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High-Dimensional Confounding Adjustment
Using Continuous Spike and Slab Priors

Joseph Antonelli∗, Giovanni Parmigiani†, and Francesca Dominici‡

Abstract. In observational studies, estimation of a causal effect of a treatment on
an outcome relies on proper adjustment for confounding. If the number of the po-
tential confounders (p) is larger than the number of observations (n), then direct
control for all potential confounders is infeasible. Existing approaches for dimen-
sion reduction and penalization are generally aimed at predicting the outcome,
and are less suited for estimation of causal effects. Under standard penalization ap-
proaches (e.g. Lasso), if a variable Xj is strongly associated with the treatment T
but weakly with the outcome Y , the coefficient βj will be shrunk towards zero
thus leading to confounding bias. Under the assumption of a linear model for the
outcome and sparsity, we propose continuous spike and slab priors on the regres-
sion coefficients βj corresponding to the potential confounders Xj . Specifically,
we introduce a prior distribution that does not heavily shrink to zero the coeffi-
cients (βjs) of the Xjs that are strongly associated with T but weakly associated
with Y . We compare our proposed approach to several state of the art methods
proposed in the literature. Our proposed approach has the following features: 1) it
reduces confounding bias in high dimensional settings; 2) it shrinks towards zero
coefficients of instrumental variables; and 3) it achieves good coverages even in
small sample sizes. We apply our approach to the National Health and Nutrition
Examination Survey (NHANES) data to estimate the causal effects of persistent
pesticide exposure on triglyceride levels.

Keywords: high-dimensional data, causal inference, bayesian variable selection,
shrinkage priors.

1 Introduction

In observational studies, we are often interested in estimating the causal effect of a
treatment T on an outcome Y , which requires proper adjustment of a set of potential
confounders X. In the context of high-dimensional data, where the number of potential
measured confounders p could be even larger than the sample size n, standard methods
for confounding adjustment such as regression or propensity scores (Rosenbaum and
Rubin, 1983) will fail.

In the context of prediction, a variety of methods exist for imposing sparsity in
regression models with a high-dimensional set of covariates. Arguably the most popular,
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the lasso (Tibshirani, 1996) places a penalty on the absolute value of the coefficients
from a regression model, thus shrinking many of them to be exactly zero, leading to
a more parsimonious model. A variety of extensions to the lasso have been proposed
such as the SCAD, elastic net, and adaptive lasso penalties, to name a few (Fan and
Li, 2001; Zou and Hastie, 2005; Zou, 2006). One challenge encountered with all of these
approaches is the difficulty to provide a meaningful assessment of uncertainty around
estimates of the regression coefficients. While progress has been made recently on this
topic (Lockhart et al., 2014; Taylor and Tibshirani, 2016), it remains difficult to obtain
valid confidence intervals for parameters under complex, high-dimensional models.

Bayesian models can alleviate these issues by providing valid inference from posterior
samples. Much of the recent work has centered around shrinkage priors, which can be
represented as scale mixtures of Gaussian distributions and allow for straightforward
posterior sampling. Park and Casella (2008) introduced the Bayesian lasso: a scale
mixture of Gaussians with an exponential mixing distribution that induces wider tails
than a standard normal prior. More recently, global-local shrinkage priors have been
advocated that have a global shrinking parameter that applies to all parameters, as well
as local shrinking parameters which are unique to the individual coefficients. Carvalho
et al. (2010) introduced the horseshoe prior, which is a scaled mixture of Gaussians
with a half-Cauchy mixing distribution that has been shown empirically to have good
performance in high-dimensional settings. Bhattacharya et al. (2015) introduced a new
class of distributions that are also scaled mixtures of Gaussians with an additional
Dirichlet mixing component and proved that it’s posterior concentrates at the optimal
rate. Ročková and George (2016) differ somewhat in that they adopt the spike and slab
formulation of George and McCulloch (1993), however both the spike and slab priors
are Laplace distributions. All of these approaches are aimed at obtaining ideal amounts
of shrinkage in high-dimensional settings where large coefficients should be shrunken a
small amount, while others are shrunken heavily towards zero.

These and many other approaches have been based on the same principles of aiming
to reduce shrinkage for important covariates in the context of prediction of Y . Several
authors have pointed out that frequentist and Bayesian procedures for variable selection
or shrinkage that focus on predicting Y perform poorly when the inferential goal is esti-
mation of the effect of T on Y (Crainiceanu et al., 2008; Wang et al., 2012; Belloni et al.,
2014, 2017; Hahn et al., 2017). A variety of data driven methods have been developed
to select confounders in causal inference (van der Laan and Gruber, 2010; De Luna
et al., 2011; Vansteelandt et al., 2012; Wang et al., 2012; Zigler and Dominici, 2014).
Many of these approaches rely on the specification of a treatment model E(T |X), and
an outcome model E(Y |T,X). Wang et al. (2012) introduced a Bayesian model aver-
aging approach for estimating the effect of T on Y averaged across models that include
different sets of potential confounders. They assume a priori that if a covariate Xj is
associated with the treatment T then this covariate should have high probability to
be included into the outcome model, even if this covariate is weakly associated with
the outcome. Many ideas have been built on this prior specification to address the is-
sue of confounder selection and model uncertainty (Talbot et al., 2015; Wang et al.,
2015; Cefalu et al., 2016; Antonelli et al., 2017). All of the aforementioned approaches
have been shown to work well in identifying confounders or adjusting for confounding;
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however, none of these approaches are well-suited to a high-dimensional vector of con-
founders. Recently, there has been increased attention to estimating treatment effects
when p ≥ n. Wilson and Reich (2014) introduced a decision theoretic approach to con-
founder selection for p ≥ n. They showed that their approach has connections to the
adaptive lasso, but with weights aimed at reducing shrinkage of confounders, rather than
predictors. Belloni et al. (2014) applied standard lasso models on both the treatment
model E(T |X), and the outcome model E(Y |T,X), separately. Then, they identify as
confounders the union of the variables that were not shrunk to zero in the two models,
and estimate the causal effect using this reduced set of covariates. Farrell (2015) first
applies lasso models to treatment and outcome models to select confounders. Second,
they calculate a double robust estimator using the resulting unpenalized treatment and
outcome models. Antonelli et al. (2018) implemented a similar doubly robust estimation
approach using standard lasso outcome and treatment models but in context of match-
ing on both the propensity and prognostic scores. Ertefaie et al. (2015) proposed an
alternative approach for selecting confounders in high-dimensional settings by penaliz-
ing a joint likelihood for both the treatment and the outcome model to ultimately lead
to the selection of important confounders. Shortreed and Ertefaie (2017) used similar
ideas by fitting an adaptive lasso to a propensity score model, and show that it leads to
the inclusion of only covariates necessary for confounding adjustment or outcome model
prediction. Hahn et al. (2016) utilized horseshoe priors on a re-parameterized likelihood
that aims to reduce shrinkage for important confounders. Athey et al. (2016) combined
high-dimensional regression with the balancing weights of Zubizarreta (2015) to obtain
valid inference of treatment effects even when the true data generating models are not
sparse. All of these approaches have the advantage of being able to handle settings with
p ≥ n, however, as we will demonstrate in simulations, existing approaches relying on
asymptotic theory can provide coverage below the nominal level in finite samples. Also,
many of these approaches will tend to include instrumental variables, are not applicable
to studying the effects of continuous treatments (see Section 5), or both.

