, and
ϕ = max(α̃ε, α̃x).

In Condition E, we can let the band length K diverge to infinity at a slow
rate, e.g O(log(n)), for simplicity we set K to be a constant. Assuming a finite
order AR model for the marginal error process is reasonable in most practi-
cal situations, since any stationary process with a continuous spectral density
function can be approximated arbitrarily closely by a finite order linear AR pro-
cess (see corollary 4.4.2 in [7]). For further details on linear AR approximations
to stationary processes, see [1] and [8]. We remark that compared to previous
works [1, 34], knowledge about the structure of the marginal errors is not neces-
sary in estimating βM

k , since we use a non-parametric estimate of Σk. Therefore
Condition E is assumed strictly for technical reasons.

For Condition F, from (14), we have βM
k =ρk, iff E(εt,k−

∑Lk

i=1 αiεt−i,k)(Xt,k−∑Lk

i=1 αiXt−i,k) = 0. When βM
k �= ρk, recall that:

βM
k = E(yt −

Lk∑
i=1

αiyt−i)(Xt,k −
Lk∑
i=1

αiXt−i,k)/(E(Xt,k −
Lk∑
i=1

αiXt−i,k)
2) (18)

If we assume the cross covariance, γXk,Y (h), is proportional to E(XtkYt), i.e.
γXk,Y (h) ∝ E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}, then βM

k ∝ ρk when-
ever |βM

k | > 0. And for |ρk| > 0, it is likely the case that βM
k ∝ ρk if we assume

γXk,Y (h) ∝ E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}. When βM
k �= ρk, we

believe the advantage in using GLSS is due to the GLS estimator being robust
to serial correlation in the marginal error process (see the appendix for details).

For Condition H, since εt,k = Yt − Xtkρk, we have εt,k = rk(. . . ,θt−1,θt),
where rk(·) is a measurable function and θt = (ηt, et). If we assume et, and ηi

are independent for i �= t, then θi are iid. We then have:

δq′(εt,k) =||
∑
i∈M∗

Xtiβi + εt −Xtkρk − (
∑
i∈M∗

X∗
tiβi + ε∗t −X∗

tkρk)||q′

≤
∑
i∈M∗

|βi|δq′(Xti) + δq′(εt) + |ρk|δq′(Xtk)

Therefore, χm,q′ = O(m−α), if we assume
∑

i∈M∗
|βi| = O(1), Δm,q(ε) =

O(m−αε), and Φm,r(x) = O(m−αx).

For GLSS; define M̂γn =
{
1 ≤ i ≤ pn : |β̂M

k | ≥ γn

}
, α = min(αx, αε),

τ = qr
q+r , τ

′ = qq′

q+q′ = min(q/2, τ). Let ι = 1 if α > 1/2 − 1/τ ′, otherwise

ι = τ ′/2 − τ ′α. Let ζ = 1, if α > 1/2 − 2/q′, otherwise ζ = q′/4 − αq′/2
and let ω = 1, if αx > 1/2− 2/r, otherwise ω = r/4− αxr/2. Additionally, let
Kx,r = maxj≤pn supm≥0(m+1)αx

∑∞
i=m δr(Xij), K̃ε,q′ = maxk≤pn supm≥0(m+
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1)α
∑∞

i=m δq′(εi,k). Given Condition H, it follows that Kx,r, K̃ε,q′ < ∞. For
the case of exponentially light tails, we define ϕ̃′ = 2

1+2α̃x+2ϕ , ϕ̃ = 2
1+4ϕ , and

α̃ = 2
1+4α̃x

. Lastly, for ease of presentation let:

an = ln

⎡
⎣nιlτ

′

n Kτ ′

x,rK̃
τ ′

ε,q′

nτ ′−τ ′κ
+

nζ l
q′/2
n K̃q′

ε,q′

nq′/2−q′κ/2
+

nωl
r/2
n Kr

x,r

nr/2

⎤
⎦ (19)

bn = ln

[
exp

(
−n1/2

lnυ2
x

)α̃

+ exp

(
−n1/2−κ

lnυxφ

)ϕ̃′

+ exp

(
−n1/2−κ

lnφ2

)ϕ̃
]

(20)

We first present the following lemma, which provides deviation bounds on
||Σ̂k,ln − Σk||2. This lemma, which is of independent interest, will allow us to
obtain deviation bounds on our GLSS estimates.

Lemma 1. Assume the band length, ln = c log(n) for sufficiently large c > 0.

(i) Assume Condition H holds. For κ ∈ [0, 1/2) we have the following:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤ O(an)

(ii) Assume Condition I holds. For κ ∈ [0, 1/2) we have the following:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤ O(bn)

The following theorem gives the sure screening properties of GLSS:

Theorem 3. Assume the band length, ln = c log(n) for sufficiently large c > 0.

(i) Assume Conditions E,F,G,H hold, for any c2 > 0 we have:

P

(
max
j≤pn

|β̂M
k − βM

k | > c2n
−κ

)
≤ O(pnan)

(ii) Assume Conditions E,F,G,H hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snan)

(iii) Assume Conditions E,F,G,I hold, for any c2 > 0 we have:

P

(
max
j≤pn

|β̂M
k − βM

k | > c2n
−κ

)
≤ O(pnbn)

(iv) Assume Conditions E,F,G,I hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snbn)
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In Lemma 1, the rate of decay also depends on the band length (ln). The
band length primarily depends on the decay rate of the autocovariances of the
process εt,k. Since we are assuming an exponential decay rate, we can set ln =
O(log(n)). If γi,k = O(i−β) for β > 1, then we require l−β+1

n = o(n−κ). We
omit the exponential terms in the bounds for part part (i) of Lemma 1, and
parts (i), and (ii) of Theorem 3 to conserve space and provide a cleaner result.
For GLSS, the range for pn also depends on the band length (ln), in addition
to the moment conditions and the strength of dependence in the covariate and
error processes. For example, if we assume r = q, and α ≥ 1/2 − 2/r then

pn = o(nr/2−rκ/2−1/l
r/2+1
n ). Compared to SIS, we have a lower range of pn by

a factor of l
r/2+1
n . We conjecture that this is due to our proof strategy, which

relies on using a deviation bound on ||Σ̂k,ln − Σk||2, and uses the functional
dependence measure, rather than autocorrelation, to quantify dependence. In
practice, we believe using GLSS, which corrects for serial correlation, and uses
an estimator with lower asymptotic variance will achieve better performance.
We illustrate this in more detail in our simulations section, and in the appendix
(section 9.2).

