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DISTANCE MULTIVARIANCE: NEW DEPENDENCE
MEASURES FOR RANDOM VECTORS

BY BJÖRN BÖTTCHER, MARTIN KELLER-RESSEL1 AND RENÉ L. SCHILLING

TU Dresden

We introduce two new measures for the dependence of n ≥ 2 random
variables: distance multivariance and total distance multivariance. Both mea-
sures are based on the weighted L2-distance of quantities related to the char-
acteristic functions of the underlying random variables. These extend distance
covariance (introduced by Székely, Rizzo and Bakirov) from pairs of ran-
dom variables to n-tuplets of random variables. We show that total distance
multivariance can be used to detect the independence of n random variables
and has a simple finite-sample representation in terms of distance matrices
of the sample points, where distance is measured by a continuous negative
definite function. Under some mild moment conditions, this leads to a test
for independence of multiple random vectors which is consistent against all
alternatives.

1. Introduction and related work. Distance multivariance Mρ(X1,X2, . . . ,

Xn) and total distance multivariance Mρ(X1,X2, . . . ,Xn) are new measures for
the dependence of random variables X1, . . . ,Xn. They are closely related to dis-
tance covariance, as introduced by Székely, Rizzo and Bakirov [23, 25] and its
generalizations presented in [8]. Distance multivariance inherits many of the fea-
tures of distance covariance; in particular, see Theorem 3.4 below:

• Mρ(X1, . . . ,Xn) and Mρ(X1, . . . ,Xn) are defined for random variables X1, . . . ,

Xn with values in spaces of arbitrary dimensions Rd1, . . . ,Rdn ;
• if each subfamily of X1, . . . ,Xn with n − 1 elements is independent, then

Mρ(X1, . . . ,Xn) = 0 characterizes the independence of X1, . . . ,Xn;
• Mρ(X1, . . . ,Xn) = 0 characterizes the independence of X1, . . . ,Xn.

We emphasize that measuring the dependence of n random variables is different
from measuring their pairwise dependence, and for this reason bivariate depen-
dence measures, such as distance covariance, cannot be used directly to detect
overall independence. A classical example, Bernstein’s coins, is discussed in Sec-
tion 5. The extension of distance covariance to more than two random variables
was addressed in a short paragraph in Bakirov and Székely [1]. Our approach is
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different from the approach suggested in [1]; it is, in fact, closer to the two ap-
proaches that were advised against in [1]. We will discuss and compare these ap-
proaches in greater detail in Section 3.4, once the necessary concepts have been
introduced. Recently, Yao et al. [26] introduced measures for pairwise dependence
based on distance covariance. In contrast, distance multivariance does not only
detect pairwise dependence, but any type of multivariate dependence. Jin and Mat-
teson [17] present measures for multivariate independence which also use distance
covariance. The resulting exact estimators are computationally more complex than
those of distance multivariance; [6] shows that the approximate estimators of [17]
have less empirical power but are computationally of the same order as distance
multivariance.

Another line of research considers dependence measures based on reproducing
kernel Hilbert spaces, notably the Hilbert–Schmidt independence criterion (HSIC)
of [15], which has been shown to be equivalent to distance covariance in [21].
Subsequently, HSIC has been extended from a bivariate dependence measure to a
multivariate dependence measure, dHSIC, in [18]. We compare dHSIC to distance
multivariance in Section 3.5.

Similar to distance covariance in [25] and its generalizations given in [8], dis-
tance multivariance can be defined as a weighted L2-norm of quantities related
to the characteristic functions of X1, . . . ,Xn; cf. Definition 2.2 below. There are,
however, further definitions of distance multivariance which are equivalent up to
moment conditions. In particular, multivariance can be equivalently defined as
Gaussian multivariance by evaluating a Gaussian random field at the instances
(X1, . . . ,Xn) and taking certain expectations; see Section 3.3. This generalizes
Székely-and-Rizzo’s [23], Definition 4, Brownian covariance which is recovered
using n = 2 and multiparameter Brownian motion as random field.

The sample versions of both distance multivariance and total distance multi-
variance have simple expressions in terms of the distance matrices of the sample
points; this means that we can compute these statistics efficiently even for large
samples and in high dimensions. In concrete terms, as we show in Theorem 4.1,
the square of the distance multivariance computed from samples x(1), . . . ,x(N) of
the random vector X = (X1, . . . ,Xn) can be written as

NM2
ρ

(
x(1), . . . ,x(N))= 1

N2

N∑
j,k=1

(A1)jk · . . . · (An)jk,

where the Ai are doubly centred distance matrices of the sample points of Xi , that
is, Ai := −CBiC where C is the centering matrix C = I − 1

N
1, 1 = (1)j,k=1,...,N ,

I = (δjk)j,k=1,...,N , and Bi are the distance matrices of the sample points. The
square of the sample total distance multivariance has a similar form

NM
2
ρ

(
x(1), . . . ,x(N))= 1

N2

N∑
j,k=1

(
1 + (A1)jk

) · . . . · (1 + (An)jk

)− 1.
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The (quasi-)distance that is used to compute Bi can be chosen, under mild re-
strictions, from the class of real-valued continuous negative definite functions;
cf. [3], Chapter II, [16], Section 3.2. In particular, we may use Euclidean and
p-Minkowski distances with exponent p ∈ (1,2]. In the bivariate case, and us-
ing Euclidean distance, the sample distance covariance of Székely and Rizzo [23],
Definition 3, is recovered.

Finally, we show in Theorems 4.5 and 4.10 asymptotic properties of sample
distance multivariance as N tends to infinity; these results are multivariate ana-
logues of those in [23], Theorem 5. Based on these results, we formulate two new
distribution-free tests for the joint independence of n random variables in Sec-
tion 4.5. These tests are conservative, and a resampling approach can be used to
construct tests achieving the nominal size; further results in this direction can be
found in [6]. The paper concludes in Section 5 with an extended example based
on Bernstein’s coins, which demonstrates numerically that (total) distance mul-
tivariance is able to distinguish between pairwise independence and higher-order
dependence of random variables. The example also illustrates the practical validity
of the two tests that are proposed. A further example with sinusoidal dependence is
discussed, illustrating the influence of the underlying distance on the dependence
measure.

For the immediate use of distance multivariance in applications all necessary
functions are provided in the R package multivariance, [7].

2. Preliminaries. We consider a d-dimensional random vector X = (X1, . . . ,

Xn), whose components Xi are random variables taking values in R
di , i =

1, . . . , n, and where d = d1 + · · · + dn. The characteristic function of Xi is de-
noted by

fXi
(ti) := EeiXi ·ti , ti ∈ R

di ,

and we write t = (t1, . . . , tn). In order to define the distance multivariance of
(X1, . . . ,Xn), we use Lévy measures ρi , that is, Borel measures ρi defined on
R

di \ {0} such that

(2.1)
∫
R

di \{0}
min

{|ti |2,1
}
ρi(dti) < ∞.

Note that the measures ρi need not be finite. Such measures appear in the Lévy–
Khintchine representation of infinitely divisible distributions; see [19]. Throughout
this paper, we assume that ρi , i = 1, . . . , n are symmetric Lévy measures with
full topological support (cf. [8], Definition 2.3), and we set ρ := ρd1 ⊗ · · · ⊗ ρdn .
To keep notation simple, we write

∫
. . . ρi(dti) and

∫
R

di . . . ρi(dti) instead of the
formally correct

∫
R

di \{0} . . . ρi(dti).

DEFINITION 2.1. Let (Xi)i=1,...,n be random variables with values in R
di and

let the measures ρi be given as above. With ρ := ρ1 ⊗ · · · ⊗ ρn, we define
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(a) Distance multivariance Mρ ∈ [0,∞] by

(2.2) M2
ρ(X1, . . . ,Xn) :=

∫
Rd

∣∣∣∣∣E
(

n∏
i=1

(
eiXi ·ti − fXi

(ti)
))∣∣∣∣∣

2

ρ(dt1, . . . ,dtn),

(b) Total distance multivariance Mρ ∈ [0,∞] by

(2.3) M
2
ρ(X1, . . . ,Xn) := ∑

1≤i1<···<im≤n
2≤m≤n

M2⊗m
j=1 ρij

(Xi1, . . . ,Xim).

REMARK 2.2. (a) Using the tensor product for functions

(g1 ⊗ · · · ⊗ gn)(x1, . . . , xn) = g1(x1) · . . . · gn(xn),

distance multivariance can be written in a compact way as

(2.4) Mρ(X1, . . . ,Xn) =
∥∥∥∥∥E
[

n⊗
i=1

(
eiXi ·• − fXi

(•)
)]∥∥∥∥∥

L2(ρ)

.

Thus, distance multivariance is the weighted L2-norm of a quantity related to the
characteristic functions of the Xi , analogous to the definition of distance covari-
ance in Székely, Rizzo and Bakirov [25], Definition 1.

