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Sequential Monte Carlo Samplers with
Independent Markov Chain Monte Carlo

Proposals

L. F. South∗,†‡, A. N. Pettitt∗,†§, and C. C. Drovandi∗,†¶

Abstract. Sequential Monte Carlo (SMC) methods for sampling from the poste-
rior of static Bayesian models are flexible, parallelisable and capable of handling
complex targets. However, it is common practice to adopt a Markov chain Monte
Carlo (MCMC) kernel with a multivariate normal random walk (RW) proposal in
the move step, which can be both inefficient and detrimental for exploring chal-
lenging posterior distributions. We develop new SMC methods with independent
proposals which allow recycling of all candidates generated in the SMC process
and are embarrassingly parallelisable. A novel evidence estimator that is easily
computed from the output of our independent SMC is proposed. Our indepen-
dent proposals are constructed via flexible copula-type models calibrated with the
population of SMC particles. We demonstrate through several examples that more
precise estimates of posterior expectations and the marginal likelihood can be ob-
tained using fewer likelihood evaluations than the more standard RW approach.

Keywords: copula, evidence, importance sampling, independent proposal,
Markov chain Monte Carlo, marginal likelihood.

1 Introduction

Sequential Monte Carlo (SMC, Chopin (2002); Del Moral et al. (2006)) methods for
static Bayesian models are naturally adaptive, easily parallelisable and are capable of
dealing with targets that are multimodal or have complicated landscapes (see e.g. Del
Moral et al. (2006) and Cappé et al. (2007)). The basic SMC method involves moving
a population of N particles through a sequence of distributions which can be chosen
by smoothly introducing either the data (data annealing) or the effect of the likelihood
(likelihood annealing). Many of the computations associated with the N particles can
be performed in parallel. As a useful by-product, SMC produces an estimate of the
normalising constant of the posterior distribution (e.g. Del Moral and Miclo (2000)),
the so-called evidence, which is useful for Bayesian model choice.

SMC propagates the particles through the sequence of distributions using three types
of steps: reweighting, resampling and moving (or mutation). The reweighting step uses
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importance sampling (IS) to adjust the weights of particles from the current distribution
to obtain a properly weighted set targeting the next distribution. The resampling step
is used to focus on promising regions that will then be diversified using a move step,
which is the most computationally intensive aspect of SMC. The move step is commonly
chosen to be several iterations of a Markov chain Monte Carlo (MCMC, Metropolis
et al. (1953)) kernel, often with a random walk proposal. Despite their commonplace
use, random walk proposals can be inefficient at exploring the target and this can have
a detrimental effect on evidence and posterior expectation estimates.

We develop new and efficient SMC methods using independent MCMC proposals.
Independent proposal distributions have the advantage that they can result in uniformly
ergodic Markov chains, as opposed to typical geometric ergodicity achieved by random
walk proposals (Tierney, 1994). They are highly parallelisable and have the potential
to explore complex and multimodal targets in fewer iterations than local proposals.
Some early SMC algorithms proposed basic independent proposals like multivariate
normal (Chopin, 2002) and more recently an independent proposal for multivariate bi-
nary spaces has been used in SMC (Schäfer and Chopin, 2013). However independent
proposals are often dismissed in the SMC literature for being too restrictive (see e.g.
Del Moral et al. (2006)). Silva et al. (2010) and Schmidl et al. (2013) develop adap-
tive MCMC methods that use copula (Sklar, 1959) type models to form independent
proposals. Copulas provide flexible multivariate distributions as they allow for separate
modelling of marginals and dependence structure between components. We extend this
idea to the SMC setting, taking advantage of the available population of particles.

We demonstrate that when independent proposals are used, all candidates gener-
ated in the SMC process can be used in evidence estimation and posterior inference.
Throughout this paper, “candidates” refers to all samples from the prior and all MCMC
proposals. We compare several estimators from the IS literature with existing methods
for SMC in terms of bias and precision. We also propose a novel evidence estimator which
is simple and computationally efficient to calculate from our independent SMC output.
These new recycling schemes for SMC can lead to increases in the effective sample size
(ESS) targeting the posterior, improved sampling from complex posterior distributions
and significant variance reductions when compared to no recycling and the recycling
method of Nguyen et al. (2014). In the examples considered, the novel evidence estima-
tor is up to five orders of magnitude more efficient than the standard SMC estimator.

Section 2 of this paper gives a brief review of likelihood annealing SMC, the existing
literature on recycling in SMC and the copula models which form the basis of the
independent proposals. The main contributions of this paper, developing independent
MCMC proposals for SMC and exploiting these proposals, are described in Section 3.
In Section 4, we compare our methods with a more standard SMC implementation
on applications of varying complexity. A final summary and a discussion of possible
limitations and extensions of this work are given in Section 5.

2 Background

The focus of this article is Bayesian inference for a statistical model parameterised by
θ ∈ Θ ⊆ R

p where p is the dimension of vector θ and the collected data is denoted
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y ∈ Y ⊆ R
d. The posterior distribution is defined as

π(θ|y) = f(y|θ)π(θ)
Z(y)

, (1)

where f(y|θ) is the likelihood, π(θ) is the prior and Z(y) =
∫
Θ
f(y|θ)π(θ)dθ is the

normalising constant of the posterior often referred to as the evidence. The evidence is
an important quantity in Bayesian model selection because it is used in the calculation of
Bayes factors. However, it is a p dimensional integral which makes it difficult to estimate.
Here we are interested in estimating both the evidence, Z, and posterior functionals,∫
Θ
ψ(θ)π(θ|y)dθ, and we use SMC to do so.

2.1 Sequential Monte Carlo

SMC traverses a set of N weighted samples or ‘particles’, {W i
t ,θ

i
t}Ni=1, through a se-

quence of distributions, πt(θ|y) for t = 0, . . . , T . SMC consists of reweighting, resam-
pling and move steps, each of which are described in further detail below.

