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Abstract: Evolution equations comprise a broad framework for describ-
ing the dynamics of a system in a general state space: when the state
space is finite-dimensional, they give rise to systems of ordinary differen-
tial equations; for infinite-dimensional state spaces, they give rise to par-
tial differential equations. Several modern statistical and machine learning
methods concern the estimation of objects that can be formalized as solu-
tions to evolution equations, in some appropriate state space, even if not
stated as such. The corresponding equations, however, are seldom known
exactly, and are empirically derived from data, often by means of non-
parametric estimation. This induces uncertainties on the equations and
their solutions that are challenging to quantify, and moreover the diver-
sity and the specifics of each particular setting may obscure the path for
a general approach. In this paper, we address the problem of construct-
ing general yet tractable methods for quantifying such uncertainties, by
means of asymptotic theory combined with bootstrap methodology. We
demonstrates these procedures in important examples including gradient
line estimation, diffusion tensor imaging tractography, and local principal
component analysis. The bootstrap perspective is particularly appealing as
it circumvents the need to simulate from stochastic (partial) differential
equations that depend on (infinite-dimensional) unknowns. We assess the
performance of the bootstrap procedure via simulations and find that it
demonstrates good finite-sample coverage.

Keywords and phrases: Diffusion tensor imaging, gradient line, heat
flow, integral curve, local principal curve, scale space, vector field.

Received August 2017.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2 Asymptotic theory for the integral curve . . . . . . . . . . . . . . . . . 251

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
2.2 Asymptotics in Regime 1 . . . . . . . . . . . . . . . . . . . . . . 252
2.3 Asymptotics in Regime 2 . . . . . . . . . . . . . . . . . . . . . . 253

3 Bootstrapping the integral curve . . . . . . . . . . . . . . . . . . . . . 255
4 Uniform-in-bandwidth asymptotics . . . . . . . . . . . . . . . . . . . . 255
5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

5.1 Gradient lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.2 Noisy principal eigenvector fields . . . . . . . . . . . . . . . . . . 259
5.3 Local principal flow . . . . . . . . . . . . . . . . . . . . . . . . . . 262
5.4 Heat flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

249

http://projecteuclid.org/ejs
https://doi.org/10.1214/17-EJS1382
mailto:susanwei@umn.edu
mailto:victor.panaretos@epfl.ch


250 S. Wei and V. M. Panaretos

A Linear differential equations in Banach spaces . . . . . . . . . . . . . . 266
B Proofs of formal statements . . . . . . . . . . . . . . . . . . . . . . . . 268
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

1. Introduction

Given a Banach space X (a complete normed vector space) and a vector field v
on X , an evolution equation (Walker, 1980) is a model of the form

γ̇ = v(γ) and γ(0) = x0 ∈ X , (1.1)

specifying a (differentiable) flow γ : R → X by relating its time derivative
γ̇ to the field v. A flow γ solving (1.1) is often called an integral curve of v,
borrowing the established term from the case where X is Euclidean (solving a
set of ordinary differential equations is colloquially referred to as “integrating”
the system) (Lee, 1992). The abstract formulation (1.1) spans a broad and rich
class of models in the physical sciences, encompassing ordinary as well as partial
differential equations as special cases. In physics, integral curves are known as
lines of force if v is a force field, or lines of flow if v is a velocity field of fluid flow
(Zachmanoglou and Thoe, 1986, Chapter 2). In the study of dynamical systems,
they are known as trajectories or orbits (Lee, 1992, Chapter 2). The typical
treatment of evolution equations takes v to be known and studies questions as
related to existence, uniqueness, and regularity of the induced integral curves
(Lee, 2012, Chapter 17), as well as their stability under perturbations of initial
conditions (Bellman, 2008, Chapters 2, 4).

Less explored is a setting where v is unknown and measured empirically un-
der uncertainty. This setting can nevertheless be seen to encompass a surprising
number of statistical and machine learning objects of interest, which can be
formalized as solutions to empirical evolution equations. Important examples
include filament estimation in galaxies (Genovese et al., 2009), diffusion ten-
sor imaging tractography (Koltchinskii, Sakhanenko and Cai, 2007), fingerprint
analysis (Huckemann, Hotz and Munk, 2008; Hill, Kendall and Thönnes, 2012),
and structural economics (Vanhems, 2006). Less obvious examples include the
widely used stochastic gradient descent algorithm for solving large-scale machine
learning tasks (Bottou, 2010) can also be seen as a special case of integrat-
ing a (sampled) vector field. Given the empirical nature of the corresponding
equations, one is compelled to consider methods for quantifying the induced
uncertainty on its solution. The diversity of applied settings and methodolog-
ical constructions can lead to a multitude of corresponding problem-specific
approaches, but the elegant general specification begs the question whether a
broad framework of uncertainty quantification that can be tractably ported to
each specific context is feasible.

This question motivates us to study general evolution equations of the form
(1.1) through the lens of sampling variation, when an unknown vector field v
is replaced by a (potentially nonparametric) estimate v̂n depending on sampled
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data whose “sample size” (in a general sense) is n. This setting gives rise to
what we term an empirical evolution equation:

γ̇ = v̂n(γ) and γ(0) = x0 ∈ X .