In Section 2 we propose spike and slab priors for confounding adjustment in the
context of homogeneous and heterogeneous treatment effects. In Section 3, we detail the
Bayesian computations, including the selection of tuning parameters to achieve a good
compromise between sparsity and addressing confounding bias. In Section 4, we present
results from several simulation studies that include homogeneous and heterogeneous
treatment effects, strong and weak confounders, instrumental variables, and sparse and
non sparse settings. In Section 5, we present the data analysis which considers continuous
treatments. In Section 6 we conclude with a summary of the strengths and weaknesses
of the proposed approach and future research directions.

2 Spike and slab priors for confounding adjustment

Throughout, we will assume that we observe Di = (Yi, Ti,Xi) for i, . . . , n, where n is
the sample size of the observed data, Yi is the outcome, Ti is the treatment, and Xi

is a p-dimensional vector of pre-treatment covariates for subject i. We will assume for
simplicity that Yi is continuous, though we will not make assumptions regarding Ti,
as it can be binary, continuous, or categorical. The extension to binary outcomes is
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straightforward using latent variable techniques introduced in Albert and Chib (1993).
In general we will be working under the high-dimensional scenario of p ≥ n, where we
let p → ∞. Our estimand of interest is the average treatment effect (ATE), defined
as Δ(t1, t2) = E(Y (t1) − Y (t2)), where Yi(t) is the potential outcome subject i would
receive under treatment t. We will assume that the probability of receiving any value of
treatment is greater than 0 for any combination of the covariates, commonly referred to
as positivity. We make the stable unit treatment value assumption (SUTVA) (Little and
Rubin, 2000), which states that the treatment received by one observation or unit does
not affect the outcomes of other units and the potential outcomes are well-defined. We
will further assume strong ignorability conditional on the observed covariates, and that
the covariates necessary for ignorability are an unknown subset ofX. Strong ignorability
implies that potential outcomes are independent of T conditional on X.

2.1 Model formulation

In this section we assume a homogeneous treatment effect, i.e. that the treatment effect
is the same across all values of the covariatesX. We will relax this assumption in Section
2.5. We introduce the following hierarchical formulation:

Yi | Ti,Xi, β0, βt,β, σ
2 ∼ Normal(β0 + βtTi +Xiβ, σ

2), (1)

P (β|γ) =
p∏

j=1

γjψ1(βj) + (1− γj)ψ0(βj),

P (γ|θ) =
p∏

j=1

θwjγj (1− θwj )1−γj ,

P (θ|a, b) ∼ Beta(a, b),

P (σ2|c, d) ∼ InvGamma(c, d),

P (β0), P (βt) ∼ Normal(0,K).

Under these assumptions, Δ(t1, t2) = (t1 − t2)βt. It is straightforward to allow the
treatment effect to be nonlinear by replacing βtTi with f(Ti), which can be approximated
using basis functions. If γj = 1 then βj ∼ ψ1(βj) – the slab component of the prior. If
γj = 0 then βj ∼ ψ0(βj) – the spike component of the prior. Therefore γj = 1 indicates
that Xj is potentially an important confounder. We set ψ1(·) and ψ0(·) to be Laplace

distributions with densities ψ1(βj) =
λ1

2σ e
−λ1|βj |

σ and ψ0(βj) =
λ0

2σ e
−λ0|βj |

σ , respectively.

More specifically, when γj = 1, the prior standard deviation of βj is σ
√
2/λ1 and when

γj = 0 the prior standard deviation is σ
√
2/λ0. Scaling the prior variance with σ2 is

common in Bayesian hierarchical models (Park and Casella, 2008) and allows for more
stable estimation and better interpretation of λ1 and λ0. Finally, we have θ and wj ,
which control the prior probability that γj = 1. The global parameter θ dictates the
probability that γj = 1 when wj = 1 and can be thought of as the overall sparsity
level in the data. The weights wj are tuning parameters that we will use to prioritize
variables to have γj = 1 if they are also associated with the treatment. We will discuss
the selection of wj in more detail in Sections 2.3–2.4.
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2.2 Hyper prior selection

Our prior formulation has a number of hyper parameters, and it is important for these to

be set to reasonable values to obtain good inference for the treatment effect of interest.

The first hyper parameters are λ0 and λ1, which control the variance of the spike and

slab priors. Following Ročková and George (2016), we will fix λ1 to a small value, say

0.1, so that the prior variance for coefficients in the slab component of the prior is high

enough to be reasonably uninformative, and important parameters will not be shrunk

heavily towards 0. We assess the sensitivity to this choice in the supplementary materials

(Antonelli et al., 2018) and find that results are robust to the choice of λ1. Results can

be quite sensitive to the choice of λ0, therefore we will estimate it using empirical Bayes

to let the data determine how much to shrink coefficients that are placed in the spike

component of the prior.

The parameters a and b dictate the prior for θ meaning they control the amount

of sparsity induced a priori. We will adopt standard practice in the high-dimensional

Bayesian literature and set a to a constant, and set b ∝ p (Zhou et al., 2015; Ročková and

George, 2016). This prior more aggressively shrinks coefficients to the spike component

of the prior as p grows. This feature is desirable in high-dimensional models where we

must more aggressively shrink parameters as the covariate space grows to avoid the

curse of dimensionality (Scott et al., 2010). Throughout the paper we will use a = 1

and b = 0.1p, though we assessed the sensitivity to these choices in the supplementary

materials and found the results are robust to the selection of a and b. We will assume

conjugate and uninformative priors for σ2, β0 and βt. Finally, we must choose the

tuning parameter, wj , which we will use to prioritize potential confounders in the prior

formulation. We will discuss the selection of wj in Section 2.4.

2.3 Probability of inclusion into the slab

To better understand how to select wj , it helps to understand the probability that a

parameter for a given covariate is included in the slab component of the prior. There are

two crucial quantities that we can study to gain intuition into whether an important

covariate is effectively included in the model. The first is the conditional probability

that a parameter is included in the slab component of the prior, which can be defined

as follows:

p∗θ(βj) = P (γj = 1|βj , θ) =
θwjψ1(βj)

θwjψ1(βj) + (1− θwj )ψ0(βj)
.

This is also the expression from which we update γj in a Gibbs sampler, and therefore

gives insight into the probability that a parameter is included in the slab component

of the prior. The second quantity involves the posterior mode of our model. As seen in

Ročková and George (2016) the posterior mode will be sparse in the sense that many

of the parameters will be set exactly to zero. An important quantity in the estimation
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of the posterior mode is defined as

Δj ≡ inf
t>0

⎧⎨
⎩nt/2 +

λ1t− log
(

p∗
θ(0)

p∗
θ(t)

)
t

⎫⎬
⎭ .

