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Semiparametric Multivariate and Multiple
Change-Point Modeling

Stefano Peluso∗, Siddhartha Chib†, and Antonietta Mira‡

Abstract. We develop a general Bayesian semiparametric change-point model in
which separate groups of structural parameters (for example, location and disper-
sion parameters) can each follow a separate multiple change-point process, driven
by time-dependent transition matrices among the latent regimes. The distribution
of the observations within regimes is unknown and given by a Dirichlet process
mixture prior. The properties of the proposed model are studied theoretically
through the analysis of inter-arrival times and of the number of change-points in
a given time interval. The prior-posterior analysis by Markov chain Monte Carlo
techniques is developed on a forward-backward algorithm for sampling the vari-
ous regime indicators. Analysis with simulated data under various scenarios and
an application to short-term interest rates are used to show the generality and
usefulness of the proposed model.

Keywords: Bayesian semiparametric inference, Dirichlet process mixture,
heterogeneous transition matrices, interest rates.
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1 Introduction

Multiple change-point models allow for changes of model distributions at multiple,
unknown, time points. These models have been intensively studied in statistics and
econometrics over the last several years. The earliest Bayesian change-point models are
explored by Chernoff and Zacks (1964), who assume a constant probability of regime
change, and by Smith (1975), who investigate the single change-point model under
the assumption of exchangeable intra-regime observations and inter-regime indepen-
dence. The Bayesian approaches usually model the change-point as a stochastic process
and conduct inference through Markov chain Monte Carlo (MCMC) algorithms (Carlin
et al. 1992; Albert and Chib 1993 among many others) or through the reversible jump
MCMC (Green 1995; Green and Mira 2001). Other recent papers on Bayesian change-
point problems include Giordani and Kohn (2008); Pesaran et al. (2006); Maheu and
Gordon (2008); Geweke and Jiang (2011).

Our aim is to extend the literature by proposing a new model in which groups of
structural parameters (for example location and dispersion parameters) are subject to
change-points at different times. Both the number and locations of the change-points
are unknown, and are estimated separately for each group of parameters. Our model
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takes advantage of the widely used formulation of Chib (1998), where the change-point
modeling is in terms of a latent discrete state variable that follows a unidirectional
Markov process and indicates the regime from which a particular observation has been
drawn. In applying this formulation to the proposed model, our multivariate change-
point process is described by p latent state variables, one for each group of structural
parameter, where each state variable evolves in the manner of the Chib (1998) model.
To achieve some further flexibility in the evolution of these state variables we assume
that the transition matrix (one for each state variable) depends on time. Thus, the
change-point probability depends not only on the regime between two adjacent change
points, but also, realistically, on time. In addition, to robustify the distribution of the
outcomes we suppose that the prior distribution of each group of structural parameters
is unknown and model each prior distribution by a separate Dirichlet process (DP) prior.
The Dirichlet concentration parameters are state-dependent and inferred from the data,
so that the extent to which estimates deviate from the base parametric measures can
differ among groups of structural parameters. We refer to this model as a Bayesian
semiparametric multivariate multiple change-point model.

All the model features above have practical relevance in our motivating financial
application where we provide a semiparametric Bayesian analysis of a model of short-
term risk-less interest rates in which a) the conditional mean and variance are subject
to separate change-points b) the probability of regime changes is time-dependent and
c) the distribution of the data is heavy-tailed and skewed. We show that our Bayesian
semiparametric multivariate multiple change-point model produces improved inferential
results and better predictions.

Surveys of related frequentist semiparametric and nonparametric change-point mod-
eling are given by Brodsky and Darkhovsky (1993) and Chen and Gupta (2011). Within
the Bayesian semiparametric literature, Muliere and Scarsini (1985) extend Smith (1975)
to two independent DPs on the conditional distributions of the observations and for
two different regimes, separated by an independent random change-point. Such inde-
pendence assumptions were subsequently relaxed by Mira and Petrone (1996) through a
mixture of products of DPs that introduces dependence among the two regimes. Barry
and Hartigan (1992, 1993); Quintana and Iglesias (2003); Loschi et al. (2003); Loschi
and Cruz (2005) and Martinez and Mena (2014) propose a different approach for change-
point models, based on random partition distributions, whilst Park et al. (2012) present
a Bayesian Poisson change-point regression model with a nonparametric step function
as baseline rate.

Closer to our approach, Ko et al. (2015) and Maheu and Yang (2015) use the hi-
erarchical DP to model the rows of the transition matrix of the regimes. DPs on both
structural parameters and latent transition matrix are implemented in change-point
models by Dufays (2016). This last framework is extended to multivariate change-points
in Bauwens et al. (2015), following the lines of the parametric model of Eo (2012). We
differ from the other approaches, since we model the prior distributions of the struc-
tural parameters as DPs, letting the state indicator of the regimes follow Chib (1998).
This allows for greater parsimony, while still permitting recurrence of regimes and an
unknown number of regime changes. With no DPs on transition rows, we further de-
tach from the framework of the infinite hidden Markov model of Teh et al. (2006):
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the hierarchical DP structure on the transition rows potentially allows for an infinite
number of change-points, a property that in finite sample sizes shows its usefulness in
the possibility of not specifying a priori the number of regime changes. The price we
pay is that we need to specify a maximum number of regimes. Furthermore, with the
exception of Bauwens et al. (2015), in the mentioned works all structural parameters
follow the same change-point process, whilst we distinguish different types of regimes
for different structural parameters. Finally, we contribute to the extension of existing
approaches through the introduction of more realistic heterogeneous time-dependent
latent transition matrices, a property that can be important as we show in simulation
experiments. By being anchored to the Chib (1998) model, the proposed semiparamet-
ric multivariate multiple change-point model still keeps the attractive feature of being
completely tractable MCMC techniques.

The rest of the paper is organized as follows. We introduce the model and study its
properties in Section 2, with focus on interarrival times and number of change-points,
respectively in Section 2.2 and 2.3. Posterior sampling of change-points and structural
parameters are discussed in Sections 3.1 and 3.2. The algorithm is applied in Section 4
to simulated data: in Section 4.1, we omit, one at the time, the different components of
the proposed model, to informally gauge the relevance of each component; in Section 4.2
we stress the robustness of our method in the face of heavy-tailed data and skewness;
finally we implement and compare our method on autocorrelated data in Section 4.3 and
in terms of prediction performance in Section 4.4. We present the empirical application
to short-term riskless rates in Section 5 and finally provide summary comments in
Section 6, highlighting avenues for further work. Proofs of propositions and corollary
are available in Supplementary Material (Peluso et al., 2018). All the codes, available
upon request, have been written in the R programming language and run on a PC with
core i7-7500U CPU @ 2.70GHz.

