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The General Structure of Evidence Factors
in Observational Studies
Paul R. Rosenbaum

Abstract. The general structure of evidence factors is examined in terms
of the knit product of two permutation groups. An observational or nonran-
domized study of treatment effects has two evidence factors if it permits two
(nearly) independent tests of the null hypothesis of no treatment effect and
two (nearly) independent sensitivity analyses for those tests. Either of the
two tests may be biased by nonrandom treatment assignment, but certain bi-
ases that would invalidate one test would have no impact on the other, so
if the two tests concur, then some aspects of biased treatment assignment
have been partially addressed. Expressed in terms of the knit product of two
permutation groups, the structure of evidence factors is simpler and less clut-
tered, but at the same time more general and easier to apply in a new context.
The issues are exemplified by an observational study of cigarette smoking as
a cause of periodontal disease.

Key words and phrases: Evidence factor, knit product, permutation group,
permutation inference, randomization inference, semidirect product, sensi-
tivity analysis, wreath product, Zappa–Szep product.

1. INTRODUCTION: MOTIVATION FOR EVIDENCE
FACTORS

[We should] trust rather to the multitude and
variety of . . . arguments than to the conclu-
siveness of any one. [Our] reasoning should
not form a chain which is no stronger than
its weakest link, but a cable whose fibers
may be ever so slender, provided they are
sufficiently numerous and intimately con-
nected.

Charles Sanders Peirce (1868)

1.1 Seeking Concurrence of Several Sources of
Evidence, Each Susceptible to Different Biases

In an experiment, biased comparisons of treatments
are avoided by randomly assigning individuals to treat-
ments, so experimental design focuses on reducing the
standard error of consistent or unbiased estimates and
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reducing the cost of the experiment; see Fisher (1935)
and Cox and Reid (2000). When ethical or practi-
cal barriers prevent random assignment, observational
studies of treatment effects may yield biased inferences
about treatment effects by virtue of comparing people
who are not comparable, even if they appear to be com-
parable in terms of measured covariates; see Cochran
(1965).

Biases due to nonrandom treatment assignment do
not diminish with increasing sample size, so they
quickly come to dominate the mean squared error of
an estimated effect, and they cannot be addressed sim-
ply by acquiring more data of the same kind, more
data subject to the same bias; see Rosenbaum (2001).
As a result, investigators often examine a variety of
sources of evidence, seeking concurrence among sev-
eral sources of evidence that are likely to be biased in
different ways. For instance, Mervyn Susser (Susser,
1973, page 148, and Susser, 1987, page 88) wrote:

The epidemiologist [. . . seeks. . . ] consis-
tency of results in a variety of repeated
tests. . . Consistency is present if the result
is not dislodged in the face of diversity in
times, places, circumstances, and people, as
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well as of research design. . . . The strength
of the argument rests on the fact that diverse
approaches produce similar results.

Similarly, William Cochran [(1965), pages 252–253]
wrote:

The combined evidence on a question that
has to be decided mainly from observational
studies will usually consist of a heteroge-
neous collection of results of varying qual-
ity, each bearing on some consequence of
the causal hypothesis . . . [The investigator]
cannot avoid an attempt to weigh the ev-
idence for and against, since some results
are so vulnerable to bias that they should be
given low weight even if supported by rou-
tine tests of significance.

Use of two evidence factors in an observational study
is an attempt to employ this strategy inside a single
observational study. Obviously, there is little point in
reporting at length two highly correlated analyses of
the same data that depend upon the same assumptions
about unmeasured biases, two analyses that would be
invalidated by the same biases. Two evidence factors
are two tests of the null hypothesis of no treatment ef-
fect that would be nearly independent under the null
hypothesis and that are likely to be affected by differ-
ent biases. Use of evidence factors is an attempt to for-
malize the sound but informal considerations raised by
Susser and Cochran.

1.2 Motivating Example: Smoking and Periodontal
Disease

Smoking is widely believed to cause periodontal dis-
ease; see Tomar and Asma (2000) and the Centers for
Disease Control (2016). Figure 1 depicts 441 matched
pairs of a daily cigarette smoker and a never-smoker
from the 2011–2012 National Health and Nutrition
Examination Survey, as described in greater detail in
Rosenbaum (2016a). Smokers smoked every day for
the past 30 days, whereas never-smokers smoked fewer
than 100 cigarettes in their lives, do not smoke now,
and had no tobacco use in the previous five days. Daily
smokers began smoking 30 years ago, on average, and
90% began smoking more than 14.9 years ago. The
pairs were matched for age, gender, five categories
of education, income and black race using the algo-
rithm in Yang et al. (2012); see Table 1 and Figure 1
in Rosenbaum (2016a) for a demonstration that the
matching balanced these measured covariates.

Periodontal disease is present on a tooth if the gums
and tooth exhibit separation. Following Tomar and
Asma (2000), the measure of periodontal disease ex-
amines 28 teeth, if present, not including wisdom teeth,
at six locations on each tooth, judging a location to
exhibit periodontal disease if there is either a loss
of attachment ≥ 4mm or a pocket depth of ≥ 4mm.
A person is scored by the percent of completed mea-
surements exhibiting periodontal disease in this sense,
and Figure 1 plots the smoker-minus-control difference
in these percents, which may range from −100% to
100%. (The measure is slightly different from those
used in Rosenbaum, 2016a, where upper and lower
teeth were considered separately.)

The boxplot on the left in Figure 1(i) displays 441
smoker–control pair differences, which tend to be
positive indicating greater periodontal disease among
smokers. The asymmetry in Figure 1(i) is signifi-
cant at <0.0001 by Wilcoxon’s signed rank test, with
a 95% confidence for a shift of [10.2,17.6]. The
scatterplot on the right in Figure 1(ii) plots the 441
smoker–control pair differences against the number of
cigarettes smoked per day by the smoker, and there
is a weak increasing trend, more cigarettes predicting
greater periodontal disease. The trend in Figure 1(ii) is
significant at 0.013 with Kendall’s rank correlation of
0.084. As discussed later, neither Wilcoxon’s test nor
Kendall’s test is the best test in an observational study.

Figure 1 emphasizes points in the upper and lower
quintile of each variable, although all points are plot-
ted. The cross-cut statistic uses the 2×2 table of counts
beyond the quintiles, and it yields a two-sided P -
value of 0.0044 in a randomization test. The cross-cut
statistic has attractive properties, specifically attractive
power and design sensitivity, when used in a sensitiv-
ity analysis in an observational study; see Rosenbaum
(2016b).

The decision to smoke rather than not smoke may be
biased in a different way than the decision to smoke
more or fewer cigarettes. A well-informed, disciplined
person concerned with health is likely to avoid smok-
ing altogether. Some people smoke a few cigarettes as
an appetite suppressant, smoking to maintain a moder-
ate weight and attractive appearance. Indeed, the me-
dian BMI for smokers in Figure 1 is 27.1, and is 29.0
for matched nonsmokers. Others people compulsively
smoke many cigarettes. The biases that affect a com-
parison of smokers and nonsmokers may be differ-
ent from the biases that affect a comparison of heavy
smokers and light smokers, though both comparisons
could easily be biased. We might expect that an effect
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of smoking on periodontal disease would reveal greater
periodontal disease among smokers than nonsmokers,
and greater disease among heavy smokers than among
light smokers. Perhaps there is a sense in which the ev-
idence of an effect is stronger if the data concur with
both predictions. To what extent are these two predic-
tions redundant and to what extent are they indepen-
dent pieces of evidence?

The permutation group relevant to Figure 1 is rather
large, albeit simple in structure. To illustrate using
a small permutation group that permits close inspec-
tion, Table 1 describes four individuals in two matched
pairs. The first pair contains two white men in their
early 50s with some college education, essentially an
associate’s degree, and solidly middle class incomes.
One is a daily smoker who smokes 40 cigarettes per
day, the other is a never-smoker. The smoker in this
pair has extensive periodontal disease, with 63.04%
of measurements indicating separation of gums from
teeth. The second pair consists of two black women in
their early 60s with a high-school degree or equivalent,
and an income below the poverty line. The smoker in
this pair smoked 8 cigarettes per day, and had some-
what greater periodontal disease than her matched con-
trol. We will be interested in a permutation group that
permutes people among treatments while keeping the
matched pairs intact.