This expression is important because the posterior mode estimate of β̂j is nonzero if

Xj
′(Y −

∑
l �=j Xlβ̂l −T β̂t − β̂0) > Δj . Now that we have defined these two quantities,

we can look at them with respect to wj to gain some intuition as to how wj impacts the
variable selection and subsequent shrinkage of important parameters. Figure 1 shows
these two quantities as a function of wj when λ1 = 0.1, λ0 = 30, and θ = 0.05. The
left panel shows that covariates strongly associated with the outcome (βj = 0.4) always
enter the slab regardless of wj , while variables with no association (βj = 0) never enter
the slab unless wj is very close to 0. Covariates with a mild association with the outcome
(βj = 0.2) change drastically depending on wj , as small values of wj lead to inclusion
probabilities near 1 and large values of wj lead to posterior inclusion probabilities near
0. The right panel of Figure 1 shows that the threshold for a parameter having a nonzero
posterior mode greatly decreases when wj is small. Not seen in the figure is that values
of wj greater than 0.1 are essentially the same as wj = 1 in terms of the probability of
being nonzero in the posterior mode.

Figure 1: The left panel shows p∗θ(βj) for a variety of values of βj as a function of wj .
The right panel shows Δj/n as a function of wj . Here we fixed λ1 = 0.1, λ0 = 30, and
θ = 0.05.

2.4 Selection of wj

In the previous section we saw how the weight wj can impact variable selection as it is
decreased towards 0. Our goal is improved estimation of βt, the treatment effect, and
therefore we want to prioritize variables that are also associated with the treatment,



J. Antonelli, G. Parmigiani, and F. Dominici 811

Ti. If a variable Xj is associated with T , then omitting Xj in the outcome model could
lead to confounding bias. Consequently, it is desirable to increase the prior probability
that βj is in the slab component of the prior. With this guiding principle in mind, we
do the following: 1) we use lasso to fit the exposure model E(T |X) (Tibshirani, 1996);
2) for each Xj that has a non zero regression coefficient from the lasso estimation of
the exposure model, we set wj = δ where 0 < δ < 1. Please note that if δ < 1, then
θδ > θ which leads to a higher prior probability for βj to be included into the slab
component of the prior. Smaller values of δ lead to more protection against omitting
an important confounder. However, values of δ too small might lead to inclusion of
instrumental variables which decrease efficiency and can amplify bias in the presence of
unmeasured confounding (Pearl, 2011).

Now we provide guidance on how to select a reasonable value of δ. Figure 1 can be
used to guide our choice of δ. We assume wj = δ ∀j, and we want to set δ to be as small
as possible to protect us against shrinking the coefficients for important confounders,
but we also want to ensure that coefficients for instrumental variables or noise variables
are heavily shrunk towards 0. We can see in Figure 1 that we can set δ to be as small as
possible to increase p∗θ(βj) for variables with moderate associations with the outcome,
while still keeping p∗θ(0) low. One possibility is to select the minimum value of δ such
that p∗θ(0) is less than some threshold, such as 0.1. This would imply that the probability
of including a parameter for an instrument or noise variable into the slab component of
the prior would be 0.1. Intuitively, this threshold represents the point at which we can
get the most protection against residual confounding bias while alleviating the impact
of instrumental variables.

Additionally, we have found that when the treatment assignment is not sparse,
assigning weights of δ to all covariates identified by a treatment model can lead to
poor performance in the subsequent outcome model. One approach to these types of
issues is to cap the number of variables that are prioritized by the treatment model to
k covariates. We will explore a scenario where this is the case in the simulation study of
Section 4 and assess the extent that this problem is corrected when we limit the number
of variables prioritized.

2.5 Heterogeneous treatment effects

In this section we describe our approach under the more general case of treatment effect
heterogeneity and in the context where the treatment variable is binary or categorical.
Addressing treatment effect heterogeneity in the presence of continuous treatments is a
more difficult problem, which is beyond the scope of this paper. In the case of a binary
treatment, we now specify the same model as in Section 2 but separately for t = 1 and
t = 0:

Yi | Ti = t,Xi, β
(t)
0 ,β(t), σ2(t) ∼ Normal(β

(t)
0 +Xiβ

(t), σ2(t)).

It is important to note that for each treatment level t, we fit a separate model only
using subjects i with Ti = t. To estimate the treatment effect in this setting, we can
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exploit the fact that the average treatment effect can be estimated as

Δ(t1, t2) =

∫
X

E(Y |T = t1,X)− E(Y |T = t2,X)dFn(X),

where Fn(X) is the empirical distribution of the covariates. If we let s denote the sth

posterior draw obtained in our Markov chain Monte Carlo (MCMC) algorithm then the
posterior mean of the treatment effect can be defined as

E(Δ(t1, t2)|D) =
1

Sn

S∑
s=1

n∑
i=1

β
(t1)
0(s) − β

(t2)
0(s) +Xi(β

(t1)
(s) − β

(t2)
(s) ).

This provides us with a valid estimate of the treatment effect, however, it does
not provide us with a valid credible interval. This estimate is marginalizing over the
covariates, and our posterior distribution does not take into account this additional
uncertainty, so we will utilize the Bayesian bootstrap (Rubin et al., 1981) to account
for it. Specifically, we can define u0 = 0, un = 1, and u1 through un−1 to be the order
statistics from n − 1 draws from a uniform distribution. Then we can define weights,
ξi = ui−ui−1. We will do thisM separate times leading to weights ξmi form = 1, . . . ,M
and i = 1, . . . , n. Finally, for each of the S posterior samples and M weight vectors we
can calculate

Δ(s,m)(t1, t2) =
1

n

n∑
i=1

ξmi

(
β
(t1)
0(s) − β

(t2)
0(s) +Xi(β

(t1)
(s) − β

(t2)
(s) )

)
(2)

and we can use the quantiles of these values to create credible intervals. In brief, we
have built separate regression models for each of the treatment levels and then taken
the difference in the mean predicted values from these models for each observation in
the data. To account for the additional uncertainty from marginalizing over covariates,
we randomly re-weighted the data using the Bayesian bootstrap. If we were interested
in estimating treatment effects within particular subgroups such as the treatment ef-
fect on the treated, then the sum in equation (2) would be over only those subjects
of interest. Note that while we have separated the estimation of the models for each
treatment group, it is possible to posit a hierarchical model to borrow information be-
tween treatment groups. This could exploit the fact that we expect the parameters to
be similar across treatment groups, and would amount to shrinking the heterogeneous
model closer to the homogeneous model. This sort of shrinkage has been shown to work
well in related contexts (Hahn et al., 2017), and merits future research.

3 Bayesian computation

Posterior distributions of all the unknown parameters can be easily obtained via stan-
dard Gibbs-sampling as each parameter is conditionally conjugate, with the exception
of θ, which is easy to sample from since it is univariate. A key component driving the
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ease of sampling is that the Laplace distribution has the following representation as a
scale mixture of Gaussians with an exponential mixing weight

λ

2
e−λ|β| =

∫ ∞

0

1√
2πτ2

e−β2/2τ2 λ2

2
e−λ2τ2/2.