In this paper we focus on the likelihood annealing sequence which is useful for
exploration of complex targets (Neal, 2001) and allows for additional benefits in terms
of recycling otherwise wasted samples. Interest is in sampling from the sequence of
power posteriors, πt(θ|y) = f(y|θ)γtπ(θ)/Zt where γt is referred to as the temperature
and 0 = γ0 ≤ · · · ≤ γt ≤ · · · ≤ γT = 1.

Reweighting Step

The reweighting step uses IS to weight particles targeting the previous distribution
appropriately for the next distribution. Following Del Moral et al. (2006), we obtain

wi
t+1 = W i

t f(y|θi
t)

γt+1−γt , for i = 1, . . . , N,

where wi
t+1 is an unnormalised weight and W i

0 = 1/N for i = 1, . . . , N . The weights are

normalised and we set θi
t+1 = θi

t for i = 1, . . . , N to obtain the set of particles providing
a discrete approximation of πt+1(θ|y).

The temperature γt+1 is chosen adaptively by approximately maintaining a specified
effective sample size (ESS), the number of independent samples from the target that
would be required to achieve the equivalent variance in the estimator, of ρN (see Jasra
et al. (2011) for details). Following Kong et al. (1994), the ESS at target t + 1 is

approximated by 1/
∑N

i=1(W
i
t+1)

2.

Resampling Step

After reweighting, the particles are resampled with probabilities given by their cor-
responding normalised weights. This resampling has the effect of eliminating particles
with negligible weight and replicating the particles with larger weights. See Gerber et al.
(2017) for a recent review of the theoretical properties of resampling methods. We use
multinomial resampling for simplicity.
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Move Step

To diversify the particles and explore πt, we apply Rt iterations of a Metropolis Hastings
(MH) MCMC kernel on each particle. For a single MCMC iteration with proposal
distribution qφt and parameter φt, a candidate θi,∗

t ∼ qφt(·|θi
t) is proposed and we set

θi
t = θi,∗

t with probability

α(θi
t,θ

i,∗
t ) = min

(
1,

f(y|θi,∗
t )γtπ(θi,∗

t )qφt(θi
t|θi,∗

t )

f(y|θi
t)

γtπ(θi
t)q

φt(θi,∗
t |θi

t)

)
,

otherwise we retain the current θi
t.

A major advantage of SMC is that the parameter φt can be estimated from the
population of particles prior to the move step. It is common to use multivariate normal
random walk (RW) proposals and to estimate the covariance from the population of
particles (Chopin, 2002). The proposal distribution using this scheme is qφ(θi,∗

t |θi
t) =

N (θi,∗
t ;θi

t, h
2Σ̂t), where φt = (Σ̂t, h) and N (θ;μ,Σ) denotes the multivariate normal

probability density with mean μ and covariance Σ evaluated at θ. Here we set h =
2.38/

√
p (Gelman et al., 1996). Our alternative proposal is described in Section 3 and

compared to the RW empirically in Section 4.

We propose to choose Rt adaptively based on the current move step at t so that
there is a theoretical probability of 1 − c (with c set small) that the particle is moved
at least once. The number of repeats is

Rt =

⌈
log (c)

log (1− p̂tacc)

⌉
,

where �·� denotes the ceiling function and p̂tacc = 1
N

∑N
i=1 α(θ

i
t,θ

i,∗
t ) is the acceptance

rate based on a trial MCMC iteration on the N particles. This method is similar to
Drovandi and Pettitt (2011), who predict ptacc with the MCMC acceptance rate at t−1,
pt−1
acc . We do not rely on ptacc ≈ pt−1

acc and we do not require an initial choice for R1.
Only a further Rt − 1 MCMC iterations are required per particle in our method since
the first iteration is already performed. In the discussion in Section 5, we show how
an improved Rao-Blackwellised estimate of Rt and a particle specific Ri

t choice of the
MCMC repeats can be obtained.

Estimating Posterior Expectations and the Evidence

The standard SMC estimator for posterior expectations is given by

ψ̂ =
1

N

N∑
i=1

ψ(θi
T ). (2)

The standard SMC estimator of the evidence is

Ẑ =
T∏

t=1

N∑
i=1

wi
t. (3)
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This estimator is based on the identity ZT /Z0 =
∏T

t=1 Zt/Zt−1 where Z0 = 1. It requires
little additional implementation or computational effort. Intermediate normalising con-
stants can also be estimated by taking fewer terms in the product, Ẑt =

∏t
s=1

∑N
i=1 w

i
s.

2.2 Recycling in SMC

Typically the final samples {θi
T }Ni=1 from an SMC run are used for inference and all

other proposed particles are wasted because they do not target the posterior. Particle
recycling schemes, such as those presented for general importance tempering in Gramacy
et al. (2010) and for SMC in Nguyen et al. (2014) and Finke (2015), use IS to reweight
the final particles from πt for t = 0, . . . , T to target the posterior.

To recycle particles {θi
t}Ni=1 from the t-th power posterior, the target is the posterior

πT and the importance distribution is the t-th power posterior, πt = f(y|θ)γtπ(θ)/Ẑt.
The unnormalised IS weights to use the t-th power posterior samples are therefore

κi
t =

f(y|θi
t)π(θ

i
t)

f(y|θi
t)

γtπ(θi
t)(Zt)−1

= Ztf(y|θi
t)

1−γt , (4)

where the term Zt is unknown. Normalising the weights to Ki
t = κi

t/
∑N

i=1 κ
i
t removes

the need for Zt. Posterior expectations can be estimated by normalising the weights
and applying standard Monte Carlo integration, ψ̂t =

∑N
i=1 ψ(θ

i
t)K

i
t .