1.3 Outline: When Are Two Sensitivity Analyses
(Essentially) Independent?

Section 2 is background: it introduces notation and
concepts for an observational study without evidence
factors, and in particular it conducts two sensitivity
analyses for Figure 1, one for Figure 1(i) and one for
Figure 1(ii). To what extent and in what sense do Fig-
ure 1(i) and Figure 1(ii) provide distinct pieces of infor-
mation about the effects of smoking on periodontal dis-
ease? Section 3 answers this question in quite general
terms using the knit product of permutation groups. It
will be seen that each factor in the knit product yields a
permutation test that may be valid despite enormous bi-
ases affecting the other factor, and the two factors may
be combined into a single sensitivity analysis using
methods for combining independent P -values, such as
Fisher’s method. The main result of Section 3 is Propo-
sition 1: it gives conditions such that the two upper
bounds on the two P -values for two evidence factors
are stochastically larger than the uniform distribution
on the unit square, thereby permitting them to be used
as if they were independent P -values.

In early sections, attention focuses on one example
of a knit product of permutation groups, namely the
one relevant to Figure 1. In Section 4, other exam-
ples of knit products are discussed. Observational stud-
ies often exhibit less symmetry than designed experi-
ments, and this is apparent in Section 4, where there
are knit products that are not wreath products. Addi-
tionally, the knit product for Figure 1 acts within and
between matched pairs, but in Section 4 there is a knit
product that acts in a slightly more complex way within
matched sets.

Evidence factors that are strictly independent were
proposed for certain rank statistics in Rosenbaum
(2010a). These results are fine so far at they go, but
they unnaturally restrict the scope of the method, re-
quiring specific statistics that are only available in spe-
cific study designs. In Rosenbaum (2011), the goal of
strict independence was replaced by the goal of P -
value bounds that may be dependent but are stochas-
tically larger than the uniform distribution on the unit
square. The argument in Rosenbaum (2011) eliminates
the need for rank tests, but is quite limited in the per-
mutation distributions and associated study designs to
which it can be applied. In contrast, the formulation in
terms of the knit product of permutation groups seems
to capture what is essential to evidence factors: it is
simpler yet far more general.

For two applications that used particular evidence
factors, see Zhang et al. (2011) and Zubizarreta et al.
(2012). For an informal discussion of evidence factors,
see Rosenbaum (2015a, 2015b, 2017).

2. BACKGROUND FOR STUDIES WITHOUT
EVIDENCE FACTORS

2.1 Permuting Units Among Treatment Positions in
Randomized Experiments

A randomized experimental design involving N

units may be viewed as: (i) N fixed treatment po-
sitions, (ii) N units, represented by the vector i =
(1,2, . . . ,N)T , (iii) a known random process assigning
units to treatment positions. If each unit was placed in
a different treatment position, there would be a plan
for treating everyone in the experiment; that is the
meaning of a treatment position. The N treatment po-
sitions may be N distinct treatments, but there is no
requirement that this be true. In Figure 1, there are
N = 882 = 2 × 441 units, while in Table 1 there are
N = 4 units. The four treatment positions in Table 1
are smoker of 40 cigarettes per day, control paired with
that smoker, smoker of 8 cigarettes per day, control
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FIG. 1. Matched pair differences in periodontal disease for 441
pairs of a daily smoker and a never smoker, matched for age, gen-
der, education, income and black race. The measure of periodontal
disease is the proportion of tooth locations exhibiting separation of
tooth and gum. In (ii), the smoker-minus-control difference is plot-
ted against the amount smoked by the smoker, with points in the
outer quintiles in black, the quintiles being indicated by solid lines.
The dashed line is at zero difference.

paired with that smoker; these positions do not change.
However, we could run an experiment with these posi-
tions in 8 ways in Table 1 by permuting i = (1,2,3,4)T

while keeping the pairs intact.
It is convenient to represent the possible treatment

assignments by a finite group G of N ×N permutation
matrices g ∈ G under the operation of matrix multipli-

cation. By Cayley’s theorem, there is no loss of gener-
ality in representing a finite group by a group of per-
mutation matrices; see Rotman (1995), Theorem 3.12,
page 52. Here, if g ∈ G, then gi is one possible assign-
ment of units to treatments. If g ∈ G and g∗ ∈ G, then
gg∗ ∈ G is the assignment that permutes i according
to g∗, then permutes the result according to g, to ob-
tain the assignment gg∗i. Generally, G is a subgroup
of the symmetric group consisting of all N ! permuta-
tion matrices. Write |S| for the number of elements in
a finite set S , so |G| ≤ N !. The group G for Table 1
has |G| = 8 ≤ 4! = 24, with 2 ways to assign a pair
to 40 cigarettes or 8 cigarettes, 2 × 2 ways to assign
one person in each pair to smoking or control, making
|G| = 8 = 2 × 2 × 2 assignments in total. For a design
with N/2 pairs comparing a dose of treatment to no
treatment in each pair, as in both Table 1 and Figure 1,
there are (N/2)! ways to assign the pairs to dose po-
sitions, and 2N/2 ways to pick one treated person in a
pair, so |G| = (N/2)! × 2N/2. This particular group is
discussed by Bell and Haller (1969); moreover, it iso-
morphic to the group of (N/2) × (N/2) matrices of
permutations and coordinate sign changes, a reflection
group that is much discussed in the statistical literature;
see Conlon et al. (1977), Eaton and Perlman (1977) and
Eaton (1982). In Section 4, there will be groups that
are not widely discussed, although they arise naturally
in observational studies when matching treated units to
several controls, perhaps a variable number of controls.

The group G is a finite set of permutation matrices g,
and a probability distribution on G assigns a probabil-
ity p(g) to each permutation matrix g ∈ G. More pre-
cisely, a probability distribution p on G has p(g) ≥ 0

TABLE 1
Two of 441 matched pairs of a daily-smoker and a never smoker, matched for gender (female = 1), age in years, race (black = 1), education
in five categories, income measured as the ratio of income to the poverty level and capped at 5 times poverty. The outcome is the percent of

measurements indicative of periodontal disease, 0–100%. The treatment position is defined by the pairing, smoking-or-not and
cigarettes-smoked-per-day (Cigarettes) for the smoker. A different treatment assignment would permute the four units without changing who

is paired with whom, while leaving the four treatment positions as they are. The smoker-minus-control difference in outcomes is 63.04 in
pair 1 and 11.08 in pair 2

Unit Attributes of units Treatment position

ID Matched covariates Outcome Treatment

i Pair Female Age Black Education Income Percent diseased Smoker Cigarettes

1 1 0 54 0 SomeCol 5.00 63.04 1 40
2 1 0 53 0 SomeCol 5.00 00.00 0 0
3 2 1 61 1 HS/GED 0.67 21.50 1 8
4 2 1 64 1 HS/GED 0.72 10.42 0 0
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for g ∈ G, and 1 = ∑
g∈G p(g) and a random G sam-

pled from this distribution has Pr(G = g) = p(g). Be-
cause |G| is finite, a probability distribution, p, is a
vector of dimension |G| indexed by G, that is, p =
(pg1,pg2, . . . , pg|G|) where the j th coordinate pgj

is
the probability p(gj ) of permutation matrix gj . Later,
we will speak of a set P of probability distributions
on g ∈ G, so P will be a subset of |G|-dimensional
Euclidean space. In the current discussion, by defini-
tion, an experiment is randomized if the experimenter
picks g ∈ G with equal probabilities, that is, accord-
ing to the distribution p defined by p(g) = |G|−1 for
all g ∈ G. There are other ways to randomize with un-
equal probabilities, but they will not be part of the dis-
cussion of randomized experiments in this paper; see,
for instance, Efron (1971). In observational studies, we
do not know the true distribution of treatment assign-
ments, and a set P of distributions p will play a role
in calibrating ignorance about the true distribution of
treatment assignments.