Similar to SIS, we can control the size of the model selected by GLSS. For
the case when βM

k = ρk ∀k, the bound on the selected model size is the same
as in SIS. However, we need to place an additional assumption when βM

k �= ρk:
If the cross covariance, γXk,Y (h) ∝ E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk},
we can bound the selected model size by the model size selected by SIS. More
formally we have:

Corollary 4. Assume the cross covariance, γXk,Y (h) ∝ E(Xk,tYt), for h ∈
{−Lk, . . . ,−1, 1, . . . , Lk}

(i) Assume Conditions E,F,G,H hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
|M̂γn | ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnan)

(ii) Assume Conditions E,F,G,I hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
|M̂γn | ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnbn)

5. Second stage selection with adaptive lasso

The adaptive Lasso, as introduced by [58], is the solution to the following:

argminβ ||y −Xβ||2 + λn

pn∑
j=1

wj |βj |, where wj = |β̂I,j |−1, (21)

and β̂I,j is our initial estimate. For sign consistency; when pn >> n, the initial
estimates can be the marginal regression coefficients provided the design matrix
satisfies the partial orthogonality condition as stated in [29], or we can use the
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Lasso as our initial estimator provided the restricted eigenvalue condition holds
(see [39]). Both of these conditions can be stringent when pn >> n. This makes
the adaptive Lasso a very attractive option as a second stage variable selection
method, after using screening to significantly reduce the dimension of the feature
space. We have the following estimator:

β̃M̂γn
= argminβM̂γn

||y −XM̂γn
βM̂γn

||2 + λn

dn∑
j=1

wj |βj |, wj = |β̂I,j |−1 (22)

Where XM̂γn
denotes the n× dn submatrix of X that is obtained by extract-

ing its columns corresponding to the indices in M̂γn . We additionally define

XMγn
accordingly. Our initial estimator β̂I = (β̂I,1, . . . , β̂I,dn) is obtained us-

ing the Lasso. Let Σ̂Mγn
= XT

Mγn
XMγn

/n, and let ΣMγn
be its population

counterpart. Our two stage estimator, β̂M̂γn
, is then formed by inserting zeroes

corresponding to the covariates which were excluded in the screening step, and
inserting the adaptive Lasso estimates, β̃M̂γn

, for covariates which were selected

by the screening step. We need the following conditions for the combined two
stage estimator to achieve sign consistency:

Condition J: The matrix ΣM γn
2

satisfies the restricted eigenvalue condition,

RE(sn,3)(see [6] for details):

φ0 = min
S⊆{1,...,d′

n},|S|≤sn
min

v 	=0,|vSc |≤3|vS |

vTΣM γn
2

v

vTv
≥ c > 0, (23)

where v = (v1, . . . , vd′
n
) and vS = (vi, i ∈ S),vSc = (vi, i ∈ Sc).

Condition K: Let λn and λI,n be the regularization parameters of the adap-
tive lasso and the initial lasso estimator respectively. For some ψ ∈ (0, 1), we
assume:

cn1−ψ
2 (

φ0

sn
)3/2 ≥ λI,n ≥ λnn

ψ/2 (24)

Condition L: Let βmin = mini≤sn |βi|, and wmax = maxi≤sn wi > 0. Assume

βmin > 2
wmax

and βmin > 2c
λI,nsn
φ0n

.

Condition J allows us to use the Lasso as our initial estimator. Notice that
we placed the RE(sn,3) assumption on the matrix ΣM γn

2

, rather than the ma-

trix Σ̂M̂γn
, given the indices in M̂γn are random as a result of our screening

procedure. Recall that for SIS, M γn
2

= {1 ≤ i ≤ p : |ρi| ≥ γn/2}, and |M γn
2
| =

d′n = O(dn), and for GLSS we have a similar definition. Therefore, we are plac-
ing the RE(sn,3) assumption on the population covariance matrix of a fixed set
of d′n predictors. Conditions K and L are standard assumptions, and are similar
to the ones used in [39]. Condition K primarily places restrictions on the rate
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of increase of λn, and λI,n. Condition L places a lower bound on the magnitude
of the non-zero parameters which decays with the sample size.

The next theorem deals with the two stage SIS-Adaptive Lasso estimator.
A very similar result applies to the two stage GLSS-Adaptive Lasso estimator,
if we replace Conditions A,B,C (resp. D) with Conditions E,F,G,H (resp. I),
to avoid repetition we omit the result. For the following theorem, the terms
ι, ω,Kx,r, and Kε,q have been defined in the paragraph preceding Theorem 1,
and α̃′, α̃ have been defined in Theorem 2.

Theorem 5. (i) Assume Conditions A,B,C,J,K,L hold, then for γn = c3n
−κ

with c3 ≤ c1/2 we have:

P (sgn(β̂M̂γn
)

= sgn(β))

≥ 1−O

(
snpn

[
nωKr

x,r

(n/sn)r/2−rκ/2
− exp(− n1−2κ

s2nK
4
x,r

)

])

−O

(
pn

[
nιKτ

x,rK
τ
ε,q

nτ−τκ
− exp(− n1−2κ

K2
x,rK

2
ε,q

)

])

−O

(
d′ 2n

[
nωKr

x,r

(n/sn)r/2
− exp(− n

s2nK
4
x,r

)

])

−O

(
d′n

[
nιKτ

x,rK
τ
ε,q

λτ
nn

τψ/2
+ exp(− λ2

nn
ψ−1

K2
x,rK

2
ε,q

)

])

(ii) Assume Conditions A,B,C,J,K,L hold, then for γn = c3n
−κ with c3 ≤ c1/2

we have:

P (sgn(β̂M̂γn
) = sgn(β)) ≥ 1−O(snpn exp

(
−n1/2−κ

υ2
xsn

)α̃

)

−O(pn exp

(
−n1/2−κ

υxυε

)α̃′

)−O(d′ 2n exp

(
− n1/2

υ2
xsn

)α̃

)

−O(d′n exp

(
−λnn

ψ/2−1/2

υxυε

)α̃′

)

To achieve sign consistency for the case of finite polynomial moments we
require:

Condition M: Assume λnn
ψ/2−1/2 → ∞ and pn = o(min( sn(n/sn)

r/2−rκ/2

nω ,
nτ−τκ

nι )), d′n = o(min((n/sn)
r/4−ω/2, λτ

nn
τψ/2−ι))

For the case of exponential moments, we require:

Condition N: Assume λnn
ψ/2−1/2 → ∞,

pn = o(min(exp
(

Cn1/2−κ

sn

)α̃

/sn, exp(Cn1/2−κ)α̃
′
)),

and d′n = o(min(exp
(

n1/2

sn

)α̃/2

, exp
(
λnn

ψ/2−1/2
)α̃′

))
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From Conditions M, N, and Theorem 3, we see an additional benefit of using
the two stage selection procedure as opposed to using the adaptive Lasso as a
stand alone procedure. For example, if we assume dn ≤ n2κλmax(Σ) = O(n),
and that both the error and covariate processes are sub-Gaussian, we obtain

pn = o(exp(n
1−2κ

3 )) for the two stage estimator. By setting d′n = pn, we obtain
the result when using the adaptive Lasso as a stand alone procedure, with the
Lasso as its initial estimator. Under the scenario detailed above, the dimension
of the feature space, which depends on λn and ψ, for the stand alone adaptive
Lasso can be at most pn = o(exp(n

1
6 )). Therefore for κ < 1/4, we obtain a

larger range for pn and a faster rate of decay using the two stage estimator. For
κ ≥ 1/4 it is not clear whether the two stage estimator has a larger range for
pn, compared to using the adaptive Lasso alone.