Its solution γ̂n will be called the empirical integral curve. In order to estab-
lish valid general inference procedures based on the empirical integral curve,
we investigate how the asymptotic (in n) behavior of the estimator v̂n of v
relates that of the estimator γ̂n of γ (Section 2) when the state space X is a
(potentially infinite dimensional) Banach space. We then exploit these results
in order to provide asymptotically valid bootstrap procedures for the integral
curve (Section 3). Such bootstrapping is particularly useful from a practical
standpoint, as it allows us to bypass solving stochastic differential equations
with unknown parameters to find the limiting distribution of the integral curve.
Indeed, we develop bootstrap procedures that are valid uniformly over smooth-
ing parameters involved in the construction of v̂n, thus correctly accounting for
any uncertainties arising from data-dependent regularization (Section 4). We
show how our results can be applied in the context of several modern statisti-
cal and machine learning problems (Section 5). These include finite-dimensional
evolution equations arising in gradient line estimation, diffusion tensor trac-
tography, and principal curve estimation; and an infinite dimensional setting
describing anisotropic heat flow. Our work also elicits a noteworthy aspect of
inference related to evolution equations: when the empirical evolution equation
is based on a nonparametric estimate of the vector field, it appears necessary to
adopt a scale-space view (Chaudhuri and Marron, 2000) if valid bootstrap pro-
cedures are desired (Section 4). The proofs of all formal statements are collected
in Appendix B.

2. Asymptotic theory for the integral curve

We begin by investigating the limiting distribution of rn(γ̂n−γ0) at some appro-
priate rate rn, where the subscript “0” is used to indicate the true parameter
values under (1.1). We will need to distinguish between two regimes in the
asymptotics, depending on the behavior of the vector field estimator v̂n:

1. Regime 1: the process v̂n converges weakly to a tight limiting process
(Theorem 1).

2. Regime 2: v̂n itself may fail to converge to a tight limit, but a related
functional does (Theorem 2).

The limiting result under the first regime, derived in Section 2.2, can be in-
terpreted as a delta method for the integral curve. We will show in Section
3 the first regime is particularly amenable to the construction of valid boot-
strap procedures. The second regime, treated in Section 2.3, also accommodates
tractable asymptotics, if at the cost of more stringent conditions on the vec-
tor field v0. Of greater consequence, though, is the possible lack of consistent
bootstrap procedures for the integral curve under this second regime.
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2.1. Notation

We will make heavy use of the following notation and key notions in our sub-
sequent development. Let E and F be Banach spaces, with E compact and
Hausdorff. Let C(E,F ) be the Banach space of all continuous maps E → F
equipped with the supremum norm ‖ · ‖∞. Let L(E,F ) denote the Banach
space of all continuous linear maps E → F in the operator norm ‖f‖op =

sup
{∥∥f(x)∥∥

F
:‖x‖E ≤ 1

}
. Next denote by l∞(E,F ) the Banach space of all

uniformly norm-bounded maps E → F equipped with the supremum norm. Let
U ⊂ E be open. The function f is called Fréchet differentiable, with derivative
Df , in case it is Fréchet differentiable at all points x in U . Let C1(U,F ) denote
the Banach space of continuously (Fréchet) differentiable maps U → F under
the C1 norm ‖f‖C1 =‖Df‖∞ +‖f‖∞ .

Let X be a Banach space, and U ⊂ X be open. Let v0 ∈ C(U ,X ) be the
vector field of interest. For well-definedness, we will assume henceforth that v0
is locally Lipschitz on U . This implies, by the Picard-Lindelof theorem (Nelson,
1969), that there is some interval I ⊂ R containing zero on which there exists a
unique integral curve γ0 : I → U that solves (1.1). Throughout the paper, the
asymptotic results hold for a fixed initial condition x0 ∈ U and corresponding
interval I.

2.2. Asymptotics in Regime 1

For parametric vector fields, one typically has a method for estimating the
parameter defining v0, along with a limit theorem for the estimator. For instance,
Ramsay et al. (2007) and Brunel, Clairon and D’Alché-Buc (2014) treat precisely
such a setting, proposing parametric vector field estimates for which they then
derive asymptotics. Our results apply to the parametric setting too, though
our eventual interest is in nonparametric vector field estimators. The current
development lays the groundwork for the uniform-in-bandwidth result of Section
4, which is crucial to the nonparametric setting. We will assume that for some
rn it has been established that rn(v̂n−v0) converges weakly to a tight limit, but
will not circumscribe the type of estimator v̂n can be, beyond this. Theorem 1
will require the following:

Assumption A1. The vector field v0 is Fréchet differentiable at γ0(t) for all t ∈ I.

Note that when v0 is C
1, it is both locally Lipschitz and Fréchet differentiable.

The following result is derived using tools from Z-estimation theory (van der
Vaart and Wellner, 1996).