2 Model

2.1 Introduction to the Model

Let YT := (y1, y2, . . . , yT ) denote the observed time series, and let p(yt|Yt−1, ξt) denote
the conditional distribution of yt given the history Yt−1 and time-specific parameters
ξt = (ξ1t, . . . , ξpt). In a univariate multiple change-point model, ξt changes at latent
time points τ1, . . . , τm, so that ξt = θj for all t ∈ [τj−1, τj). The modeling of the distinct
values θj , for j = 1, . . . ,m, is given by a prior distribution F :

yt|Yt−1, ξt ∼ p(yt|Yt−1, ξt),

ξt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1 if t < τ1
θ2 if τ1 ≤ t < τ2
...
θm+1 if τm ≤ t ≤ T

, (1)

θj |F ∼ F, j = 1, . . . ,m+ 1.
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The Chib (1998) model is a conceptually and computationally useful reparameter-
ization of this change-point model. The model is defined in terms of a state variable
that follows a uni-directional Markov process. Specifically, let st denote a discrete-time
discrete-state latent state variable that takes values {1, 2, . . . ,m + 1} such that st = j
means that the structural parameter at time t belongs to the j-th regime. Next, suppose
that this state variable is Markovian, and that it can either stay in the current state or
move to the next higher state with transitions governed by the probabilities

p(st+1 = j + 1|st = j) = 1− p(st+1 = j|st = j) = 1− wj .

Thus, transitions of this state variable from one state to the next higher state isolate
the change-points (τ1, . . . , τm).

Now suppose that the structural parameters are grouped as ξt = (ξ1t, . . . , ξpt),
where each group of parameters ξit (i ≤ p) changes at idiosyncratic latent time points
τi,1, . . . , τi,mi . Then, ξit = θij for all t ∈ [τi,j−1, τi,j). Following the preceding Chib
(1998) model, we introduce p discrete-state, discrete time state variables {sit}, one for
each group of structural parameter, such that sit = j now indicates that the i-th struc-
tural parameter at time t belongs to the j-th regime, and let each state variable progress
as above. To achieve further flexibility in the unidirectional evolution of these state vari-
ables we assume that the transition matrix (one for each state variable) depends on time,
so that, for i = 1, . . . , p,

p(sit+1 = j + 1|sit = j) = 1− p(sit+1 = j|sit = j) = 1− wi
j,t.

Then 1−wi
j,t denotes the probability that the i-th structural parameter moves from the

j-th regime at time t to the (j + 1)-th regime at time t+ 1. For brevity, we denote the
change-point process driven by the heterogeneous transition matrices formed by wi

j,t as

(τi1, . . . , τimi) ∼ P
({

wi
j,t

})
.

We complete the model with a prior Fi on θij and on wi
j,t. Instead of assuming that

each Fi is parametric, we assume that Fi, i = 1, . . . , p, are unknown. We model these
unknown distributions by separate DP priors. More specifically, we suppose that Fi ∼
DP (MiFi0), where Mi is the concentration parameter and Fi0 is the base distribution
function. Thus, under this formulation, the distribution of the observations within each
regime is a DP mixture (Lo 1984).

Summarizing, our multivariate-multiple change model can be written, for t = 1, . . . , T
and i = 1, . . . , p, as

yt|Yt−1, ξt ∼ p(yt|Yt−1, ξt),

ξit =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θi1 if t < τi1
θi2 if τi1 ≤ t < τi2
...
θi,mi+1 if τi,mi ≤ t ≤ T

, (2)

θij |Fi ∼ Fi, j = 1, . . . ,mi + 1,

Fi ∼ DP (MiFi0).



S. Peluso, S. Chib, and A. Mira 731

2.2 Interarrival Times

We now derive some theoretical properties of our model. Here we focus on the implied
prior probabilities of interarrival times and the distribution of the number of change-
points. As a benchmark, we derive the equivalent results assuming that the transition
matrix is time-homogeneous. Note that a priori

(τ11, . . . , τ1m1), . . . , (τp1, . . . , τpmp)

are independent, so that the analysis in the present subsection can ignore the multivari-
ate nature of change-points: we can focus on the generic multiple change-points sequence
(τi1, . . . , τimi), and suppress from all relevant quantities the notational dependence on i.

At time t = 1, no change-point can occur and st = 1. Define this first time point,
immune to change by construction, as k0, so that τ1 > k0. In the time-homogeneous case,
the transition matrix among the latent regimes is P = (wij), where wij is the probability
(independent of time). Suppose that the single free element in each row of P is given
a Beta prior distribution, wii ∼ Beta(α, β) and wi,i+1 = 1 − wii for i = 1, . . . ,m,
wm+1,m+1 = 1 and all other elements of the matrix are null. It is important to realize
that the bi-diagonal nature of the transition matrix is not restrictive in any way, because
subsequent states may refer to distributions of previous regimes. Then, in the time-
homogeneous setting, p(τ1 = k0+k1|P ) = (1−w11)w

k1−1
11 , so that τ1−k0 ∼ Geo(1−w11),

conditionally on the transition matrix. Unconditionally,

p(τ1 = k0 + k1) =
B(α+ k1 − 1, β + 1)

B(α, β)
.

Similarly, still in the same setting but with multiple change-points τ1, . . . , τr, for any
r ≤ m and conditionally on P , the r-th interarrival time is Geo(1−wrr), whilst, once the
transition matrix is marginalized out, the joint distribution of the interarrival times and
the distribution of the r-th interarrival time given the previous ones are, respectively,

p(τ1 − τ0 = k1, τ2 − τ1 = k2, . . . , τr − τr−1 = kr) =

∏r
j=1 B(α+ kj − 1, β + 1)

B(α, β)r
,

p(τr − τr−1 = kr|τr−1 − τr−2 = kr−1, . . . , τ1 − τ0 = k1) =
B(α+ kr − 1, β + 1)

B(α, β)
,

where we have defined τ0 = k0. We stress that, even if the number of change-points
is bounded above by m, the interarrival times can assume any integer value lower or
equal to m: a realized r-th interarrival time, r ≤ m, inducing a change-point beyond
the sample size, means that only r − 1 change-points actually occurred in the sample.