The current paper will discuss testing Fisher’s null
hypothesis H0 of no treatment effect, which says that
the responses of each person are not altered by chang-
ing the treatment assignments. If changing the treat-
ment a person receives changes the person’s responses,
then the treatment has some effect, perhaps an effect
that is too small or erratic to be interesting, but some
effect nonetheless. In Table 1, Fisher’s H0 says that
person i = 1 would have 63.04% periodontal disease
under all |G| = 8 treatment assignments, and the same
is true of persons i = 2, 3, 4. Once you can test Fisher’s
null hypothesis, there are many ways of inverting the
test to build confidence intervals or point estimates for
the magnitude of the effect; see Lehmann and Romano
(2005), Chapter 5, and Rosenbaum (2002), Chapter 5.
No new issues arise in inverting the test, so it saves
quite a bit of otherwise unneeded notation if we focus
on testing the hypothesis of no effect.

A statistic testing Fisher’s hypothesis H0 of no treat-
ment effect is a real-valued random variable, T = t (G),
where t : G → R. Of course, T will depend upon
measurements describing units besides their treatment
positions, but under H0 these measurements are un-
changed by changing the treatment assignment, G, so it
simplifies notation to leave this dependence implicit in
T = t (G). In other words, under H0, the test statistic T

in a randomized experiment is a random variable with
a known distribution because the treatment assignment
G is a random variable with a known distribution, and
it is in this sense that randomization forms the “rea-
soned basis for inference” in randomized experiments,
to use Fisher’s (1935) phrase.

In the example in Section 1.2, the randomization
distribution p(g) = |G|−1 is the basis for both the
Wilcoxon test and the Kendall test, in the follow-
ing way. The Wilcoxon test ignores the number of
cigarettes smoked—its statistic is invariant to the
(N/2)! permutations of whole pairs—and it employs
the 2N/2 permutations of smoking status within pairs.
The Kendall statistic conditions on the smoker–non-
smoker assignments within pairs, fixing upon one of
the 2N/2 permutations of smoking status within pairs,
and it employs the (N/2)! permutations of whole pairs
among the doses of cigarettes smoked per day. As
noted in Rosenbaum (2010a), these two rank tests are
statistically independent under H0 if treatment assign-
ments are determined by p(g). This strict indepen-
dence turns out to be tied to a narrow choice of rank
tests, but one can obtain something just as useful, and
much more, for large classes of tests, as is discussed
Section 3, specifically in Proposition 1.

There is a small, elegant literature concerned with
using one set of data twice to obtain independent rank
tests; see, for instance, Alam (1974), Dwass (1960),
Marden (1992), and the many references given there.
Several authors have noted that strict independence is
lost without rank tests, but very strong forms of unre-
latedness persist; see, for instance, Randles and Hogg
(1971) and Wolfe (1973).

The knit product of permutation groups will pro-
vide a general result along these lines, Proposition 1,
not only for randomization distributions from p(g),
but more importantly for sensitivity analyses in obser-
vational studies. There is an intuitive sense in which
Wilcoxon’s signed rank test is affected by biases that
determine who smokes in a smoker-control pair, but
is unaffected by biases that determine which smokers
smoke more and which smoke less; whereas the op-
posite is true for Kendall’s correlation. Proposition 1
will both formalize this intuition and give a basis for
constructing two sensitivity analyses that do not affect
each other and can, therefore, provide mutual support.

2.2 Sensitivity Analysis in Observational Studies

In an observational study, the distribution of p of the
treatment assignment G is neither known nor identified
from the observable data. Beginning with Cornfield
et al. (1959), investigators have asked: How far would
p have to depart from a randomization distribution
to qualitatively alter conclusions reached by acting
as if treatment assignments were randomized? They
were writing at a time when there was active debate
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about the effects of smoking cigarettes on lung can-
cer. Cornfield et al. (1959) observed that, to explain the
strong association between heavy smoking and lung
cancer, the departure from random assignment would
need to be enormous, the failure to match for an un-
measured covariate strongly predictive of treatment as-
signment and a near perfect predictor of lung cancer.
That is, they concluded that the ostensible effects of
smoking on lung cancer are highly insensitive to un-
measured bias, because only enormous biases could
produce the observed association in the absence of
a causal effect. This objective finding of insensitivity
does not eliminate the possibility that the association
is produced by unmeasured bias, but it constrains the
debate about such claims. Smokers drink more alco-
hol than nonsmokers, and behave differently in many
ways, but none of these commonly noted differences fit
the description of the bias that Cornfield et al. (1959)
found was needed to explain the association between
smoking and lung cancer. Cornfield et al. (1959) re-
placed the qualitative but largely uninformative state-
ment that “association does not imply causation, suf-
ficiently large biases can explain any association” by
a quantitative statement informed by the data: “to ex-
plain the observed association, the unmeasured biases
in treatment assignment would have to be of at least a
particular magnitude”.

Although an important conceptual advance, the spe-
cific method, an inequality for probabilities, that Corn-
field et al. (1959) used is limited in several ways: it is
restricted to a binary outcome, ignores sampling vari-
ability by equating sample and population quantities,
and ignores adjustments for observed covariates. A
method that removes these limitations but is otherwise
similar in spirit and content to the method of Cornfield
et al. (1959) was proposed in Rosenbaum (1987) and
is developed in detail in Rosenbaum (2002), Chapter 4;
Rosenbaum (2007). In particular, the method is applied
in Rosenbaum (2002), Section 4.3.2 to Hammond’s
(1964) study of smoking and lung cancer, reaching a
conclusion similar to that of Cornfield et al. (1959).
The method introduces a sensitivity parameter � ≥ 1
that measures the magnitude, but not the specific form,
of the departure of the distribution p of treatment as-
signments from the randomization distribution p(g) =
|G|−1 for all g ∈ G. Stated informally, two individuals
with the same observed covariates may differ in their
odds of receiving one treatment rather than another by
a factor of �, so � = 1 yields the randomization dis-
tribution, p, while letting � → ∞ permits large depar-
tures from random assignment approaching determin-
istic assignments. The practical question is: How large

would � have to be to alter the conclusions of the com-
monplace but naive analysis of an observational study
that pretends that treatment assignment is randomized
within matched pairs? For instance, how large would �

have to be to accept a null hypothesis of no treatment
effect rejected under the randomization distribution, p?
An aid to interpreting � was given in Rosenbaum and
Silber (2009). For details of this method of sensitiv-
ity analysis, see the cited references and associated R
packages.

The presentation of sensitivity analysis below is
slightly abstract. If the material is either unfamiliar or
uncomfortably abstract, it can be made concrete with
minimal effort by installing and loading the sensi-
tivitymw package in R and executing the erpcp
example in the help files for senmw and senmwCI.
This example reproduces a sensitivity analysis for an
interesting matched observational study by Werfel et
al. (1998) of DNA damage caused by electric arc weld-
ing, as discussed in Rosenbaum (2007), Chapter 3.3.
The R package is described in detail in Rosenbaum
(2015a).

The notation that follows presumes there are L ≥ 1
evidence factors, although commonly and in the ex-
amples there are L = 2 factors. We consider, for each
� = (�1, . . . ,�L) ≥ (1, . . . ,1) = 1, with L ≥ 1, a set
P� of probability distributions, p ∈ P� , on G, with
the following properties: (i) � = 1 corresponds with
the randomization distribution, P1 = {p}; (ii) the sets
grow with increasing � so that P� ⊆ P�′ for � =
(�1, . . . ,�L) ≤ (�1

′, . . . ,�L
′) = �′; (iii) for each fi-

nite �, the set P� is a compact set of |G|-dimensional
vectors p = (pg1,pg2, . . . , pg|G|) all of whose coordi-

nates are strictly positive, pgj
> 0, with 1 = ∑|G|

j=1 pgj
.

In other words, conditions (i) and (ii) say that, as �
increases, P� allows for larger departures from ran-
domized treatment assignment. Among other things,
condition (iii) says that G defines the set of possi-
ble treatment assignments, that is, those with positive
probability. There is a division of labor between G and
P� , in that G defines what is possible and P� defines
what is probable.