Theorem 1. Suppose A1 holds. In addition, suppose the vector field estimate
v̂n is such that

rn(v̂n − v0)
d→ G in (l∞(U ,X ),‖·‖∞) (2.1)

for some sequence rn ≥ 0, rn → ∞ and tight process G that satisfies∥∥G(γn(t))−G(γ0(t))
∥∥
X

a.s.−−→ 0 ∀t ∈ I as γn
a.s.−−→ γ0.
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Then it holds that rn(γ̂n − γ0)
d→ ξ in (C1(I,U),‖·‖C1) where

dξ(t) = Dv0(γ0(t))ξ(t) dt+G(γ0(t)) and ξ(0) = 0. (2.2)

If G is a Gaussian process, then so is ξ.

Note the broadness of the result: X is assumed to be a general, potentially
infinite-dimensional Banach space. The limiting distribution can then be inter-
preted as a stochastic partial differential equation governing the integral curve.
The result simplifies considerable in the special case X = R

d. Since this is
prominent in statistical applications, we present it in more detail. In this case,
v : U → X = Rd corresponds to the familiar notion of a classic vector field on
R

d. The associated integral curve γ has the property that the tangent vector of
the curve at time t coincides with the value of the vector field v at position γ(t).
The Fréchet derivative of v0 at γ0(t) is the familiar Jacobian matrix. Writing
the vector field as v0 = (v1, . . . , vd) where each coordinate vi is a map from U
to R, define the Jacobian at time t to be

J0(t) := Dv0(γ0(t)) =

⎛
⎜⎜⎜⎝

∂v1

dx1
(γ0(t)) · · · ∂v1

∂xd
(γ0(t))

· · · . . . · · ·
∂vd

∂x1
(γ0(t)) · · · ∂vd

∂xd
(γ0(t))

⎞
⎟⎟⎟⎠ .

With this notation in place, Theorem 1 in conjunction with standard theory on
systems of linear differential equations reviewed in Appendix A yields:

Corollary 1. Suppose the conditions of Theorem 1 are satisfied. If the state
space is X = R

d, then the limiting distribution ξ in (2.2) can be equivalently

expressed as ξ(t) = −V (t)
∫ t

0
V −1(τ)(G ◦ γ0)(τ) dτ, where the matrix V (t) ∈

R
d×d is the solution of the deterministic linear equation

V̇ = J0(t)V and V (0) = Id.

If J = J0 commutes, i.e. J(t1)J(t2) = J(t2)J(t1) for all t1, t2 ∈ I, then

closed-form solutions for V and its inverse exist: V (t) = exp
{∫ t

0
J(τ) dτ

}
and

V −1(t) = exp
{
−
∫ t

0
J(τ) dτ

}
. In the more typical situation where J does not

commute, an approximation such as the Magnus expansion (Blanes et al., 2009)
can be used to estimate V , as discussed in Appendix A.

2.3. Asymptotics in Regime 2

When v̂n is a nonparametric estimate depending on some regularization parame-
ter h, condition (2.1) in Theorem 1 requiring the weak convergence of rn(v̂n−v0)
may not be satisfied. For instance, Theorem 2.2.3 in Bierens (1987) shows that
when v̂n is the standard Nadaraya-Watson kernel regression function estima-
tor, the sequence

√
nhd

n(v̂n(x) − v(x)) for distinct points x1, . . . , xk in R
d is
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asymptotically independent. Thus the process v̂n cannot have a tight limiting
distribution.

Our interest in nonparametric estimators v̂n leads us to seek an alternative
derivation of the limiting distribution of the empirical integral curve γ̂n under
a relaxation of condition (2.1). We will discuss at the end of this section that
we are likely, though, to lose the possibility of valid bootstrap procedures in
the process. To remedy this, we point a way forward for nonparametric v̂n by
adopting a scale-space perspective in Section 4, redefining the targets to be the
resolution-h vector field and corresponding resolution-h integral curve.

Going back to the second regime, consider the following assumptions:

Assumption A2. Dv0 : U → L(X ,X ) is uniformly continuous.

Assumption A3. The estimates v̂n and Dv̂n are uniformly consistent:

sup
x∈U

∥∥v̂n(x)− v0(x)
∥∥
X = oP (1)

and supx∈U
∥∥Dv̂n(x)−Dv0(x)

∥∥
op

= oP (1).

When X = R
d, Assumption A2 is satisfied if v0 is uniformly differentiable.

While Assumption A2 is largely made for technical reasons, Assumption A3 is
reasonable, asking that v̂n and the plug-in estimator for the derivative, Dv̂n,
are consistent estimators for their respective theoretical counterparts.

Theorem 2. Suppose A1 – A3 hold and rnη̂n
d→ η in (C(I,X ),‖·‖∞) for some

sequence rn ≥ 0, rn → ∞ where η̂n(t) =
∫ t

0
[v̂n(γ0(s)) − v0(γ0(s))] ds. Then

it holds that rn(γ̂n − γ0)
d→ ξ in (C(I,U),‖·‖∞) where ξ solves the stochastic

differential equation

dξ(t) = Dv0(γ0(t))ξ(t) dt+ dη(t) and ξ(0) = 0. (2.3)

Theorem 2 can in fact be used to recover Theorem 1. To see this, note that

if (2.1) holds, then rnη̂n(t)
d→ η(t) =

∫ t

0
(G(γ0(s)) ds. Since the derivative of η

with respect to t is simply G(γ0(t)), both stochastic differential equations (2.2)
and (2.3) characterize the same limiting process ξ.