To ease the analysis of the proposed model, denote

k′j :=

j∑
i=1

ki. (3)
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Proposition 1. The probability mass function of the r-th interarrival time in Model
(2), conditionally to previous interarrival times and to transition probabilities, is

p(τr − τr−1 = kr|τr−1 − τr−2 = kr−1, . . . , τ1 − τ0 = k1) = (1− wr,k′
r
)

k′
r−1∏

t=k′
r−1+1

wr,t.

In words, if the transition matrix is time-homogeneous, then the interarrival times
are independent of each other, since the realization of the generic j-th interarrival time
does not depend on the previous interarrivals. On the other hand, in the proposed model
the time-dependent transition matrices create a dependence among interarrival times,
more precisely a Markov dependence between an interarrival time and the previous one.
Identical distributions of the transition matrices can be obtained as a special case if we
choose wj,t ∼ Beta(α, β) for all j and t. If we further assume that wj,t = wj,t′ for all t
and t′, homogeneity is restored and it is possible to show that the j-th interarrival time
τj − τj−1 ∼ Geo(α/(α+ β)).

Corollary 1. Fix wj,t ∼ Beta(αt, βt) for all j = 1, . . . , r. Then, the probability mass
function of the r-th interarrival time in Model (2), conditionally to previous interarrival
times, is

p(τr − τr−1 = kr|τr−1 − τr−2 = kr−1, . . . , τ1 − τ0 = k1)

=

(
1−

αk′
r

αk′
r
+ βk′

r

) k′
r−1∏

t=k′
r−1+1

αt

αt + βt
.

2.3 Number of Change-Points

To study the number of change-points, define the stochastic process {Nt} as

Nt := {# of change-points in {1,2,. . . ,t}}.

To simplify the notation in the present subsection, we impose m = T , a maximum
number of change-points fixed equal to the number of observations. This is a choice
that avoids any restriction to the number of regimes. Similar results can be obtained
for m < T , with truncated versions of the formulas below. If the transition probability
from one latent state to the next one is not dependent on the current latent regime, i.e.
wii = w for all i, clearly Nt|p ∼ Bin(t − 1, 1 − w), and the beta prior on w implies a
beta-binomial distribution for the number of change-points:

P (Nt = x) =

(
t− 1

x

)
B(α+ x, β + t− 1− x)

B(α, β)
,

with an expected number of change-points in {1, . . . , t} of E(Nt) = (t−1)β/(α+β). Chib
(1998) generalizes from beta-binomial distributed number of change-points to regime-
dependent transition probabilities, collected in the transition matrix P . Therefore, in
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the time-homogeneous case,

Nt|P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, wt−1
11

1, wt−2
11 (1− w11) + wt−3

11 (1− w11)w22 + · · ·+ (1− w11)w
t−2
22

...

x,
∑

Ωx,t

∏x+1
i=1 w

ki1x≥i−1

ii (1− wii)
1x>i−1

...

t− 1,
∏t−1

i=1(1− wii)

,

where Ωx,t := {k1, . . . , kx+1 :
∑

j kj = t− 1− x}. Unconditionally, the previous expres-
sion can be written as

P (Nt = x) =
1

B(α, β)x+1

∑
Ωx,t

x+1∏
i=1

B(α+ ki1x≥i−1, β + 1x>i−1).

Proposition 2. Fix wit ∼ Beta(αt, βt) for all t ≤ T . In Model (2) the number of
change-points in [1, t] for a fixed t follows the distribution

P (Nt = x)

=
1∏t−1

i=1 B(αiβi)

∑
k1

· · ·
∑
kx

⎧⎨
⎩

x∏
j=1

⎡
⎣B(αkj , βkj + 1)

∏
k∈(kj−1,kj)

B(αk + 1, βj)

⎤
⎦ ·

t−1∏
j=ix+1

B(αj + 1, βj)

⎫⎬
⎭ (4)

Remark 1. Fixing αt = α, βt = β for all t, the number of change-points Nt simplifies to
a binomial random variable with parameters t−1 and β/(α+β). Prior information are
reflected in the choice of αt and βt: βt/(αt+βt) can be considered as the prior probability
of observing a change-point at time t, conditionally to the absence of change-points
before t. This implies an expected number of change-points in [1, t] of

∑t−1
i=1{βi/(αi +

βi)
∏i−1

j=1 αi/(αi + βi)}. Larger deviations from this average probability are accepted as
reasonable for lower values of αt and βt.

3 Posterior Sampling

3.1 Posterior Sampling of Change-Points

We use the upper-case for defining sequence of random variables up to the subscript, for
instance Yt := (y1, . . . , yt). Recall that w

i
j,t is the prior probability for the i-th structural

parameter to move from the j-th regime at time t to the (j+1)-th regime at time t+1.
Starting from p = 1, that is with all regimes parameters moving according to common
change-points, ST = (s1, s2, . . . , sT ) is sampled following Chib (1996), exploiting the
decomposition of p(ST |YT , θ) in

p(sT |YT , θ)× p(sT−1|YT , sT , θ)× · · · × p(st|YT , S
t+1, θ)× · · · × p(s1|YT , S

2, θ), (5)
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where θ := (θ1, . . . , θm+1) and St := (st, st+1, . . . , sT ). If st+1 = k + 1, st is restricted
to be equal to k or k + 1, then the term p(st|YT , S

t+1, θ) in (5) is

p(st = k|YT , S
t+1, θ) ∝ p(st = k|Yt, θ)p(st+1|st = k, θ)

= p(st = k|Yt, θ)(1− wk,t).

Note that we can write p(st = k|Yt, θ) ∝ p(st = k|Yt−1, θ)p(yt|Yt−1, θk), where

p(st = k|Yt−1, θ) =

m+1∑
i=1

p(st = k|st−1 = i)p(st−1 = i|Yt−1, θ)

= wk,t−1p(st−1 = k|Yt−1, θ) + (1− wk−1,t−1)p(st−1 = k − 1|Yt−1, θ).