This makes the prior distribution of β multivariate normal with a covariance matrix
equal to diag(τ21 , . . . , τ

2
p ). Full details of this mixture as well as posterior implementa-

tion can be found in the supplementary materials. The most important parameter of
the procedure is λ0, which dictates how strongly parameters are shrunk towards zero
when they are included in the spike part of the model, i.e. γj = 0. Bayesian inference
allows for viable alternatives over cross validation, which is commonly used in the pe-
nalized likelihood literature. We will examine estimation of λ0 using an empirical Bayes
procedure, though it is possible to utilize a fully Bayesian specification that places a
prior on λ0 as discussed in Park and Casella (2008).

3.1 Selection of λ0

In many complex settings, such as the current one, empirical Bayes estimators of tuning
parameters can not be done analytically. To alleviate this issue Casella (2001) proposed
a Monte Carlo based approach to finding empirical Bayes estimates of hyperparameter
values. The general idea is very similar to the expectation-maximization (EM) algorithm
for estimating missing or unknown parameters, however, expectations in the E-step are

calculated using draws from a Gibbs Sampler. In our example, we set λ
(0)
0 = λ∗

0, a
starting value of the algorithm. Then for iteration k, set

λ
(k)
0 =

√√√√√ 2
(
p− E

λ
(k−1)
0

(∑
j γj

))
∑

j Eλ
(k−1)
0

(
τ2j 1(γj = 0)

) ,
where the expectations are approximated with averages from the previous iteration’s
Gibbs Sampler. Due to Monte Carlo error, this algorithm will not exactly converge,
but rather will bounce around the maximum likelihood estimate. The more posterior
samples used during each iteration, the less this will occur. Once this has run long
enough and the maximum likelihood estimate of λ0 is found, inference can proceed by
running the same Gibbs sampler with the selected λ0. A derivation of this quantity can
be found in the supplementary materials.

3.2 Posterior mode estimation

The most natural implementation of the above formulation is within the Bayesian
paradigm, where we can obtain samples of γ directly. This is advantageous as we can
examine p(γ|D), which provides an assessment of model uncertainty and can be used to
identify the best-fitting models. In some situations, however, MCMC can become bur-
densome if p is very large. An alternative approach is to formulate model estimation as



814 High-Dimensional Confounding Adjustment

a penalized likelihood problem, in which we estimate the posterior mode of the model.
While in this paradigm we lose some of the aforementioned features of Bayesian infer-
ence, estimation can be done in a fraction of the time. Furthermore, the posterior mode
of our model will be sparse, i.e. many of the regression coefficients will be estimated to
be exactly zero allowing us to quickly perform confounder selection in high-dimensions.
The details on the penalized likelihood implementation are in the supplementary mate-
rials, where we also show that the posterior mode of Δ from model (1) is consistent at

a rate equal to O(
√

logp
n ).

4 Simulation study

In this section we compared our proposed approach with several state of the art al-
ternatives for confounding adjustment in the context of p ≥ n. We consider three data
generating mechanisms: 1) homogeneous treatment effect and sparsity; 2) heterogeneous
treatment effect and sparsity; and 3) homogeneous treatment effect and non sparsity.
Our goal is always to estimate the average treatment effect. Before we detail the data
generating mechanisms to be examined, we describe the approaches being compared.

1. Proposed approach using MCMC, where we estimate λ0 using the empirical Bayes
approach described in Section 3.1 and choose δ as described in Section 2.4 (we
will refer to this as EM-SSL)

2. EM-SSL for heterogeneous treatment effect

3. Outcome lasso that includes treatment and covariates, but only places an l1
penalty on the covariates

4. Re-fit an unpenalized regression model using the covariates identified by the out-
come lasso approach above (Post selection lasso)

5. Double post selection approach of Belloni et al. (2014)

6. Doubly robust lasso approach of Farrell (2015)

7. Approximate residual de-biasing approach of Athey et al. (2016)

The purpose of this simulation study is to assess the performance of our proposed
approach compared to competitors when the true outcome model is linear. In the context
of non linear relationships between the covariates and T or Y none of the methods
compared here would perform well.

For some of these estimators, an extension to heterogeneous treatment effects exist,
while others implicitly account for treatment effect heterogeneity. With the exception
of our estimator, we will always use the version of the estimator that matches the data
generating mechanism, e.g. the homogeneous version of the estimators will be used for
the homogeneous simulation studies. In all simulations the covariates are drawn from
a multivariate normal distribution with marginal variances set to 1 and correlation of
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0.6 between all covariates. For each scenario, we compare average percent bias, mean
squared error (MSE), 95% interval coverage, and the ratio of the average estimated
standard errors and the true standard errors. For our approach, the interval coverage is
calculated as the percentage of the time our posterior credible interval covers the true
parameter, while all other approaches use frequentist confidence intervals. Finally, we
present additional simulation results for differing sample sizes and differing confounding
strengths in the supplementary materials, though we found the results to be very similar
to those seen here.

4.1 Homogeneous treatment effects

We now examine our approach in a high-dimensional setting where p = 500 and n =
200, in which there exist strong confounders, weak confounders, and instruments. We
simulate the treatment and outcome from the following models:

Yi = Ti +Xiβ + εi,

logit(p(Ti = 1)) = Xiψ,

where εi ∼ N (0, 1). The first 8 elements of β are (1,−1, 0.3,−0.3, 0, 0, 1,−1), while the
remaining elements are drawn from a normal distribution with a standard deviation
of 0.1. The first 6 elements of ψ are (1,−1, 1,−1, 1,−1) and the remaining values are
set to zero. This leads to a treatment prevalence of 50%. In this setting, covariates
1 and 2 are strong confounders, covariates 3 and 4 are so called “weak” confounders
that are weakly associated with the outcome and strongly associated with treatment,
covariates 5 and 6 are instruments, and covariates 7 and 8 are strong predictors of the
outcome. The remaining covariates have no association with the treatment and a small
to moderate association with the outcome. This situation is not strictly sparse due to
the small signals in β, however, it is approximately sparse in the sense that only a
small number of covariates are needed to obtain unbiased estimates of the treatment
effect.

type % Bias MSE 95% interval coverage E(ŜE(β̂t))/SD(β̂t)
Outcome lasso 49.1 0.34
Post selection lasso 27.8 0.18
Double post selection 16.8 0.15 0.81 0.78
Approximate residual de-biasing 43.2 0.28 0.73 1.03
Doubly robust lasso 18.7 0.26 0.72 0.64
EM-SSL 12.9 0.10 0.93 1.01
EM-SSL Heterogeneous 22.5 0.15 0.88 1.04

Table 1: Results for estimating the average treatment effect under the simulation sce-
nario of Section 4.1.