Unlike a randomized experiment, in an observational
study we do not know the true distribution of treat-
ment assignments, Pr(G = g), so we cannot compute
the tail probability Pr{t (G) ≥ a} of a test statistic un-
der the null hypothesis of no treatment effect. A sen-
sitivity analysis computes bounds on this unknown tail
probability Pr{t (G) ≥ a} when the bias in treatment as-
signment is at most �, that is, when p ∈ P� . A com-
putation of this form may permit us to say that a bias
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of magnitude � or smaller would be insufficient to ac-
cept the null hypothesis of no treatment effect in a
level α test. Tentatively assuming Pr(G = g) = p(g)

for some unknown p(·) ∈ P� , a sensitivity analysis re-
quires the computation of bounds, b�(k) ≤ b�(k), on
the unknown distribution Pr{t (G) ≥ a} of T ,

(1)

b�(a) = min
p∈P�

∑
g∈G

χ
{
t (g) ≥ a

}
p(g)

≤ Pr
{
t (G) ≥ a

}
≤ max

p∈P�

∑
g∈G

χ
{
t (g) ≥ a

}
p(g)

= b�(a),

where χ(E) = 1 if event E occurs and χ(E) = 0
if E does not occur; so, b�(a) and b�(a) provide
known bounds on the unknown probability Pr{t (G) ≥
a}. Then � is varied to display the sensitivity of con-
clusions to biases of different magnitudes measured
by �. Because P� is a compact set of vectors p =
(pg1,pg2, . . . , pg|G|) and

∑
g∈G χ{t (g) ≥ a}p(g) is the

sum of certain coordinates of p and hence a continu-
ous function of p, it follows that the min and max are
attained in (1). If the realized value of the test statis-
tic, T = t (G), satisfied b�(T ) ≤ α, then a bias of mag-
nitude � is too small to lead us to accept at level α

the null hypothesis of no treatment effect. The random
variable b�{t (G)} is an upper bound on the P -value
testing Fisher’s null hypothesis, H0, in the presence of
a bias of magnitude at most �.

In practice, the computation of b�(a) or b�(a) re-
quires some attention to details not discussed in the
current paper. Because |G| = (N/2)! × 2N/2 in Fig-
ure 1, direct numerical optimization of (1) is not prac-
tical. Often, neither b�(a) nor b�(a) defines a prob-
ability distribution, a harmless inconvenience; how-
ever, there are many useful cases in which they are
probability distributions, a simplifying convenience.
For one example of each of these two situations, see
Rosenbaum (2007) where the paired case in its Sec-
tion 3 yields bounds (1) that are probability distribu-
tions, while the case of matching with multiple controls
in its Section 4 yields bounds (1) that are perfectly ser-
viceable but are not probability distributions.

For various approaches to sensitivity analysis in
observational studies, see: Cornfield et al. (1959),
Gastwirth (1992), Hosman, Hansen and Holland (2010),
Imbens (2003), Liu, Kuramoto and Stuart (2013),
McCandless, Gustafson and Levy (2007), Shepherd
et al. (2006) and Yu and Gastwirth (2005).

2.3 Sensitivity Analysis in the Example

To illustrate, consider again the application of Wil-
coxon’s signed rank test to the example in Section 1.2
and Figure 1. If K were the group of N × N permu-
tation matrices that permute the two units in a pair to
change their roles as smoker or nonsmoker, then |K|
would be 2N/2. One set of probability distributions on
this group K assigns smoking or control independently
in distinct pairs and uses a different biased coin in each
pair, such that the N/2 biased coins have probabilities
of a head between 1/(1 + �1) and �1/(1 + �1); then,
for �1 = 1 there is random assignment within pairs,
and for �1 ≥ 1 there is a compact set of probability dis-
tributions p(k) = Pr(K = k), k ∈ K; see Rosenbaum
(1993, 2007) and Rosenbaum (2002), Chapter 4. In
this case, using Wilcoxon’s statistic, the upper bound
b�{t (G)} on the one-sided P -value testing Fisher’s H0
is 0.0493 for �1 = 2.76 and is 0.0521 for �1 = 2.77,
so a bias in treatment assignment of �1 = 2.76 is just
a bit too small to lead to acceptance of H0 at the con-
ventional 0.05 standard, and a bias of �1 = 2.77 is just
barely large enough to lead to acceptance. A bias of
�1 = 2.75 means the treatment assignment probabil-
ities in individual pairs might not be 1/2, but might
be anything in the interval 1/(1 + �1) = 0.2667 and
�1/(1 + �1) = 0.7333. As noted by Rosenbaum and
Silber (2009), a bias of �1 = 2.75 corresponds with an
unmeasured covariate that increases the odds of smok-
ing by a factor of 4 and increases the odds of a positive
pair difference in periodontal disease by a factor of 8,
not at all an inconsequential covariate; however, fail-
ure to match for such a covariate would not suffice to
explain rejection of H0 at the 0.05 level. As mentioned
earlier, it is easy to invert this argument to discuss point
estimates or confidence intervals instead of P -values;
see Rosenbaum (1993, 2007).

It turns out that Wilcoxon’s statistic is poor choice,
as it exaggerates the harm that a bias of �1 = 2.77
can do; see Rosenbaum (2010b). In particular, certain
M-estimates report less sensitivity to the same magni-
tude of bias with the same data; see Huber (1981) for
a general discussion of M-estimates, and see Maritz
(1979) for their use in randomization tests. Using an
M-estimate and M-test designed for sensitivity anal-
yses (ψin in Rosenbaum, 2013, or method=“p” in
the sensitivitymw package in R), one obtains an
upper bound b�{t (K)} on the P -value of 0.0012 at
�1 = 2.77, and a bound of 0.049 at �1 = 3.5. A bias
of �1 = 3.5 corresponds with an unmeasured covari-
ate that increases the odds of smoking by a factor of
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5 and increases the odds of a positive pair difference
in periodontal disease by a factor of 11. To attribute
rejection of H0 at the 0.05 level to bias rather than a
causal effect is to say that the matching failed to con-
trol a covariate strongly predictive of both smoking and
periodontal disease.

Is the evidence in Figure 1 stronger than this analy-
sis indicates? Indeed, it is stronger, because this anal-
ysis ignores information about the amount smoked.
If H were the group of N × N permutation matrices
that permutes the pairs among the doses of cigarette
smoking, then |H| would be (N/2)!. Consider the
conditional distribution of the number of cigarettes
smoked—the dose of smoking—given that a person
is a smoker. One set of such conditional probability
distributions for doses was considered in Rosenbaum
(2016b): it says that two smokers may differ in their
odds of smoking a rather than b cigarettes by at most a
factor of �2 ≥ 1. If �2 = 1, then every smoker has the
same chance of smoking a cigarettes for each a, yield-
ing the randomization distribution underlying common
rank correlation tests, such as Kendall’s correlation.
If a statistic is not a rank statistic, then the relevant
randomization distribution entails conditioning on the
order statistic of the number of cigarettes smoked by
smokers, or on (8,40) in Table 1.

The cross-cut statistic is depicted in Figure 1 for a
cut at the quintiles: it counts the frequencies in the
outer corners, yielding an odds ratio of 3.6, with heav-
ier smoking associated with more extensive periodon-
tal disease. The cross-cut statistic has good power and
design sensitivity when used in sensitivity analyses;
see Rosenbaum (2016b). The sensitivity bounds (1) for
the cross-cut statistic are obtained from the extended
hypergeometric distribution with parameter �2, and at
�2 = 1.6, the maximum P -value testing no effect is
0.044. So there is a second aspect to the evidence in
Figure 1.

