Correction to "A Topologically Valid Definition of Depth for Functional Data"

Alicia Nieto-Reyes and Heather Battey

We are grateful to Irène Gijbels and Stanislav Nagy for drawing our attention to some regrettable substantive errors in our paper, which appears in *Statistical Science* **31** 61–79 (2016). With apologies, we present the correct forms below.

- 1. In Definition 3.1 and in the definitions of band depth and modified band depth on page 68 (lines 15–16, 27–28 and 34) α should be replaced by $\alpha(v)$.
- 2. The last two lines of Definition 3.1 should be replaced by $U: \mathcal{V} \to \mathfrak{F}$ with $U(v) := \sup_{x \in \mathcal{E}} x(v)$ and $L: \mathcal{V} \to \mathfrak{F}$ with $L(v) := \inf_{x \in \mathcal{E}} x(v)$ when $\max(|U(v)|, |L(v)|) < \infty$ for all $v \in \mathcal{V}$.
- 3. In Definition 3.2:
 - under P-3., after "exists" should appear "with D(z, P) = D(z', P) implying d(z, z') = 0".
 - Equation (3.1) has to be substituted by $\sup_{y \in \mathfrak{F}_x: d(x,y) < \delta} D(y,P) \le D(x,P) + \varepsilon$, where $\mathfrak{F}_x := \{y \in \mathfrak{F} : d(y,x) < d(y,\theta) \text{ or }$

- $\max\{d(y,\theta),d(y,x)\} < d(x,\theta)\}$ for $\theta = \underset{x \in \mathfrak{F}}{\operatorname{argsup}} D(x,P)$.
- In P-5., $\mathfrak{C}(\mathfrak{F}, P)$ is substituted by $\mathfrak{C}(\mathfrak{F}, P) \setminus 0$ and the interval of definition of δ by $[\inf_{v \in \mathcal{V}} d(L(v), U(v)), d(L, U)) \cap (0, \infty)$.
- 4. Lemma 4.3 is false. Consequently, there is a cross in the corresponding position in Table 2.

Counter-example: Let $(\mathfrak{F},d) = (\mathbb{H}, \|\cdot\|_{\mathbb{L}_2})$ and P a discrete distribution on \mathfrak{F} with support $\{X_1, X_2, X_3\}$ such that $P(X_1) = P(X_3) = 1/4$ and $P(X_2) = 1/2$ and $d(X_1, X_2) = d(X_2, X_3) = d(X_1, X_3)/2$. Let $x \in \mathfrak{F}$ such that $d(x, X - 1) = d(x, X_2) = d(X_1, X_2)/2$, then, there always exist a h such that $D_h(x, P) < \min(D_h(X_1, P), D_h(X_2, P))$. This is due to $D_h(x, P) = \mathbb{E}[\exp(-(x/h)^2/2)/(h\sqrt{2\pi})]$.

ACKNOWLEDGEMENT

We thank Peter Green for much valued constructive criticism.

Alicia Nieto-Reyes is Associate Professor, Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Spain (e-mail: alicia.nieto@unican.es). Heather Battey is Lecturer, Imperial College London, Department of Mathematics, South Kensington Campus, London, England SW7 2AZ (e-mail: h.battey@imperial.ac.uk).