At time t = 1, p(st = k|Yt−1, θ) = p(s1 = k|θ), with all the mass concentrated on
s1 = 1. Repeated updating and forecasting forward in time allow the computation of
the generic p(st = k|YT , S

t+1, θ) in (5), starting from the last term p(sT = k|YT , θ).
Then, proceeding backwards, all the terms in (5) can be obtained. Finally, we recover
τ from the sampled ST .

It is relevant to stress that m1 (m2) does not represent a number of change-points
in the location (variance) parameter fixed in advance, but it is only the maximum num-
ber of change-points that can occur: s1,T ≤ m1 + 1 and s2,T ≤ m2 + 1, and when the
inequalities are strict, the number of change-points effectively sampled is less than m1

and m2. Therefore, the methodology proposed does not restrict to a fixed number of
change-points. From the posterior samples of S1,T and S2,T we can recover the esti-
mated number of change-points: in each Gibbs iteration the final values of the processes
indicating the regimes, s1,T and s2,T , are respectively the extracted number of change-
points for the first and second structural parameter, from which we can derive joint and
marginal posterior distributions.

3.2 Posterior Sampling of Structural Parameters

Assume for the moment that the change-points are univariate, that is all regime-
specific parameters move according to common change-points (p = 1). For sampling θ,
when p(yt|Yt−1, θ) and F0(θ) are conjugate, Algorithm 2 in Neal (2000) can be slightly
modified to be applied in our context. Consider θ∗ as the distinct values in θ and
c = {c1, . . . , cm+1} as the clustering configuration: ci = j tells that θi belongs to the
j-th cluster, that is, θi = θ∗j . Sampling of θ is conducted through sampling of θ∗ and c.
In particular, defining c−i := {c1, . . . , ci−1, ci+1, . . . , cm+1}, c is sampled one element at
the time according to

p(ci = c|YT , ST , c−i, θ
∗) ∝ m−i,c

m+M

∏
t∈(i)

p(yt|Yt−1, θ
∗
c ) if some cj = c, j �= i,

p(ci �= cj |YT , ST , c−i, θ
∗) ∝ M

m+M

∫ ∏
t∈(i)

p(yt|Yt−1, θ)dF0(θ) for all j �= i, (6)
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where m−i,c = |{j ∈ {1, . . . ,m + 1} : θj = θ∗c , j �= i}| is the number of elements in
θ−i equal to θ∗c and (i) = {t ∈ {1, . . . , T} : ξt = θi} is the set of times belonging to the
i-th regime. Once c is given, θ∗ is sampled element wise with probability proportional
to the prior F0, updated with all the data belonging to those regimes which share the
same structural parameters:

p(θ∗i = u|YT , ST , c) ∝
∏

{j:cj=i}

∏
t∈(j)

p(yt|Yt−1, u)dF0(u). (7)

Note that when p(yt|Yt−1, θ) and F0(θ) are not conjugate, sampling of θ can be
performed under similar considerations, with Algorithm 8 of Neal (2000) replacing the
Algorithm 2 mentioned above. Furthermore, the extension to separate change-points for
different parameters (p > 1) can be handled. For instance, if ξt = (ξ1t, ξ2t) = (μ, σ2),
then μ|YT , S1,T , S2,T , σ

2 and σ2|YT , S1,T , S2,T , μ each follows the scheme above.

Finally, we highlight that, when the sampled latent processes S1,T and S2,T , indicator
of the regimes, show a number of change-points that is less than the maximum allowed,
all the remaining structural parameters (corresponding to the regimes not sampled) are
drawn from their priors, following the jump method of Carlin and Chib (1995).

4 Simulated Examples

4.1 Gaussian Independent Data

We first apply our methodology to simulated Gaussian data, with fixed structural pa-
rameters and change-points in the conditional mean and standard deviation. One of
the generated samples is depicted in the top left plot of Figure 1: a sample of size
T = 400, with 3 change-points in the mean and 3 in the standard deviation occur-
ring at time points (τ11, τ12, τ13) = (100, 200, 300) and (τ21, τ22, τ23) = (122, 223, 325),
and with structural parameters equal to (θ11, θ12, θ13, θ14) = (0.5, 1, 0.25, 0.75) and
(θ21, θ22, θ23, θ24) = (0.3, 0.6, 0.15, 0.45). Change-points are highlighted by the vertical
lines in the plot.

Our full model, denoted FullMod, is summarized, for t = 1, . . . , T and for i = 1, 2 as

yt|ξt ∼ N(yt|ξ1t, ξ2t),

ξit =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θi1 if t < τi1
θi2 if τi1 ≤ t < τi2
...
θi,mi+1 if τi,mi ≤ t ≤ T

,

θij |Fi ∼ Fi, j = 1, . . . ,mi + 1,

F1 ∼ DP (M1 ·N(·|μ0, λ
2)), F2 ∼ DP (M2 · IG(·|ασ, βσ)),

(τi1, . . . , τimi) ∼ P
({

wi
j,t

})
,

where N(·) and IG(·) are, respectively, the Gaussian and Inverse Gamma distributions.
The hyperparameters are fixed to μ0 = 0, λ = 1, ασ = 1, βσ = 1, wi

j,t ∼ Beta(1, 1)
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Figure 1: Independent Gaussian simulation study, 40 simulated datasets. Top left: simu-
lated sample with three change-points in the mean (vertical continuous lines) and three
change-points in the standard deviation (vertical dashed lines). Top right: posterior
probabilities of s1t = k, for k = 1, . . . , 4 and t = 1, . . . , 400. Bottom left: posterior
probabilities of s2t = k, for k = 1, . . . , 4 and t = 1, . . . , 400. Bottom right: posterior
probabilities of st = k, for k = 1, . . . , 7 and t = 1, . . . , 400, for multiple univariate
change-points simultaneously in mean and standard deviation.

for all i, t and j < mi and wi
mi,t = 1 for all i, t. Note that all priors are centered on

values distant from the true ones, since we actually want to test if the proposed model
is able to correct for prior information not necessarily coherent with the data. The
concentration parameters M1 and M2 have a Gamma(0.05, 0.0001) prior, centered on a
highly noninformative value, and are sampled a posteriori following Escobar and West
(1995). Finally, we always start the algorithm with no change-points for the structural
parameters.
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We run the algorithm for posterior sampling proposed in Section 3 for a total number
of iterations N = 1000, of which the first N/2 are discarded as burn-in, over K = 40
simulated datasets. In the top right and in the bottom left plots of Figure 1 we report the
posterior probabilities that s1t, the latent regime for the conditional mean, is equal to
k = 1, . . . ,m1+1 and that s2t, the latent regime for the conditional standard deviation, is
equal to k = 1, . . . ,m2+1, for t = 1, . . . , T , averaged over the K simulated datasets and
for fixed values of m1 = 3, m2 = 3. It is clear that the proposed multivariate algorithm
perfectly identifies all the change-points, properly distinguishing between changes in
mean from changes in variance. Furthermore, we correctly identify the unknown number
of regimes: the posterior marginal distributions for the number of mean regimes and for
the number of variance regimes are correctly centered on the true values.