In the two analyses above, Figure 1(i) and Fig-
ure 1(ii) were viewed as separate analyses, using (1)
with G replaced by K in the analysis of Figure 1(i), and
with G replaced by H in the analysis of Figure 1(ii),
and with different sets of distributions P� over K or H
in these two separate analyses. The next section will
illustrate the general concept of evidence factors us-
ing the example of the group G generated by H and
K as defined above, together with a set of joint distri-
butions P� over G. In this example, the distributions
in P� with � = (�1,�2) will govern who smokes in
the N/2 pairs, and will govern the conditional distri-
bution of the amount smoked by the smoker in each

pair, conditionally given the identity of smokers and
the order statistics of the amount smoked. In particu-
lar, P� consists of each of the marginal distributions
above for K multiplied by each of the conditional dis-
tributions above for H given K. In Table 1, this means
that the identity of the smoker in one pair is determined
by two independent coin flips with (possibly different)
probabilities in the interval [ 1

1+�1
, �1

1+�1
], and then the

smoker in one pair is assigned to 40 cigarettes per day,
the other smoker to 8 cigarettes per day, by the flip
of another biased coin with probability in the interval
[ 1

1+�2
, �2

1+�2
]. The bias in the third coin refers to its

conditional distribution given the flips of the first two
coins. Although the bias of this conditional distribution
of the third coin must be in the interval [ 1

1+�2
, �2

1+�2
],

the bias may change depending upon the outcome of
the flips of the first two coins. If �1 = 1, the assignment
to smoker or control is a fair coin flip, but the amount
smoked may be biased. If �2 = 1, the amount smoked
by a smoker is effectively randomized, but the iden-
tity of the smoker in a pair may be biased. If �1 > 1
and �2 > 1, then both treatment assignments may be
biased.

3. KNIT PRODUCTS OF PERMUTATION GROUPS
AND EVIDENCE FACTORS

3.1 Definition and Example

A finite group G is the knit product or Zappa–Szep
product of two of its subgroups H and K if G = {hk :
h ∈ H,k ∈ K} where each element g ∈ G can be written
in precisely one way as g = hk with h ∈ H and k ∈ K;
see Szep (1950), Gilbert and Wazzan (2008) or Ates
and Cevik (2009). Because the representation g = hk
is unique: (i) |G| = |K| × |H|, (ii) K ∩ H = {I} and
(iii) we may determine h and k from g. Roman (2012),
pages 33, 151, calls this an essentially disjoint prod-
uct rather than a knit product. A reader familiar with
the use of abstract algebra in the construction of ex-
perimental designs will sense that the knit product is
connected with the concept of orthogonality or balance
for nominal factors in such designs, and this is indeed
the case.

If G is the knit product of two of its subgroups H

and K, then it is also the knit product of K and H, the
ordering of the two subgroups being unimportant; see,
for instance, Lemma 2.18 in Isaacs (2009), page 22.
That is, if G is the knit product of two of its subgroups
H and K, then every element g ∈ G can be written in
precisely one way as g = hk with h ∈ H and k ∈ K,
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but also in precisely one way as g =k̃h̃ with h̃ ∈H and
k̃ ∈ K, so g = hk = k̃h̃, even though, in general, h̃ �= h
and k̃ �= k. In particular, G = {hk : h ∈ H,k ∈ K} =
{kh : h ∈ H,k ∈ K} even though, in general, hk �= kh.

Group products typically have an “internal” and an
“external” definition, yielding isomorphic groups. The
internal definition starts with a group G and two of its
subgroups, H and K, as above. The external form starts
with two groups, H and K, and builds a product group
G from them. For the discussion here, the internal def-
inition suffices.

The knit product has two familiar special cases. If
one of the subgroups is a normal subgroup, then the
knit product becomes the semidirect product; whereas
if both subgroups are normal subgroups, then both the
knit product and semidirect product become the direct
product. The knit product is more general, because nei-
ther subgroup needs to be a normal subgroup, and sim-
pler because there are fewer conditions that the statis-
tician needs to check. Wreath products are semidi-
rect products with a repetitive symmetric structure, and
they appear frequently in statistics: see Bell and Haller
(1969) for an application to nonparametric inference;
Dawid (1985) for an application to multivariate analy-
sis; and Bailey et al. (1983), Brien and Bailey (2006)
and Dawid (1988) for applications to experimental de-
sign.

Here is a simple, nontrivial example; indeed, it is the
example relevant to Table 1. Define H and K as follows,
and define G to be the group generated by H and K; that
is, G is the smallest group containing both H and K.

H=

⎧⎪⎪⎨
⎪⎪⎩h1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

h2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ ,

K =

⎧⎪⎪⎨
⎪⎪⎩k1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,(2)

k2 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

k3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

k4 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ .

In Table 1, the group K assigns one person in each
pair to daily smoking, the other to nonsmoking. The
group H assigns one pair to 40 cigarettes per day and
the other pair to 8 cigarettes per day. Wilcoxon’s statis-
tic t (g) reacts to the actions of K but ignores the actions
in H in the sense that t (g) = t (hk) = t (k); however, it
is not generally true that t (kh) = t (k). Kendall’s statis-
tic fixes the action of K, and reacts to the action of H.
The notions of reacting, ignoring and fixing will be for-
malized in terms of invariance and conditioning. The
groups for Figure 1 are analogous but much larger.

Note that h2k3 = k2h2: first permuting treatments in
the second pair (k3) and then swapping the two pairs
(h2) is the same as swapping the two pairs (h2) and
then permuting treatments in the first pair (k2). You
can easily check that the smallest group G that con-
tains both H and K consists of exactly eight permu-
tation matrices formed by multiplying each h ∈ H by
each k ∈ K, so G is the knit product of H and K. You
can easily check that g−1kg ∈ K for each g ∈ G and
k ∈K, so K is a normal subgroup and therefore G is
also the semidirect product of H and K; however, we
will not need this additional fact later on.

The first three columns of Table 2 list three times
the elements g of the smallest group G that contains
both H and K in (2), giving their two representations as
G = {hk : h ∈ H,k ∈ K} and G = {kh : h ∈ H,k ∈ K},
these being slightly different because h2 does not com-
mute with k2 and k3. The last three columns of Ta-
ble 2 list the smoker-minus-control pair difference in
dental outcomes for the pairs assigned to 40 cigarettes
and to 8 cigarettes, together with Wilcoxon’s signed
rank statistic computed from these two pairs. Notice
that Wilcoxon’s statistic is unaffected by the action
of h ∈ H in the sense that t (hk) = t (k); for instance,
t (k2) = t (h1k2) = 1 in row 2, and t (h2k2) = 1 in row
7 of Table 2.

3.2 Invariant Functions and Invariant Sets of
Functions

Let F be a subgroup of G. A function t : G → R

is invariant with respect to F if t (fg) = t (g) for each
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TABLE 2
Five probability distributions on the eight element knit product group G generated by (2). Each element g ∈ G is represented as both

G = {kh : h ∈H,k ∈ K} and G = {hk : h ∈H,k ∈ K}. Also shown are the 2 smoker-minus-control pair differences in outcomes from Table 1
for treatment positions 40 cigarettes and 8 cigarettes. The final column is Wilcoxon’s signed rank statistic

Elements g ∈G Five probability distributions p Differences Wilcoxon’s
G kh hk (i) (ii) (iii) (iv) (v) 40 cigs 8 cigs statistic

I k1h1 h1k1 0.125 0.320 0.200 0.512 0.128 63.04 11.08 3
k2 k2h1 h1k2 0.125 0.080 0.200 0.128 0.032 −63.04 11.08 1
k3 k3h1 h1k3 0.125 0.080 0.200 0.128 0.032 63.04 −11.08 2
k4 k4h1 h1k4 0.125 0.020 0.200 0.032 0.008 −63.04 −11.08 0
h2 k1h2 h2k1 0.125 0.320 0.050 0.128 0.512 11.08 63.04 3
k2h2 k2h2 h2k3 0.125 0.080 0.050 0.032 0.128 −11.08 63.04 2
k3h2 k3h2 h2k2 0.125 0.080 0.050 0.032 0.128 11.08 −63.04 1
k4h2 k4h2 h2k4 0.125 0.020 0.050 0.008 0.032 −11.08 −63.04 0

f ∈ F. In Table 1, Wilcoxon’s statistic is invariant with
respect to H in (2), because it does not care that the
first treatment position involves smoking 40 cigarettes
and the third treatment position involves smoking 8
cigarettes.

In particular, a single probability distribution p(·) on
G is invariant with respect to F if the function p(·) is
invariant with respect to F, so p(fg) = p(g) for all f ∈
F. For instance, the uniform distribution on G, namely
p(g) = |G|−1 for all g ∈ G, is invariant with respect to
F for every subgroup F of G.