The sign consistency of the stand alone adaptive Lasso estimator in the time
series setting was established in [39]. Their result was obtained under strong
mixing assumptions on the covariate and error processes, with the additional
assumption that the error process is a martingale difference sequence. Addi-
tionally, in the ultrahigh dimensional setting they require a geometric decay
rate on the strong mixing coefficients. In contrast, we obtain results for both
the two stage and stand alone adaptive lasso estimator, and our results are ob-
tained using the functional dependence measure framework. Besides assuming
moment conditions, we are not placing any additional assumptions on the tem-
poral decay of the covariate and error processes other than Δ0,q(ε),Φ0,q(x) < ∞.
Furthermore, we weaken the martingale difference assumption they place on the
error process, thereby allowing for serial correlation in the error process. Finally,
by using Nagaev type inequalities introduced in [53], our results are easier to
interpret and also allow us obtain a higher range for pn.

6. Simulations

In this section, we evaluate the performance of SIS, GLSS, and the two stage
selection procedure using the adaptive Lasso. For GLSS instead of using the
banded estimate for Σk we use a tapered estimate: Σ̂k ∗ Rln , where Σ̂k =

(γ̂i−j,k)1≤i,j≤n and Rln = (max(1 − |i−j|
ln

, 0))1≤i,j≤n is the triangular kernel.
We fix ln = 15, and we observed the results were fairly robust to the choice of
ln. In our simulated examples, we fix n = 200, sn = 6 and dn = n− 1, while we
vary pn from 1000 to 5000. We repeat each experiment 200 times. For screening
procedures, we report the proportion of times the true model is contained in our
selected model. For the two stage procedure using the adaptive Lasso, we report
the proportion of times there was a λn on the solution path which selected the
true model.

Case 1: Uncorrelated Features
Consider the model (1), for the covariate process we have:

xt = A1xt−1 + ηt (25)
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Table 1

Case 1

SIS GLSS
(γ, α) (.4,.6) (.5,.8) (.6,.9) (.4,.6) (.5,.8) (.6,.9)

Gaussian
pn = 1000 .95 .63 .15 .99 .99 .98
pn = 5000 .62 .11 .01 .95 .95 .97

t5
pn = 1000 .58 .26 .06 .83 .84 .83
pn = 5000 .21 .01 0 .55 .49 .50

Where A1 = diag(γ), and we vary γ from .4 to .6. We set ηt ∼ N(0,Ση), or
ηt ∼ t5(0, V ) in which case the covariance matrix is Ση = (5/3) ∗ V . For this
scenario we will be dealing with uncorrelated predictors, we set Ση = Ipn . For
the error process, we have an AR(1) process: εi = αεi−1 + ei. We let α vary
from .6 to .9, and let ei ∼ t5 or ei ∼ N(0, 1). We set β = (β1,β2), where
β1 = (.5, .5, .5, .5, .5, .5) and β2 = 0. Even though the features are uncorrelated,
this is still a challenging setting, given the low signal to noise ratio along with
heavy tails and serial dependence being present.

The results are displayed in table 1. The entries below “Gaussian” correspond
to the setting where both ei and ηi are drawn from a Gaussian distribution.
Accordingly the entries under “t5” correspond to the case where ei and ηi are
drawn from a t5 distribution. We see from the results that the performance
of SIS, and GLSS are comparable when pn = 1000, with moderate levels of
temporal dependence, along with Gaussian covariates and errors. Interestingly,
in this same setting, switching to heavy tails seems to have a much larger effect
on the performance of SIS vs GLSS. In all cases, the performance of GLSS
appears to be robust to the effects of serial correlation in the covariate and the
error processes. Whereas, for SIS the performance severely deteriorates as we
increase the level of serial correlation. For example, for our highest levels of
serial correlation, SIS nearly always fails to contain the true model.
Case 2: Correlated Features

We now compare the performance of SIS and GLSS for the case of correlated
predictors. We have two scenarios:

Scenario A: The covariate process is generated from (25), with A1 = diag(.4).
ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with Ση = {.3|i−j|}i,j≤pn for both cases. There-
fore Σ =

∑∞
i=0 .4

2iΣη. We set β1 = (1,−1, 1,−1, 1,−1) and β2 = 0. We have
an AR(1) process for the errors: εi = αεi−1 + ei, we vary α from .4 to .8, and
set ei ∼ t5 or ei ∼ N(0, 1)

Scenario B: The covariate process is generated from (25), with A1 =
{.4|i−j|+1}i,j≤pn . And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with Ση = Ipn for
both cases. Therefore Σ =

∑∞
i=0(A

T
1 )

iAi
1. We set β1 = (1,−1, 1,−1, 1,−1) and

β2 = 0. We have an AR(1) process for the errors: εi = αεi−1 + ei, and we vary
α from .4 to .8. The errors are generated in the same manner as in scenario A
above.
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Table 2

Case 2: Scenario A

SIS GLSS
α .4 .6 .8 .4 .6 .8

Gaussian
pn = 1000 .83 .73 .55 .95 .90 .90
pn = 5000 .38 .30 .07 .63 .63 .57

t5
pn = 1000 .44 .42 .21 .56 .56 .53
pn = 5000 .01 .04 0 .16 .14 .16

Table 3

Case 2: Scenario B

SIS GLSS
α .4 .6 .8 .4 .6 .8

Gaussian
pn = 1000 .90 .82 .68 .99 1.00 1.00
pn = 5000 .71 .64 .26 .95 .97 .98

t5
pn = 1000 .76 .63 .40 .92 .90 .92
pn = 5000 .37 .26 .06 .76 .74 .75

The results are displayed in tables 2, and 3 respectively. In scenario A, we
have a Toeplitz covariance matrix for the predictors, and moderate levels of serial
dependence in the predictors. The trends are similar to the ones we observed
in case 1. The performance of SIS is sensitive to the effects of increasing the
serial correlation in the errors, with the effect of serial dependence being more
pronounced as we encounter heavy tail distributions. In contrast, increasing the
level of serial dependence has a negligible impact on the performance of GLSS.
For scenario B, we observe similar trends as in scenario A.

Case 3: Two Stage Selection

We test the performance of the two stage GLSS-AdaLasso procedure. We also
compare its performance with using the adaptive Lasso on its own. We use the
Lasso as our initial estimator and select λI,n using the modified BIC introduced
in [47]. [26] extended the theory of the modified BIC to the case where p > n,
p = o(na), a > 1, and independent observations. We conjecture that the same
properties hold in a time series setting. We have two scenarios:

Scenario A: The covariate process is generated from (25), with A1 = diag(.4).
And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with (Ση)i,j = {.8|i−j|}i,j≤pn . We set
β1 = (.5, .5, .5, .5, .5, .5) and β2 = 0. We have an AR(1) process for the errors:
εi = αεi−1 + ei, we vary α from .4 to .6, and set ei ∼ t5 or ei ∼ N(0, 1)

Scenario B: The covariate process is generated from (25), with A1 =
{.4|i−j|+1}i,j≤pn . And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with (Ση)i,j = .8 for
i �= j and 1 otherwise. We set β1 = (.75, .75, .75, .75, .75, .75) and β2 = 0. The
errors are generated the same as in scenario A above.
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Table 4