Gramacy et al. (2010) propose a method to combine multiple IS estimators in order
to maximise the ESS. Denote the ESS targeting the posterior using {θi

t}Ni=1 from the t-th
power posterior as ESSt and denote the unbiased estimate of some posterior functional
using those samples as ψ̂t. The combined estimate is

ψ̂ =

T∑
t=0

λtψ̂t, (5)

where λt = ESSt/
∑T

l=0 ESSl. By linearity of expectation, this combined estimate is
unbiased if the λ values are fixed from a separate run. The motivation behind this
combined estimator is that importance distributions which have poor performance (as
measured by ESS) should be given less weight in the combined estimator. The ESS

targeting the posterior after recycling is
∑T

t=0 ESSt in the adaptive case (see Appendix A
of the Supplementary Materials (South et al., 2018)). We refer to the general approach
of combining IS estimators based on ESS as combined importance sampling (CIS) and
we denote the combination of power posterior samples through CIS as CISPP. CISPP

has been applied in the SMC context by Nguyen et al. (2014) and Finke (2015).

Another method for combining samples from multiple importance distributions is to
treat the samples as coming from a mixture of distributions, with the mixture weights
based on the proportion of samples coming from that distribution (Veach and Guibas,
1995; Owen and Zhou, 2000). Following Owen and Zhou (2000), we refer to this method
as deterministic mixture sampling or DeMix for short. We refer to the use of DeMix
to recycle particles from the power posteriors as DeMixPP. Nguyen et al. (2016) use
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DeMixPP in calculating posterior expectations. The unnormalised DeMix weights in
this context are

νit =
f(y|θi

t)π(θ
i
t)

1
T

∑
T
l=0f(y|θ

i
t)

γlπ(θi
t)(Zl)−1

, (6)

for i = 1, . . . , N and t = 0, . . . , T . Calculating the deterministic multiple mixture weights
requires that πt be normalised so, like Nguyen et al. (2016), we use the SMC estimate Ẑt

for the normalising constant of πt. Nguyen et al. (2016) compare DeMixPP and CISPP

for posterior approximation and found empirically that the DeMixPP scheme performs
only marginally better.

Normalising constant estimation using power posterior recycling schemes has been
restricted since the importance density involves the normalising constants Zt for πt.
The requirement to estimate intermediate normalising constants in order to estimate
the overall normalising constant and the fact that only an additionalN particles are used
when compared to the standard SMC estimator makes these evidence estimators seem
unappealing when compared to the simple SMC estimator in (3). For completeness, we
implement CISPP and DeMixPP estimators of the evidence using the SMC estimates of
the intermediate normalising constants. We find empirically in Section 4 that the CISPP

and DeMixPP estimators perform similarly to the SMC estimator of the evidence.

In Section 3.2, we propose evidence estimators that do not require estimates of the
intermediate normalising constants and can take advantage of all candidate parameter
values generated in the SMC process.

2.3 Copulas

Copulas form the basis of the independent proposals described in Section 3.1. Sklar’s the-
orem (Sklar, 1959) states that a multi-dimensional distribution can be described entirely
by its marginal cumulative distribution functions and a copula that captures the depen-
dence between these marginals. Any p-dimensional random vector V = (V1, . . . , Vp)

T

with cumulative distribution function H and continuous marginal distribution functions
Gj(v) = P (Vj ≤ v) for j = 1, . . . , p can be described by a unique copula C such that

H(v1, . . . , vp) = C(G1(v1), . . . , Gp(vp)).

Copulas describe the dependence between univariate uniform marginals but this can
easily be extended to non-uniform marginals using transformation methods.

A simple and popular family of copulas is the Gaussian copula (see e.g. Fang et al.
(2002)). Denote random vectors on the U(0, 1) scale by U and random vectors after
transformation to N (0, 1) by X. Denote the j-th dimension of X as X[j] for j =
1, . . . , p. The Gaussian copula can be written as

HGauss
D = ΦD

(
Φ−1(U [1]), . . . ,Φ−1(U [p])

)
,

where ΦD is the joint cumulative distribution function of the multivariate Gaussian
distribution with correlation matrix D. The probability density function is

p(U |D) =
N (X;0,D)∏p

j=1 N (X[j]; 0, 1)
.
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In practice, the correlation matrix D is estimated by the empirical correlation matrix
of a set of samples on the N (0, 1) scale.

A more flexible way to model dependence is through a multivariate mixture model,
as described in Tran et al. (2014). These models are not strictly copula models because
the marginals are not preserved, but they offer a flexible way to model dependence
separately from the marginals. We consider the most simple and computationally in-
expensive mixture, a multivariate Gaussian mixture model (MGMM, Pearson (1894);
Dempster et al. (1977)) but we note that other mixtures considered by Tran et al.
(2014), such as mixtures of multivariate t’s, may help to improve tail coverage at the
cost of computation time.

MGMMs consist of a weighted mixture of multivariate Gaussian distributions. The
parameters to be estimated in an MGMM are the mean, μk, and covariance, Σk, of
the k-th component and a set of weights ck for k = 1, . . . ,K where K is the number of
components and

∑K
k=1 ck = 1. The density of an MGMM for parameter X is defined as

p(X|c,μ,Σ) =

K∑
k=1

ck N (X;μk,Σk). (7)

An independent MCMC proposal using copulas has been explored before in MCMC
(Silva et al., 2010; Schmidl et al., 2013), where it is limited by the requirement of finding
an approximation of the target distribution to fit the copula and the marginals. In
SMC, an approximation from the current target is already available. To our knowledge,
independent MCMC proposals using copulas have not yet been developed for general
use in an SMC framework. This is the focus of Section 3.1.

3 Independent Proposals in SMC

The main contributions of this work are to develop efficient independent MCMC propos-
als for SMC and to exploit them in several ways, for example by harnessing all generated
candidates to obtain reduced variance estimators of posterior expectations and the ev-
idence. We also present a new evidence estimator that is conveniently computed from
the output of independent SMC.