When condition (2.1) does not hold, a valid bootstrap scheme for the integral
curve is unlikely to be available. Heuristically speaking, since ξ results from a
smooth operator applied to η, a valid bootstrap procedure for ξ would necessitate
being able to bootstrap η. However, η̂n is itself a smooth functional of rn(v̂n −
v0). It is difficult to envision a valid bootstrap procedure for η if v̂n does not
have a tight weak limit. Thus, we opt to work under the setting of Theorem 1
which readily affords valid bootstrap procedures, the subject of the next section.
We shall this naturally leads to the consideration of a scale-space perspective
for nonparametric vector field estimators, and related uniform-in-bandwidth
bootstrap procedures.
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3. Bootstrapping the integral curve

This section concerns asymptotic validity of bootstrap procedures (Efron, 1979,
1982) for the integral curve under the first regime, i.e. the setting of Theorem 1.
In particular, we demonstrate bootstrap consistency for two standard bootstrap
weights and vector field estimators that can be written as empirical processes
relative to Donsker classes. Let {X1, . . . , Xn} ⊂ U be a random sample from
a probability measure P on U . The empirical measure is Pn = n−1

∑n
i=1 δXi

where δx is the measure that assigns mass 1 at x and zero elsewhere. We write,
for a measurable function f : U → R, Pnf = n−1

∑n
i=1 f(Xi).

Using the notation of Kosorok (2008), we use P
◦
n, where f �→ P

◦
nf =

1
n

∑n
i=1 Wnif(Xi), to denote either of two bootstrapped empirical processes.

The first is the multinomial bootstrapped empirical process where (Wn1, . . . ,
Wnn) is a multinomial vector with probabilities (1/n, . . . , 1/n) independent of
the data sequence (X1, . . . , Xn). The second is the multiplier bootstrapped
empirical process where Wni = (ψi/ψ̄) for i.i.d. positive weights ψ1, . . . , ψn,
independent of the data sequence (X1, . . . , Xn), with 0 < μ = Eψ1 < ∞,
0 < τ2 = var(ψ1) < ∞, which satisfy ‖ψ1‖2,1 =

∫∞
0

√
P (|ψ1| > x) dx < ∞, and

ψ̄ = 1
n

∑n
i=1 ψi. The binomial and multiplier bootstrapped empirical processes

were first studied by Praestgaard and Wellner (1993).
To rigorously define bootstrap consistency, we need to define the weak con-

vergence of the conditional limit laws of bootstraps. For a metric space (D, d), let
BL1 denote the space of functions f : D → R with Lipschitz norm bounded by 1.
If Ŷn is a sequence of processes in D involving random weights W , the notation

Ŷn
p→
W

Y for some tight process Y in Dmeans suph∈BL1
|EWh(Ŷn)−Eh(Y )| p→ 0.

The subscript in the expectation indicates conditional expectation over the
weights W given the remaining data. The result below is an application of the-
ory on bootstrapped empirical processes presented in van der Vaart and Wellner
(1996).

Theorem 3. Suppose F = {fx : x ∈ U} is a Donsker class of measurable
functions fx : U → R, giving rise to vector fields

v0(x) = Pfx(X), v̂n(x) = Pnfx(X), and v̂◦n(x) = P
◦
nfx(X).

Let c = μ/τ if P◦
n is the multiplier bootstrap and c = 1 if P◦

n is the multinomial

bootstrap. If v0 satisfies Assumption A1, then
√
n(γ̂n − γ0)

d→ ξ and
√
nc(γ̂◦

n −
γ̂n)

p→
W

ξ where

dξ(t) = Dv0(γ0(t))ξ(t) dt+ B(γ0(t)) and ξ(0) = 0,

and B is the standard Brownian bridge in in l∞(U ,X ).

4. Uniform-in-bandwidth asymptotics

In this section, we adopt a scale-space view (Chaudhuri and Marron, 2000).
This bypasses the difficulty encountered for nonparametric estimators that fail
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to verify (2.1), and thus not captured by Theorem 1. Specifically, rather than
focusing on the one true underlying vector field v0, we focus on Ev̂n,h(x) si-
multaneously for a range of h values in H ⊂ (0,∞). Certainly, Ev̂n,h(x) may
be biased for v0, but examining it may still be attractive for data analysis as
different levels of smoothing invariably reveal different aspects of the truth.

Technical matters aside, there are first-principle advantages to the scale-space
perspective. For example, in certain settings, v0 may not be well defined to begin
with, see e.g. Rinaldo and Wasserman (2010) and Chen, Genovese and Wasser-
man (2017a). In the gradient line example of Section 5.1, we further discuss
this phenomenon in the context of functional density estimation. There is yet
another advantage in the scale-space viewpoint: in many practical situations, a
tuning parameter is chosen in a data-driven way or by means of “data snoop-
ing”. This induces an additional layer of sampling variation that needs to be
accounted for by bootstrap procedures that are valid uniformly in the choice of
a non-trivial bandwidth (an issue discussed further after the statement of our
result).