Table 2 exhibits five probability distribution on G

defined by the knit product of the two subgroups in
(2). Distribution (i) is p(·), randomizing both smoking-
control and amount-smoked in Table 1, and it is invari-
ant with respect to all of G. Distribution (ii) is random-
ized with respect to the amount smoked by the smoker
with �2 = 1, but is biased with respect to who smokes
with �1 = 4, and it is invariant with respect to H in
the sense that p(h1kj ) = p(h2kj ) for j = 1,2,3,4.
Distribution (iii) is randomized with respect to who
smokes with �1 = 1, but biased with respect to the
amount smoked with �2 = 4, and it is invariant with
respect to K in the sense that p(kj h) = p(kj ′h) for
1 ≤ j ≤ j ′ ≤ 4 and for h = h1 and h = h2. Neither dis-
tribution (iv) nor (v) is invariant with respect to H or
K or G with � = (�1,�2) = (4,4). For example, dis-
tribution (iv) gives probability 0.512 to the observed
treatment assignment in Table 1, with the remaining
seven treatment assignments unevenly sharing the re-
maining 0.488 probability.

A different concept is an invariant set P of prob-
ability distributions p(·) on G. As will be seen in a
moment, to say that a set P is invariant is not to say

that each element p(·) is invariant, but rather to say
that the elements may change while leaving the set
as a whole unchanged. First, recall from Section 2.1
that a probability distribution p(·) on G is both a
function p : G → [0,1] and a |G|-dimensional vector,
p = (pg1,pg2, . . . , pg|G|), so a set of probability distri-
butions P is a subset of a |G|-dimensional Euclidean
space. A set P of distributions p : G → [0,1] is in-
variant with respect to a subgroup F if for each p ∈ P
and each f ∈ F there exist a function p∗ ∈ P such that
p(gf) = p∗(g) for all g ∈ G. In words, the action f af-
fects p(·) ∈ P , but only in the sense of replacing p(·)
by another distribution p∗(·) ∈ P .

There is a slight asymmetry in the definitions of an
invariant function and an invariant set of distributions,
with f on the left in the first definition and on the right
in the second. That is, t : G → R is invariant if t (g) =
t (fg) for each f ∈ F, but P is invariant if for each p ∈ P
and each f ∈ F there exist a function p∗ ∈P , where p∗
depends upon p and f, such that p(gf) = p∗(g) for all
g ∈ G.

In a trivial sense, the set consisting of the randomiza-
tion distribution, P1 = {p}, is invariant with respect to
every subgroup F because p(g) = |G|−1 for all g ∈ G

so p(g) = p(gf) for every f ∈ G. Consider a small but
nontrivial example. In Table 2, the set P consisting of
the two distributions (iv) and (v) is invariant with re-
spect to H; that is, distribution (iv) is transformed into
distribution (v) by multiplying on the right by h2 in
column 2 of Table 2.

The set P� of probability distributions on G in Sec-
tion 2.3 is invariant with respect to the subgroup K

that permutes treatment assignments within pairs. For
� ≥ 1, an individual distribution p(·) ∈ P� is not typ-
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ically invariant—it pushes some people toward smok-
ing, and some smokers to smoke more—but for any
permutation of people within pairs, k ∈ K, there is an-
other distribution p∗(·) ∈ P� so that the effect of k is
undone. That is, many of the individual distributions
p(·) ∈ P� are biased, not symmetric, but the set of bi-
ases P� under consideration is symmetric.

3.3 Sampling a Permutation from a Knit Product

Suppose that G is the knit product of two of its sub-
groups H and K. If we sample a random G ∈ G such
that Pr(G = g) = p(g) for g ∈ G where p(·) is a par-
ticular distribution in P� , then we have implicitly sam-
pled an H ∈ H and a K ∈ K such that G = HK. For
this particular p(·) ∈ P� , the marginal distribution of
K is Pr(K = k) = pK(k) = ∑

h∈H p(hk), and the con-
ditional distribution of H given K = k is

Pr(H = h|K = k) = pH|k(h) = p(hk)

pK(k)
.

If P� is a set of distributions of G on G, write P�,K
for the corresponding set of marginal distributions on
K, so pK(·) ∈ P�,K if and only if there exists a p(·) ∈
P� such that pK(k) = ∑

h∈H p(hk).
In parallel, for each k, write P�,H|k for the set of

conditional distributions pH|k(·) of H given K = k cor-
responding to P� , so q(·) ∈ P�,H|k if and only if there
is a p(·) ∈ P� such that q(h) = p(hk)/

∑
h∈H p(hk).

Write C� = P�,H|I for the set of conditional distribu-
tions pH|I(·) of H given K = I. The set C� will play a
distinctive role.

Distributions p(·) ∈ P� have support G. Distri-
butions pK(·) ∈ P�,K have support K. Distributions
pH|k(·) ∈P�,H|k have support H for each k ∈ K.

3.4 Joint Bounds on P -Values

A bivariate random variable (P1,P2) is stochasti-
cally larger than uniform if

Pr(P1 ≤ α1,P2 ≤ α1) ≤ α1α2 for all α1, α2 ∈ [0,1];
see Brannath, Posch and Bauer (2002). Here, (P1,P2)

may be dependent.
In Section 2.3, one sensitivity analysis applied an

M-statistic to the boxplot in Figure 1(i), and another
sensitivity analysis used the cross-cut statistic to look
for dependence in Figure 1(ii). When can the upper
bounds on P -values from two such sensitivity analyses
be viewed as providing two (essentially) independent
tests of the one null hypothesis of no effect of smoking
on periodontal disease? Proposition 1 provides a gen-
eral answer.

Let t1 :G → R and t2 :G → R be two test statistics,
where t1(·) is H-invariant. Define

(3)
b�1(a) = max

q(·)∈P�,K

∑
k∈K

χ
{
t1(k) ≥ a

}
q(k) and

P 1 = b�1
{
t1(K)

}
,

so P 1 is the upper bound on the P -value using t1(K)

alone and using the marginal distribution of K. Note
that, in principle, b�1(a) in (3) differs from b�(a)

in (1) because (3) is a maximum over the possible
marginal distributions of K ∈ K, whereas (1) is a max-
imum over the possible joint distributions of (H,K)

with HK = G ∈ G.
Define

b�2(a) = max
q(·)∈C�

∑
h∈H

χ
{
t2(hk) ≥ a

}
q(h) and

P 2 = b�2
{
t2(HK)

}
,

where C� = P�,H|I was defined in Section 3.3. In Sec-
tion 6.2, Lemma 4 shows that

(4) b�2(a) = max
pH|k(·)∈P�,H|k

∑
h∈H

χ
{
t2(hk) ≥ a

}
pH|k(h)

implying that P 2 is the upper bound on the P -value
from t2(HK) conditionally given K = k. Note that,
in principle, b�2(a) in (4) differs from b�(a) in (1)
because (4) is a maximum over the possible condi-
tional distributions of H ∈ H given K = k, whereas (1)
is a maximum over the possible joint distributions of
(H,K) with HK = G ∈ G. Under certain conditions,
these two maxima turn out to be equal.

In Section 2.3, the statistic t1(·) was either Wil-
coxon’s signed rank test or a one-sample M-test com-
paring smokers and controls within pairs, and the
bound b�1{t1(K)} in (3) was a standard sensitivity
bound for matched pairs for the group K of permu-
tations within pairs. In Section 2.3, the statistic t2(·)
was the cross-cut statistic relating dose and response,
that is, the quantity smoked and extent of periodontal
disease. The sensitivity bound b�2(a) in (4) ignored
the process that made some people into smokers and
others into nonsmokers, acting as if that were fixed,
and was a standard sensitivity bound for the group H

of permutations of doses among the smokers. Can we
safely act as if these two sensitivity analysis were from
two independent studies by different investigators de-
spite the fact that they were computed from the same
data?
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PROPOSITION 1. Let G be the knit product of its
subgroups H and K, and sample G = HK with un-
known distribution p(·) ∈ P� . Suppose that t1(·) is H-
invariant and P� is K-invariant. Then, under H0, the
pair of sensitivity bounds (P 1,P 2) is stochastically
larger than uniform for every p(·) ∈ P� .