To highlight the importance of the single features of the proposed multivariate
change-point model (multivariate change-point process, random structural parameters
distributions, heterogeneous transition matrices), we compare, for equal hyperprior val-
ues and starting points, FullMod with alternative models having specific features turned
off: a) model UniMod, with a single change-point process, so that conditional variances
and means have common univariate change-points, b) model NoDpMod, with structural
parameters θ drawn from a fixed, and not from a random DP, distribution, c) model No-
HetMod with transition matrices among latent states homogeneous over time, d) model
CauchyMod, where structural parameters θ are drawn from a fixed distribution, with, in
particular, the variance following a priori the half-Cauchy distribution (see Polson and
Scott 2012), characterized by tails fatter than those in the Inverse Gamma distribution.

In more details, the univariate model UniMod can be written in hierarchical form
as

yt|ξt ∼ N(yt|ξ1t, ξ2t),

(ξ1t, ξ2t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(θ11, θ21) if t < τ1
(θ12, θ22) if τ1 ≤ t < τ2
...
(θ1,m+1, θ2,m+1) if τm ≤ t ≤ T

,

θij |Fi ∼ Fi, j = 1, . . . ,mi + 1,

F1 ∼ DP (M1 ·N(·|μ0, λ
2)), F2 ∼ DP (M2 · IG(·|ασ, βσ)),

(τ1, . . . , τm) ∼ P ({wj,t}) ,

whilst model NoDpMod can be represented as FullMod, with the exception that θij |Fi

and Fi in FullMod are replaced by

θ1j ∼ N(·|μ0, λ
2), θ2j ∼ IG(·|ασ, βσ).

Model NoHetMod replaces the last row in FullMod with

(τi1, . . . , τimi) ∼
m∏
j=1

B(α+ τj − τj−1, β + 1)/B(α, β)m,
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where the change-points are implied by latent processes and transition matrices sampled
as in Chib (1998). Finally, model CauchyMod retraces model NoDpMod, but with a
fat-tails half-Cauchy prior for the standard deviation structural parameters, for j =
1, . . . ,m2, proportional to 1/(1 + θ2j).

For all models under comparison, we run the Gibbs samplers for N iterations (whose
N/2 discarded as burn-in), over the same K simulated datasets. For the algorithm
with univariate change-points (model UniMod), the results on the regime posterior
probabilities are reported in the bottom right plot of Figure 1. The univariate algorithm
is not able to identify all the change-points, missing one change-point in the mean and
two change-points in the variance. Every mean change-point is closely followed by a
variance change-point, therefore a unique sampling step for both types of change-points
makes the inferential problem more complicated, since the structural parameters of
the regime between every two close change-points can rely on few data. For the Gibbs
sampler of model NoDpMod, top left and right plots in Figure 2 show that the removal
of the DP random distribution for the structural parameters causes some estimation
problem in the variance change-points, whilst change-points in the mean are correctly
identified. On average the model identifies the correct variance change-points, but with
much lower posterior probabilities. The weakness of model NoDpMod is solved by the
variance prior with fatter tails in the parametric model CauchyMod in Figure 3. Finally,
the sampling algorithm for NoHetMod in bottom left and right plots of Figure 2 does
not correctly identify the conditional mean change-points, whilst it is able to find the
variance change-points, but with low posterior probabilities.

The performance of all models on the estimation of the structural parameters and
of mean and variance change-point identification is summarized in Table 1, for various
scenarios on the allowed maximum number of change-points. We let (m1,m2), ranging
in {(3, 3), (10, 3), (3, 10), (10, 10)}, to test the robustness of the results to different speci-
fications of m1 and m2. Root Mean Square Errors are reported, separated for mean and
variance structural and change-point parameters. For instance, at the row denoted with

θ1, is reported the quantity 1
K

∑K
k=1

√∑m1

j=1(θ̂
(k)
1j − θ1j)2, in which θ1j is the true mean

structural parameter of the jth regime, and θ̂
(k)
1j is the corresponding estimate in the kth

dataset, and similarly for the other parameters. There is a clear distinction among the
competing models as far as estimation of the regime means is concerned: models FulMod
and CauchyMod perform well, with no clear ranking between the two: FulMod seems to
better infer the mean structural parameters and the mean change-points, whilst Cauchy-
Mod has a better performance on the variance parameters, and there is no majority of
scenarios in which one model prevails on the other. Models NoDpMod, NoHetMod and
UniMod are more distant from the true parameter values. In the sequel, we focus on the
comparison between FullMod and CauchyMod, omitting for brevity the results related
to the other models, since those are the two best performing models.