(b) Both expressions Mρ and Mρ are always well defined in [0,+∞]: For each
t = (t1, . . . , tn), the product appearing in the integrand of (2.2) can be bounded
in absolute value by 2n; therefore, the expectation exists. The integrand of the ρ-
integral is positive, and so the integral is always well defined in [0,+∞]. Just as
in the bivariate case (see [8], Theorem 3.7, Remark 3.8), we need moment con-
ditions on the random variables Xi to guarantee finiteness of Mρ and Mρ ; see
Proposition 3.9 below.

(c) At first sight, total distance multivariance seems to suffer from a com-
putational curse of dimension, since the sum (2.3) extends over all subfamilies
(comprising at least two members) of (X1, . . . ,Xn), that is, 2n − 1 − n terms are
summed. We will, however, show in Theorem 4.1, that the finite sample version of
Mρ has the same computational complexity as Mρ and its computation requires
only O(nN2) operations given a sample of size N .

Each Lévy measure ρi uniquely defines a real-valued continuous negative defi-
nite function

(2.5) ψi(yi) :=
∫
R

di

(
1 − cos(yti)

)
ρi(dti) for yi ∈ R

di ;
see, for example, [16], Corollary 3.7.9. The functions ψi will play a key role in
the finite-sample representation of distance multivariance and also appear in mo-
ment conditions. They are also the reason for the terms distance multivariance (and
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distance covariance, cf. [23]), since ψi yields well-known distance functions (and
in many cases norms) in several important special cases. In particular, x �→ |x|α
where | · | is the standard di -dimensional Euclidean norm and α ∈ (0,2), can be
represented using

ρi(dti) = cα,di
|ti |−di−αdti , α ∈ (0,2), cα,di

= α2α−1�(α+di

2 )

πdi/2�(1 − α
2 )

,

since

|yi |α = cdi ,α

∫
R

di

(1 − cosy · ti) dti

|ti |di+α
.

Also other Minkowski distances |x|di ,p := (
∑di

j=1 |xj |p)1/p , for p ∈ (1,2] can be
written in the form (2.5); see [8], Lemma 2.2 and Table 1, for this and further
examples.

For the following results and proofs, it will be useful to introduce some notation
for various distributional copies of the vector X = (X1, . . . ,Xn). Recall that L(Xi)

denotes the law of Xi and define the random vectors

(2.6)

X0 = (X0,1, . . . ,X0,n) ∼ L(X1) ⊗ · · · ⊗L(Xn),

X′
0 = (

X′
0,1, . . . ,X

′
0,n

) ∼ L(X1) ⊗ · · · ⊗L(Xn),

X1 = (X1,1, . . . ,X1,n) ∼ L(X1, . . . ,Xn),

X′
1 = (

X′
1,1, . . . ,X

′
1,n

) ∼ L(X1, . . . ,Xn),

such that the random vectors X0,X
′
0,X1,X

′
1 are independent. Note that the sub-

script “1”—as in X1 and X′
1—indicates that these vectors have the same distribu-

tion as X, while the subscript “0”—as in X0 and X′
0—means that these random

vectors have the same marginal distributions as X, but their coordinates are inde-
pendent.

DEFINITION 2.3. We introduce the following moment conditions:
(a) The mixed moment condition holds if

E

(
n∏

i=1

ψi

(
Xki,i − X′

li ,i

))
< ∞ for all ki, li ∈ {0,1}, i = 1, . . . , n.

(b) The psi-moment condition holds if there exist pi ∈ [1,∞) satisfying∑n
i=1 p−1

i = 1 such that

Eψ
pi

i (Xi) < ∞ for all i = 1, . . . , n.

In particular, one may choose p1 = · · · = pn = n. (The case pi = ∞ is also admis-
sible, but this means that ψi must be bounded or Xi must have compact support.)
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(c) The 2p-moment condition holds if there exist pi ∈ [1,∞) satisfying∑n
i=1 p−1

i = 1 such that

E
[|Xi |2pi

]
< ∞ for all i = 1, . . . , n

(the case pi = ∞ is also admissible, but this means that Xi is a.s. bounded).

As shown in Lemma S.1 in the Supplementary Material [9], these moment con-
ditions are ordered from weak to strong, that is, (c) implies (b) and (b) implies (a).
Also note that (b) and (a) trivially hold (for any choice of pi ) if the functions ψi

are bounded.

3. Distance multivariance and total distance multivariance.

3.1. Total distance multivariance characterizes independence. We need the
concept of m-independence of n ≥ m random variables.

DEFINITION 3.1. Random variables X1, . . . ,Xn are m-independent (for some
m ≤ n) if for any sub-family {i1, . . . , im} ⊂ {1, . . . , n} the random variables
Xi1, . . . ,Xim are independent.

The condition of (n− 1)-independence allows certain factorizations of expecta-
tions of products; the proof of the following lemma is given in the Supplementary
Material [9].

LEMMA 3.2. Let Z1, . . . ,Zn be C-valued random variables which are
(n − 1)-independent. Then

(3.1) E

(
n∏

i=1

(Zi −EZi)

)
= E

(
n∏

i=1

Zi −
n∏

i=1

EZi

)
.

If we use the random variables Zi := eiXi ·ti , Lemma 3.2 yields the following
result for characteristic functions.

COROLLARY 3.3. Let X1, . . . ,Xm be (m−1)-independent random variables,
then

(3.2)

E

[
m∏

k=1

(
eiXik

·tik − fXik
(tik )

)]

= f(Xi1 ,...,Xim)(ti1, . . . , tim) − fXi1
(ti1) · . . . · fXim

(tim).

This enables us to show that independence is indeed characterized by total dis-
tance multivariance.
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THEOREM 3.4. (a) Distance multivariance vanishes for independent random
variables, that is,

(3.3) X1, . . . ,Xn are independent =⇒ Mρ(X1, . . . ,Xn) = 0.

If X1, . . . ,Xn are (n − 1)-independent, then also the converse holds.
(b) Total distance multivariance characterizes independence, that is,

(3.4) X1, . . . ,Xn are independent ⇐⇒ Mρ(X1, . . . ,Xn) = 0.

REMARK 3.5. Note that multivariance is not just a building block of total
multivariance, but has applications in its own right. The characterization of n-
independence by (n − 1)-independence and Mρ(X1, . . . ,Xn) = 0 can be used to
detect (higher order) dependence structures; this is used in [6]. Other applications
can be found in the setting of independent component analysis (ICA). The algo-
rithm of [11]) aims to transform the input signal into pairwise independent random
variables which, if all assumptions of ICA are satisfied, are also mutually indepen-
dent. Thus, distance multivariance can be used to test the validity of assumptions
by testing for higher order dependence, given pairwise independence [2].

PROOF OF THEOREM 3.4. Suppose that X1, . . . ,Xn are independent. We have
for all indices {i1, . . . , im} ⊂ {1, . . . , n}

(3.5) E

[
m∏

k=1

(
eiXik

·tik − fXik
(tik )

)]=
m∏

k=1

E
(
eiXik

·tik − fXik
(tik )

)= 0,

and, so, M⊗m
k=1 ρik

(Xi1, . . . ,Xim) = 0; this implies Mρ(X1, . . . ,Xn) = 0.
For the converse statements, suppose first that X1, . . . ,Xn are (n − 1)-

independent and consider

κ(t1, . . . , tn) := E

[
n∏

i=1

(
eiXi ·ti − fXi

(ti)
)]

.

By definition, Mρ(X1, . . . ,Xn) is the L2(ρ)-norm of κ . Since ρ has full topologi-
cal support and κ is continuous, Mρ = 0 implies that κ ≡ 0 everywhere on R

d . By
Corollary 3.3, it follows that

f(X1,...,Xn)(t1, . . . , tn) = fX1(t1) · . . . · fXn(tn) for all t1, . . . , tn,

that is, the joint characteristic function of X1, . . . ,Xn factorizes, and we conclude
that X1, . . . ,Xn are independent.

Finally, suppose that Mρ(X1, . . . ,Xn) = 0, and thus that

(3.6) M⊗m
k=1 ρik

(Xi1, . . . ,Xim) = 0 for any {i1, . . . , im} ⊂ {1, . . . , n}.
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Starting with subsets of size 2, we note that

Mρi1⊗ρi2
(Xi1,Xi2) = Mρi1⊗ρi2

(Xi1,Xi2)

= ‖f(Xi1 ,Xi2 ) − fXi1
fXi2

‖L2(ρi1⊗ρi2 ) = 0(3.7)

for all {i1, i2} ⊂ {1, . . . , n}; this means that the random variables X1, . . . ,Xn

are pairwise independent, hence X1, . . . ,Xn are 2-independent. Continuing with
subsets of size 3, (3.6) together with the first part of the proof implies 3-
independence of X1, . . . ,Xn. Repeating this argument finally yields the indepen-
dence of X1, . . . ,Xn. �

3.2. Further properties and representations of multivariance. Directly from
Definition 2.2, we see that for two random variables X = X1 and Y = X2 and Lévy
measures ρ = ρ1 ⊗ρ2 the notions of multivariance Mρ , total multivariance Mρ and
generalized distance covariance V as defined in [8], Definition 3.1, coincide, that
is,

Mρ(X,Y ) = Mρ(X,Y ) = V (X,Y ).