3.1 Copula-Type Independent Proposals

Estimating the Copula-Type Model

Here we describe a method for estimating the parameters of the copula-type independent
proposals. A univariate distribution is first chosen for each of the marginals. Different
distributions, including univariate beta and Gaussian mixture distributions, are used
in this work. When individual parameters are bounded above and below a priori, beta
marginals may be a sensible choice as the prior limits can be transformed to [0, 1]. The
univariate distributions with parameters ηj are fitted to {θi

t[j]}Ni=1 for j = 1, . . . , p
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and the cumulative distribution function of the j-th marginal is denoted by G
η̂j

j (·).
Taking U i

t[j] = G
η̂j

j (θi
t[j]), for i = 1, . . . , N transforms each of the p dimensions of the

particle population to be approximately U(0, 1) distributed random variates provided

that G
η̂j

j fits well. The quantile function of the standard normal distribution, Φ−1, can
then be used to transform the marginals to be approximately standard normal through
Xi

t[j] = Φ−1(U i
t[j]).

With approximately N (0, 1) marginals, it is easier to model the dependencies. Here

we consider an MGMM as described in Section 2.3. The parameters ĉ, μ̂ and Σ̂ for
the mixture model are obtained using the expectation maximisation (EM) algorithm
(Dempster et al., 1977). There are methods to help choose the number of components
in a mixture model (McLachlan and Peel, 2000), for example based on the Bayesian
information criterion (Schwarz, 1978; Keribin, 2000) or using variational Bayes methods
as in Tran et al. (2014), but for simplicity here we fix the number of components.

The process of fitting a copula-type model, including the transformations to approx-
imately N (0, 1) marginals, is given in Algorithm 1. An illustration of this process for
the example in Section 4.2 is shown in Figure 1.

Algorithm 1: Fitting the copula-type MGMM from the population of particles
at πt.

Input : A population of particles from the current power posterior {θi
t}Ni=1, the

number K of components in the MGMM and the type of marginals to
be fitted (problem dependent).

Output: Marginal distribution parameters {η̂j}pj=1, mixture model parameters

(ĉ, μ̂, Σ̂) and the transformed population on marginal N (0, 1) scale
{Xi

t}Ni=1.
1 for j = 1 to p do

2 Estimate η̂j from {θi
t[j]}Ni=1

3 Compute U i
t[j] = G

ηj

j (θi
t[j]) for i = 1, . . . , N .

4 Compute Xi
t[j] = Φ−1(U i

t[j]) for i = 1, . . . , N .

5 end

6 Estimate (ĉ, μ̂, Σ̂) from {Xi
t}Ni=1 using the EM algorithm.

Making Proposals

Once the copula-type model has been fitted, candidates can be drawn from the mixture
model which simply involves simulating from the k-th component with probability ck.

Transformation of candidates X∗ on the N (0, 1) scale to the approximately U(0, 1)
scale is done through the cumulative distribution function of the standard normal distri-
bution, Φ, such that U∗[j] = Φ(X∗[j]), for j = 1, . . . , p. The candidate on the original

scale is θ∗[j] = Q
η̂j

j (U∗[j]), for j = 1, . . . , p, where Qj ≡ G−1
j is the quantile distribution

of the j-th fitted marginal distribution.
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Figure 1: Scatterplots of the bivariate distributions based on approximate draws from
the posterior in Section 4.2. Shown are the first four parameters (a) on the original scale,
(b) after transforming to approximately U(0, 1) marginals and (c) after transforming to
approximately N (0, 1) marginals. It is simpler to model the dependence based on (c)
than (a).

The proposal density for a candidate θ∗
t with fitted parameters φt = (η̂, ĉ, μ̂, Σ̂)

needs to account for these transformations. The proposal density (7) for X∗ is adjusted
using transformation methods (see Appendix B of the Online Resources) to obtain

qφt(θ∗
t ) =

⎧⎨⎩
p∏

j=1

g
η̂j

j (θ∗
t [j])

N (X∗
t [j]; 0, 1)

⎫⎬⎭
K∑

k=1

ĉk N (X∗
t ; μ̂k, Σ̂k), (8)

where g
η̂j

j denotes the probability density function of the j-th marginal with estimated
parameter η̂j . The proposal density in (8) is required for the MH ratio and also for
recycling methods.

Algorithm 2 outlines the details of performing a single MCMC step for each particle
using our MGMM independent proposals. This step is repeated multiple times depend-
ing on Rt. Parallelisation is straightforward as one can draw all candidates from qφt(·)
and calculate {f(y|θi,∗)}RtN

i=1 , {π(θi,∗)}RtN
i=1 and {qφt(θi,∗)}RtN

i=1 for the candidates in
parallel.

3.2 Recycling All Candidates

In the context of our independent SMC method, it is possible to recycle all candidates
from all temperatures by using the qφt(·) as importance distributions. This means that
Rt times as many samples per temperature can be used in estimating posterior ex-
pectations and estimating the evidence when compared to the PP recycling methods
described previously.

The importance density qφt can be computed pointwise for any candidate when an
independent MCMC proposal is used, for example qφt for the MGMM copula-type pro-
posal is given in (8). This means that the SMC estimates of the normalising constants are
not required for any calculations, making these recycling methods much more appeal-
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Algorithm 2: One iteration of an MCMC kernel on all particles using independent
MGMM copula-type proposals.

Input : A population of particles from the current target {θi
t}Ni=1, the

transformed standard normal version of the population of particles
{Xi

t}Ni=1, fitted marginal distribution parameters {η̂j}pj=1, fitted

mixture model parameters (ĉ, μ̂, Σ̂), the current temperature γt and the
prior distribution π(θ).

Output: Particles after move step, {θi
t}Ni=1, and the new transformed population

on marginal N (0, 1) scale {Xi
t}Ni=1.

1 for i = 1 to N do

2 Draw X∗ from the MGMM with parameters (ĉ, μ̂, Σ̂)
3 for j = 1 to p do
4 Compute U∗[j] = Φ(X∗[j])

5 Compute θ∗[j] = Q
η̂j

j (U∗[j])

6 end

7 Compute r = min(1,
f(y|θ∗)γtπ(θ∗)qφt (θi

t)

f(y|θi
t)

γtπ(θi
t)q

φt (θ∗)
)

8 if U(0, 1) < r then

9 Set θi
t ← θ∗

10 Set Xi
t ← X∗

11 end

12 end

ing for estimating the evidence when compared to the PP recycling evidence estimators
detailed in Section 2.2.