4.2 Mispecified Heavy Tails and Skewness

We test the robustness of the simulation results to model mispecifications that do not
account for heavy tails and skewness in the data generating mechanism. We first generate
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Figure 2: Independent Gaussian simulation study, 40 simulated datasets. Top left: pos-
terior probabilities of s1t = k, for k = 1, . . . , 4 and t = 1, . . . , 400, for model NoDpMod
without structural parameters DP random distribution. Top right: posterior probabil-
ities of s2t = k, for k = 1, . . . , 4 and t = 1, . . . , 400, for model NoDpMod without
structural parameters DP random distribution. Bottom left: posterior probabilities of
s1t = k, for k = 1, . . . , 4 and t = 1, . . . , 400, for model NoHetMod without heteroge-
neous change-points. Bottom right: posterior probabilities of s2t = k, for k = 1, . . . , 4
and t = 1, . . . , 400, for model NoHetMod without heterogeneous change-points.

the data from a t-Student with 3 degrees of freedom, with location and scale given by

the structural parameters in the previous sections, and with the same change-point

locations. The models we compare are FullMod and CauchyMod, as presented in the

previous subsection. The values of m1 and m2 are fixed to their true values, namely

3 and 3, but also alternative scenarios with (m1,m2) ∈ {(10, 3), (3, 10), (10, 10)} are
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Figure 3: Independent Gaussian simulation study, 40 simulated datasets. Left: posterior
probabilities of s1t = k, for k = 1, . . . , 4 and t = 1, . . . , 400, for model CauchyMod
without structural parameters DP random distribution and half-Cauchy variance prior.
Right: posterior probabilities of s2t = k, for k = 1, . . . , 4 and t = 1, . . . , 400, for model
CauchyMod without structural parameters DP random distribution and half-Cauchy
variance prior.

analyzed, to measure the impact of a change in the allowed maximum number of change-
points. The estimation of structural parameters and change-point locations for mean
and variance are reported in the second and third column of Table 2 (Full-H and
Cauchy-H ). The conclusions are similar for both the models under study: there is some
deterioration in the estimation of the structural parameters, relative to the i.i.d. case,
all change-point locations are correctly identified (results omitted for brevity) and there
is no clear ranking between the two models.

To test the robustness of the proposed model to mispecified skewed data, we gen-
erate the sample from a skew-normal distribution (Azzalini, 2013), with location and
scale fixed to the structural parameters of the previous section, and with asymmetry
parameter equal to 4, which is an average case among the simulation settings pre-
sented in Chapter 2 of Azzalini (2013). The performance of FullMod and CauchyMod
are reported, for the structural parameters and for change-point locations, in Table 2
(columns Full-S and Cauchy-S ), from which we see that FullMod performs better: the
heavy-tailed half-Cauchy prior is able to react to the mispecification induced by data
with heavy tails, but not to skewed data.

4.3 Autocorrelated Scenarios

We now introduce autocorrelation in the generated data and into the models FullMod
and CauchyMod. Therefore the hierarchical structure of FullMod can be written as

yt|ξt ∼ N(yt|ξ1t + ξ2tyt−1,
√

ξ3t),
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RMSE FullMod CauchyMod NoHetMod NoDpMod UniMod
(m1,m2) = (3, 3)

θ1 0.9488 0.5037 1.3039 0.3231 1.1087
θ2 0.4907 0.1146 1.8357 0.4418 2.2416
τ1 68.8422 31.3566 81.9368 22.0065 218.3378
τ2 27.1280 15.5053 42.6697 71.7657 218.3378

(m1,m2) = (10, 3)
θ1 0.0658 0.3462 0.9261 0.1128 -
θ2 0.3484 0.4711 1.1628 0.7572 -
τ1 3.5803 51.0688 55.5649 12.1835 -
τ2 117.3375 245.5747 82.1960 176.4352 -

(m1,m2) = (3, 10)
θ1 0.2838 0.6861 0.6185 0.6576 -
θ2 0.6503 0.1011 1.5694 0.3741 -
τ1 60.9658 203.9357 101.5693 193.1653 -
τ2 35.7168 16.5521 66.7635 71.3163 -

(m1,m2) = (10, 10)
θ1 0.3711 0.6467 0.5622 0.6663 0.5754
θ2 0.4588 0.4521 1.8970 0.7483 0.7069
τ1 87.2464 217.0935 66.1152 209.9879 99.5400
τ2 107.1734 232.5288 156.7875 171.1133 99.5400

Table 1: Estimation performances in the independent Gaussian simulation study. Root
Mean Square Errors are reported, for the structural parameters θ1 and θ2, and for the
mean and variance change-point locations τ1 and τ2, with true values m1 = 3, m2 = 3,
averaged over 40 simulated datasets.

(ξ1t, ξ2t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ11 if t < τ11
θ12 if τ11 ≤ t < τ12
...
θm1+1 if τm1 ≤ t ≤ T

, ξ3t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ21 if t < τ21
θ22 if τ21 ≤ t < τ22
...
θm2+1 if τm2 ≤ t ≤ T

,

θij |Fi ∼ Fi, j = 1, . . . ,mi + 1,

F1 ∼ DP (M1 ·N(·|μγ , Vγ)), F2 ∼ DP (M2 · IG(·|ασ, βσ)),

(τi1, . . . , τimi) ∼ P
({

wi
j,t

})
,

where, for a sample size T = 240, we have fixed one change-point for θ1 at t = 120, and
two change-points for θ2 at times 80 and 160, in order to have a simulation setting where
the two structural parameters have a different number of change-points. The location
structural parameter changes from (0, 0)′ to (2, 0.3)′, whilst the variance structural
parameter changes from 3 to 0.125 and then to 3.5. Hyperprior parameters are chosen
to have diffuse prior distributions for θ1 and θ2: μγ = (0, 0)′, Vγ = 10I2, where I2 is the
2-by-2 identity matrix, ασ = βσ = 0.1.

The scenarios considered are averaged over K = 40 artificial datasets, and maximum
number of change-points, m1 and m2, span in {(1, 2), (10, 2), (1, 10), (10, 10)}. A Gibbs
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RMSE Full-H Cauchy-H Full-S Cauchy-S Full-C Cauchy-C
(m1,m2) = (3, 3) (m1,m2) = (1, 2)

θ1 0.8214 0.1518 0.7510 1.1234 (0.16,0.09) (0.19,0.10)
θ2 1.5745 2.3615 0.7937 0.3065 0.6716 0.9168
τ1 63.5750 12.3639 32.5520 69.6523 32.4992 32.7980
τ2 62.8552 88.4939 33.1680 51.2301 3.4710 6.0634

(m1,m2) = (10, 3) (m1,m2) = (10, 2)
θ1 0.4552 0.2466 0.5030 0.9784 (0.20,0.10) (0.17,0.10)
θ2 1.7625 1.4472 0.3512 0.4956 2.1517 3.1494
τ1 48.1766 23.4285 6.0977 114.4956 43.1919 33.9257
τ2 175.7571 258.6519 102.7696 225.9175 73.4370 103.9039