The following properties are straightforward.

PROPOSITION 3.6. Distance multivariance enjoys the following properties:

Mρi
(Xi) = 0 for all i = 1, . . . , n,(3.8)

Mρ(X1, . . . ,Xn) = Mρ(c1X1, . . . , cnXn) for ci ∈ {−1,+1}.(3.9)

Let S ⊂ {1, . . . , n}. If (Xi, i ∈ S) is independent of (Xi, i ∈ Sc), then

Mρ(X1, . . . ,Xn) = M⊗
i∈S ρi

(Xi, i ∈ S) · M⊗
i∈Sc ρi

(
Xi, i ∈ Sc).(3.10)

PROOF. If n = 1, the expectation in (2.2) becomes E(eiXiti −EeiXiti ) = 0 and
(3.8) follows. Property (3.9) follows from the symmetry of the measures ρi . For
the last property, note that the assumption of independence allows us to factorize
the following expression:

E

[
n⊗

i=1

(
eiXi ·• − fXi

(•)
)]

= E

[⊗
i∈S

(
eiXi ·• − fXi

(•)
)] ·E

[⊗
i∈Sc

(
eiXi ·• − fXi

(•)
)]

.

Since also ρ can be factorized into
⊗

i∈S ρi and
⊗

i∈Sc ρi , (3.10) follows. �

Another relevant aspect is the behavior of (total) distance multivariance, when
an independent component is added to a given random vector.
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PROPOSITION 3.7. Let Xn+1 be independent from (X1, . . . ,Xn). Then

Mρ(X1, . . . ,Xn+1) = 0,(3.11)

Mρ(X1, . . . ,Xn+1) = Mρ(X1, . . . ,Xn).(3.12)

PROOF. The first equation follows from (3.10) by taking S = {1, . . . , n}. If we
insert this into (2.3), we see that all summands containing the index i = n + 1 do
not contribute to total distance multivariance. Hence, (3.12) follows. �

REMARK 3.8. In this context, it is interesting to anticipate normalized total
distance multivariance Mρ which will be defined in (4.28). If Xn+1 is independent
from (X1, . . . ,Xn), it is easy to check that

Mρ(X1, . . . ,Xn+1) = r(n) ·Mρ(X1, . . . ,Xn),

where r(n) = √
(2n − n − 1)/

√
(2n+1 − n − 2). Note that r(n) is strictly increas-

ing from r(2) = 1/2 to limn→∞ r(n) = 1/
√

2. Thus, the addition of an indepen-
dent component affects Mρ by a factor from [1/2,1/

√
2).

We now turn to different representations of multivariance. The representation
as L2(ρ)-norm in (2.2) is always well defined, but may have infinite value. Under
suitable moment conditions, multivariance is finite and can be represented in terms
of the continuous negative definite functions ψi given in (2.5). The proof of the
following proposition can be found in the Supplementary Material [9].

PROPOSITION 3.9. Multivariance Mρ = M2
ρ(X1, . . . ,Xn) can be written as

M2
ρ =

∫
E

( ∑
k,l∈{0,1}n

sgn(k, l)

n∏
i=1

ei(Xki ,i
−X′

li ,i
)·ti
)
ρ(dt),(3.13)

or

M2
ρ =

∫
E

( ∑
k,l∈{0,1}n

sgn(k, l)

n∏
i=1

[
cos

((
Xki,i − X′

li ,i

) · ti)− 1
])

ρ(dt),(3.14)

where

sgn(k, l) := (−1)
∑n

j=1(kj+lj ) =
{+1 if (k, l) contains an even no. of “1”s,

−1 if (k, l) contains an odd no. of “1”s.

If one of the moment conditions in Definition 2.3 holds, then the distance multi-
variance Mρ(X1, . . . ,Xn) is finite, and the following representation holds:

(3.15)

M2
ρ = E

(
n∏

i=1

[−ψi

(
Xi − X′

i

)+E
(
ψi

(
Xi − X′

i

) | Xi

)

+E
(
ψi

(
Xi − X′

i

) | X′
i

)−Eψi

(
Xi − X′

i

)])
.
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REMARK 3.10. (a) The representations (3.13) and (3.14) have an interesting
structural resemblance to the Leibniz’ formula for determinants; (3.15) is the ana-
logue of [8], Corollary 3.5, for the bivariate case.

(b) In the bivariate case n = 2, distance multivariance is also finite under the
weaker moment condition Eψ1(X1) +Eψ2(X2) < ∞; cf. [8], Theorem 3.7.

We introduce yet another representation of distance multivariance, which helps
to clarify the relation to the finite-sample form and the representation as Gaussian
multivariance, given in Section 3.3 below. For this, we need the centering operator
CF .

PROPOSITION 3.11. Let X be an integrable random variable on (	,A,P)

and F,F ′ be sub-σ -algebras of A. Set

(3.16) CF X := X −E(X | F).

Then C is a linear operator and

C{∅,	} X = X −EX,(3.17)

CF CF ′ X = X −E
(
X | F ′)−E(X | F) +E

(
E
(
X | F ′) | F),(3.18)

CF CF ′ X = 0 if X is F ′-measurable.(3.19)

If F ′ and F are independent, then E(CF ′ X | F) = C{∅,	}E(X | F).

All assertions of the proposition follow directly from the properties of condi-
tional expectations, and we omit the proof. Geometrically, CF X can be interpreted
as the residual from the orthogonal projection of X onto the set of F -measurable
functions. We will use the shorthand CX := Cσ(X).

COROLLARY 3.12. If one of the moment conditions in Definition 2.3 holds,
then

(3.20) M2
ρ(X1, . . . ,Xn) = E

(
n∏

i=1

−CXi
CX′

i
ψi

(
Xi − X′

i

))

and

(3.21) M
2
ρ(X1, . . . ,Xn) = E

(
n∏

i=1

(
1 − CXi

CX′
i
ψi

(
Xi − X′

i

)))− 1.

The factors can be written explicitly as

CXi
CX′

i
ψi

(
Xi − X′

i

)= ψi

(
Xi − X′

i

)−E
[
ψi

(
Xi − X′

i

) | X′
i

]
−E

[
ψi

(
Xi − X′

i

) | Xi

]+Eψi

(
Xi − X′

i

)
.(3.22)
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PROOF. The identity (3.22) follows directly from the definition of the double
centering operator in Proposition 3.11. The representation (3.20) is an immediate
consequence of (3.15) in Proposition 3.9. For representation (3.21) of the total
multivariance, write ai := −CXi

CX′
i
ψi(Xi − X′

i). We can expand the product

n∏
i=1

(1 + ai) =
n∑

m=0

em(a1, . . . , an),

where the function em(a1, . . . , an) is the mth elementary symmetric polynomial in
(a1, . . . , an), that is,

em(a1, . . . , an) = ∑
1≤i1<···<im≤n

ai1 · . . . · aim.

In particular, e0(a1, . . . , an) = 1 and e1(a1, . . . , an) = a1 +· · ·+an. Taking expec-
tations yields

(3.23)

E

[
n∏

i=1

(1 + ai)

]
− 1 =

n∑
m=1

E
[
em(a1, . . . , an)

]− 1

= ∑
1≤i1<···<im≤n

2≤m≤n

E[ai1 · . . . · aim]

= ∑
1≤i1<···<im≤n

2≤m≤n

M2
ρ(Xi1, . . . ,Xim)

= M
2
ρ(X1, . . . ,Xn),

as claimed. Note that the first elementary symmetric polynomial e1 does not con-
tribute since E[ai] = 0 for all i ∈ {1, . . . , n}. �

3.3. Gaussian multivariance. Recall that for a real-valued negative defi-
nite function ψ : Rd → R the matrix (ψ(ξj ) + ψ(ξk) − ψ(ξj − ξk))j,k=1,...,n,
ξ1, . . . , ξn ∈ R

d , n ∈ N, is positive semidefinite; see [16], Definition 3.6.6. There-
fore, we can associate with any cndf ψ some Gaussian random field indexed by
R

d .

DEFINITION 3.13. Assume that X1, . . . ,Xn satisfy one of the moment con-
ditions in Definition 2.3 and let G1, . . . ,Gn be independent (also independent of
X1, . . . ,Xn), stationary Gaussian random fields with

(3.24) EGi(ξ) = 0 and E
(
Gi(ξ)Gi(η)

)= ψi(ξ) + ψi(η) − ψi(ξ − η)

for ξ, η ∈ R
di . The Gaussian multivariance of (X1, . . . ,Xn) is defined by

(3.25) G2(X1, . . . ,Xn) = E

(
n∏

i=1

X
Gi

i X
′Gi

i

)
,
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where (X′
1, . . . ,X

′
n) is an independent copy of (X1, . . . ,Xn) and

(3.26) X
Gi

i := Gi(Xi) −E
(
Gi(Xi) | Gi

)
.