The IS weight for candidate θi,∗
t drawn from independent proposal qφt(·) targeting

πt is

ωi
t =

f(y|θi,∗
t )π(θi,∗

t )

qφt(θi,∗
t )

, for i = 1, . . . , RtN and t = 0, . . . , T.

Posterior expectations using these weights can be combined using the CIS method from
(5). We also derive the following novel estimator of the evidence,

Ẑ =

T∑
t=0

λt

RtN

RtN∑
i=1

ωi
t,

where λt = ESSt/
∑T

l=0 ESSl and ESSt is the ESS targeting the posterior using the
candidates drawn from independent proposal qφt(·). This estimator is in essence an
efficient combination of multiple IS estimators for the evidence which, by linearity of
expectation, is unbiased if the λ values are fixed from a separate run. To the best of
our knowledge, this is the first time that the ESS-based approach has been used for
evidence estimation. We refer to the CIS estimators which reuse all candidates as CISIP
where the IP standards for independent proposal recycling.
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We also propose the use of the DeMix scheme to reuse all candidates in SMC and
we refer to this method as DeMixIP. The DeMixIP weights are

ν̃it =
f(y|θi

t)π(θ
i
t)∑

T
l=0

Rl∑T
m=0 Rm

qφl(θi
t)
, (9)

for i = 1, . . . , N and t = 0, . . . , T , where qφl(·) represents the independent proposal
used to draw the candidates for πl. The associated evidence estimator is

Ẑ =
1

N
∑

T
t=0Rt

T∑
t=0

RtN∑
i=1

ν̃it

=

T∑
t=0

RtN∑
i=1

f(y|θi,∗
t )π(θi,∗

t )∑T
s=0 RsNqφs(θi,∗

t )
.

This requires an extra T proposal density calculations per particle when compared to
CIS but no further target evaluations are required, so this additional cost is generally
not prohibitive. When a large number of temperatures are used, methods which limit
the computational complexity of DeMix as in Elvira et al. (2015) may be useful. As a
result of the mixture term, there tend to be fewer extreme weights. DeMix intuitively
seems more natural for candidate recycling (DeMixIP) than power posterior recycling
(DeMixPP); in the latter, the terms in the mixture differ only by the likelihood powers
and normalising constants which need to be estimated.

4 Simulation Studies

The main comparators which we consider in our simulation studies are summarised in
Table 1. The two MCMC kernels being compared are our independent proposal (IND)
and the ubiquitous multivariate normal random walk (RW). We compare our methods
for recycling all candidates in posterior and evidence estimation (CISIP and DeMixIP)
with the standard practice and with the current state of the art for recycling methods
(CISPP and DeMixPP).

It is well known that the standard SMC estimator of the evidence in (3) is not
guaranteed to be unbiased when the sequence of distributions or proposals are adapted
online (Beskos et al., 2016). Similarly, the CISPP and DeMixPP methods are not unbiased
if the intermediate normalising constants are estimated from the same SMC run, and the
CISPP and CISIP methods are not unbiased if the λ (or ESS) values are estimated from
the same run. One aim here is to compare the bias of the estimators empirically when
adaptive runs are used. If an unbiased estimate is required, the proposal distributions,
temperatures, intermediate normalising constant estimates and ESS values from an
adaptive run can be used in a fixed run.

MCMC kernels and recycling methods are compared on the basis of estimates of
posterior quantiles and estimates of the evidence. We would ideally like to take into
account computational effort and statistical efficiency (accuracy and precision) in these
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Kernel Recycling Samples in Ẑ Samples in ψ̂ New

RW – NT N ×
INDa – NT N �
(any) CISPP N(1 + T ) N(1 + T ) ×
(any) DeMixPP N(1 + T ) N(1 + T ) ×
IND CISIP N(1 +

∑T
t=0 Rt) N(1 +

∑T
t=0 Rt) �

IND DeMixIP N(1 +
∑T

t=0 Rt) N(1 +
∑T

t=0 Rt) �
aIND refers to the MGMM copula proposal described in Section 3.1

Table 1: The kernels and recycling methods considered with information regarding how
many samples are used in the estimators and whether they are novel.

comparisons. We measure computational effort by the number of likelihood evaluations
(TLL) because this comprises a large proportion of the computational effort in most
applications. When a gold standard of approximation is available, for example through
Monte Carlo estimates based on a very long MCMC or SMC run, we can measure both
accuracy and precision by looking at the mean square error (MSE) relative to the gold
standard. We resort to measuring the variance of 100 estimates (VAR) when no gold
standard is available. Our overall measure of efficiency is MSE · TLL for RW with no
recycling divided by MSE · TLL for the method in question. When no gold standard is
available, MSE is replaced with VAR. RW with no recycling has an efficiency value of
1 and larger values are preferred.

For likelihood annealing SMC, temperatures are chosen with ρ = 0.5 so that the ESS
in the next iteration is at least N/2. The number of MCMC repeats is chosen so that
samples are moved at least once with theoretical probability 1−c = 0.99. Regularisation
is used when estimating the parameters of the Gaussian mixture models, which may
assist with tail coverage and helps with the numerical stability of the EM algorithm.

In addition to the applications given in the main paper, three examples are given in
the Online Resources. Appendix E contains an 11 dimensional example and Appendix F
contains a three dimensional example where an unbiased likelihood estimator is used. In
these examples, IND outperforms RW by some efficiency measures before recycling and
all efficiency measures after recycling. A challenging application for which our MGMM
copula-based IND proposal does not fully cover the tails of the target distribution is
given in Appendix G.

4.1 Factor Analysis Example

This model choice example illustrates the potential benefits and limitations of indepen-
dent SMC for sampling from complex posterior distributions. The model choice aspect
of this example also makes the utility of the evidence estimators clear.