(m1,m2) = (3, 10) (m1,m2) = (1, 10)
θ1 1.6263 1.2585 0.9025 1.1140 (0.19,0.08) (0.20,0.09)
θ2 2.0725 7.9320 0.6370 0.3361 0.8052 0.8677
τ1 144.2693 201.1020 81.2992 182.7112 32.9816 190.8363
τ2 71.1654 41.1893 36.5586 31.5398 4.6904 6.3036

(m1,m2) = (10, 10) (m1,m2) = (10, 10)
θ1 1.0033 1.1392 0.7567 1.0752 (0.20,0.11) (0.22,0.11)
θ2 1.7180 1.3801 0.4180 0.4812 2.4276 3.1172
τ1 137.5777 220.6925 72.5450 196.6619 356.4523 555.1267
τ2 157.4713 227.5572 94.2336 232.8854 81.6437 107.9413

Table 2: Estimation performances in the simulation study with heavy tails (columns Full-H and Cauchy-H ), skewness (columns
Full-S and Cauchy-S ) mispecifications and with autocorrelated times series (columns Full-C and Cauchy-C ). Root Mean Square
Errors are reported, for the structural parameters θ1 and θ2, and for the mean and variance change-point locations τ1 and τ2,
with true values m1 = 3, m2 = 3 (m1 = 1 and m2 = 2 in the autocorrelated scenarios), averaged over 40 simulated datasets.
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sampler is implemented for N = 2000 iterations, whose the first N/2 are discarded,
for FullMod and CauchyMod. The RMSEs in the last two columns of Table 2 (Full-
C and Cauchy-C ) show that the estimation of the structural parameters and of the
change-points is significantly better in FullMod.

4.4 Prediction Ability

We compare FullMod and CauchyMod in terms of their prediction capabilities, using
the log predictive density: we estimate the log predictive density of each observation at
time t∗ conditionally to the whole past, for t∗ in [T/2 + 1, T ], and use the average log
predictive density over this range, as a measure of predictive ability. The log predictive
density at time t∗ is estimated as

N∑
i=1

log p(yt∗ |yt∗−1, ξ
∗
1t,i, ξ

∗
2t,i, ξ

∗
3t,i)p(ξ

∗
1t,i, ξ

∗
2t,i, ξ

∗
3t,i|y1, y2, . . . , yt∗−1),

where N is the number of posterior samples, and ξ∗1t,i, ξ
∗
2t,i and ξ∗3t,i are the extractions

of the parameters at the i-th iteration of a Gibbs sampler that uses data only up to t∗

excluded.

A model with better prediction capability presents a higher average log predictive
density. The results over the K simulated datasets with autocorrelated data, shown in
Figure 4, strenghten the conclusions of the previous subsection since, in all scenarios
(m1,m2) ∈ {(1, 2), (10, 2), (1, 10), (10, 10)}, FullMod performs better than CauchyMod
in terms of predictive capability: its average log predictive density is higher than in
CauchyMod, with an advantage which is more significant when m2 is mispecified.

The fitting properties can be analyzed through a comparison of the marginal likeli-
hoods under the two models. From Chapter 9 of Müller et al. (2015), the only calculation
of the marginal likelihood that is explicitly designed for DP mixture models is the one by
Basu and Chib (2003). Application of the Basu and Chib (2003) approach to our mul-
tiple DP set-up, however, requires a non-trivial extension of their approach for finding
the likelihood ordinate, an extension which is beyond the scope of this paper.

5 Interest Rate Analysis

Short-term riskless rates pt can be modelled according to the specification of Chan et al.
(1992):

dpt = (λ+ βpt−1)dt+ σpxt−1dWt, (8)

where dWt is a Brownian motion. Different choices of x correspond to different well-
known models, for instance the Vasicek (1977) model for x = 0 and the CIR model of
Cox et al. (1985) for x = 0.5. Defining yt := pt − pt−1 and γ = (λ, β)′, the discretized
version of (8) can be incorporated in our proposed class of models, for i = 1, 2 and
t = 1, . . . , T , as follows:
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Figure 4: Autocorrelated simulation study. Log predictive densities for models
FullMod and CauchyMod, in the autocorrelated simulation study, with (m1,m2) ∈
(1, 2), (10, 2), (1, 10), (10, 10), over 40 simulated datasets, for true m1 = 1 and m2 = 2.

yt|ξt ∼ N(yt|ξ1t + ξ2tpt−1,
√

ξ3tp
x
t−1),

(ξ1t, ξ2t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ11 if t < τ11
θ12 if τ11 ≤ t < τ12
...
θm1+1 if τm1 ≤ t ≤ T

, ξ3t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ21 if t < τ21
θ22 if τ21 ≤ t < τ22
...
θm2+1 if τm2 ≤ t ≤ T

,

θij |Fi ∼ Fi, j = 1, . . . ,mi + 1,

F1 ∼ DP (M1 ·N(·|μγ , Vγ)), F2 ∼ DP (M2 · IG(·|ασ, βσ)),

(τi1, . . . , τimi) ∼ P
({

wi
j,t

})
.

The Gibbs sampler iterates between sampling from the full conditionals of S1T and
S2T (latent regimes for the mean parameters θ1 and for the variance parameter θ2) and
from the full conditionals of θ1 and θ2. Given θ1 and θ2, the processes S1T and S2T are
sampled as in Section 3.1, fixing a maximum of m1 = 10 and m2 = 10 change-points.
The clustering configuration and the distinct values are sampled following Section 3.2,
for θ1 and θ2 separately and conditionally on each other. In sampling θ1 and θ2, the
integrals involved in (6) can be computed in closed form.

The methodology is applied to secondary market 3-month T-bills, publicly available
from the Board of Governors of the Federal Reserve System. The data are weekly, Friday
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Regime j τ̂1j τ̂2j λ̂ · 10−3 β̂ σ̂2 · 10−4

1 59 306 -2.18033 0.11823 0.14802
(58, 61) (304,306) -(2.3175,2.0432) (0.1162,0.1202) (0.1259,0.1738)

2 165 385 -1.21484 0.11807 5.53763
(163, 167) (384,390) -(1.2950,1.1352) (0.1161,0.1200) (4.0329,7.5746)

3 216 - -3.00601 0.11796 0.39945
(212, 226) - -(3.2695,2.7728) (0.1160,0.1199) (0.3297,0.4846)

4 338 - -5.37077 0.11785 -
(336, 338) - -(5.6364,5.1476) (0.1159,0.1198) -

5 485 - -0.14755 0.11813 -
(417, 509) - -(0.2675,0.0915) (0.1161,0.1201) -

6 - - -0.02664 0.11821 -
- - -(0.0545,0.0004) (0.1163,0.1202) -

Table 3: Interest rate posterior estimates. Posterior 95% credible intervals in parenthe-
ses.