Table 1 shows the results of the proposed simulation across 1000 simulated datasets,
and we see that the proposed approach performs the best with respect to all metrics.
EM-SSL achieves the minimum bias of 12.9% and the minimum MSE of 0.10. The het-
erogeneous version of the EM-SSL procedure performs slightly worse in terms of bias
and efficiency, which is to be expected given that it splits the sample into the treated
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and controls and estimates models separately in the two groups. The next best per-
forming estimator in terms of bias and MSE was the double post selection procedure
that had a bias of 16.8% and an MSE of 0.15. The doubly robust lasso had a small
bias of 18.7%, though it was quite variable due to the instability of weights in high-
dimensions. In terms of interval estimation we do the best in terms of 95% interval
coverages (93%) whereas all the other estimators have coverages well below the nominal
level (81%, 73%, and 72%). Looking at the ratio of the average estimated to true stan-
dard errors, our approach does well (1.01), while most procedures were substantially
smaller than 1. The approximate residual de-biasing procedure does well at estimating
the standard errors, but is too biased to achieve good interval coverages. Our EM-SSL
Heterogeneous procedure also does well at estimating the standard errors, but has an
interval coverage of 88% due to the larger amount of bias relative to the homogeneous
version.

Figure 2 shows the posterior inclusion probabilities for the homogeneous EM-SSL
model for each of the different types of covariates in the model. We see that the variables
strongly associated with both the treatment and outcome (X1 and X2) have the highest
value of P (γj = 1|D). Variables X3 and X4 have weak associations with the outcome,
but strong relationships with the treatment and they enter into the slab the next highest
percentage of the time. Due to our weights, strong instrumental variables (X5 and X6)
are in the slab approximately 20% of the time. Strong predictors of the outcome enter
the slab slightly more often than instruments, while the remaining variables almost
never enter the slab. These posterior inclusion probabilities highlight why there exists
bias in our estimates of the treatment effect. The important confounders are included in
the spike component of the prior during some MCMC scans leading to more shrinkage
of important components of β and biased estimates of the ATE. It is important to note
that even when a coefficient is included in the spike, it is not eliminated from the model
completely, but rather is more aggressively shrunk to zero. This small amount of bias
seems to come with improved efficiency, however, as our estimator has the smallest MSE
overall.

Figure 2: Posterior inclusion probabilities from the homogeneous model for simulations
in Sections 4.1 and 4.2.
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4.2 Heterogeneous treatment effects

We now simulate data with n = 400 and p = 800 and a heterogeneous treatment effect.

The data generating models are of the following form:

Yi = Ti + 0.6(Ti ×X1i) + 0.4(Ti ×X3i) +X1i −X2i+

0.3X3i − 0.3X4i +X7i −X8i + εi,

logit(p(Ti = 1)) = −1.5 +X1i −X2i +X3i −X4i +X5i −X6i,

where εi ∼ N (0, 1). This simulation is similar to the previous section with three changes:

1) covariates 9 through 500 have no association with either treatment or outcome;

2) there is an interaction between the treatment and covariates 1 and 3; and 3) the

prevalence of the treatment has been dropped from approximately 50% to 25%. We

have increased the sample size from 200 to 400 since we lowered the prevalence of the

treatment, and all methods explored need a sufficient sample size in both the treated and

control groups to estimate heterogeneous treatment effects. Table 2 shows the results

averaged across 1000 simulations. Results are similar to the homogeneous treatment

effects setting. The double post selection approach again fares relatively well across all

metrics, however, is outperformed by the EM-SSL approach. The approximate residual

de-biasing approach has fairly substantial amounts of bias in this setting, which also

leads to poor interval coverages. The doubly robust lasso again has a higher MSE due to

the instability of inverse propensity weights in high-dimensional settings. Our EM-SSL

procedure does not achieve the nominal interval coverage in this setting, though this

is due to the bias incurred by assuming a homogeneous treatment effect. Our EM-SSL

heterogeneous procedure achieves interval coverages of 95% and an average estimated

standard error that is close to the truth (0.99). Figure 2 shows the posterior inclusion

probabilities for the homogeneous EM-SSL model, and we see that all the important

confounders and predictors are included nearly 100% of the time into the slab component

of the prior. This shows that the increased sample size in this simulation, compared

with the previous simulation, leads to the improved variable selection. Further, it shows

that the bias we see in the EM-SSL estimator is not caused by shrinkage of important

parameters, but rather because it assumes homogeneity when the treatment effect is

truly heterogeneous.

type % Bias MSE 95% interval coverage E(ŜE(β̂t))/SD(β̂t)
Outcome LASSO 52.0 0.30
Post LASSO 25.2 0.09
Double post selection 9.0 0.10 0.85 0.67
Approximate residual de-biasing 35.0 0.16 0.45 0.93
Doubly robust LASSO 18.0 0.14 0.73 0.69
EM-SSL 17.0 0.05 0.76 0.95
EM-SSL Heterogeneous 5.0 0.04 0.95 0.99

Table 2: Results for estimating the average treatment effect under the simulation sce-
nario of Section 4.2.
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4.3 Dense treatment model

Here we simulate data as described in Athey et al. (2016) where the treatment model is
purposely chosen to be dense. More specifically, first we define 20 clusters, {c1, . . . , c20}
where ck ∼ N (0, Ipxp). Second, we draw Ci uniformly at random from one of the 20.
Third, we draw the covariates from a multivariate normal distribution centered at Ci

with the identity matrix as the covariance. Fourth, we set Ti = 1 with probability 0.1 for
the first 10 clusters, and Ti = 1 with probability 0.9 for the remaining clusters. Finally,
we generate data from the outcome model defined as Yi = 10Ti +Xβ + εi, where β ∝
(1, 1√

2
, . . . , 1√

p ) and is normalized such that ||β||22 = 18. Here we will again set n = 200

and p = 500. Intuitively, this is a simulation scenario in which the outcome model is
approximately sparse, though the treatment model is dense as all of the covariates are
associated with the treatment.

Results are summarized in Table 3. Because the data generating mechanism does
not assume sparsity, our original EM-SSL procedure performs poorly relative to the
post selection lasso approach. We obtain an MSE of 1.07, while also doing very poorly
at estimating the standard errors of our approach as the ratio of the average estimated
to true standard errors is 0.59. However, under a non sparse setting, if we impose
a restriction that only the top k = 10 variables most associated with the treatment
(identified by the magnitude of their coefficients in the treatment lasso model) are
prioritized with wj = δ, then our approach (EM-SSL Restricted) performs the best in
terms of MSE (0.59) and interval coverage (93%). It is also important to note that while
we did not show the restricted results in the other simulation scenarios that had sparse
treatment models, the restricted approach performed almost identically to the original
EM-SSL approach. While there is no principled way of selecting k, we have found that
other values of k, such as k = 20, perform similarly well.

type % Bias MSE 95% interval coverage E(ŜE(β̂t))/SD(β̂t)
Outcome LASSO 0.0 0.88
Post LASSO 0.0 0.76
Double post selection 0.0 1.06 0.82 0.69
Approximate residual de-biasing 0.0 1.22 0.81 0.69
Doubly robust lasso 0.0 1.85 0.49 0.40
EM-SSL 0.0 1.07 0.74 0.59
EM-SSL Heterogeneous 0.0 1.64 0.88 0.79
EM-SSL Restricted 0.0 0.59 0.93 0.93
EM-SSL Restricted Heterogeneous 0.0 1.11 0.93 0.97

Table 3: Results for estimating the average treatment effect under the simulation sce-
nario of Section 4.3.