REMARK 3.14. (a) Using the centering operator C from Proposition 3.11, we
can write (3.26) as X

Gi

i = CGi
Gi(Xi).

(b) In the bivariate case n = 2, Gaussian multivariance coincides with the Gaus-
sian covariance defined in [8], Section 7.

(c) If ψi is given by the Euclidean norm, then Gi is a Brownian field indexed by
R

di . In particular, if n = 2 and both ψ1 and ψ2 are given by the Euclidean norm,
then G(X1,X2) coincides with the Brownian covariance of Székely and Rizzo
[23].

(d) If ψi(x) = |x|α , then Gi is a fractional Brownian field with Hurst exponent
H = α

2 ; cf. [23], Section 4.

THEOREM 3.15. Suppose that one of the moment conditions of Definition 2.3
holds and E(ψi(Xi)

n
2 ) < ∞ for i = 1, . . . , n. Then distance multivariance and

Gaussian multivariance coincide, that is,

(3.27) Mρ(X1, . . . ,Xn) = G(X1, . . . ,Xn).

PROOF. By Corollary 3.12, we can represent squared multivariance in the
product form (3.20). Each of the factors can be rewritten as

(3.28)

− CXCX′ψ
(
X − X′)

= CXCX′
(
ψ(X) + ψ

(
X′)− ψ

(
X − X′))

= CXCX′E
(
G(X)G

(
X′) | X,X′)

= E
(
G(X)G

(
X′) | X,X′)−E

(
G(X)G

(
X′) | X)

−E
(
G(X)G

(
X′) | X′)+E

(
G(X)G

(
X′))

= E
[(

G(X) −E
(
G(X) | G))(G(X′)−E

(
G
(
X′) | G)) | X,X′]

= E
(
XGX′G | X,X′),

where we have used the covariance structure (3.24) of the Gaussian process G in
the third line. Putting everything together, we have

M2
ρ(X1, . . . ,Xn) = E

(
n∏

i=1

−CXi
CX′

i
ψi

(
Xi − X′

i

))

= E

(
n∏

i=1

E
(
X

Gi

i X
′Gi

i | Xi,X
′
i

))= E

(
n∏

i=1

X
Gi

i X
′Gi

i

)

= G2(X1, . . . ,Xn).
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Note that for the penultimate equality the absolute integrability of the integrand,
that is, E(

∏n
i=1 |XGi

i X
′Gi

i |) < ∞, is required.
Writing F := σ(Xi, i = 1, . . . , n) and F ′ := σ(X′

i , i = 1, . . . , n), we obtain

E

(
n∏

i=1

∣∣XGi

i X
′Gi

i

∣∣)= E

(
n∏

i=1

E
(∣∣XGi

i X
′Gi

i

∣∣ | F,F ′))

≤ E

(
n∏

i=1

√
E
(∣∣XGi

i

∣∣2 |F,F ′)E(∣∣X′Gi

i

∣∣2 | F,F ′))

= E

(√√√√ n∏
i=1

E
(∣∣XGi

i

∣∣2 | F)
)

·E
(√√√√ n∏

i=1

E
(∣∣X′Gi

i

∣∣2 | F ′))

= E

(√√√√ n∏
i=1

E
(∣∣XGi

i

∣∣2 | F)
)2

≤
(

n∏
i=1

E
[(
E
(∣∣XGi

i

∣∣2 | F)) n
2
]) 2

n

≤
(

n∏
i=1

E
[
E
(∣∣XGi

i

∣∣n | F)]
) 2

n

=
(

n∏
i=1

E
(∣∣XGi

i

∣∣n))
2
n

,

where we used successively the independence of the Gi , the conditional Hölder
inequality [10], 7.2.4, the independence and identical distribution of (Xi, i =
1, . . . , n) and (X′

i , i = 1, . . . , n), the generalized Hölder inequality [20], page 133,
Proposition 13.5, and the conditional Jensen inequality [10], 7.1.4.

Finally, note that for n ∈ N the elementary inequality |a + b|n ≤ 2n−1(|a|n +
|b|n) and the formula for absolute moments of Gaussian random variables, that is,
E(|Gi(t)|n) = 2

n
2 �(n+1

2 )π− 1
2 [EGi(t)

2] n
2 , and E[Gi(t)

2] = 2ψi(t) imply

(3.29) E
∣∣XGi

i

∣∣n ≤ 2n
E
∣∣Gi(Xi)

∣∣n = 22n�

(
n + 1

2

)
π− 1

2E
(
ψi(Xi)

n
2
)
,

which proves the desired integrability. �

We conclude this section by comparing (total) distance multivariance to related
approaches in [1] and to the multivariate Hilbert–Schmidt independence criterion
(dHSIC) of [18].

3.4. Comparison with [1]. The problem of generalizing distance covariance
of two random variables X,Y to multiple variables has been discussed in a short
paragraph “How to (not) extend [distance covariance] V(X,Y ) to more than two
random variables” in [1]. In the notation of our paper, they discuss for three ran-
dom variables X,Y,Z the following objects:

(a) Gaussian Covariance G(X,Y,Z) = E(XGX′GYGY ′GZGZ′G) (cf. Sec-
tion 3.3) where G is a Brownian motion. This approach is dismissed in [1] since it
does not characterize the independence of X,Y,Z.
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(b) The quantity

(3.30)
∫
Rd

∣∣E[ei(X·t1+Y ·t2+Z·t3)]− fX(t1)fY (t2)fZ(t3)
∣∣2ρ(dt1,dt2,dt3);

this should be compared with the similar, yet different expression (2.4). Bakirov
and Székely dismiss this approach, since the integral can become infinite if Z ≡ 0,
even if X and Y are bounded and independent; note that in this case the three
random variables X,Y,Z are actually independent.

(c) The (bivariate) distance covariance of U ∼ L(X,Y,Z) and V ∼ L(X) ⊗
L(Y ) ⊗ L(Z). Bakirov and Székely recommend to use this approach, since it is
able to detect independence of X,Y,Z, but they do not follow up this approach
with a deeper discussion.

Comparing with our results, let us add a few comments. The approach (a) is
equivalent to the calculation of distance multivariance Mρ(X,Y,Z) (based on Eu-
clidean distance), by Theorem 3.15. Consistent with the remarks of [1], distance
multivariance cannot characterize independence; cf. Theorem 3.4. It serves, how-
ever, as a building block of total distance multivariance, which does characterize
independence.

If Z ≡ 0, the expression (2.2) is zero, that is, it does not suffer from the particu-
lar integrability problems as (3.30). However, under certain conditions, it coincides
with (3.30); see Corollary 3.3.

Compared with (c), our approach has the advantage that both distance multivari-
ance and total distance multivariance have a very simple and efficient finite-sample
representation, which retains all the benefits of the bivariate distance covariance;
cf. Theorem 4.1. Also the asymptotic properties of the estimators are similar to the
bivariate case; cf. Theorems 4.5, 4.10 and Section 4 in [8].

3.5. Comparison with dHSIC. The multivariate Hilbert–Schmidt indepen-
dence criterion (dHSIC) was recently introduced in [18]. Using our notation,
dHSIC is given by

(3.31)

dHSIC(X1, . . . ,Xn) :=E

[
n∏

i=1

ki

(
Xi,X

′
i

)]+
n∏

i=1

E
[
ki

(
Xi,X

′
i

)]

− 2E

[
n∏

i=1

E
[
ki

(
Xi,X

′
i

) | Xi

]]
,

where the ki are continuous, bounded, characteristic, positive semidefinite kernels
on R

di . Here, a kernel k(x, y) is said to be characteristic, if

μ �→ (μ) =
∫

k(x, ·)μ(dx)

from the finite Borel measures to a suitable Hilbert space is an injective map; see
[18], Section 2.1) for details.
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Note that any continuous negative definite function ψi gives rise to a continuous
positive semidefinite kernel under the correspondence

(3.32) ki(x, y) = ψi(x) + ψi(y) − ψi(y − x);
see [21]. In the bivariate case (n = 2), it is shown in [21] that dHSIC is equivalent
to distance covariance with (quasi-)distance ψi . This raises the question whether
equivalence of dHSIC and (total) distance multivariance still holds in the case
n > 2. It can be easily shown by numerical experiments that they are not identical,
at least not under the correspondence (3.32). Nevertheless, the experiments show
a strong positive association between dHSIC and total multivariance. Clarifying
the exact nature of this association remains an open question, but we present the
following related result: Given the marginal distributions L(X1), . . . ,L(Xn), we
can find kernels ki , depending on these distributions, such that dHSIC coincides
formally with (total) distance multivariance on the random vector (X1, . . . ,Xn).
Note that, in general, these kernels are unbounded and its sample versions depend
on all samples, thus they are beyond the restrictions imposed in [18].