Figure 5: Marginal posterior probability mass function for the first change-point in
the location structural parameter (left) and for the first change-point in the variance
structural parameter (right), for the interest rate returns.

to Friday, from Sept-12-2003 to Jun-03-2015 (T = 600 observations). The Gibbs sampler
is run for N = 20000 iterations, and the initial N/2 iterations are discarded as burn-in,
with the chain initialized to the maximum likelihood estimates obtained by regressing
the observed returns on their lagged values. The probabilities of changing the regime are
as in the simulated examples, x = 0.5 (CIR model), and the remaining hyperparameters
are fixed as in the autocorrelated simulation studies. A priori the concentration parame-
ters of DPs areMi ∼ Gamma(0.5, 0.0001) for i = 1, 2, centered on a high noninformative
values, and are estimated following the method proposed in Escobar and West (1995).

Posterior estimates are reported in Table 3, with 95% credible intervals in parenthe-
ses. The algorithm estimates 5 change-points for the location vector parameter, and 2
change-points for the variance. We report in Figure 5 the marginal posterior probability
mass functions of τ11 and τ21, the first change-point for both structural parameters.

The estimated conditional mean λ̂ + pt−1β̂ and conditional variance p2xt−1σ̂
2 are

shown in Figure 6 (top right), whilst the bottom graphs of the same figure evidence the
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Figure 6: Upper-left: short-term riskless data. Upper-right: estimated conditional mean
(red line) and conditional variance (green dashed) on interest rate returns (black dots).
The left y-axis is for the conditional mean and for the returns, whilst the right y-
axis is for the conditional variance. Bottom-left: posterior probabilities of s1t = k1, for
k1 = 1, . . . , 10 and t = 1, . . . , 600. Bottom-right: posterior probabilities of s2t = k2, for
k2 = 1, . . . , 10 and t = 1, . . . , 600.

regime changes through the posterior distribution of the latent processes S1T and S2T .
From Table 3 the change-points show narrow credible intervals particularly for σ2, for
which the jumps are more visible. More volatile is the estimate of τ15, coherently with
the top right plot in Figure 6, which shows no visible change in the conditional mean
around τ15. Regime changes for (λ, β) are mainly driven by changes in λ, whilst credible
intervals of βs are highly overlapped. This is also suggested from the behaviour of the
estimated conditional mean, which evidences clear vertical jumps also in periods with
no big price variations. The dynamics of the estimated variance in Figure 6 (top right)
shows a feature that is not apparent from Table 3: whilst the change-points τ21 and τ22
could also be dirtily guessed by looking at the raw data, more latent is the asymmetric
behaviour of the conditional variance around the two change-points, with the abrupt
increase at τ21, followed by the steep decrease towards τ22. Finally, we compare the
predictive performances of FullMod and CauchyMod in Figure 7, by comparing their
predictive densities, estimated as in Section 4.3. It is clear that FullMod shows higher
predictive density and therefore better prediction capability.
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Figure 7: Short-term interest rate analysis. Log predictive densities for models FullMod
(solid red) and CauchyMod (dashed black), with (m1,m2) = (10, 10).

6 Conclusions and Directions of Investigation

We have introduced a new Bayesian semiparametric change-point model with various
attractive features, to robustly analyze time series with unknown locations and num-
ber of multivariate change-points. A Dirichlet Process (DP) prior on each structural
parameter (or group of structural parameters) provides robustness to mispecification
in the conditional distributions of the structural parameters. Furthermore, the discrete
random distribution assigns positive mass to previous realizations of structural pa-
rameters, in agreement with recurrent regimes. In simulation we evidence a relevant
improvement in the inferential results, relative to the model with no DP. Through
a forward filtering backward sampling algorithm on the latent regimes, we introduce
different change-point processes for different (or different groups of) structural param-
eters, and we are able to conduct the change-point analysis without specifying a pri-
ori the number of change-points. We highlight the estimation advantage of a model
that treats separately the change-points of different structural parameters, relative
to a model with common change-points. Finally we introduce, to our knowledge for
the first time in the literature, more realistic time-dependent transition matrices, and
again demonstrate, in simulation, how turning off this feature has significant impact
on change-points estimation. After deriving some distributional results on interarrival
times between regime changes and on the number of change-points, we present an ef-
ficient MCMC algorithm for posterior inference, implemented on simulated data and
on short-term interest rates. The results show that the proposed semiparametric model
and an alternative parametric model with heavy-tailed prior on the variance perform
better than alternative less realistic models in terms of estimation of the number and lo-
cations of the change-points and for the estimation of the structural parameters, when
the data are iid Gaussian or heavy-tailed. When the generated data are skewed or
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autocorrelated, the proposed semiparametric model performs better than the bench-
marks.

A limit of the proposed model is the assumed prior independence between the DPs.
Still, a posteriori a dependence between the DPs is implied, since each DP is, a posteriori,
centered on a base measure that depends on the structural parameters extracted from
the other DPs. It would be interesting to extend the current setting to dependent DPs
and test the gain in terms of inferential performance that would derive, for instance,
through the mixture process of DPs (Cifarelli and Regazzini, 1978; Peluso et al., 2017),
hierarchical DP (Beal et al., 2002; Teh et al., 2005) or the bivariate DP (Walker and
Muliere, 2003). Also, the DP induces a number of clusters that grows at an exponential
rate, and having sizes with exponential tail behaviour. This clustering structure can
represent a limit in some applications, for instance in all those cases with cluster sizes
decaying in power-law. An extension of the proposed model to more general Bayesian
nonparametric priors (Lijoi and Prünster, 2010) can introduce a more flexible clustering
of the structural parameters.

Supplementary Material

Supplementary Material to Semiparametric Multivariate and Multiple Change-Point
Modeling (DOI: 10.1214/18-BA1125SUPP; .pdf).
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