4.4 Choosing between homogeneous and heterogeneous models

An important question is how to decide between the homogeneous and heterogeneous
versions of our model in practice. One potential solution to this is to use the Watanabe-
Akaike information criterion (WAIC) (Watanabe, 2010; Gelman et al., 2014), which is
a Bayesian analog to traditional model selection tools. We applied WAIC to each of
the three simulation scenarios described above to evaluate its effectiveness in choosing
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the right model. The correct model in Sections 4.1 and 4.3 is the homogeneous model,
and the correct model in Section 4.2 is the heterogeneous one. In the three simulation
scenarios, the WAIC chose the correct model 93%, 82%, and 99% of the time, respec-
tively. This shows that it is possible to automate the decision between the homogeneous
and heterogeneous versions of the model, leading to reductions in bias and MSE. These
results should be taken with caution, however, as credible intervals from a model chosen
using WAIC will not account for the additional uncertainty incurred from the model
selection process. This didn’t seem to impact our results greatly as our credible interval
coverages were 93%, 92%, and 94% for the three simulations explored when using the
model chosen by WAIC.

5 Analysis of NHANES data

Recent work (Wild, 2005; Patel et al., 2010; Louis et al., 2012; Patel et al., 2012; Patel
and Ioannidis, 2014) has centered on studying the effects of a vast set of exposures on
disease. These analyses, termed environmental wide association studies (EWAS), exam-
ine environmental factors and aim to improve understanding of the long term effects of
different exposures and toxins that humans are invariably exposed to on a daily basis.
The National Health and Nutrition Examination Survey (NHANES), is a cross-sectional
data source made publicly available by the Centers for Disease Control and Prevention
(CDC). The data has also been aggregated and made available by Patel et al. (2016).
The NHANES data is a nationally representative study, in which participants were ques-
tioned regarding their health status, with a subset of these patients providing extensive
clinical and laboratory tests to provide information on a variety of environmental at-
tributes such as chemical toxicants, pollutants, allergens, bacterial/viral organisms, and
nutrients (Patel et al., 2010).

Our analysis will center on data from the 1999–2000, 2001–2002, 2003–2004, and
2005–2006 surveys. We build on the analysis described in Patel et al. (2012), by apply-
ing our proposed methodology to estimating the effects of volatile compounds (VCs)
on triglyceride levels in humans. VCs were measured in n = 177 subjects, and there
were p = 127 covariates. The list of potential confounders consists of other volatile
compounds, their interactions, other persistent pesticides measured in the respective
subsample, body measurements, demographic, and socioeconomic variables. To evalu-
ate the proposed approach in a setting with p > n, we ran an additional analysis, which
looked at the effect of VCs on triglycerides in subjects over 40 years old. This led to a
sample size of n = 77 subjects.

In previous work (Patel et al., 2012) these exposures were evaluated individually
without controlling for the remaining pesticides, and only a small subset of pre-selected
covariates such as age, body mass index (BMI), and gender were controlled for. Patel
and Ioannidis (2014) wrote that persistent pesticides tend to be highly correlated with
one another and that many of the associations found by previous exposome studies
(Patel et al., 2012) could simply be to confounding bias that was unadjusted for due to
the small set of confounders used and the fact that other pesticides were not adjusted
for. This highlights the need for an analysis that adjusts for all potential confounders,
but in our analyses we have p = 127 covariates with small sample sizes. Therefore, due
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to the large model space, some confounder selection or shrinkage is required to obtain
efficient estimates of exposure effects.

5.1 VC analyses

We now analyze the NHANES data described above. In particular, we will examine
the effect of each of 10 volatile compounds on triglyceride levels while controlling for
an extensive set of potential confounders. We analyze the effect of each volatile com-
pound using three approaches: 1) an unadjusted model that regresses the outcome on
the treatment without confounder adjustment, 2) the homogeneous EM-SSL procedure
described above, and 3) the double post selection approach described in Belloni et al.
(2014). The approximate residual de-biasing and the doubly robust lasso approaches
are only applicable to categorical treatments and are therefore left out. We restrict
attention to the homogeneous treatment effect application of our approach, because ad-
dressing heterogeneity in the setting of continuous treatments would require additional
work that is beyond the scope of this paper.

Figure 3 shows the point estimates and 95% confidence intervals (credible interval
for EM-SSL approach) from the analysis across the 10 volatile compounds for the three
approaches under consideration and each of the two data sets being analyzed. The results
are qualitatively very similar across the three approaches for each of the 10 exposures
we looked at, in both the full data set and the data set restricting to older subjects. One
exception is VC7 in the analysis of older subjects where the EM-SSL estimate has a
credible interval that does not contain zero, while the confidence intervals for the other
two approaches do. In general, however, the results are very similar in magnitude and
direction across the approaches, with the only major difference coming in the widths of
the corresponding confidence (and credible) intervals.

5.2 Comparison of standard errors across approaches

While there are not drastic differences in point estimates, there are large differences
in the widths of the confidence intervals of the two approaches that aim to adjust for
confounding. Of interest is the ratio of the standard errors for the EM-SSL procedure
and the double post selection approach. These can be seen in Figure 4. We see that in
the full data set the EM-SSL procedure is more efficient overall than the double post
selection approach. The majority of the analyses (8/10) had smaller confidence intervals
under the EM-SSL procedure with an average confidence interval ratio of 0.9 as indicated
by the dashed line in Figure 4. This means that the EM-SSL procedure on average has
a 10% smaller standard error than the double post selection approach and occasionally
has a standard error 30% smaller. The results are even more striking when we subset
the data to the n = 77 subjects who are over 40 years old. In this case all analyses
were more efficient using the EM-SSL procedure, with an average standard error ratio
of 0.78, highlighting the ability of our estimator in high-dimensional scenarios. That our
estimator is more efficient than the double post selection estimator is not surprising.
The goal of the double post selection estimator was to obtain valid inference in high-
dimensional scenarios, not to provide the most efficient estimate of the treatment effect.
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Figure 3: Results from analysis of volatile compounds on triglycerides. The upper panel
shows the results using the full, n = 177, sample. The lower panel shows the results for
just the n = 77 subjects who are over 40 years old.



822 High-Dimensional Confounding Adjustment

Nonetheless, this analysis highlights an important difference between the approaches in
their finite sample performance and how they address instrumental variables.

Figure 4: The left panel shows a histogram of the ratios of standard errors for the
EM-SSL approach and the double post selection approach for the analysis of volatile
compounds in the full data. The right panel shows the corresponding histogram for the
analysis of subjects over the age of 40. The dashed vertical line is the mean of the ratios
that make up the histogram.