Let v ∈ C(U ×H,X ) be the vector field of interest and define the evolution
equation

γ̇(t, h) = v(γ(t, h), h) and γ(0, h) = x0 ∀h ∈ H. (4.1)

We assume throughout that v is locally Lipschitz on U×H so that the solution of
(4.1) is well-defined, i.e. there exists someD = {(t, h) ∈ R×H : t ∈ Jh ⊂ R} such
that there is a unique integral curve γ ∈ C1(D,U) that solves (4.1). Throughout,
fix the initial condition x0 and the set D. We are now ready to present the
uniform-in-bandwidth analogue of Theorem 1.

Assumption B1. The vector field v is Fréchet differentiable at (γ(t, h), h) for all
(t, h) ∈ D.

Theorem 4. Suppose B1 holds. In addition, suppose the vector field estimate
v̂n is such that

rn(v̂n − v)
d→ G in (l∞(U ×H,X ),‖·‖∞)

for some sequence rn ≥ 0, rn → ∞ and tight process G that satisfies

∥∥G(γn(t, h), h)−G(γ(t, h), h)
∥∥
X

a.s.−−→ 0 ∀(t, h) ∈ D as γn
a.s.−−→ γ.

Then it holds that rn(γ̂n − γ)
d→ ξ in (C1(D,U),‖·‖C1) where

dξ(t, h) = Dv(γ(t, h), h)ξ(t, h) dt+G(γ(t, h), h), and ξ(0, h) = 0 ∀h ∈ H.

If G is a Gaussian process, then so is ξ.

The next result is analogous to Theorem 3, showing that vector fields which
can be written as empirical processes of Donsker classes can be bootstrapped
validly, uniform in bandwidth.
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Theorem 5. Suppose F = {fx,h : x ∈ U , h ∈ H} is a Donsker class of measur-
able functions fx,h : U → R giving rise to vector fields

v(x, h) = Pfx,h(X), v̂n(x, h) = Pnfx,h(X), and v̂◦n(x, h) = P
◦
nfx,h(X).

Let c = μ/τ if P◦
n is the multiplier bootstrap and c = 1 if P◦

n is the multinomial

bootstrap. If v satisfies B1, then
√
n(γ̂n − γ)

d→ ξ and
√
nc(γ̂◦

n − γ̂n)
p→
W

ξ in

(C1(D,U),‖·‖C1) where

dξ(t, h) = Dv(γ(t, h), h)ξ(t, h) dt+ B(γ(t, h), h) and ξ(0, h) = 0 ∀h ∈ H,

and B is the standard Brownian bridge in in l∞(U ×H,X ).

5. Applications

We now demonstrate the use of our results in a series of concrete situations.
The first three concern finite-dimensional evolution equations. In Section 5.1,
the gradient line of a probability density function is formulated as a solution to
a finite-dimensional evolution equation. In Section 5.2, white matter fiber tracts
in the brain are modeled as integral curves of the eigenvector field derived from
the underlying water molecule diffusion tensor field. In Section 5.3, we consider
a variation of the local principal curve, formulated as the integral curve of a local
covariance field, and demonstrate it on a traffic flow dataset. We conclude with
an infinite-dimensional evolution equation related to anisotropic heat diffusion
in Section 5.4.

Based on the implications of Theorem 5, Algorithm 1 details the general
construction of a bootstrapped confidence region for γ that is uniform simulta-
neously in time and bandwidth. This algorithm will be used throughout the first
three examples in this section. Note that Theorem 3 can be similarly availed for
a confidence region construction that is uniform only in time. A similar algo-
rithm can be found in Chen, Genovese and Wasserman (2015) for constructing a
confidence region using the bootstrap that is uniform over the one-dimensional
ridge set of interest though not uniform for the smoothing bandwidth.

Algorithm 1 Confidence region for γ uniform in time and bandwidth.
Require: Data X1, . . . , Xn ∈ U , set of bandwidths H, significance level α
1: for each h ∈ H do
2: Estimate the integral curve from {X1, . . . , Xn}; denote this by γ̂h

3: Generate bootstrap samples {X∗(b)
1 , . . . , X

∗(b)
n } for b = 1, . . . , B using either the multi-

nomial or multiplier bootstrap.

4: For each bootstrap sample, estimate the integral curve, call this γ̂
(b)
h .

5: end for
6: For b = 1, . . . , B, calculate zb = sup0≤t≤T,h∈H

∥∥∥γ̂(b)
h (t)− γ̂h(t)

∥∥∥ .

7: Let ĉα be the α-upper quantile of z1, . . . , zB .
8: return The set {u ∈ U : sup0≤t≤T,h∈H

∥∥γ̂h(t)− u
∥∥ < ĉα}
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5.1. Gradient lines

Call γ a gradient line of a probability density function f : Rd → R
+ if it is the

solution to the evolution equation

γ̇(t) = ∇f(γ(t)) and γ(0) = x0 ∈ R
d. (5.1)

Gradient lines are of interest in applications such as modal clustering (Chen,
Genovese and Wasserman, 2016), filament estimation (Genovese et al., 2009),
and Morse-Smale complex estimation (Chen, Genovese and Wasserman, 2017b).
They play an important role in the computer vision literature where the ubiq-
uitous mean-shift algorithm can be seen as a discrete approximation to the
continuous system in (5.1) (see Arias-Castro, Mason and Pelletier (2016) for
more details).