PROPOSITION 3.16. Let X1, . . . ,Xn satisfy one of the moment conditions of
Definition 2.3 and define the kernels

(3.33)

kλ
i

(
xi, x

′
i

) := − ψi

(
xi − x′

i

)+E
(
ψi

(
xi − X′

i

))
+E

(
ψi

(
Xi − x′

i

))−E
(
ψi

(
Xi − X′

i

))+ λ,

where λ ≥ 0 and write dHSICλ for the corresponding quantity defined in (3.31).
Then

dHSIC0(X1, . . . ,Xn) = M2
ρ(X1, . . . ,Xn),(3.34)

dHSIC1(X1, . . . ,Xn) = M
2
ρ(X1, . . . ,Xn).(3.35)

The kernel k0
i is not characteristic in the sense of [18], Section 2.1.

PROOF. Observe that E[kλ
i (Xi,X

′
i)] = E[kλ

i (Xi,X
′
i) | Xi] = λ, such that

(3.31) simplifies to

dHSICλ(X1, . . . ,Xn) := E

[
n∏

i=1

(
λ + k0

i

(
Xi,X

′
i

))]− λn.

This is equal to (3.20) for λ = 0 and to (3.21) for λ = 1. It remains to show that k0
i

is not characteristic. To this end, denote by μi the distribution of Xi . Then

(μi)(y) =
∫

kλ(x, y)μi(x) = E
[
kλ
i (Xi, y)

]= λ.

If λ = 0, then (μi) = 0 = (0), where 0 is the measure of mass zero. This shows
that  is not injective and, therefore, that k0

i is not characteristic. �
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4. Statistical properties of distance multivariance.

4.1. Sample distance multivariance. We now consider a sample of N observa-
tions (x(1), . . . ,x(N)) of the random vector X = (X1, . . . ,Xn). Every observation
x(j) is a vector in R

d , d = d1 + · · · + dn, of the form x(j) = (x
(j)
1 , . . . , x

(j)
n ), with

each x
(j)
i in R

di . Given such a sample, we denote by (X̂1, . . . , X̂n) the random
vector with the corresponding empirical distribution. Evaluating distance multi-
variance at this vector, we obtain the sample distance multivariance

NM2
ρ

(
x(1), . . . , x(N)) := M2

ρ

(
X̂1, . . . , X̂n

)
,

which turns out to have a surprisingly simple representation.
Recall that the Hadamard (or Schur) product of two matrices A,B ∈ R

N×N is
the N × N -matrix A ◦ B with entries (A ◦ B)jk = AjkBjk .

THEOREM 4.1. Let (x(1), . . . ,x(N)) be a sample of size N .

(a) The sample distance multivariance can be written as

(4.1)

NM2
ρ

(
x(1), . . . ,x(N))= 1

N2

N∑
j,k=1

(A1 ◦ · · · ◦ An)jk

= 1

N2

N∑
j,k=1

(A1)jk · . . . · (An)jk;

here, Ai := −CBiC where Bi = (ψi(x
(j)
i − x

(k)
i ))j,k=1,...,N is the distance matrix

and C = I − 1
N

1 the centering matrix.
(b) The sample total distance multivariance can be written as

(4.2) NM
2
ρ

(
x(1), . . . ,x(N))=

[
1

N2

N∑
j,k=1

(
1 + (A1)jk

) · . . . · (1 + (An)jk

)]− 1.

REMARK 4.2. (a) If n is even, then Ai can be replaced by −Ai . This explains
the different sign used in the case n = 2; cf. [23], Definition 3, and [8], Lemma 4.2,
Remark 4.3.

If n = 2, then
∑N

j,k=1(A1 ◦ A2)jk = trace(A�
2 A1) and the generalized sample

distance covariance from [8], Section 4, is recovered. If in addition ψi(x) = |x|,
that is, the Euclidean distance, then we get the sample distance covariance of
Székely et al. [23, 25].

(b) Since the ψi are continuous negative definite functions, the matrices −Bi

are conditionally positive definite matrices, that is, −λ�Biλ ≥ 0 for all nonzero λ

in R
N with λ1 + · · · + λN = 0. As the double centerings of conditionally positive

definite matrices, the matrices Ai are positive definite. By Schur’s theorem, the
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N -fold Hadamard product of positive definite matrices is again positive definite;
see Berg and Forst [3], Lemma 3.2. This gives a simple explanation as to why NM2

ρ

is always a nonnegative number.
(c) Important special cases are when the ψi are chosen as Euclidean distance,

or as Minkowski distances. In these cases, each Bi is a distance matrix. In general,
Bi need not be a distance matrix, since only

√
ψi , but not necessarily ψi itself,

defines a distance. Still, ψi always defines a quasi-metric, that is, a metric with a
relaxed triangle inequality; cf. [8], Section 2.

(d) Even though total distance multivariance is defined as the sum of the mul-
tivariances of all 2n − 1 − n subfamilies of {X1, . . . ,Xn} with at least two mem-
bers (cf. (2.3)), its empirical version (4.2) has a computational complexity of only
O(nN2).

(e) The row and column sums of each Ai are zero. This is a consequence of the
double centering Ai = −CBiC.

(f) Equation (4.1) is a direct analogue of the representation (3.20), when the
centering operator is replaced by the centering matrix. The same is true for (4.2)
in relation to (3.21).

PROOF OF THEOREM 4.1. Since the support of the empirical distribution is
finite, the moment conditions of Definition 2.3 are trivially satisfied. Therefore, we
can use the representation (3.20) to get

NM2
ρ

(
x(1), . . . , x(N))
= M2

ρ

(
X̂1, . . . , X̂n

)

= E

(
n∏

i=1

[−ψi

(
X̂i − X̂′

i

)+E
(
ψi

(
X̂i − X̂′

i

) | X̂i

)

+E
(
ψi

(
X̂i − X̂′

i

) | X̂′
i

)−Eψi

(
X̂i − X̂′

i

)])

= 1

N2

N∑
j,k=1

(
n∏

i=1

[−ψi

(
x

(j)
i − x

(k)
i

)+E
(
ψi

(
X̂i − X̂′

i

) | X̂i = x
(j)
i

)

+E
(
ψi

(
X̂i − X̂′

i

) | X̂′
i = x

(k)
i

)−Eψi

(
X̂i − X̂′

i

)])
.(4.3)

Denoting by 1N the column vector consisting of N ones, we can rewrite the indi-
vidual terms in (4.3) as

ψi

(
x

(j)
i − x

(k)
i

)= (Bi)jk,(4.4a)

E
(
ψi

(
X̂i − X̂′

i

) | X̂i = x
(j)
i

)= 1

N

N∑
l=1

(Bi)jl = 1

N

(
1�

NBi

)
j ,(4.4b)
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E
(
ψi

(
X̂i − X̂′

i

) | X̂′
i = x

(k)
i

)= 1

N

N∑
m=1

(Bi)mk = 1

N
(Bi1N)k,(4.4c)

Eψi

(
X̂i − X̂′

i

)= 1

N2

N∑
l,m=1

(Bi)ml = 1

N2 1�
NBi1N.(4.4d)

This shows that each factor on the right-hand side of (4.3) is the (j, k)th entry
of the matrix Ai = −CBiC, and (4.1) follows. The representation (4.2) can be
derived in complete analogy from (3.21). �

4.2. Estimating distance multivariance. In this section, we examine the prop-
erties of the sample distance multivariance NMρ as an estimator of Mρ . The cor-
responding results for the sample total distance multivariance will be presented in
the next section.

THEOREM 4.3 (NMρ is a strongly consistent estimator for Mρ ). Let one of the
moment conditions of Definition 2.3 be satisfied. Then NMρ is a strongly consistent
estimator of Mρ , that is,

(4.5) NMρ

(
X(1), . . . ,X(N))−−−−→

N→∞ Mρ(X1, . . . ,Xn) a.s.

PROOF. Inserting the representation (4.4) into (4.3), we see that NMρ is a V -
statistic. Thus the convergence of the estimator NMρ is just the strong law of large
numbers for V -statistics. �

REMARK 4.4. In the case of n = 2 strong consistency can be obtained under
the weaker moment condition Eψi(Xi) < ∞ for i = 1,2; see [8], Theorem 4.4. For
n ≥ 3, the arguments used in [8] break down. However, we show a weak consis-
tency result under independence and relaxed moment conditions in Corollary 4.7
below.

The next result is our main result on the asymptotics properties of the estimator
NMρ . The proof is technical and relegated to the Supplementary Material [9].

THEOREM 4.5 (Asymptotic distribution of NMρ ). (a) Let X1, . . . ,Xn be inde-
pendent random variables such that the moments Eψi(Xi) < ∞ and E[log1+ε(1+
|Xi |2)] < ∞ exist for some ε > 0 and all i = 1, . . . , n. Then

(4.6) N · NM2
ρ

(
X(1), . . . ,X(N)) d−−−−→

N→∞ ‖G‖2
L2(ρ)

,

where G is a centred, that is, EG(t) = 0, C-valued Gaussian process indexed by
R

d with covariance function

(4.7) Cov
(
G(t),G

(
t ′
))= E

[
G(t)G

(
t ′
)]= n∏

i=1

(
fXi

(
ti − t ′i

)− fXi
(ti)fXi

(
t ′i
))

.
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(b) Suppose that the random variables X1, . . . ,Xn are (n− 1)-independent, but
not n-independent and that one of the moment conditions of Definition 2.3 holds.
Then

(4.8) N · NM2
ρ

(
X(1), . . . ,X(N))−−−−→

N→∞ ∞ a.s.