6 Discussion

In this paper we have introduced a novel approach for estimating treatment effects in
high-dimensional settings. We introduced a generalization of the spike and slab formu-
lation to allow the prior probability that a parameter for a given covariate is included
in the slab component of the prior to depend on the association between each poten-
tial confounder and the treatment. We highlighted how this could drastically reduce
the shrinkage of important confounders, while still shrinking to zero the coefficients
of instrumental and noise variables. Through simulation we showed that our proposed
approach has better performance than state of the art approaches under data generat-
ing mechanisms that are more or less sparse and also in the context of heterogeneous
treatment effects. By tackling the problem within the Bayesian paradigm we achieve
good interval coverage rates even in small samples unlike existing approaches in the
literature. Importantly, we applied the proposed approach to an exposome study and
found that our approach gave smaller confidence intervals than existing approaches for
confounding adjustment in high dimensional settings.

Our prior is purposely constructed to improve small sample performance of ATE
estimation. It shares some commonalities with doubly robust approaches that aim to
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model both the treatment and outcome to reduce bias. A crucial difference, however, is
that we try to eliminate variables only associated with the treatment while still prior-
itizing the inclusion of potential confounders in the outcome model, to minimize both
bias and variance in small and finite samples. This differs from existing approaches (Bel-
loni et al., 2014), which aims at eliminating confounding bias by including all variables
associated with either the treatment or outcome. Further, a nice feature of Bayesian
approaches is that they account for all the sources of uncertainty in the estimation of
the ATE, thus performing better in finite samples than asymptotic approaches. This is
because asymptotic approaches often assume that higher-order terms from asymptotic
expansions are asymptotically negligible. Such assumptions do not hold in finite sam-
ples. Bayesian approaches do not rely on asymptotic expansions nor on the assumption
of negligibility detailed above. Statistical uncertainty associated with all the model pa-
rameters is indeed accounted for in the credible intervals for the treatment effect, leading
to improved finite sample coverage as seen in Section 4. As the sample size increases,
the differences between our Bayesian approach and approaches based on asymptotic
approximations will diminish.

Our proposed approach has limitations. First, we make the strong assumption of
a linear outcome model which allows us to: 1) handle ultra high-dimensional covariate
spaces; and 2) borrow information from the treatment model when estimating the causal
effects. While similar assumptions of linearity are also used in existing approaches to
high-dimensional confounding adjustment (Belloni et al., 2014; Farrell, 2015; Athey
et al., 2016; Antonelli et al., 2018; Shortreed and Ertefaie, 2017), a topic of future
research would be to extend these ideas to nonlinear settings to overcome challenges
inherent to model misspecification. Second, we also make the assumption of sparsity
of both the treatment and outcome models. While we showed that we can potentially
overcome a lack of sparsity in the treatment model by restricting that only a small
percentage of the total number of covariates be prioritized in the outcome model, our
approach still relies on sparsity of the outcome model to obtain good results in terms
of estimation and interval coverages. Third, although we consider scenarios of large
p, MCMC can become computationally intensive in ultra-high dimensions where the
number of covariates is in the tens of thousands. In this setting, alternative approaches
such as double post selection, the doubly robust lasso, and approximate residual de-
biasing could be used. Lastly, a common criticism of confounder selection is that there is
a nonzero probability of excluding a confounder, which leads to bias in the estimation of
the causal effect. While excluding a confounder is certainly an issue, we have constructed
our prior to avoid this problem as much as possible, by only excluding confounders when
this will have very low probability of contributing to bias. In small samples a small
amount of bias can be acceptable in high-dimensional scenarios to improve efficiency.

Our prior construction involves building a lasso model as a pre-processing step to
build an informative prior. From a Bayesian regression modeling perspective, using the
covariates in a regression model to inform the prior distribution of the regression pa-
rameters is widely accepted whenever the covariates can be treated as fixed. In standard
regression models with covariates X, Zellner’s g-prior is frequently used, which sets the
prior on the variance proportional to (XTX)−1. In our approach, the outcome model
is treating both T and X as fixed. Therefore constructing a prior from the association
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between T and X is consistent with standard practice, as long as we don’t use the out-
come Y to inform the prior. From a causal inference perspective, a prevalent perspective
is to separate the design and analysis stages of causal inference (Rubin et al., 2008).
The design phase consists of any steps that occur before analyzing the outcome and
can include propensity score modeling, building of matched sets, design of the study,
etc. In this perspective, uncertainty in the design phase is typically not accounted for in
the analysis phase. Our model follows this perspective, as our prior construction relies
on only the propensity score model. Alternative perspectives are now emerging Liao
and Zigler (2018), and extensions of our approach would be worthy of consideration for
future work.

There are a number of extensions of the proposed ideas that merit further research.
In the current manuscript we restricted attention to the case where wj = δ for all
variables associated with the treatment. We can relax this assumption to let wj vary
for each covariate j associated with the treatment, potentially improving on the current
approach, though future research would be required to find an optimal strategy. The
ideas in this paper could also be used to improve finite sample estimation for doubly
robust estimators. Doubly robust estimators typically combine an outcome regression
and a treatment model, and our ideas could be used to improve the outcome model in
this estimator. This, coupled with improved estimation of the treatment model using
similar ideas as done in Shortreed and Ertefaie (2017), could lead to improved doubly
robust estimators. Finally, the idea to borrow information from the treatment model to
guide the amount of shrinkage in the outcome model can be extended to other high-
dimensional priors beyond the spike and slab one seen here. A number of priors are
used in high-dimensional Bayesian modeling, and this idea can potentially be extended
to many of them.

Supplementary Material

Supplementary materials for “High-dimensional confounding adjustment using contin-
uous spike and slab priors” (DOI: 10.1214/18-BA1131SUPP; .pdf). Here we give addi-
tional details and derivations for estimation of the empirical Bayes variance and pos-
terior calculation. We further illustrate the estimation of the posterior mode of our
model and give additional simulation results. An R package implementing the approach
for both binary and continuous outcomes is available at github.com/jantonelli111/
HDconfounding.
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Ročková, V. and George, E. I. (2016). “The spike-and-slab lasso.” Journal of the Amer-
ican Statistical Association, (just-accepted). MR3803476. doi: https://doi.org/

10.1080/01621459.2016.1260469. 806, 809

Rosenbaum, P. R. and Rubin, D. B. (1983). “The central role of the propensity score
in observational studies for causal effects.” Biometrika, 70(1): 41–55. MR0742974.
doi: https://doi.org/10.1093/biomet/70.1.41. 805

Rubin, D. B. et al. (1981). “The bayesian bootstrap.” The annals of statistics, 9(1):
130–134. MR0600538. 812

Rubin, D. B. et al. (2008). “For objective causal inference, design trumps analysis.”
The Annals of Applied Statistics, 2(3): 808–840. 824

Scott, J. G., Berger, J. O., et al. (2010). “Bayes and empirical-Bayes multiplicity adjust-
ment in the variable-selection problem.” The Annals of Statistics, 38(5): 2587–2619.
MR2722450. doi: https://doi.org/10.1214/10-AOS792. 809

Shortreed, S. M. and Ertefaie, A. (2017). “Outcome-adaptive lasso: Variable selec-
tion for causal inference.” Biometrics. MR3744525. doi: https://doi.org/10.1111/
biom.12679. 807, 823, 824