Case 3: Scenario A

GLSS-AdaLasso AdaLasso
α .4 .5 .6 .4 .5 .6

Gaussian
pn = 1000 .79 .65 .49 .60 .49 .35
pn = 5000 .84 .65 .46 .66 .43 .29

t5
pn = 1000 .45 .37 .23 .32 .22 .14
pn = 5000 .36 .32 .18 .24 .18 .10

Table 5

Case 3: Scenario B

GLSS-AdaLasso AdaLasso
α .4 .5 .6 .4 .5 .6

Gaussian
pn = 1000 .86 .72 .59 .57 .49 .34
pn = 5000 .69 .59 .43 .60 .44 .25

t5
pn = 1000 .48 .41 .22 .30 .19 .10
pn = 5000 .35 .25 .19 .25 .16 .11

In both scenarios we have a high degree of correlation between the predictors,
low signal to noise ratio, along with mild to moderate levels of serial correlation
in the covariate and error processes. The results are displayed in tables 4 and 5
for scenarios A and B respectively. We observe that the two stage estimator out-
performs the standalone adaptive Lasso for both scenarios, with the difference
being more pronounced in scenario B. For both scenarios, going from mild to
moderate levels of serial correlation in the errors appears to significantly deteri-
orate the performance of the adaptive Lasso. This affects our results for the two
stage estimator primarily at the second stage of selection. This sensitivity to
serial correlation appears to increase as we encounter heavy tailed distributions.

7. Real data example: forecasting inflation rate

In this section we focus on forecasting the 12 month ahead inflation rate. We use
two major monthly price indexes as measures of inflation: the consumer price
index (CPI), and the producer price index less finished goods (PPI). Specifically
we are forecasting:

y12t+12 = 100× log

(
CPIt+12

CPIt

)
, or y12t+12 = 100× log

(
PPIt+12

PPIt

)
(26)

Therefore the above quantities are approximately the percentage change in CPI
or PPI over 12 months. Our data was obtained from the supplement to [32], and
it consists of 132 monthly macroeconomic variables from January 1960 to De-
cember 2011, for a total of 624 observations. Apart from log(CPI) and log(PPI)
which we are treating as I(1), the remaining 130 macroeconomic time series have
been transformed to achieve stationarity according to [32]. Treating log(CPI),
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and log(PPI) as I(1), has been found to provide an adequate description of the
data according to [44],[43],[39].

We consider forecasts from 8 different models. Similar to [39, 44] our bench-

mark model is an AR(4) model: ŷ12t+12 = α̂0 +
∑3

i=0 α̂iyt−i , where yt = 1200×
log(CPIt/CPIt−1) when forecasting CPI, and yt = 1200× log(PPIt/PPIt−1)
when forecasting PPI. For comparison, we also consider an AR(4) model aug-
mented with 4 factors. Specifically we have:

ŷ12t+12 = β̂0 +

3∑
i=0

α̂iyt−i + γ̂F̂t (27)

Where F̂t are four factors which are estimated by taking the first four principal
components of the 131 predictors along with three of their lags. We also consider
forecasts estimated by the Lasso and the adaptive Lasso. And lastly we include
forecasts estimated by the following two stage procedures: GLSS-Lasso, GLSS-
adaptive Lasso, SIS-Lasso, and SIS-Adaptive Lasso. Our forecasting equation
for the penalized regression and two stage forecasts is:

y12t+12 = β0 + xtβ + ε12t+12 (28)

Where xt consists of yt and three of its lags along with the other 131 predictors
and three of their lags, additionally we also include the first four estimated
factors F̂t. Therefore xt consists of 532 covariates in total. For each of the
two stage methods, we set dn = �n/ log(n)� = 73 for the first stage screening
procedure. For the second stage selection, and the standalone lasso/adaptive
lasso models, we select the tuning parameters and initial estimators using the
approach described in section 6.

We utilize a rolling window scheme, where the first simulated out of sample
forecast was for January 2000 (2000:1). To construct this forecast, we use the
observations between 1960:6 to 1999:1 (the first five observations are used in
forming lagged covariates and differencing) to estimate the factors, and the
coefficients. Therefore for the models described above, t=1960:6 to 1998:1. We
then use the regressor values at t=1999:1 to form our forecast for 2000:1. Then
the next window uses observations from 1960:7 to 1999:2 to forecast 2000:2.
Using this scheme, in total we have 144 out of sample forecasts, and for each
window we use n = 451 observations for each regression model. The set-up
described above allows us to simulate real-time forecasting.

Table 6 shows the mean squared error (MSE), and the mean absolute error
(MAE) of the resulting forecasts relative to the MSE and MAE of the baseline
AR(4) forecasts. We observe that the two stage GLSS methods clearly out-
perform the benchmark AR(4) model, and appear to have the best forecasting
performance overall for both CPI and PPI, with the difference being more sub-
stantial when comparing by MSE. Furthermore GLSS-lasso and GLSS-adaptive
Lasso do noticeably better than their SIS based counterparts with the differ-
ences being greater when forecasting PPI. We also note that the widely used
factor augmented autoregressions do worse than the benchmark model AR(4)
model.
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Table 6

Inflation Forecasts: 12 month horizon

CPI-MSE CPI-MAE PPI-MSE PPI-MAE
AR(4) 1.00 1.00 1.00 1.00
Lasso .94 .99 .69 .89

Adaptive Lasso 1.08 1.05 .80 .99
SIS-Lasso .96 .97 .76 .95

SIS-Adaptive Lasso 1.03 1.00 .82 1.00
GLSS-Lasso .84 .98 .65 .87

GLSS-Adaptive Lasso .94 1.00 .70 .92
AR(4) + 4 Factors 1.18 .99 1.08 1.09

8. Discussion

In this paper we have analyzed the sure screening properties of SIS in the pres-
ence of dependence and heavy tails in the covariate and error processes. In
addition, we have proposed a generalized least squares screening (GLSS) proce-
dure, which utilizes the serial correlation present in the data when estimating
our marginal effects. Lastly, we analyzed the theoretical properties of the two
stage screening and adaptive Lasso estimator using the Lasso as our initial esti-
mator. These results will allow practitioners to apply these techniques to many
real world applications where the assumption of light tails and independent
observations fails.

There are plenty of avenues for further research, for example extending the
theory of model-free screening methods such as distance correlation, or robust
measures of dependence such as rank correlation to the setting where we have
heavy tails and dependent observations. Other possibilities include extending
the theory in this work, or to develop new methodology for long range depen-
dent processes, or certain classes of non-stationary processes. Long range depen-
dence, is a property which is prominent in a number of fields such as physics,
telecommunications, econometrics, and finance (see [40] and references therein).
If we assume the error process (εi) is long range dependent, then by the proof of
Theorem 1 in [52] we have Δ0,q(ε) = ∞. A similar result holds for the covariate
process, therefore we may need to use a new dependence framework when deal-
ing with long range dependent processes. Lastly, developing new methodology
which aims to utilize the unique qualities of time series data such as serial de-
pendence, and the presence of lagged covariates, would be a particularly fruitful
area of future research.