Gradient lines are typically estimated using the plug-in principle. Consider

the kernel density estimator given by f̂n(x, h) = 1
nhd

∑n
i=1 K

(
x−Xi

h

)
which

is based on a random sample X1, . . . , Xn from the density f0, where K is a
kernel function with bandwidth h ∈ H ⊂ (0,∞). For simplicity, assume K
is the standard multivariate Gaussian density. Following the scale-space view
of Chaudhuri and Marron (2000), define the resolution-h theoretical counter-

part of f̂n(x, h) to be f(x, h) ≡ Ef̂n(x, h) = 1
hdEK

(
x−Xi

h

)
. Let f̂◦

n(x, h) =

1
nhd

∑n
i=1 WiK

(
x−Xi

h

)
be the bootstrapped kernel density estimator where the

weights Wi correspond either to the multinomial bootstrap or the multiplier
bootstrap defined in Section 3.

Before moving on, a discussion is warranted regarding this scale-space view.
In its absence, it would be natural to consider the sequence

√
nhd

n(f̂n(x, hn)−
f0(x)), which converges in distribution for fixed x as n → ∞ and hn → 0 at an

appropriate rate. However, there is no equivalent statement for f̂n(x, hn) con-
sidered as a process over x. This is because for a distinct collection {x1, . . . , xk},
the Cramer-Wold device gives the joint convergence of√

nhd
n

[
f̂n(x1, hn)− f0(x1), . . . , f̂n(xk, hn)− f0(xk)

]T
to a multivariate normal with a diagonal covariance matrix. Thus√
nhd

n(f̂n(x, hn)− f0(x)) cannot converge weakly over x to a tight limit, which
would preclude the application of Theorem 3 to establish bootstrap consistency.

There is further reason to consider f(x, h), rather than f0, as the theoretical

counterpart to f̂n(x, h). In certain state spaces X , it may not be possible to
define a proper probability density function, e.g. when X is a space of functions
as in functional data analysis. A common way to overcome this is to introduce
a surrogate density or pseudo-density (Hall and Heckman, 2002; Delaigle and
Hall, 2010; Ciollaro, Genovese and Wang, 2016), in much the same spirit as
f(x, h) is defined above.

Fix the initial condition x0, and let the gradient lines of f(x, h), f̂n(x, h), and

f̂◦
n(x, h) be denoted, respectively, γ(t, h), γ̂n(t, h), and γ̂◦

n(t, h). Assume through-
out that the vector field ∇f(x, h) is locally Lipschitz so that there exists some
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D = {(t, h) ∈ R×H : t ∈ Jh ⊂ R} such that its gradient line γ is well-defined.
The following justifies bootstrapping for the resolution-h gradient line. Note
the requirement below that H be a compact subset of (0,∞) excludes the case
h → 0.

Theorem 6. Let U and H be compact subsets of Rd and (0,∞), respectively.
If f(x, h) is twice continuously differentiable, then

√
n(γ̂n−γ) and

√
n(γ̂◦

n− γ̂n)
converge weakly over (t, h) ∈ D to the same mean-zero U-valued Gaussian
process.

We assess via a simulation study the finite-sample bootstrap coverage for
gradient lines arising from a normal distribution. Consider a random sample
{X1, . . . , Xn} from the bivariate Gaussian density f0 : R2 → R+ with mean 0
and σ2

x = 4, σ2
y = 9, ρ = 0.9, i.e. covariance matrix [4, 5.35; 5.35, 9]. We calcu-

late∇f̂n(x, h) =
1

nh2

∑n
i=1 K

(
x−Xi

h

)
Xi−x
h2 . The theoretical counterpart to this,

∇f(x, h) = ∇E 1
h2K((x−Xi)/h), was approximated using numerical integration

in Matlab.
Fix the initial value x0 = (0.4, 0.5) and I = [0, T ] where T = 0.1 is the

total length of flow. Figure 1 shows the gradient field ∇f0 overlaid with its
gradient line γ0, as well as the resolution-h gradient lines γ(t, h) for h ∈ H =
{0.5, 0.6, . . . , 0.9, 1}. We implement Algorithm 1 with the multinomial boot-
strap. The number of bootstrap replications B was set to 200. We assessed
coverage probabilities using 200 Monte Carlo iterations. The performance for
different sample sizes n at desired 95% coverage is shown in Figure 2. We see that
the nominal coverage is attained as n increases. There is sign of under-coverage
for n = 50 but already for n = 100 the coverage becomes adequate.