Monthly exchange rates of six currencies relative to the British pound were collected
from January 1975 to December 1986 (West and Harrison, 1997). Lopes and West (2004)
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seek to describe the covariance structure of the standardised (by their sample mean
and standard deviation) differences in these exchange rates using factor analysis (FA)
models. FA models assume that Y ∼ N (0,Ω) where the covariance Ω is restricted to
the form Ω = ββT + Λ, β is a 6 × k lower triangular matrix with positive diagonal
elements and Λ is a 6× 6 diagonal matrix with positive elements. Here k is the number
of factors and the total number of parameters is 6(k + 1) − k(k − 1)/2. We consider
k ≤ 3 to avoid over-parameterising Ω, which leads to models with dimension at most
p = 21.

Following Lopes and West (2004), we use the priors βij ∼ N (0, 1) for i �= j and
βii ∼ N (0, 1)1(βii > 0). The elements ofΛ have priors σ2

i ∼ IG(1.1, 0.05) where IG(a, b)
is the inverse Gamma distribution with mean b/(a − 1). The positive parameters are
log transformed.

For this example, 100 SMC runs with N = 5, 000 particles are performed. The
IND proposals are formed using 5 component Gaussian mixture model marginals and
a 6 component MGMM for dependence. Matlab code for this example is available at
https://github.com/LeahPrice/Independent-SMC. Given that we are using this ex-
ample for illustrative purposes and the likelihood is inexpensive, we also do 100 gold
standard SMC runs. These gold standard runs use a RW proposal with 50,000 particles
and a conservative choice of the tempering adaptation parameter, ρ = 0.99, to avoid
sudden gaps in modes which discourage mixing.

Posterior Inference

Due to the number of figures required to show the quality of the posterior approxi-
mations for the three models, we show some of the more complex marginals here and
discuss the results. Appendix C of the Supplementary Materials shows posterior esti-
mates and measures of efficiency for quantiles of the posterior marginals in the three
models.

One factor model (p = 12)

The marginals in the one factor model are simple and can easily be captured with our
independent proposals. In terms of efficiency, IND outperforms RW before recycling and
the best results can be achieved by recycling all candidates. The median ESS targeting
the posterior is 5,000 before recycling and up to 55,000 with DeMixIP recycling.

Two factor model (p = 17)

The introduction of a second factor leads to a more complex posterior. The marginals
for β32, β42, β52 and β62 are all bimodal with well separated modes and some marginals
have heavy tails. Posterior approximations of two marginals are shown in Figure 2.
The RW proposal fails to achieve consistent proportions in the well separated modes
over multiple runs, whereas the IND proposal can easily move between modes. For
this reason, IND is significantly more efficient than RW and recycling offers further
improvements (see Appendix C of the Supplementary Materials). We note that the well
separated mode was not captured in the reversible jump MCMC approach of Lopes and
West (2004).

https://github.com/LeahPrice/Independent-SMC


766 Independent SMC

Figure 2: FA example: Posterior estimates for (a) log Λ22, which is skewed left, and
(b) β62, which has two well separated modes. The IND kernel achieves more consistent
proportions in each mode than the RW kernel. Results are based on a single gold
standard run (solid), five SMC runs with the RW kernel (dash) and five SMC runs with
the IND kernel (dot-dash).

Three factor model (p = 21)

The three factor model pushes the limits of what can currently be achieved with our

IND proposal due to complex and trimodal marginal distributions (Figure 3) and highly

complex bivariate distributions (available in Appendix C). The ESS after recycling all

candidates is consistently less than N for both CISIP and DeMixIP recycling, which in-

dicates a lack of tail coverage of the IND proposals with respect to the power posteriors.

It is not surprising given the complex dependencies that a 6 component MGMM could

not adequately describe the dependence.

Figure 3: FA example: Posterior estimates for (a) log Λ33, where IND performs well, and
(b) β62, where IND fails to capture this marginal well. Results are based on a single
gold standard run (solid), five SMC runs with the RW kernel (dash) and five SMC runs
with the IND kernel (dot-dash).
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Figure 4: FA example: Boxplots of the model choice probabilities for RW, IND CISIP,
IND DeMixIP and the gold standard.

Evidence

Figure 4 shows boxplots of the estimated model probabilities which are calculated using
the model evidence estimates. It is clear that the two factor model is preferred. The
three factor model has some known issues with posterior approximation so it is not
surprising that there is some discrepancy between the model probabilities estimated
from the independent proposal and the probabilities estimated from the gold standard.
However, the bias when recycling all independent proposals is small and the estimates
are precise. Table 2 shows the evidence estimates and their efficiency, and this supports
the claim that the IND proposals with CISIP or DeMixIP recycling is the most efficient
method for estimating the evidence in this example.

4.2 Econometrics Example

In the previous example, our method outperformed RW in terms of the number of
likelihood evaluations and the precision of estimators, but it also required more time
due to the overhead of constructing the independent proposal, simulating from it and
evaluating its density. Here we consider an example more suited for the independent
proposal since it has a non-trivial cost in evaluating the likelihood function so we are
able to achieve reduced run times.

The “bad environment – good environment” (BEGE) model of Bekaert et al. (2015)
is a flexible model used to describe the time-varying, non-Gaussian innovations in fi-
nancial asset return data. The innovations in returns are modelled using a linear com-
bination of a “bad environment” component and a “good environment” component,

rt+1 = μt + ut+1,
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Factors Method Sampler log Ẑ + 903 avg. evals efficiency
One GOLD RW SMC -111.26 2.3× 108 NA