Proposition 1 is applied in Section 3.5 and proved in
Section 6.

3.5 Application to the Periodontal Data

In the periodontal data in Section 2.3, P 1 is from
the M-test and P 2 is from the crosscut test. If the
null hypothesis H0 of no treatment effect is true, and
if the bias in treatment assignment is at most � =
(�1,�2), then Proposition 1 implies that the P -value
bound, (P 1,P 2), is stochastically larger than the uni-
form distribution on the unit square. It follows that P 1

and P 2 can be combined by methods for combining
independent P -values, such as Fisher’s method; see
Rosenbaum (2011), Lemma 1. Sensitivity analyses of-
ten produce P -value bounds that are much larger than
uniform, with the consequence that Fisher’s method is
not the best method for combining them. Hsu, Small
and Rosenbaum (2013) found that the truncated prod-
uct method of Zaykin et al. (2002) often has better
power than Fisher’s method when used in sensitivity
analyses. Where Fisher’s method uses the product of
the P -values, Zaykin et al. (2002) take the product of
only those P -values less than or equal to a truncation
point, τ .

TABLE 3
Sensitivity analysis combining an M-test for symmetry of matched

pairs with sensitivity parameter �1 and a cross-cut test for
dependence upon the amount smoked with sensitivity parameter
�2. The table gives the upper bound on the one-sided P -value

testing no treatment effect, combining the two separate P -value
bounds using Zaykin et al.’s (2002) truncated product of P -values
with truncation τ = 0.05. The largest P -values ≤ 0.05 in a row or

column are in bold

�2

1 1.4 1.5 1.6 2 ∞

�1

1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.001 0.001 0.001 0.013 0.013
3.3 0.000 0.002 0.003 0.004 0.046 0.046
3.5 0.001 0.004 0.005 0.007 0.095 0.095
3.6 0.007 0.043 0.062 0.087 1.000 1.000
4 0.007 0.043 0.062 0.087 1.000 1.000
∞ 0.007 0.043 0.062 0.087 1.000 1.000

For the periodontal data, Table 3 combines the P -
value bounds (P 1,P 2) for the M-statistic and crosscut
statistic, using a truncation of τ = 0.05. If either factor
is not biased—if either �1 = 1 or �2 = 1—then even
infinite biases affecting the other factor are insufficient
to lead to acceptance of H0. Indeed, neither a bias of
(�1,�2) ≤ (3.3,∞) nor a bias of (�1,�2) ≤ (∞,1.4)

would lead to acceptance of H0 at the 0.05 level. The
upper bound on the pooled P -value is ≤ 0.007 for
(�1,�2) ≤ (3.5,1.6).

In Table 3, the associations in Figures 1(i) and
1(ii) concur, providing mutually supporting evidence
against the null hypothesis of no treatment effect. Ta-
ble 3 is statistical evidence analogous to Peirce’s cable
of several fibers.

4. OTHER KNIT PRODUCTS IN OBSERVATIONAL
STUDIES

The group in (2) and its larger version for Figure 1
are both wreath products, or highly structured, highly
symmetrical semidirect products. Many observational
studies are not that symmetrical, and so are not well
described by wreath products, but nonetheless they are
described by semidirect or knit products. This section
briefly mentions a few examples.

In Figure 1, the group H permutes N/2 pairs in all
(N/2)! ways. We might wish to put similar pairs in
the same stratum, and permute pairs within strata but
not across strata. The two people in the same pair are
the same or close in terms of observed covariates, but
different pairs may differ substantially in terms of ob-
served covariates. Perhaps permutations of whole pairs
should be restricted so as to permute pairs with similar
values of observed covariates. For instance, periodon-
tal disease increases markedly with age. In Figure 1,
there are 78 pairs in which both individuals are more
than 60 years old, and 362 pairs in which both indi-
viduals are at most 60 years old. (There is one pair in
which the smoker is under 60 and the control is over 60,
and it is natural to exclude that pair from the following
computation.) The group H′ that permutes pairs within
these two age strata has 78!×362! permutations, rather
than the 441! permutations in H, and H′ is isomorphic
to the direct product of two symmetric groups. Permut-
ing pairs within two age strata has only a slight effect
on the crosscut test and its sensitivity analysis in Fig-
ure 1, perhaps because matched pair, smoker-minus-
control differences were permuted, for smokers and
controls of similar age. In principle, Proposition 1 per-
mits the responses of smokers to be permuted among
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pairs without differencing, and in this case stratifica-
tion on covariates might be more important. Stratified
and adaptive use of the crosscut statistics is discussed
in Rosenbaum and Small (2017).

In the NHANES data, cigarette smoking is uncom-
mon among people with at least a BA degree, but is
more common among people without a BA. Before
matching, there were 44 smokers and 574 nonsmokers
with a BA degree, a ratio of more than 13-to-1, but they
became just 44 matched pairs in Figure 1. If, instead,
these 44 smokers are each matched to 5 nonsmoking
controls, then the study has 397 = 441 − 44 matched
pairs and 44 matched sets with a smoker and 5 con-
trols. In this enlarged study, the group K permutes in-
dividuals within a matched pair or set, while the group
H permutes matched sets of the same size among the
doses of smoking observed for sets of that size. Note
that this H is isomorphic to a subgroup of the group
used for Figure 1, because permutations of doses are
restricted to matched sets of the same size. This larger
study is not much different from Figure 1, perhaps be-
cause there were only 44 smokers with a BA degree.
If the M-test in Section 2.3 is used, the upper bound
on the P -value is 0.045 at � = 2.85, only slightly less
sensitive than the pairs in Figure 1. For a discussion
of matching with variable controls, see Pimentel, Yoon
and Keele (2015) and the references given there.

An alternative form of matching, called full match-
ing, can use all available nonsmokers in NHANES by
permitting a matched set to have one smoker and one
or more controls, or else one control and one or more
smokers; see Rosenbaum (1991), Hansen and Klopfer
(2006), Stuart and Green (2008), Austin and Stuart
(2015). Here, again, K permutes individuals within a
matched set while H permutes matched sets of the
same structure.

Sometimes treatment is denied to people by several
processes acting in sequence, and the biases that af-
fect these different processes are likely to be different.
For instance, a person might not receive a stent fol-
lowing a myocardial infarction because the person was
rushed to a hospital that lacks the facilities to implant a
stent (treatment α), or because the person was treated
at a hospital that could implant a stent but this partic-
ular person was judged to be a poor candidate for this
treatment (treatment β); alternatively, the person might
receive a stent in a hospital that can implant one (treat-
ment γ ). This two-step process can yield matched sets
with two evidence factors permuting individuals within
matched sets, one factor examining the effects of treat-
ment at a hospital that cannot implant stents (α ver-
sus {β,γ }), the other factor examining the effects of

not receiving a stent at such a hospital (β versus γ ).
In a matched triple with one person receiving each of
{α,β, γ }, there are 3! = 6 possible treatment assign-
ments; that is, G for one matched set is the symmetric
group on three letters. Moreover, G is the knit product
of H and K below:

(5)

H=
⎧⎨
⎩h1 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,h2 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

⎫⎬
⎭ ,

K=
⎧⎨
⎩k1 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,k2 =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ ,

k3 =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

⎫⎬
⎭ .

Here, H permutes assignment to β or γ , while K picks
one person for α. A statistic that is invariant with re-
spect to H compares α versus {β,γ }, ignoring the dis-
tinction between β and γ . A statistic that conditions on
K ∈ K fixes the identity of the person receiving α, so
that H ∈ H permutes the other two people among treat-
ments β and γ . This situation here is similar to situa-
tions discussed by Dwass (1960) and Marden (1992),
but it does not require the use of rank tests, and it pro-
vides for a sensitivity analysis for the two component
tests. With N/3 matched triples of this form, the rele-
vant group is the direct product of N/3 groups each of
which is a knit product of H and K in (5). Although this
illustration has one α, one β and one γ in each matched
set, other designs are possible. See Rosenbaum (2011)
for a discussion of evidence factors of this form with
an example.