5.2. Noisy principal eigenvector fields

Diffusion tensor imaging is a magnetic resonance imaging technique that can be
used to map fiber tract structures in the brain (Basser, Mattiello and LeBihan,
1994). A 3 × 3 symmetric positive-definite matrix is measured at a location in
R

3 that captures the spatial covariation of water diffusion through tissue. The
integral curves of the associated principal eigenvector field provide a continuous
description of the diffusion tensor field. In fact, they form the basis of many
tractography methods in diffusion tensor imaging (Mukherjee et al., 2008).

Since the diffusion tensor field is measured empirically with noise, so too is
the principal eigenvector field derived from it. As in Koltchinskii, Sakhanenko
and Cai (2007), we consider a model where the underlying principal eigenvec-
tor field v0 is observed according to Vi = v0(Xi) + εi, i = 1, . . . , n, where Xi

is uniformly distributed in a bounded open set of Rd, and εi’s are mean-zero
bounded random errors. We will employ the standard kernel regression esti-

mator v̂n(x, h) =
1

nhd

∑n
i=1 K

(
x−Xi

h

)
Vi to generate a plug-in estimate for the

integral curve. To simplify matters, suppose K is the standard multivariate
Gaussian density.
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Fig 1. Gradient field of the density f0 corresponding to the bivariate Gaussian
N2(0, [4, 5.35; 5.35, 9]), overlaid with the gradient lines γ0 and γ(t, h) for various values of
the bandwidth h. All gradient lines start at (0.4, 0.5) and flow for T = 0.1 length of time.

Our treatment will now begin to diverge from that of Koltchinskii, Sakha-
nenko and Cai (2007). Their analysis utilizes a result similar to Theorem 2,
but for a Euclidean state space, to derive the limiting distribution of the em-
pirical integral curve. Importantly, this result concerns γ0, the integral curve
of v0. We will instead consider the scale-space perspective and make inference
for a resolution-h integral curve. This is so that we can justify the bootstrap-
ping procedure which would otherwise be difficult to ascertain if γ0 were the
object of interest instead. Define the theoretical counterpart of v̂n(x, h) to be

v(x, h) ≡ Ev̂n(x, h) =
1

nhd

∑n
i=1 K

(
x−Xi

h

)
E(Vi|Xi). Let the bootstrapped es-

timator be v̂◦n(x, h) = 1
nhd

∑n
i=1 WiK

(
x−Xi

h

)
Vi where the weights Wi corre-

spond either to the multinomial bootstrap or the multiplier bootstrap defined
in Section 3.

Fix the initial condition x0, and let the integral curves of the eigenvector
fields v(x, h), v̂n(x, h), and v̂◦n(x, h) be denoted, respectively, γ(t, h), γ̂n(t, h),
and γ̂◦

n(t, h). Throughout, assume v is locally Lipschitz so that there exists
some D = {(t, h) ∈ R × H : t ∈ Jh ⊂ R} for which γ is well-defined. The



Empirical evolution equations 261

Fig 2. Bootstrap performance for gradient line. Dashed horizontal line is the desired 95%
coverage probability. Solid horizontal line is the coverage probability for bootstrapping γ(t, h)
over t and h simultaneously. The coverage for γ(t, h) at fixed h is also displayed with Monte
Carlo error (±1 standard error) bars.

following result justifies performing inference for the resolution-h integral curve
via bootstrapping.

Theorem 7. Let U and H be compact subsets of Rd and (0,∞), respectively.
If v(x, h) is twice continuously differentiable, then

√
n(γ̂n−γ) and

√
n(γ̂◦

n− γ̂n)
converge weakly over (t, h) ∈ D to the same mean-zero U-valued Gaussian
process.

Consider the following example from Section 4.2 in Koltchinskii, Sakhanenko
and Cai (2007). We have noisy observations of a circular vector field v0 on
R

2 given by v0(x1, x2) = (−x2/‖x‖ , x1/‖x‖) and random errors εi distributed
1
2N(0, I2). Fix the initial value at x0 = (3, 0) and I = [0, T ] where T = 10 is
the total length of flow. The top left panel of Figure 3 shows the vector field v0
overlaid with the integral curve γ0. The top right panel shows one realization of
a corrupted vector field. The bottom row of Figure 3 displays smoothed vector
fields v̂n(x, h) for h = 0.5 and h = 1 and corresponding empirical integral curves
γ̂n(t, h).

Consider H = {0.1, 0.2, . . . , 0.9, 1} for the set of bandwidths. We implement
Algorithm 1 with the multinomial bootstrap. The number of bootstrap replica-
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Fig 3. The top row displays the circular vector field v0(x1, x2) = (−x2/‖x‖ , x1/‖x‖) overlaid
with the true integral curve γ0 (left), and corrupted vector field sampled at 200 points uni-
formly from the [−4, 4]2 grid with 1

2
N(0, I2) noise (right). The bottom row displays smoothed

vector fields for two different bandwidths h = 0.5 and h = 1. All integral curves start at (3, 0)
and flow for T = 10 length of time.

tions B was set to 200 and the number of Monte Carlo iterations to 200. The
performance for different sample sizes n at desired 95% coverage is shown in
Figure 4. We see that the nominal coverage is attained as sample size increases
and the bootstrap method is not overly conservative until n = 400.