RW SMC -111.22 2.4× 106 1.0
CISPP -111.22 ′′ 1.0

DeMixPP -111.22 ′′ 1.0
IND SMC -111.09 5.5× 105 3.8

CISPP -111.09 ′′ 4.0
DeMixPP -111.09 ′′ 3.8
CISIP -111.27 ′′ 2,300

DeMixIP -111.28 ′′ 530
Two GOLD RW SMC -0.21 4.7× 108 NA

RW SMC -0.04 5.1× 106 1.0
CISPP -0.05 ′′ 1.0

DeMixPP -0.04 ′′ 0.99
IND SMC -0.43 9.7× 105 900

CISPP -0.44 ′′ 880
DeMixPP -0.43 ′′ 910
CISIP -0.22 ′′ 240,000

DeMixIP -0.24 ′′ 39,000
Three GOLD RW SMC -2.34 1.5× 109 NA

RW SMC -2.59 1.3× 107 1.0
CISPP -2.57 ′′ 0.78

DeMixPP -2.59 ′′ 0.97
IND SMC -4.17 1.5× 106 7.2

CISPP -4.17 ′′ 7.2
DeMixPP -4.17 ′′ 7.2
CISIP -2.61 ′′ 88

DeMixIP -2.57 ′′ 99

Table 2: FA example: Log mean of the estimated evidence for each model and efficiency.

ut+1 = σpωp,t+1 − σnωn,t+1, where

ωp,t+1 ∼ Γ̃(pt, 1),

ωn,t+1 ∼ Γ̃(nt, 1),

rt is the return at time t and ut is the innovation in the return at time t. Γ̃(k, h) is the
so-called de-meaned gamma distribution with probability density function

Γ̃(x; k, h) =
1

Γ(k)hk
(x+ kh)k−1 exp

(
− 1

h
(x+ kh)

)
,

for x > −kh. The shape parameters for the good and bad environments, pt and nt

respectively, are modelled using

pt = p0 + ρppt−1 +
φ+
p

2σ2
p

u2
t Iut≥0 +

φ−
p

2σ2
p

u2
t (1− Iut≥0),



L. F. South, A. N. Pettitt, and C. C. Drovandi 769

nt = n0 + ρnnt−1 +
φ+
n

2σ2
n

u2
t Iut≥0 +

φ−
n

2σ2
n

u2
t (1− Iut≥0).

The parameters which we wish to estimate are θ = (p0, n0, ρp, ρn, φ
+
p , φ

+
n , φ

−
p , φ

−
n , σp, σn)

and we assume that μt = 0.

We use the Matlab code available from Bekaert et al. (2015) which uses numerical
integration and differentiation to estimate the likelihood. This procedure makes the
likelihood expensive to evaluate, at 2–4 seconds per single likelihood evaluation on an
Intel Core i7-4790 CPU @ 3.60GHz.

Daily closing prices for the S&P 500 Composite Index for the period 31/12/1989
to 29/7/2016 were obtained from Bloomberg (Bloomberg, 2017). Log returns were cal-
culated and we apply the BEGE model to the resulting dataset of 6690 daily return
observations.

The priors are

p0 ∼ U(10−4, 0.3),

n0, φ
+
p , φ

−
p , φ

−
n ∼ U(10−4, 0.5),

ρp, ρn ∼ U(10−4, 0.99),

φ+
n ∼ U(10−4, 0.005),

σp ∼ U(−0.2, 0.1),

σn ∼ U(10−4, 0.1),

which, in addition to the requirements related to stationarity that ρp +
1
2φ

+
p + 1

2φ
−
p ≤

0.995 and ρn + 1
2φ

+
n + 1

2φ
−
n ≤ 0.995, impose constraints on the parameters. Proposals

made using a RW which do not satisfy the prior constraints are rejected without any
likelihood evaluations which lowers the acceptance probability and therefore inflates
the number of MCMC repeats. On the other hand, it is possible with an IND proposal
to continue drawing candidates without any likelihood or proposal density evaluations
until a candidate which satisfies the constraints is made.

We perform 100 runs using N = 1, 000 particles. For this example, we use beta
marginals and a 2 component MGMM for dependence in the IND proposal. The gold
standard in this example is a long MCMC run with 400,000 iterations, taking a 4,000
iteration burn-in and retaining every 40th sample.

Posterior Inference

The posterior marginals in this example are relatively simple and can be explored with a
RW or IND kernel (see Appendix D for figures), but the RW SMC runs are significantly
more expensive to perform. RW uses on average 3.6 times more log-likelihood evaluations
than IND and the run times are 3.2 times longer.

Posterior median estimates and measures of efficiency are given in Table 3. The
IND proposal outperforms RW before recycling and IND with IP recycling gives the
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best results. This improvement may be related to the increase in the ESS targeting the
posterior. The ESS using only the final N samples is 1,000 whereas CISPP, DeMixPP,
CISIP and DeMixIP result in median ESS values of approximately 2600, 2600, 3700 and
6200, respectively.

GOLD RW IND
MCMC SMC CISPP DeMixPP SMC CISPP DeMixPP CISIP DeMixIP

p0 0.01 1 1.1 1.3 3.9 6.4 6.8 12 16
n0 0.00 1 1.3 1.5 4.2 4.7 6.0 9.5 14
ρp 0.97 1 0.9 1.0 3.5 4.5 5.1 9.4 15
ρn 0.02 1 1.4 1.4 4.3 9.1 9.2 10 9.8
φ+
p 0.03 1 1.2 1.4 4.9 8.3 9.7 16 20

φ+
n 0.13 1 1.3 1.3 3.1 5.6 6.7 15 20

φ−
p 0.00 1 1.6 1.7 4.1 7.7 8.7 18 29

φ−
n 0.89 1 1.2 1.3 3.9 6.6 7.3 14 17
σp −0.16 1 1.1 1.0 3.7 5.9 5.7 10 9.1
σn 0.35 1 1.4 1.4 4.8 7.5 7.3 17 21

Table 3: BEGE example: Gold standard posterior median estimates and efficiency based
on 100 SMC runs for all other estimators. The median estimates are the same as the
gold standard to two decimal places.

Evidence

Boxplots of the logged evidence estimates based on 100 runs are shown in Figure 5,
where it is clear that at least one of the kernel types results in biased SMC and PP
recycling evidence estimates. The PP based estimators are not visibly different to the
standard SMC estimators, whereas the IP estimators which use all candidates are re-
markably precise and are closer to the SMC RW results. Despite the additional density
computations required by DeMixIP, the performance of CISIP and DeMixIP is similar.