REMARK 4.6. (a) The complex-valued Gaussian process G has to be dis-
tinguished from the Gaussian processes Gi that appear in Definition 3.13 of the
Gaussian multivariance.

(b) Using the results of [13], the log-moment condition in (a) can be relaxed by
a weaker (but more involved) integral test; cf. [13], Condition (�).

From [8], Lemma 2.7, it is readily seen that the log-moment condition in Theo-

rem 4.5.a) is equivalent to E[log1+ε(1 ∨
√

|X1|2 + · · · + |Xn|2)] < ∞.
(c) The expectation of the limit in (4.6) can be calculated as

(4.9) E
(‖G‖2

L2(ρ)

)= n∏
i=1

∫
R

di

(
1 − ∣∣fXi

(ti)
∣∣2)ρi(dti) =

n∏
i=1

Eψi

(
Xi − X′

i

)
.

(d) From Lemma S.2 in the Supplementary Material [9], it can be seen that NMρ

is a biased estimator of Mρ , since in the case of nondegenerate and independent
random variables

E
[
NM2

ρ

(
X(1), . . . ,X(n))]= (N − 1)n + (−1)n(N − 1)

Nn+1

n∏
i=1

Eψi

(
Xi − X′

i

)
> 0,

while M2
ρ(X1, . . . ,Xn) = 0. For bivariate distance covariance, this bias has already

been discussed by Cope [12] and Székely and Rizzo [24].

Finally, we present a weak consistency result for NMρ under independence,
which holds under milder moment conditions than the strong consistency result
Theorem 4.3.

COROLLARY 4.7. Suppose that X1, . . . ,Xn are independent random vari-
ables with Eψi(Xi) < ∞ and E[log1+ε(1 + |Xi |2)] < ∞ for some ε > 0 and all
i = 1, . . . , n. Then

(4.10) NMρ

(
X(1), . . . ,X(N))−−−−→

N→∞ 0 in probability.

PROOF. The corollary is a direct consequence of Theorem 4.5 and the obser-
vation that

nZn
d−→ Z =⇒ Zn

d−→ 0 =⇒ Zn
P−→ 0;

the second implication follows since the d-limit is degenerated. �



2776 B. BÖTTCHER, M. KELLER-RESSEL AND R. L. SCHILLING

4.3. Estimating total distance multivariance. To simplify notation, we write
ρS =⊗

i∈S ρi . Recall that

(4.11) NM
2
ρ

(
X(1), . . . ,X(N))= ∑

S⊂{1,...,n}
|S|≥2

NM2
ρS

(
X(1), . . . ,X(N)).

Note that MρS
depends only on the random variables (Xi, i ∈ S), that is, MρS

=
MρS

(Xi, i ∈ S). This means that the sample version

NMρS
= NMρS

(
X(1), . . . ,X(N))

is computed only from the S-coordinates of the samples X(1), . . . ,X(N). The re-
sults of this section are mostly direct consequences of the results of the previous
section (replacing Mρ by MρS

and NMρ by NMρS
).

COROLLARY 4.8 (NMρ is a strongly consistent estimator of Mρ ). Assume
that one of the moment conditions of Definition 2.3 is satisfied. Then

(4.12) NMρ

(
X(1), . . . ,X(N))−−−−→

N→∞ Mρ(X1, . . . ,Xn) a.s.

PROOF. Apply Theorem 4.3 to each MρS
in (4.11). �

COROLLARY 4.9. Let X1, . . . ,Xn be independent random variables with
Eψi(Xi) < ∞ and E[log1+ε(1+|Xi |2)] < ∞ for some ε > 0 and all i = 1, . . . , n.
Then

(4.13) NMρ

(
X(1), . . . ,X(N))−−−−→

N→∞ 0 in probability.

PROOF. Apply Corollary 4.7 to each MρS
in (4.11). �

The next theorem is the analogue of the convergence result Theorem 4.5. For
each S ⊂ {1, . . . , n}, we denote by GS the centred Gaussian process

(4.14) GS(tS) := ∑
R⊂S

(−1)|S|−|R|
∫

eixR ·tR dB(x) · ∏
j∈S\R

fj (tj )

(cf. (S.15) in the Supplementary Material [9]), indexed by tS ∈×i∈S R
di , and

where B is the Brownian bridge from (S.12) in the Supplementary Material [9].
Applying Theorem 4.5 with {1, . . . , n} replaced by S, we see that GS has covari-
ance structure

(4.15) E
(
GS(t)GS

(
t ′
))= ∏

i∈S

(
fXi

(
ti − t ′i

)− fXi
(ti)fXi

(
t ′i
))

.
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THEOREM 4.10 (Asymptotic distribution of NMρ ). (a) Suppose that X1, . . .

,Xn are independent with Eψi(Xi) < ∞ and E[log1+ε(1 + |Xi |2)] < ∞ for some
ε > 0 and all i = 1, . . . , n. Then

(4.16) N · NM
2
ρ

(
X(1), . . . ,X(N)) d−−−−→

N→∞
∑

S⊂{1,...,n}
|S|≥2

‖GS‖2
L2(ρS)

.

(b) Suppose that the random variables X1, . . . ,Xn are not independent and that
one of the moment conditions of Definition 2.3 holds. Then

(4.17) N · NM
2
ρ

(
X(1), . . . ,X(N))−−−−→

N→∞ ∞ a.s.

REMARK 4.11. Note that the processes (GS), S ⊂ {1, . . . , n} on the right-
hand side of (4.16) are jointly Gaussian. Therefore, the limit appearing in (4.16)
is a quadratic form of centred Gaussian random variables. This fact will be used
in Section 4.5 to construct a statistical test of (multivariate) independence. Further
properties of the processes GS are discussed in [5].

PROOF OF THEOREM 4.10. (a) For any S ⊂ {1, . . . , n} with |S| ≥ 2, we know
from Theorem 4.5 that

N · NM2
ρS

(
X(1), . . . ,X(N))−−−−→

N→∞ ‖GS‖2
ρS

,

and (4.16) follows.
(b) By Corollary 4.8, we have NMρ → Mρ almost surely. Moreover, Mρ > 0 by

Theorem 3.4, since the random variables (X1, . . . ,Xn) are not independent. Thus,

N · NM
2
ρ → ∞ almost surely. �

4.4. Normalizing and scaling distance multivariance. With practical applica-
tions in mind, there are at least two reasons to consider rescaled versions of (total)
distance multivariance:

• To obtain a distance multicorrelation whose value is bounded by 1—analogous
to Székely-Rizzo-and-Bakirov’s distance correlation [25], Definition 3;

• To normalize the asymptotic distribution of the sample (total) distance multi-
variance under independence; cf. Theorem 4.5 and Theorem 4.10.

We will use normalized multivariances as test statistics in two tests for inde-
pendence in Section 4.5. For the scaling constants we use in the following the
convention 0/0 := 0. This ensures that we also cover the case of degenerated (i.e.,
constant) random variables.
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Distance multicorrelation.

DEFINITION 4.12. Let X1, . . . ,Xn be random variables with Eψn
i (Xi) < ∞

for all i = 1, . . . , n. We set

ai := ∥∥CXi
CX′

i
ψi

(
Xi − X′

i

)∥∥
Ln(P)

and define distance multicorrelation as

(4.18) R2
ρ(X1, . . . ,Xn) := M2

ρ(X1, . . . ,Xn)

a1 · . . . · an

.

For the sample version of distance multicorrelation, we define

(4.19) Nai := Nai

(
x(1), . . . ,x(N))=

(
1

N2

N∑
k,l=1

∣∣(Ai)kl

∣∣n)1/n

,

where the Ai are the doubly centred matrices from Theorem 4.1, and set

(4.20) NR2
ρ

(
x(1), . . . ,x(N)) := 1

N2

N∑
k,l=1

(A1)kl

Na1
· . . . · (An)kl

Nan

.

Note that ai = 0 if, and only if, Xi is degenerate, hence, Rρ(X1, . . . ,Xn) is well
defined as a finite nonnegative number.

PROPOSITION 4.13. (a) Distance multicorrelation and its sample version sat-
isfy

(4.21) 0 ≤ Rρ(X1, . . . ,Xn) ≤ 1 and 0 ≤ NRρ

(
x(1), . . . ,x(N))≤ 1.

(b) For i.i.d. copies X(1), . . . ,X(N) of X = (X1, . . . ,Xn) it holds that

lim
N→∞

NRρ

(
X(1), . . . ,X(N))=Rρ(X1, . . . ,Xn) a.s.

(c) For n = 2 and ψ1(x) = ψ2(x) = |x|, distance multicorrelation coincides
with the distance correlation of [25].