Talbot, D., Lefebvre, G., and Atherton, J. (2015). “The Bayesian causal effect estimation
algorithm.” Journal of Causal Inference, 3(2): 207–236. 806

Taylor, J. and Tibshirani, R. (2016). “Post-selection inference for l1-penalized likelihood
models.” arXiv preprint arXiv:1602.07358. MR3767165. doi: https://doi.org/

10.1002/cjs.11313. 806

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso.” Journal of
the Royal Statistical Society. Series B (Methodological), 267–288. MR1379242. 806,
811

van der Laan, M. J. and Gruber, S. (2010). “Collaborative double robust targeted
maximum likelihood estimation.” The international journal of biostatistics, 6(1).
MR2653848. doi: https://doi.org/10.2202/1557-4679.1181. 806

Vansteelandt, S., Bekaert, M., and Claeskens, G. (2012). “On model selection and model
misspecification in causal inference.” Statistical methods in medical research, 21(1):
7–30. MR2867536. doi: https://doi.org/10.1177/0962280210387717. 806

Wang, C., Dominici, F., Parmigiani, G., and Zigler, C. M. (2015). “Accounting for
uncertainty in confounder and effect modifier selection when estimating average
causal effects in generalized linear models.” Biometrics, 71(3): 654–665. MR3402601.
doi: https://doi.org/10.1111/biom.12315. 806

Wang, C., Parmigiani, G., and Dominici, F. (2012). “Bayesian effect estimation ac-
counting for adjustment uncertainty.” Biometrics, 68(3): 661–671. MR3055168.
doi: https://doi.org/10.1111/j.1541-0420.2011.01731.x. 806

http://www.ams.org/mathscinet-getitem?mr=3803476
https://doi.org/10.1080/01621459.2016.1260469
https://doi.org/10.1080/01621459.2016.1260469
http://www.ams.org/mathscinet-getitem?mr=0742974
https://doi.org/10.1093/biomet/70.1.41
http://www.ams.org/mathscinet-getitem?mr=0600538
http://www.ams.org/mathscinet-getitem?mr=2722450
https://doi.org/10.1214/10-AOS792
http://www.ams.org/mathscinet-getitem?mr=3744525
https://doi.org/10.1111/biom.12679
https://doi.org/10.1111/biom.12679
https://arxiv.org/abs/1602.07358
http://www.ams.org/mathscinet-getitem?mr=3767165
https://doi.org/10.1002/cjs.11313
https://doi.org/10.1002/cjs.11313
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2653848
https://doi.org/10.2202/1557-4679.1181
http://www.ams.org/mathscinet-getitem?mr=2867536
https://doi.org/10.1177/0962280210387717
http://www.ams.org/mathscinet-getitem?mr=3402601
https://doi.org/10.1111/biom.12315
http://www.ams.org/mathscinet-getitem?mr=3055168
https://doi.org/10.1111/j.1541-0420.2011.01731.x


828 High-Dimensional Confounding Adjustment

Watanabe, S. (2010). “Asymptotic equivalence of Bayes cross validation and widely
applicable information criterion in singular learning theory.” Journal of Machine
Learning Research, 11(Dec): 3571–3594. MR2756194. 818

Wild, C. P. (2005). “Complementing the genome with an “exposome”: the outstand-
ing challenge of environmental exposure measurement in molecular epidemiology.”
Cancer Epidemiology Biomarkers & Prevention, 14(8): 1847–1850. 819

Wilson, A. and Reich, B. J. (2014). “Confounder selection via penalized credible re-
gions.” Biometrics, 70(4): 852–861. MR3295746. doi: https://doi.org/10.1111/
biom.12203. 807

Zhou, J., Bhattacharya, A., Herring, A. H., and Dunson, D. B. (2015). “Bayesian
factorizations of big sparse tensors.” Journal of the American Statistical Association,
110(512): 1562–1576. URL http://www.tandfonline.com/doi/abs/10.1080/

01621459.2014.983233#.VNQ2p1WUd5k. MR3449055. doi: https://doi.org/

10.1080/01621459.2014.983233. 809

Zigler, C. M. and Dominici, F. (2014). “Uncertainty in propensity score estima-
tion: Bayesian methods for variable selection and model-averaged causal effects.”
Journal of the American Statistical Association, 109(505): 95–107. MR3180549.
doi: https://doi.org/10.1080/01621459.2013.869498. 806

Zou, H. (2006). “The adaptive lasso and its oracle properties.” Journal of the Ameri-
can statistical association, 101(476): 1418–1429. MR2279469. doi: https://doi.org/
10.1198/016214506000000735. 806

Zou, H. and Hastie, T. (2005). “Regularization and variable selection via the elastic net.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2): 301–
320. MR2137327. doi: https://doi.org/10.1111/j.1467-9868.2005.00503.x.
806

Zubizarreta, J. R. (2015). “Stable weights that balance covariates for estimation with
incomplete outcome data.” Journal of the American Statistical Association, 110(511):
910–922. MR3420672. doi: https://doi.org/10.1080/01621459.2015.1023805.
807

Acknowledgments

The authors are grateful for Chirag Patel and his advice regarding the NHANES data anal-

ysis. Funding for this work was provided by National Institutes of Health (ES000002, ES024332,

ES007142, ES026217, ES028033, P01CA134294, R01GM111339, R35CA197449, P50MD010428,

DP2MD012722), The U.S. Environmental Protection Agency (83615601, 83587201-0), and The

Health Effects Institute (4953-RFA14-3/16-4).

http://www.ams.org/mathscinet-getitem?mr=2756194
http://www.ams.org/mathscinet-getitem?mr=3295746
https://doi.org/10.1111/biom.12203
https://doi.org/10.1111/biom.12203
http://www.tandfonline.com/doi/abs/10.1080/01621459.2014.983233{#}.VNQ2p1WUd5k
http://www.tandfonline.com/doi/abs/10.1080/01621459.2014.983233{#}.VNQ2p1WUd5k
http://www.ams.org/mathscinet-getitem?mr=3449055
https://doi.org/10.1080/01621459.2014.983233
https://doi.org/10.1080/01621459.2014.983233
http://www.ams.org/mathscinet-getitem?mr=3180549
https://doi.org/10.1080/01621459.2013.869498
http://www.ams.org/mathscinet-getitem?mr=2279469
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
http://www.ams.org/mathscinet-getitem?mr=2137327
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://www.ams.org/mathscinet-getitem?mr=3420672
https://doi.org/10.1080/01621459.2015.1023805

	Introduction
	Spike and slab priors for confounding adjustment
	Model formulation
	Hyper prior selection
	Probability of inclusion into the slab
	Selection of wj
	Heterogeneous treatment effects

	Bayesian computation
	Selection of 0
	Posterior mode estimation

	Simulation study
	Homogeneous treatment effects
	Heterogeneous treatment effects
	Dense treatment model
	Choosing between homogeneous and heterogeneous models

	Analysis of NHANES data
	VC analyses
	Comparison of standard errors across approaches

	Discussion
	Supplementary Material
	References