9. Appendix

9.1. Proofs of results

Proof of Theorem 1. We first prove part (i), we start by obtaining a bound on:

P (|ρ̂j − ρj | > c2n
−κ) (29)
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Let T1 =
∑n

t=1 X
2
tj/n, T2 =

∑n
t=1 XtjYt/n. Then |ρ̂j − ρj | = |T2/T1 − E(T2)/

E(T1)| = |(T−1
1 − E(T1)

−1)(T2 − E(T2)) + (T2 − E(T2))/E(T1) + (T−1
1 −

E(T1)
−1)E(T2)|

Therefore:

P (|ρ̂j − ρj | > c2n
−κ) ≤ P (|(T−1

1 − E(T1)
−1)(T2 − E(T2))| > c2n

−κ/3) (30)

+ P (|(T2 − E(T2))/E(T1) > c2n
−κ/3|) (31)

+ P (|(T−1
1 − E(T1)

−1)E(T2)| > c2n
−κ/3) (32)

For the RHS of (30), we obtain:

(30) ≤ P (|(T2 − E(T2))| > Cn−κ/2) + P (|(T−1
1 − E(T1)

−1)| > Cn−κ/2) (33)

Therefore it suffices to focus on terms (31), (32). For (31), recall that
Recall that T2 =

∑n
t=1 Xtj(xtβ + εt)/n =

∑n
t=1 Xtj(

∑pn

k=1 Xtkβk + εt)/n.
Now we let:

S1 =

n∑
t=1

Xtj(

pn∑
k=1

Xtkβk)/n and S2 =

n∑
t=1

Xtjεt/n (34)

By Condition B, E(Xtjεt) = 0, therefore

P (|T2−E(T2)| > Cn−κ) ≤ P (|S1−E(S1)| > Cn−κ/2)+P (|S2| > Cn−κ) (35)

Recall that
∑pn

k=1 1|βk|>0 = sn, thus:

P

(
|S1 − E(S1)| >

c2n
−κ

2

)

≤
∑

k∈M∗

P

(
|

n∑
t=1

Xtj(Xtkβk)

n
− βkE(XtjXtk)| >

c2n
−κ

2sn

)
(36)

From section 2 in [53]: ||Xij ||r ≤ Δ0,r(Xj) ≤ Φ0,r(x). Using this we compute
the cumulative functional dependence measure of XtkXtj as:

∞∑
t=m

||XtjXtk −X∗
tjX

∗
tk||r/2 ≤

∞∑
t=m

(||Xtj ||r||Xtk −X∗
tk||r + ||Xtk||r||Xtj −X∗

tj ||r)

≤ 2Φ0,r(x)Φm,r(x) = O(m−αx) (37)

Therefore we obtain: supm(m + 1)αx
∑∞

t=m ||XtjXtk − X∗
tjX

∗
tk||r/2 ≤ 2K2

x,r.
Combining this with (36), and Theorem 2 in [53], yields:

P

(
|S1 − E(S1)| >

c2n
−κ

2

)
≤Csn

(
nωKr

x,r

(n/sn)r/2−rκ/2
+ exp

(
− n1−2κ

s2nK
4
x,r

))
(38)
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Similarly for Xtjεt, by using Holder’s inequality we obtain:

∞∑
t=m

||Xtjεt −X∗
tjε

∗
t ||τ ≤

∞∑
t=m

(||Xtj ||r||εt − ε∗t ||q + ||εt||q||Xtj −X∗
tj ||r)

≤ Δ0,q(ε)Φm,r(x) + Δm,q(ε)Φ0,r(x) = O(m−α) (39)

Therefore supm(m + 1)α
∑∞

t=m ||Xtjεt −X∗
tjε

∗
t ||τ ≤ 2Kx,rKε,q. Using Theorem

2 in [53], we obtain:

P

(
|S2| >

c2n
−κ

2

)
≤ O

(
nιKτ

x,rK
τ
ε,q

nτ−τκ
+ exp

(
− n1−2κ

K2
x,rK

2
ε,q

))
(40)

For (32), assuming E(X2
ij) = O(1) ∀j ≤ pn, and maxj≤pn E(XtjYt) < L < ∞

we obtain:

(32) ≤ P (|T1 − E(T1)| > T1Cn−κ) ≤ P (|T1 − E(T1)| > MCn−κ) + P (T1 < M)
(41)

We set M < minj≤pn E(X2
ij)− ε, for ε > 0. We then have:

P (T1 < M) ≤ P (|T1 − E(T1)| > E(T1)−M) (42)

We can then bound the above two equations similar to (38). By combining
(33)(35),(38),(40),(41), along with union bound we obtain:

P

(
max
j≤pn

|ρ̂j − ρj | > c2n
−κ

)
≤ O

(
snpn

[
nωKr

x,r

(n/sn)r/2−rκ/2
+ exp

(
− n1−2κ

s2nK
4
x,r

)])

+O

(
pn

[
nιKτ

x,rK
τ
ε,q

nτ−τκ
+ exp(−n1−2κ/K2

x,rK
2
ε,q)

])

To prove part (ii), we follow the steps in the proof of Theorem 2 in [36]. Let

An = {maxk∈M∗ |ρ̂k − ρk| ≤ c1n
−κ

2 }. On the set An, by Condition A, we have:

|ρ̂k| ≥ |ρk| − |ρ̂k − ρk| ≥ c1n
−κ/2, ∀k ∈ M∗ (43)

Hence by our choice of γn, we obtain P
(
M∗ ⊂ M̂γn

)
> P (An). By applying

part (i), the result follows.

For part (iii) we follow the steps in the proof of Theorem 3 in [36]. Using
V ar(Yt), V ar(Xtj) = O(1) for j ≤ pn, along with Condition B, we obtain∑pn

k=1 ρ
2
k = O(λmax(Σ)). Then on the set Bn = {maxk≤pn |ρ̂k−ρk| ≤ c4n

−κ}, the
number of {k : |ρ̂k| > 2c4n

−κ} cannot exceed the number of {k : |ρk| > c4n
−κ}

which is bounded by O(n2κλmax(Σ)). Therefore, by setting c4 = c3/2 we obtain:

P
(
|M̂γn | < O(n2κλmax(Σ))

)
> P (Bn) (44)

The result then follows from part (i).
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Proof of Theorem 2. We follow the steps from the proof of Theorem 1. Let T =
(T1, . . . , Tn) where Ti = XijXik, and let R = (R1, . . . , Rn) where Ri = Xijεi.
We need to bound the sums:

∑n
i=1(Ti − E(Ti))/n and

∑n
i=1 Ri/n.

By Theorem 1 in [49], Θq(T ) ≤ Δ0,q(T ), and from Section 2 in [53]: ||Xij ||q ≤
Δ0,q(Xj) ≤ Φ0,q(x). Additionally, by Holders inequality we have

Δ0,q(T ) ≤
∞∑
t=0

(||Xtj ||2q||Xtk −X∗
tk||2q + ||Xtk||2q||Xtj −X∗

tj ||2q) ≤ 2Φ2
0,2q(x)

(45)
Using these, along with Condition D we obtain:

sup
q≥4

q−2α̃xΘq(T ) ≤ sup
q≥4

q−2α̃xΔ0,q(T ) ≤ sup
q≥4

2q−2α̃xΦ2
0,2q(x) < ∞ (46)

Combining the above and using Theorem 3 in [53], we obtain:

P

(∣∣∣∣
n∑

i=1

Ti − E(Ti)

∣∣∣∣ > c2n
1−κ

2

)
≤ C exp

(
−n1/2−κ

υ2
x

)α̃

(47)

Similarly, using the same procedure we obtain:

P

(∣∣∣∣
n∑

i=1

Ri

∣∣∣∣ > c2n
1−κ

2

)
≤ C exp

(
−n1/2−κ

υxυε

)α̃′

(48)

Now using the above bounds and following the steps in the proof of Theorem 1
we obtain the results.