REMARK 4.14. Székely and Rizzo [23], Theorem 4(iv), show for the case
n = 2 (i.e., for distance correlation) that NRρ(X(1), . . . ,X(N)) = 1 implies that the

sample points (x
(1)
1 , . . . , x

(N)
1 ) and (x

(1)
2 , . . . , x

(N)
2 ) can be transformed into each

other by a Euclidean isometry composed with scaling by a nonnegative number.
An analogous result seems not to hold for distance multicorrelation in the case
n > 2.
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PROOF OF PROPOSITION 4.13. By the generalized Hölder inequality for n-
fold products (cf. [20], page 133, Problem 13.5), we have that

M2
ρ(X1, . . . ,Xn) = E

(
n∏

i=1

−CXi
CX′

i
ψi

(
Xi − X′

i

))

≤ E

(
n∏

i=1

∣∣CXi
CX′

i
ψi

(
Xi − X′

i

)∣∣)

≤
n∏

i=1

∥∥CXi
CX′

i
ψi

(
Xi − X′

i

)∥∥
Ln(P) = a1 · . . . · an,

and (4.21) follows. For the convergence result, note that

(4.22) Nan
i = 1

N2

N∑
k,l=1

∣∣(Ai)kl

∣∣n −−−−→
N→∞ E

[∣∣CXi
CX′

i
ψi

(
Xi − X′

i

)∣∣n]= an
i

by the law of large numbers for V-statistics; cf. Theorem 4.3 and its proof. Part (c)
follows from direct comparison with [23]. �

Normalized distance multivariance. Alternatively, we can normalize distance
multivariance in such a way, that the limiting distribution under independence (cf.
Theorems 4.5 and 4.10) has unit expectation.

DEFINITION 4.15. Let X1, . . . ,Xn be random variables with Eψi(Xi) < ∞
for all i = 1, . . . , n, set

bi := Eψi

(
Xi − X′

i

)
and define normalized distance multivariance as

(4.23) M2
ρ(X1, . . . ,Xn) := M2

ρ(X1, . . . ,Xn)

b1 · . . . · bn

.

For the sample version of normalized distance multicorrelation, we define

(4.24) Nbi := Nbi

(
x(1), . . . ,x(N)) := 1

N2

N∑
k,l=1

ψi

(
x

(l)
i − x

(k)
i

)= 1

N2

N∑
k,l=1

(Bi)kl,

and set

(4.25) NM2
ρ

(
x(1), . . . ,x(N)) := 1

N2

N∑
k,l=1

(A1)kl

Nb1
· . . . · (An)kl

Nbn

.



2780 B. BÖTTCHER, M. KELLER-RESSEL AND R. L. SCHILLING

COROLLARY 4.16. Suppose that X1, . . . ,Xn are nondegenerate independent
random variables with Eψi(Xi) < ∞ and E[log1+ε(1 + |Xi |2)] < ∞ for some
ε > 0 and all i = 1, . . . , n. Then

(4.26) N · NM2
ρ

(
X(1), . . . ,X(N)) d−−−−→

N→∞ Q,

where Q = ‖G‖2
ρ/(b1 · . . . · bn) and EQ = 1.

PROOF. This follows from Theorem 4.5 in combination with

(4.27) Nbi = 1

N2

N∑
k,l=1

ψi

(
X

(k)
i − X

(l)
i

)−−−−→
N→∞ Eψi

(
Xi − X′

i

)= bi,

under the assumption Eψi(Xi) < ∞. �

It remains to find an analogous normalization for total distance multivariance.
For a subset S ⊂ {1, . . . , n}, define MρS

(X1, . . . ,Xn) as in Section 4.3 and set
bS =∏

i∈S bi .

DEFINITION 4.17. For the random variables X1, . . . ,Xn, we define the nor-
malized total distance multivariance as

(4.28) M2
ρ(X1, . . . ,Xn)

2 := 1

2n − 1 − n

∑
S⊂{1,...,n}

|S|≥2

M2
ρS

(Xi, i ∈ S)

bS

.

Its sample version becomes
NM2

ρ

(
x(1), . . . ,x(N))

:= 1

2n − 1 − n

{
1

N2

N∑
k,l=1

(
1 + (A1)kl

Nb1

)
· . . . ·

(
1 + (An)kl

Nb1

)
− 1

}
.(4.29)

Similar to Corollary 4.16, we have the following result.

COROLLARY 4.18. Suppose that X1, . . . ,Xn are nondegenerate independent
random variables with Eψi(Xi) < ∞ and E[log1+ε(1 + |Xi |2)] < ∞ for some
ε > 0 and all i = 1, . . . , n. Then

(4.30) N · NM2
ρ

(
X(1), . . . ,X(N)) d−−−−→

N→∞ Q,

where

Q = 1

2n − n − 1

∑
S⊂{1,...,n}

|S|≥2

‖GS‖2
L2(ρS)

bS

and EQ = 1.

PROOF. Convergence follows from Theorem 4.10. Note that the sum runs over
2n − n − 1 subsets and E[‖GS‖2

L2(ρS)
] = bS by Corollary 4.16. �
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4.5. Two tests for independence. Based on the normalized multivariance
statistics Mρ and Mρ and the convergence results of Corollaries 4.16 and 4.18,
we can formulate two statistical tests for the independence of the random vari-
ables X1, . . . ,Xn. To assess a critical value for the test statistics, we use the
same approach as Székely and Rizzo [23]: Both limiting random variables Q

and Q are quadratic forms of centered Gaussian random variables, normalized
to EQ = EQ = 1. Hence, by [22], page 181,

(4.31) P
(
Q ≥ χ2

1−α(1)
)≤ α and P

(
Q ≥ χ2

1−α(1)
)≤ α,

for all 0 < α ≤ 0.215, where χ2
1−α(1) denotes the (1 − α)-quantile of a chi-square

distribution with one degree of freedom. Note that (4.31) is, in general, very rough,
thus the following tests are, in general, quite conservative. The first test uses multi-
variance and, therefore, requires the a priori assumption of (n − 1)-independence.

TEST A. Let x(1), . . . ,x(N) be observations of the random vector X =
(X1, . . . ,Xn), let α ∈ (0,0.215), and suppose that the moment conditions of Corol-
lary 4.16 and one of the moment conditions of Definition 2.3 hold. Under the as-
sumption of (n − 1)-independence, the null hypothesis

H 0 : (X1, . . . ,Xn) are independent

is rejected against the alternative hypothesis

H 1 : (X1, . . . ,Xn) are not independent

at level α, if the normalized multivariance NM(x(1), . . . ,x(N)) satisfies

N · NM2
ρ

(
x(1), . . . ,x(N))≥ χ2

1−α(1).

The second test uses total multivariance, and hence does not require a-priori
assumptions, except for the moment conditions. We emphasize that this test on
mutual independence can be applied in very general settings: It is distribution-free
and the random variables X1, . . . ,Xn can take values in arbitrary dimensions.

TEST B. Let (x(1), . . . ,x(N)) be observations of the random vector X =
(X1, . . . ,Xn), let α ∈ (0,0.215), and suppose that the moment conditions of Corol-
lary 4.18 and one of the moment conditions of Definition 2.3 hold. The null hypoth-
esis

H 0 : (X1, . . . ,Xn) are independent

is rejected against the alternative hypothesis

H 1 : (X1, . . . ,Xn) are not independent
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at level α, if the normalized total multivariance NMρ(x(1), . . . ,x(N)) satisfies

N · NM2
ρ

(
x(1), . . . ,x(N))≥ χ2

1−α(1).

Note that in Test A and Test B the moment conditions of Definition 2.3 ensure
the divergence (for N → ∞) of the test statistics in the case of dependence; cf.
Theorem 4.5 and Theorem 4.10. Thus these tests are consistent against all alterna-
tives.

In Section 5 below, we give a numerical example of both tests that also allows
to assess their power for different sample sizes N .

REMARK 4.19. If the marginal distributions are known, it is possible to per-
form a Monte Carlo test, where the p-value is obtained from the empirical (Monte
Carlo) distribution of the test statistic under H0. Even without knowledge of the
marginal distributions, resampling tests can be performed. These and further tests
based on distance multivariance are discussed in [5, 6].

5. Examples. In this section, we present two basic examples which illustrate
some key aspects of distance multivariance:

Bernstein’s coins: This is a classical example of pairwise independence with
higher order dependence. It shows that distance multivariance accurately de-
tects multivariate dependence.

Sinusoidal dependence: This is a basic example which was considered in [21] to
illustrate that distance covariance can perform poorly when used to detect small
scale (local) dependencies. We show that the flexibility of generalized distance
multivariance—due to the choice of the distance functions ψi—can be used to
improve the power of the test considerably.

5.1. Bernstein’s coins. The first example of pairwise independent, but not
(totally) independent random variables is attributed to S. N. Bernstein; cf. [14],
Section V.3. We illustrate this example by using two identical fair coins: coin I
and coin II. Based on independent tosses of these two coins, define the following
events:

A = {coin I shows heads}, B = {coin II shows tails},
C = {both coins show the same side}.