Table 4 shows the log estimates of the evidence and their efficiency. The estimators
which use all candidates are the most precise by a large margin.

Method Sampler log Ẑ − 22,098 avg. evals efficiency
RW SMC 1.35 4.8× 105 1.0

CISPP 1.35 ′′ 1.0
DeMixPP 1.35 ′′ 0.98

IND SMC 0.70 1.3× 105 11
CISPP 0.69 ′′ 11

DeMixPP 1.70 ′′ 11
CISIP 1.13 ′′ 835

DeMixIP 1.14 ′′ 1,500

Table 4: BEGE example: Log mean of the estimated evidence and efficiency. Efficiency
is based on VAR rather than MSE.
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Figure 5: BEGE example: Boxplots of 100 log evidence estimates for all combinations
of recycling method and MCMC kernel.

5 Discussion

A flexible independent MCMC proposal for SMC has been developed and the potential
advantages of this approach have been demonstrated. The implementation of indepen-
dent proposals in the SMC context is highly parallelisable and offers the ability to reuse
all MCMC candidates in estimating the posterior and evidence. We have described a
general method for forming these proposals based on modelling the marginals and the
dependence separately, and the specific proposals applied here are based on modelling
dependence through MGMMs. Our results are competitive with the multivariate normal
random walk kernel in the examples presented here, even before recycling is applied. We
find that if the independent proposals cover the tails of the target well, then significant
improvements are achieved by recycling the candidates.

The three factor model in Section 4.1 and the example in Appendix G are appli-
cations with significant posterior complexity that push the boundaries of what can
currently be achieved with our independent proposal. In the example in Appendix G,
the MGMM copula-based independent proposal does not provide sufficient tail coverage
yet we obtain very precise IS estimates of the evidence and we are able to improve the
SE for the lower and upper 95% quantiles using recycling. We found that it is sometimes
possible to detect lack of tail coverage through a small ESS after recycling. However,
finding a proposal which covers the tails remains challenging for complex targets and a
subject which we wish to tackle in further research. Future work may consider a mixture
of student’s t copulas, which models symmetric tail dependence, or defensive mixture
distributions (Hesterberg, 1995), which use a mixture of some approximation qφt of the
target with a sampling distribution that improves tail coverage at the cost of efficiency.
We hope that these examples will motivate further research on this topic to increase
the capabilities of SMC with an independent proposal.

The concept presented in Section 3.1 for transforming the marginal distributions of
a multivariate random variable to approximately N (0, 1) is a powerful tool to allow for
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separate and straightforward modelling of dependence. These transformations may also
be relevant to other proposals, including the multivariate normal random walk proposal.
However, this method relies on a reasonable fit of the chosen marginals and the ability
to simulate from the resulting marginal distributions via the inversion method. If an
analytical expression for the quantile function is not available, the bisection method can
be used to determine the quantiles, though this may require non-negligible computation
time.

The use of independent proposals allows for the novel possibilities of improving
acceptance probability estimates through Rao-Blackwellisation or estimating particle-
specific acceptance probabilities using a computational effort that is similar to only a sin-
gle MCMC iteration on all N particles. For particles {θi

t}Ni=1 and candidates {θj,∗
t }Nj=1,

we can compute the acceptance probability α(θi
t,θ

j,∗
t ), from which we can obtain a Rao-

Blackwellised estimate p̂tacc = 1
N2

∑N
i=1

∑N
j=1 α(θ

i
t,θ

j,∗
t ) or a particle specific estimate

p̂i,tacc = 1
N

∑N
j=1 α(θ

i
t,θ

j,∗
t ) of the acceptance probabilities. These acceptance probabili-

ties can be applied in choosing the number of MCMC repeats. Using a particle specific
number of repeats, Ri

t, removes the restrictive assumption of having a constant probabil-
ity of moving a particle regardless of its location in the parameter space. It may also be
useful to set an upper limit on the number of move steps per particle, Ri

t ≤ Rmax for all
i = 1, . . . , N to ensure that no one particle is assigned a large amount of computational
load.

The candidates from the independent proposals in the empirical studies of Section
4 were drawn using pseudo-random numbers. As a variance reduction technique, the
method known as randomised quasi-Monte Carlo (RQMC, e.g. Cranley and Patterson
(1976)) could be used to improve the CISIP and DeMixIP estimators. Using quasi-
random samples instead of pseudo-random samples in Monte Carlo integration leads
to estimators that have a faster convergence rate, but some randomisation must be
introduced to maintain the unbiasedness property of the estimator.

If some initial approximation of the posterior h(θ) is available, it can be used
as the initial SMC distribution with targets following the geometric path πt(θ|y) ∝
[f(y|θ)π(θ)]γth(θ)1−γt in order to reduce computation (Donnet and Robin, 2017).

Independent proposals were used in SMC here via MCMC proposals in the move step
but independent proposals could be used in the move step in several ways. We describe
an alternative method in Appendix H which is based on skipping the resampling stage
and using independent proposals with an IS correction to diversify the particles. This
method is similar to adaptive importance sampling (e.g. Oh and Berger (1992)) but
with annealing of the targets. This may be a useful alternative but it is harder to
implement in practice due to the difficulty in controlling the weight degeneracy and for
other reasons which are discussed in Appendix H of the Online Resources.

In general, the proposed methods for applying independent MCMC kernels in SMC
and reusing all candidates have performed well in comparison to the multivariate nor-
mal random walk kernel. Order of magnitude improvements in the ESS targeting the
posterior can be achieved using these independent proposals, and the proposed evidence
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estimators can lead to substantial improvements over existing estimators. However, our
results also suggest that further research in this area is required.

Supplementary Material

Supplementary Material: Sequential Monte Carlo Samplers with Independent Markov
Chain Monte Carlo Proposals (DOI: 10.1214/18-BA1129SUPP; .pdf).
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