Proof of Lemma 1. By the proof of Theorem 2 in [52], we have:

||Σ̂k,ln − Σk||2 ≤ 2

ln∑
i=1

|γ̂i,k − γi,k|+ 2

∞∑
i=ln+1

|γi,k| (49)

Recall that ρ̂k is the OLS estimate of the marginal projection, by (14) we have

ε̂t,k = εt,k −Xtk(ρ̂k − ρk) = εt,k −Xtk(
∑n

j=1 Xjkεj,k/n∑n
j=1 X2

jk/n
). Which gives us:

γ̂i,k =
1

n

n−|i|∑
t=1

[
εt,kεt+|i|,k − εt,kXt+|i|,k

( n∑
j=1

Xjkεj,k/n

)
(50)

− εt+|i|,kXtk

( n∑
j=1

Xjkεj,k/n

)
+XtkXt+|i|,k

( n∑
j=1

Xjkεj,k/n

)2
]

(51)

By Condition E and ln = c log(n), for sufficiently large c, we have:∑∞
i=ln+1 |γi,k| = o(n−κ), so we focus on the term

∑ln
i=1 |γ̂i,k − γi,k| in (49).

We then have:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤
ln∑
i=1

P
(
|γ̂i,k − γi,k| > cn−κ/ln

)
(52)
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And

P (|γ̂i,k − γi,k| >
cn−κ

ln
) ≤ P

(∣∣∣∣ 1n
n−|i|∑
t=1

εt,kεt+|i|,k − E(
1

n

n−|i|∑
t=1

εt,kεt+|i|,k)

∣∣∣∣ (53)

+

∣∣∣∣E(
1

n

n−|i|∑
t=1

εt,kεt+|i|,k)− γi,k

∣∣∣∣ > cn−κ/4ln

)
(54)

+ P

⎛
⎝∣∣∣∣ 1n

n−|i|∑
t=1

εt,kXt+|i|,k

(∑n
j=1 Xjkεj,k/n∑n

j=1 X
2
jk/n

)∣∣∣∣ > cn−κ/4ln

⎞
⎠
(55)

+ P

⎛
⎝∣∣∣∣ 1n

n−|i|∑
t=1

εt+|i|,kXtk

(∑n
j=1 Xjkεj,k/n∑n

j=1 X
2
jk/n

)∣∣∣∣ > cn−κ/4ln

⎞
⎠
(56)

+ P

⎛
⎝∣∣∣∣ 1n

n−|i|∑
t=1

XtkXt+|i|,k

(∑n
j=1 Xjkεj,k/n∑n

j=1 X
2
jk/n

)2 ∣∣∣∣ > cn−κ/4ln

⎞
⎠

(57)

For (54), the bias |E(
∑n−|i|

t=1
εt,kεt+|i|,k

n − γi,k| ≤ iγi,k

n . Using the techniques in
the proof of Theorem 1 we can then bound (53). For (55) we have:

(55) ≤ P

(
|
∑n

j=1 Xjkεj,k/n|∑n
j=1 X

2
jk/n

> cn−κ/Mln

)
+ P

⎛
⎝∣∣∣∣ 1n

n−|i|∑
t=1

εt,kXt+|i|,k

∣∣∣∣ > M

⎞
⎠

(58)

And P
(∣∣∣ 1n ∑n−|i|

t=1 εt,kXt+|i|,k

∣∣∣ > M
)

≤ P

(∣∣∣∣ 1n
n−|i|∑
t=1

εt,kXt+|i|,k − E(
1

n

n−|i|∑
t=1

εt,kXt+|i|,k)

∣∣∣∣
> M −

∣∣∣∣E(
1

n

n−|i|∑
t=1

εt,kXt+|i|,k)

∣∣∣∣
)

(59)

And we set M > maxk≤pn maxi≤ln 2|E(εt,kXt+|i|,k)| + ε, for some ε > 0. Simi-

larly we have P (
|
∑n

j=1 Xjkεj,k/n|∑n
j=1 X2

jk/n
> cn−κ/Mln)

≤ P

⎛
⎝∣∣∣∣

n∑
j=1

Xjkεj,k/n

∣∣∣∣ > M1Cn−κ/ln

⎞
⎠+ P

⎛
⎝ n∑

j=1

X2
jk/n < M1

⎞
⎠ (60)

Where we set M1 < minj≤pn E(X2
ij)−ε, for ε > 0. The same method we used for

(53) can be applied to (56), (57). Using the techniques in the proof of Theorem
1, and (52), we obtain the result. For (ii), we follow the same procedure as in
(i), and apply the methods seen in the proof of Theorem 2.
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Proof of Theorem 3. For (i), as before we start with a bound on: P (|β̂M
k −βM

k | >
c2n

−κ). Using Condition E, we can write:

βM
k = (E(XT

k Σ
−1
k Xk)/n)

−1E(XT
k Σ

−1
k yk/n) +O(1/n)

After combining this with (14), it suffices to obtain a bound for:

P (|(XT
k Σ̂

−1
k,ln

Xk/n)
−1XT

k Σ̂
−1
k,ln

εk/n−(E(XT
k Σ

−1
k Xk))

−1E(XT
k Σ

−1
k εk)| > cn−κ)

(61)
Similar to the proof of Theorem 1 we let T1 = XT

k Σ̂
−1
k,ln

Xk/n,

T2 = XT
k Σ̂

−1
k,ln

εk/n, T3 = E(XT
k Σ

−1
k Xk), and T4 = E(XT

k Σ
−1
k εk). Then:

|β̂M
k − βM

k | = |T2/T1 − T4/T3| = |(T−1
1 − T−1

3 )(T2 − T4)

+ (T2 − T4)/T3 + (T−1
1 − T−1

3 )T4| (62)

Following the steps in the proof of Theorem 1, it suffices to focus on the terms:

P (|T1 − T3| > cn−κ) and P (|T2 − T4| > cn−κ) (63)

We then have:

P (|T2 − T4| > Cn−κ) ≤ P (|XT
k (Σ̂

−1
k,ln

− Σ−1
k )εk/n| > Cn−κ/2) (64)

+ P (|XT
k Σ

−1
k εk/n− E(XT

k Σ
−1
k εk)| > Cn−κ/2)

We first deal with the term XT
k Σ

−1
k εk/n. We can rewrite this term as X̃T

k ε̃
k/n,

where X̃k = VkXk, ε̃
k = Vkε

k/n, Vk is a lower triangle matrix and the square
root of Σ−1

k . Ignoring the first Lk observations, we can express:

X̃T
k ε̃

k/n =

n∑
t=Lk+1

(
εt,k −

Lk∑
i=1

αi,kεt−i,k

)(
Xt,k −

Lk∑
i=1

αi,kXt−i,k

)
(65)

, where (α1,k, . . . , αLk,k) are the autoregressive coefficients of the process εt,k.