All events have probability 1
2 , and they are pairwise independent, since

P(A ∩ B) = P(B ∩ C) = P(C ∩ A) = 1

4
.

They are, however, not independent, since A ∩ B ∩ C = ∅; hence,

0 = P(A ∩ B ∩ C) �= P(A) · P(B) · P(C) = 1

8
.
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Hence, the distance covariances2 of the pairs (A,B), (B,C) and (C,A) should
vanish, due to pairwise independence, while the distance multivariance and the
total distance multivariance of the triplet (A,B,C) should detect their higher-order
dependence. We discuss both the analytic approach and the numerical simulation
of the relevant quantities.

Let ρA,ρB,ρC be one-dimensional symmetric Lévy measures with the cor-
responding continuous negative definite functions ψA, ψB and ψC . We write
ρ = ρA ⊗ ρB ⊗ ρC and ρAB := ρA ⊗ ρB , etc.

Analytic approach. First, note that pairwise independence yields

MρAB
(A,B)2 =

∫
R2

(
fA,B(r, s) − fA(r)fB(s)

)2
ρA ⊗ ρB(dr,ds)

=
∫
R

∫
R

0ρA(dr)ρB(ds) = 0,

and similarly for MρBC
(B,C) and MρAC

(C,A). On the other hand, from the pair-
wise independence and Corollary 3.3 we obtain

Mρ(A,B,C)2 =
∫
R3

(
fA,B,C(r, s, t) − fA(r)fB(s)fC(t)

)2
ρ(dr,ds,dt)

= 1

64

∫
R

∫
R

∫
R

∣∣1 − eir ∣∣2∣∣1 − eis ∣∣2∣∣1 − eit ∣∣2ρA(dr)ρB(ds)ρC(dt)

= 1

8
ψA(1)ψB(1)ψC(1).

In particular, for ψ(x) = |x| we obtain

Mρ(A,B,C) = Mρ(A,B,C) = 1

2
√

2
.

We calculate the scaling factors from Section 4.4 as

aA = aB = aC = bA = bB = bC = 1

2
,

which shows that multicorrelation and normalized multivariance coincide in this
case, that is,

Rρ(A,B,C) = 1 = Mρ(A,B,C).

Finally, normalized total multivariance is given by

Mρ(A,B,C) = 1√
23 − 3 − 1

Mρ(A,B,C) = 1

2
.

2In slight abuse of notation, we identify the events A,B,C with the random variables
1A(ω),1B(ω),1C(ω).
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Numerical simulation. To complement the analytical results by a numeri-
cal simulation, we have simulated 5000 replications of N = 3, . . . ,30 tosses
of Bernstein’s coins. We calculated the pairwise sample distance covariances
NMρAB

(A,B), NMρBC
(B,C), NMρAC

(C,A) as well as the sample distance mul-
tivariance NMρ(A,B,C) and the sample total distance multivariance NMρ(A,

B,C). We used Euclidean distance as underlying distance in all cases. Due to
pairwise independence, the bivariate distance covariances should tend to zero for
increasing N , while the multivariances should tend to the nonzero limits that we
calculated analytically above.

Figure 1 shows the average values of the multivariance statistics over 5000
replications, along with their empirical 5% and 95% quantiles. Figure (a) uses no
scaling, Figure (b) shows “normalized” quantities (cf. Section 4.4) and Figure (c)
shows squared normalized quantities scaled by N , as they appear in Theorems 4.5
and 4.10. Also shown is the critical value χ2

0.95(1) of the test proposed in Sec-
tion 4.5. In summary, the numerical simulation shows that:

• (Total) distance multivariance is able to distinguish correctly pairwise indepen-
dence of the events A,B,C from their higher-order dependence;

• The sample statistics converge quickly to their analytic limits and numerically
confirm the asymptotic results from Theorems 4.5 and 4.10.

• The hypothesis of pairwise independence of A and B would be correctly ac-
cepted in about 95% of simulations, confirming the specificity of the proposed
tests.

• Test A (with the a priori assumption of pairwise independence) has a power
exceeding 95% for sample sizes N > 5. Test B (no a priori assumptions) has a
power exceeding 95% for N > 14.

Note that all necessary functions and tests for such simulations and for the use
of distance multivariance in applications are provided in the R package multi-
variance [7].

5.2. Sinusoidal dependence. In [21], page 2287, it was pointed out that for
random variables X, Y with a common sinusoidal density

(5.1) fl(x, y) := 1

4π2

(
1 + sin(lx) sin(ly)

)
on [−π,π ]2 for some l ∈N

the detection of the dependence using distance covariance is poor for l > 1. It was
also noted that choosing (in our notation) ψi(x) = |x|α with some α �= 1 might im-
prove the power; see Figure 2(a). Using the bounded continuous negative definite
function ψi(x) = 1

γ
(1 − exp(−γ |x|)) with γ > 0 can increase the power consider-

ably for larger l; see Figure 2(b). Here, we used the same sample parameters as in
[4] (5000 samples, N = 200, α = 0.05). The p-values were calculated by Monte
Carlo estimation with 10,000 replications.
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FIG. 1. These plots show sample distance covariance NMρAB (A,B) (blue), sample distance mul-
tivariance NMρ(A,B,C) (red) and sample total distance multivariance NMρ(A,B,C) (green) for
Bernstein’s coin toss experiment (cf. Section 5), averaged over 5000 Monte-Carlo replications. Also
shown are the empirical 5% and 95% quantiles (dashed). Different scalings are used in the plots
(a)–(c), and plot (c) also shows the critical value (significance level α = 5%) of the independence
tests from Section 4.5 (long dashes, black).
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FIG. 2. Power of tests based on distance multivariance for the sinusoidal example with density fl

given in (5.1). The parameter of the data is l and the parameter of the ψi is α and γ , respectively.
Here, (a) is the alpha-stable case and (b) uses a bounded cndf.

The following heuristic was used to choose the value of γ : Note that

(5.2) ψi(x) := 1

γ

(
1 − exp

(−γ |x|))
is a bounded function which is strictly increasing for x > 0. Suppose we know that
the local dependencies occur in a window of (Euclidean) distance δ. Thus, it seems
reasonable to neglect all pairs which are further apart than δ by setting all their
ψi-distances to (roughly) the same value, that is, we choose γ such that ψi(δ) ≥
0.99 · supx ψi(x). This is achieved by setting γ := − ln(0.01)/δ. For the sinusoidal
example δ is the period of the sin functions, that is, δ = π/l. Let us compare the
resulting test with the methods MINT and MINTavwhich were proposed in [BS17]
for a wide range of situations. Figure 3 shows in the setting of sinusoidal data that

FIG. 3. Comparison of the power of distance multivariance with distance adapted to the depen-
dence scale, classical distance covariance with Euclidean distance, MINTav and MINT. The latter
were recently introduced in [4] and it was shown that for this example they outperform many (all in
their comparison) other dependence measures.
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our proposed test outperforms MINTav and has similar power as the oracle test
MINT.

Note that MINTav uses no a priori information about the dependence scale,
and that MINT computes the p-value using all possible parameters and selects a
posteriori the parameter (for each setting) which yielded the highest power. In
contrast, our test requires a heuristic parameter selection using certain a priori
knowledge of the data generation mechanism.

Further extensions and details on resampling, Monte Carlo and other tests based
on distance multivariance can be found in [5, 6].
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NOTE ADDED IN PROOF. After this paper had been accepted, the authors
learned from Prof. Martin Bilodeau that his joint paper with Aurélien Guetsop
Nangue, “Tests of mutual or serial independence of random vectors with appli-
cations,” which has appeared in The Journal of Machine Learning Research 18
(2017) pp. 1–40—we will refer to this paper as [BGN]—contains a test of inde-
pendence for several random variables which is also based on (empirical) char-
acteristic functions. In this paper, generalizations of the Hilbert–Schmidt indepen-
dence criterion (HSIC) and of distance covariance are investigated. The formula
[(7), BGN] is formally equivalent to our definition (2.2) of multivariance; although
(2.2) is not stated in [BGN], it can be derived with some calculations using the
Möbius transform [(1), BGN] of characteristic functions. In order to extend HSIC
from finite measure kernels to stable measure kernels needed for distance covari-
ance, [Theorem 4.i, BGN] establishes the α-stable version of our formula (3.15).
The test statistic [(8), (9), BGN] and its consistency and asymptotics [Theorems 2
and 4.ii, BGN] correspond to special cases of our Theorems 4.1(a) and 4.3. The
approach to test independence of n random variables of [BGN] is complementary
to ours: [BGN] propose to combine the p-values from 2n − n − 1 evaluations of
their test statistics, while we propose a global test using total multivariance. We
would like to point out that our results were obtained independently.

SUPPLEMENTARY MATERIAL

Supplement to “Distance multivariance: New dependence measures for
random vectors” (DOI: 10.1214/18-AOS1764SUPP; .pdf). It contains the proofs
of some of the main results as well as a few auxiliary statements.

https://doi.org/10.1214/18-AOS1764SUPP
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