5. DISCUSSION

In some settings, for instance in slightly idealized
randomized trials, the only source of uncertainty comes
from a finite sample size. All uncertainty would be re-
solved by a sufficient increase in sample size. In these
settings, we naturally focus on making the most effi-
cient use of a finite sample.

In other settings, for instance in observational stud-
ies of treatment effects, increasing the sample size re-
duces sampling uncertainty, but leaves in place other
sources of uncertainty. Many large observational stud-
ies reach conclusions that remain controversial and
doubtful, and the doubts would not be resolved by in-
creasing the sample size or by exactly replicating the
study. In these settings, increasing the sample size from
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one source of evidence confers limited benefits, and
what is needed is several sources of evidence with dif-
ferent limitations. Most valuable are several sources
of evidence that could concur, but would not naturally
concur in the absence of a treatment effect. Evidence
factors arise in this context.

Proposition 1 offers a general description of the
structure of evidence factors in terms of the knit prod-
uct of permutation groups. Proposition 1 is simpler,
yet more general than earlier results, in the follow-
ing senses: (i) it is not tied to rank tests, (ii) it applies
to both a pair of randomization tests and to a pair of
sensitivity analyses, (iii) it is not confined to a few lim-
ited cases of permutation distributions. The knit prod-
uct construction resembles the orthogonality of nomi-
nal factors that commonly arises in the theory of struc-
tured experimental designs.

6. PROOFS

The proof of Proposition 1 in Section 6.4 is a
straightforward consequence of several lemmas.
Throughout the proofs in this section, G is the knit
product of H and K.

6.1 Ignoring One Factor in a Knit Product:
Lemma 2

In Section 2.3, the Wilcoxon signed rank statistic and
the M-statistic ignored the action of H that permutes
the number of cigarettes smoked. In distribution (iv) of
Table 2, p(hk) varies with both k and h, so that per-
son i = 1 in Table 1 is most likely to smoke and likely
to smoke 40 cigarettes per day. How does a sensitiv-
ity analysis that uses K alone, ignoring H, compare
to a sensitivity analysis that uses (H,K) or G = HK
jointly? Lemma 2 says these two sensitivity analyses
are the same if the test statistic is invariant with respect
to H, as is true of the Wilcoxon and M-statistics. In the
statement of Lemma 2, the two maxima are over dif-
ferent sets of distributions, the joint distributions in P�

and the marginal distributions in P�,K.

LEMMA 2. If the function t : G → R is invariant
with respect to H, then

max
p∈P�

∑
h∈H

∑
k∈K

χ
{
t (hk) ≥ a

}
p(hk)

= max
pK(·)∈P�,K

∑
k∈K

χ
{
t (k) ≥ a

}
pK(k).

PROOF. Because t : G → R is invariant with re-
spect to H, it follows that t (hk) = t (k) for each h ∈ H.

So,

(6)

max
p∈P�

∑
h∈H

∑
k∈K

χ
{
t (hk) ≥ a

}
p(hk)

= max
p∈P�

∑
k∈K

χ
{
t (k) ≥ a

} ∑
h∈H

p(hk)

= max
pK(·)∈P�,K

∑
k∈K

χ
{
t (k) ≥ a

}
pK(k).

�
6.2 Fixing a Factor in a Knit Product: Lemma 3

If G = HK is sampled from the knit product G of H
and K according to p(·) ∈ P� , then H and K may be
statistically dependent, so that, in general, pH|k(·) �=
pH|k′(·) for k �= k′. Lemma 3 gives a condition such
that the set P�,H|k of conditional distributions does not
depend upon k, even though individual distributions
pH|k(·) ∈ P�,H|k do depend upon k. This condition is
that the set P� of probability distributions is invariant
with respect to K. Stated informally, if you knew that
Pr(G = g) = p(g) for one specific p(·), then observ-
ing K = k might change your opinion about the likely
value of H and hence also of G = HK; however, if you
knew only that p(·) ∈ P� where P� is invariant with
respect to K, then observing K = k would not change
your opinion about the likely value of H or G. Recall
that C� = P�,H|I was defined in Section 3.3.

LEMMA 3. If the set P� of probability distribu-
tions is invariant with respect to K, then the cor-
responding set P�,H|k of conditional distributions of
pH|k(·) of H given K = k is the same for all k ∈ K;
that is, P�,H|k = C� all k ∈ K.

PROOF. The proof consists of showing first that
P�,H|k ⊆ C� for each k ∈ K, and second that C� ⊆
P�,H|k for each k ∈ K. Fix one k ∈ K. Suppose q(·) ∈
P�,H|k so q(·) has support H. Then, by the defini-
tion of P�,H|k, there is a joint distribution p(·) ∈ P�

such that q(h) = p(hk)/
∑

h∈H p(hk). Because P� is
invariant with respect to K, there exists a p∗(·) ∈ P�

such that p(gk) = p∗(g) for all g ∈ G. Hence, q(h) =
p∗(h)/

∑
h∈H p∗(h) ∈ P�,H|I = C� , so P�,H|k ⊆ C� .

Conversely, suppose q(·) ∈ C� = P�,H|I. Then there
exists a p(·) ∈ P� such that q(h) = p(h)/

∑
h∈H p(h).

Because P� is invariant with respect to K, there exists
a p∗(·) ∈ P� such that p(gk−1) = p∗(g) for all g ∈ G.
Hence, p(h) = p(hkk−1) = p∗(hk) for all g = hk ∈
G, so q(h) = p∗(hk)/

∑
h∈H p∗(hk), so q(·) ∈ P�,H|k.

Therefore C� ⊆ P�,H|k. �
Lemma 4 says that acting as if K were fixed, as we

did with the cross-cut analysis in Section 2.3, is the
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same as conditioning on the observed value of K pro-
viding the set P� of probability distributions is invari-
ant with respect to K.

LEMMA 4. If the set P� of probability distribu-
tions is invariant with respect to K, then for each fixed
k ∈ K,

(7)

max
p∈P�

∑
h∈H χ{t (hk) ≥ a}p(hk)∑

h∈H p(hk)

= max
pH|k(·)∈P�,H|k

∑
h∈H

χ
{
t (hk) ≥ a

}
pH|k(h)

= max
q(·)∈C�

∑
h∈H

χ
{
t (hk) ≥ a

}
q(h).

PROOF. By definition, pH|k(·) ∈ P�,H|k if and
only if there exists a p ∈ P� such that pH|k(h) =
p(hk)/

∑
h′∈H p(hk′), proving the first equality in (7).

By Lemma 3, P�,H|k = C� , proving the second equal-
ity. �
6.3 Joint Bounds on P -Values: Lemma 5

Lemma 5 is elementary and is a special case of
Lemma 3 in Rosenbaum (2011).

LEMMA 5. Suppose P1 is a function of K, and P2
is a function of (H,K) such that Pr(P1 ≤ α1) ≤ α1 and
Pr(P2 ≤ α2|K = k) ≤ α2 for each k, for all 0 ≤ α1 ≤ 1
and 0 ≤ α2 ≤ 1. Then (P1,P2) is stochastically larger
than uniform.

PROOF.

Pr(P1 ≤ α1,P2 ≤ α1)

= E
[
E

{
χ(P1 ≤ α1)χ(P2 ≤ α2)|K}]

,

E
[
χ(P1 ≤ α1)E

{
χ(P2 ≤ α2)|K}]

≤ α2E
[
χ(P1 ≤ α1)

] ≤ α1α2. �
6.4 Proof of Proposition 1

PROOF. By assumption, G = HK has been sam-
pled with unknown true distribution p(·) ∈ P� . Define
the unknown random variables

P1 = ∑
k∈K

χ
{
t1(k) ≥ t1(K)

} ∑
h∈H

p(hk)

and

P2,k = ∑
h∈H

χ
{
t2(hk) ≥ t2(kH)

} p(hk)∑
h′∈H p(h′k)

and

P2 = P2,K.

Then (P1,P2) is stochastically larger than uniform
by Lemma 5. By Lemma 2, P1 ≤ P 1. By Lemma 4,
P2 ≤ P 2. So the bound we can calculate from data,
(P 1,P 2), is stochastically larger than uniform. �
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