We compute the cumulative functional dependence measure of X̃t,k ε̃t,k as:

∞∑
l=m

||X̃l,k ε̃l,k − X̃∗
l,k ε̃

∗
l,k||τ ′

≤
∞∑

l=m

(||X̃l,k||r||ε̃l,k − ε̃∗l,k||q′ + ||ε̃l,k||q′ ||X̃l,k − X̃∗
l,k||r) (66)

We have: ||X̃l,k − X̃∗
l,k||r ≤ ||Xl,k −X∗

l,k||r +
∑Lk

i=1 |αi|||Xk,l−i −X∗
k,l−i||r. And

by our assumptions ||ε̃l,k − ε̃∗l,k||q′ = 0, for l > 0. From which we obtain:

∞∑
l=m

||X̃l,k ε̃l,k − X̃∗
l,k ε̃

∗
l,k||τ ′ ≤ CΦm,r = O(m−αx) (67)

Using Theorem 2 in [53]:

P (|XT
k Σ

−1
k εk/n− E(XT

k Σ
−1
k εk)| > Cn−κ) ≤ O

(
nιKτ ′

x,r

nτ ′−τ ′κ

)
(68)
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For the term |XT
k (Σ̂

−1
k,ln

− Σ−1
k )εk/n|, using Cauchy-Schwarz inequality:

|XT
k (Σ̂

−1
k,ln

− Σ−1
k )εk/n|

||Xk||2||εk||2
≤

||(Σ̂−1
k,ln

− Σ−1
k )εk||2

n||εk||2
≤

||Σ̂−1
k,ln

− Σ−1
k ||2

n
(69)

Using (69) we obtain:

P (|XT
k (Σ̂

−1
k,ln

− Σ−1
k )εk/n| > Cn−κ)

≤ P (||Xk||2||εk||2||Σ̂−1
k,ln

− Σ−1
k ||2/n > Cn−κ) (70)

Where the right hand side of (70) is:

≤ P (||Σ̂−1
k,ln

− Σ−1
k ||2 > Cn−κ/

√
M) + P

(( n∑
i=1

X2
ik/n

)( n∑
i=1

ε2i,k/n

)
> M

)

(71)

LetM = M1M2, whereM1 ≥ maxk≤pn E(X2
i,k)+ε, andM2 = maxk≤pn E(ε2i,k)+

ε, for some ε > 0. The second term of (71) is:

≤ P

(
n∑

i=1

X2
ik/n > M1

)
+ P

(
n∑

i=1

ε2i,k/n > M2

)
(72)

We can bound the above using the same techniques as in the previous proofs.
By Condition E, the spectral density of the process εt,k, ∀k ≤ pn is bounded

away from zero and infinity. Therefore, 0 < C1 ≤ λmin(Σk) ≤ λmax(Σk) ≤ C2 <
∞, ∀k ≤ pn [52]. We then use:

λmin(Σk)||Σ̂−1
k,ln

− Σ−1
k ||2 ≤ ||Σ

1
2

k (Σ̂
−1
k,ln

− Σ−1
k )Σ

1
2

k ||2
= ||Σ

1
2

k Σ̂
−1
k,ln

Σ
1
2

k − In||2 (73)

Let a1 ≥ a2 ≥ . . . ≥ an be the ordered eigenvalues of Σ
− 1

2

k Σ̂k,lnΣ
− 1

2

k , therefore

||Σ
1
2

k Σ̂
−1
k,ln

Σ
1
2

k − In||2 = maxi | 1
ai

− 1| = maxi |ai−1
ai

|. We then have

max
i

|ai − 1| = ||Σ− 1
2

k Σ̂k,lnΣ
− 1

2

k − In||2 ≤ λmax(Σ
−1
k )||Σ̂k,ln − Σk||2 (74)

Let aj = argminai |a−1
i |, using this and (73),(74) we obtain:

P (||Σ̂−1
k,ln

− Σ−1
k ||2 > Cn−κ) ≤ P (||Σ̂k,ln − Σk||2 > Cajn

−κ)

≤ P (||Σ̂k,ln − Σk||2 > CM3n
−κ) + P (|aj | < M3)

(75)

Where M3 ∈ (0, 1− ε) for ε > 0. We then have

P (|aj | < M3) ≤ P (|aj − 1| > 1−M3) ≤ P (||Σ̂k,ln − Σk||2 > 1−M3)
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Combining the above with (75) and Lemma 1, we obtain:

P (||Σ̂−1
k,ln

− Σ−1
k ||2 > Cn−κ)

≤ lnO

⎛
⎝nιlτ

′
n Kτ ′

x,rK̃
τ ′

ε,q′

nτ ′−τ ′κ
+

nζ l
q′/2
n K̃q′

ε,q′

nq′/2−q′κ/2
+

nωl
r/2
n Kr

x,r

nr/2

⎞
⎠ (76)

By (64),(68),(70),(72),(76) we obtain a bound for P (|T2 − E(T2)| > Cn−κ).
For the term P (|T1 − E(T1)| > Cn−κ), we proceed in a similar fashion:

P (|T1 − E(T1)| > Cn−κ) ≤ P (|XT
k (Σ̂

−1
k,ln

− Σ−1
k )Xk/n| > Cn−κ/2)

+ P (|XT
k Σ

−1
k Xk/n− E(XT

k Σ
−1
k Xk)| > Cn−κ/2)

We can then obtain a bound on the above terms by following a similar procedure
as before. Combining these gives us the result for (i). For (ii), using the result
from (i) we follow a similar procedure to the proof of Theorem 1. For (iii) and
(iv) we follow the same procedure as (i) and (ii), and apply the methods seen
in the proof of Theorem 2; we omit the details.

Proof of Corollary 4. Recall that:

βM
k = E(yt −

Lk∑
i=1

αiyt−i)(Xt,k −
Lk∑
i=1

αiXt−i,k)/(E(Xt,k −
Lk∑
i=1

αiXt−i,k)
2)

Therefore by our assumption, we have that βM
k ∝ ρk whenever βM

k > 0. Using
this we obtain

∑pn

k=1(β
M
k )2 = O(

∑pn

k=1 ρ
2
k) = O(λmax(Σ)). We obtain the result,

by following the procedure in the proof of Theorem 1 and using the results from
Theorem 3.

Proof of Theorem 5. For simplicity we only prove part (i), the proof for part (ii)
follows similarly. We will work on the following set Dn = An ∩ Bn ∩ Cn, where

An = {maxk≤pn |ρ̂k − ρk| ≤ c3n
−κ/2}

Bn = {maxi,j≤d′
n
|[ΣM γn

2

− Σ̂M γn
2

]i,j | ≤
φ0

16sn
}

Cn = {maxk≤d′
n
|

n∑
i=1

Xikεi| ≤ λnn
ψ/2}

On the set An, if we apply screening as a first stage procedure, by our choice
of γn, we obtain:

M∗ ⊂ M̂γn ⊂ Mγn/2 (77)

Next we need to use Lemma 7 and 8 in [39], specifically we need to show our
reduced model satisfies conditions DGP 3,DESIGN, and WEIGHTS in [39]. On
the set Bn, by Lemma 1 in [39], we have φΣM̂γn/2

= φΣMγn/2
= φ0. Therefore,

we have:

φΣM̂γn
= min

S⊆{1,...,dn},|S|≤sn
min

v 	=0,|vSc |≤3|vS |

vTΣM̂γn
v

vTv
≥ φ0 (78)
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Using this along with Lemma 1 in [39] and Condition J, we have that DESIGN
3a is satisfied with φmin = φ0/16, where infvT v=1 v

TΣ11v > 2φmin > 0, and Σ11

is the covariance matrix of the relevant predictors. On the set Dn, by Conditions
K and L in our work, and Lemma 2 and proposition 1 in [39], assumption
WEIGHTS is satisfied. On the set An∩Bn, DGP 3 and DESIGN 3b are satisfied,
while DESIGN 2 is satisfied by Condition L.

Now by proposition 2, Lemmas 7 and 8 in [39] we obtain:

P (sgn(β̂M̂γn
) = sgn(β)) ≥ P (An∩Bn∩Cn) ≥ 1−P (A�

n)−P (B�
n)−P (C�

n) (79)

P (A�
n) is given in Theorem 1 part i. For P (B�

n) using the method in the proof
for Theorem 1, we obtain:

P (B�
n) ≤ d′ 2n O

(
nωKr

x,r

nr/2
+ exp

(
−n/K4

x,r

))
(80)

And for P (C�
n):

P (C�
n) ≤ d′nO

(
nιKτ

x,rK
τ
ε,q

λτ
nn

τψ/2
+ exp

(
−λ2

nn
ψ−1/K2

x,rK
2
ε,q

))
(81)

To prove part ii) we follow the same steps from part i). We obtain P (A�
n),

P (B�
n), P (C�

n) by following the method in the proof of Theorem 2, and using
Theorem 3 in [53].

9.2. Asymptotic distribution of GLS estimator

Lemma 2. Assume conditions E,F,G,H hold, then
√
n(β̂M

k −βM
k ) and

√
n(β̃M

k −
βM
k ) have the same asymptotic distribution.

Proof of Lemma 2. It is clear that sufficient conditions for the feasible GLS
estimator β̂M

k , and β̃M
k to have the same asymptotic distribution are [15]:

XT
k (Σ̂

−1
k,ln

− Σ−1
k )εk/

√
n → 0

XT
k (Σ̂

−1
k,ln

− Σ−1
k )Xk/n → 0

By the proof of theorem 3, both these conditions are satisfied, therefore β̂M
k ,

and β̃M
k have the same asymptotic distribution.

We use the above lemma, and rely on the asymptotic distribution of β̃M
k to

provide an explanation for the superior performance of GLSS, and its robustness
to increasing levels of serial correlation in εt,k. We deal with three cases, and we
assume an AR(1) process for the errors for simplicity and ease of presentation.
The results can be generalized to AR(p) processes, by using the moving average
representation of εt,k:

Case 1:

We start with the setting used in figure 1, assume xt,k is iid and εt,k = αεt−1,k+
et, with xt,k, and εt,k being independent ∀t. Using Gordin’s central limit theo-
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rem [28], we calculate the asymptotic distribution of
√
n(β̃M

k −βM
k ) → N(0, J),

where J =
σ2
e

σ2
xk

(1+α2) , σ
2
e = var(et), and σ2

xk
= var(xt,k) . Using the same meth-

ods we calculate the asymptotic distribution of the marginal OLS estimator as√
n(ρ̂k − ρk) → N(0, V ), where V =

σ2
e

σ2
xk

(1−α2) . Therefore the variance of the

OLS estimator increases without bound as α increases towards 1. Whereas the
variance of the GLS estimator actually decreases as α increases.

Case 2:

We expand this to the case when xt,k is temporally dependent, for simplic-
ity we let xt,k = φxt−1,k + ηt. We still assume xj,k and εt are independent ∀j, t,
and εt,k = αεt−1,k + et. This is the setting for the first model in the simula-
tions section. Using Gordin’s central limit theorem, and elementary calculations:√
n(β̃M

k − βM
k ) → N(0, J), where J =

(1−φ2)σ2
e

(1+α2−2φα)σ2
η
. And for the marginal OLS

estimator
√
n(ρ̂k − ρk) → N(0, V ), where V =

(1+φ2)σ2
e

(1−α2)σ2
η
. We clearly see that

for fixed φ, the GLS estimate is robust to increasing α, whereas the variance
of the OLS estimator increases without bound as α increases towards 1. This
sensitivity to α provides an explanation for the results seen in case 1 of the
simulations, which show the performance of SIS severely deteriorates for high
levels of serial correlation in εt,k

Case 3:

In both the previous cases, it is easy to see the GLS estimator is asymptotically
efficient to the OLS estimator. For the case where Xk = (xt,k, t = 1, . . . , n)
and εk = (εt,k, t = 1, . . . , n) are dependent on each other, it is more com-
plicated. In this setting, it is likely the case that ρk �= βM

k . Assume εt,k =
αεt−1,k + et, and let xt,k − αxt−1,k = x̃t,k, and W1 =

∑∞
i=−∞ γ(i), where

γ(i) = cov(x̃t,ket, x̃t−i,ket−i). We start by examining the asymptotic distribu-

tion of
√
n(β̃M

k − βM
k ) → N(0, J), where J = W1/(var(x̃t,k))

2. By the proof of
theorem 1 in [52], W1 ≤ (

∑∞
t=0 δ2(x̃t,ket))

2, which gives us:

J ≤ (
∑∞

t=0 δ2(x̃t,kεt))
2

var(x̃t,k)2
≤

(
2||et||4Δ0,4(X̃k)

var(x̃t,k)

)2

Where the last inequality follows from: δ2(x̃t,ket) = ||e0||4||x̃t,k − x̃∗
t,k||4 +

||x̃0,k||4||et − et∗||4. Since et is iid ||et − et∗||4 = 0, ∀t > 0. If we assume,
xt,k = φxt−1,k + ηt, by writing x̃t,k = ηt + (φ− α)xt−1,k, we have:

J ≤
(
2||et||4||ηt||4|φ− α|
(1− |φ|)var(x̃t,k)

+
2||et||4||ηt||4
var(x̃t,k)

)2

From these results we see that the asymptotic variance of the GLS estimator is
bounded when α increases towards 1, and is largely robust to increasing levels of
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serial correlation in εt,k. This result seems to provide an explanation for GLSS
being robust to increasing levels of serial correlation in our simulations.

For the OLS estimator we obtain, (ρ̂k − ρk) → N(0, V ), where V = W2/
(var(xt,k))

2 and W2 =
∑∞

i=−∞ cov(xt,kεt, xt−iεt−i). As before, we can bound:

V ≤ (
∑∞

t=0 δ2(xt,ket))
2

var(xt,k))2
≤

(
||εt,k||4Δ0,4(Xk)

var(xt,k)
+

2||Xk,t||4||et||4
(1− |α|)var(xt,k)

)2

We see the above bound is very sensitive to increasing serial correlation in εt,k.
Although this is an upper bound to the asymptotic variance, it seems to explain
the deterioration in performance of SIS when increasing the serial correlation of
εt,k in our simulations.
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