5.3. Local principal flow

Hastie and Stuetzle (1989) introduced the concept of principal curves, smooth
curves that pass through the “middle” of a multivariate point cloud, to describe
data exhibiting nonlinear variation. Many variations on the principal curve has
since followed including the concept of local principal curves (sometimes people
use the name ridge (Ozertem and Erdogmus, 2011)). Top-down methods for
local principal curves start with the first principal component and successively
bend it (Einbeck, Evers and Bailer-Jones, 2008) while bottom-up methods are
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Fig 4. Bootstrap performance for noisy principal eigenvector field. Dashed horizontal line
is the desired 95% coverage probability. Solid horizontal line is the coverage probability for
bootstrapping γ(t, h) over t and h simultaneously. The coverage for γ(t, h) at fixed h is also
displayed with Monte Carlo error (±1 standard error) bars.

exemplified by the the local principal curve proposed in Einbeck, Tutz and Evers
(2005) which we describe below.

The local principal curve of Einbeck, Tutz and Evers (2005) is constructed
point by point using only local information at each iteration. Suppose we have
a multivariate point cloud {X1, . . . , Xn} ⊂ R

d. Starting from an initial point, a
local center of mass μx is calculated. Next a local covariance matrix centered at

μx is formed: 1
n

∑n
i=1 K

(
x−Xi

h

)
(μx −Xi)

T (μx −Xi), for some kernel function

K and bandwidth h. From this, the principal eigenvector is extracted. We move
μx in the direction of said eigenvector by some step size. This is repeated until
μx stops changing. The local principal curve is comprised of this series of μx.

In this illustration, we show how an adaptation of the local principal curve
of Einbeck, Tutz and Evers (2005) can be formulated as a solution to an evo-
lution equation. Rather than centering the local covariance matrix at a local
center of mass, consider for each point x ∈ R

d a local covariance matrix di-

rectly centered there: Ĉn(x, h) = 1
n

∑n
i=1 K

(
x−Xi

h

)
(x − Xi)

T (x − Xi). Let

v̂n(x, h) be the associated principal eigenvector of Ĉn(x, h). The corresponding
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Fig 5. The local principal flow illustrated on a speed flow dataset. Black dots are original data
points (speed, flow) after scaling. Displayed is the principal eigenvector field of the smoothed
(h = 0.22) local covariance field. The initial condition was chosen to be (0.35957, 1.0182)
and the integral curve was then propagated in both directions. Bootstrapped 95% confidence
circles, uniform over time t, are indicated by blue circles.

empirical integral curve γ̂n can be interpreted as an infinitesimal local prin-
cipal curve-like object, which we will call a local principal flow, so named for
its similarity to the (global) principal flow introduced in Panaretos, Pham and
Yao (2014). Define the scale-space theoretical counterpart of Ĉn(x, h) to be

C(x, h) ≡ EK
(

x−X
h

)
(x−X)T (x−X). Let Ĉ◦

n(x, h) be the bootstrapped local

covariance matrix, for either the multinomial or multiplier bootstrap defined in
Section 3. Denote by γ and γ̂◦

n the associated local principal flows of C and Ĉ◦
n,

respectively.

We fit the local principal flow for a speed-flow diagram obtained from the R
package LPCM (Einbeck and Dwyer, 2011). The data consists of 444 observa-
tions on speed and flow recorded from 9th of July 2007, 9am, to 10th of July
2007, 10pm, on a particular lane of a Californian freeway. The nonlinear varia-
tion of the data is apparent from Figure 5. Rather than performing a standard
principal component analysis, we fit the local principal flow for K being the
standard bivariate Gaussian density and bandwidth h = 0.22. The multinomial
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bootstrap (with B = 1000) was used to find an approximate 95% confidence
region for the local principal flow γ(t, h), uniform in t. The confidence region
appears as blue circles in Figure 5.

5.4. Heat flows

Now we consider an evolution equation on an infinite-dimensional state space,
corresponding to a partial differential equation. The motivation for this example
arises from novel tractography methods in diffusion tensor imaging that are
probabilistic, rather than deterministic, in nature. We will examine specifically
the tractography method described in Section D of Hageman et al. (2009), based
on the anisotropic heat equation,

∂γ(t)(x)

∂t
= ∇ · [D∇γ(t)(x)], (5.2)

where D is the diffusion tensor at x ∈ R
d. In a typical interpretation, γ(t)(x)

represents the density of a diffusing material at location x and time t.
Let Pd denote the space of d×d symmetric positive-definite matrices. Suppose

it is only possible to observe, with measurement error, the true diffusion coeffi-
cient D0 at a finite number of positions. Specifically, for i.i.d. observations Di ∈
Pd occurring at random locations Xi uniformly distributed in U ⊂ R

d, consider

the diffusion coefficient estimator D̂(x, h) = 1
nhd

∑n
i=1 K

(
x−Xi

h

)
Di where K

is the standard multivariate Gaussian density and bandwidth h ∈ H ⊂ (0,∞).
Define the scale-space theoretical counterpart to be

D(x, h) ≡ ED̂(x, h) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
E(Di|Xi).

Next, let the bootstrapped diffusion coefficient be D̂◦(x, h) = 1
nhd

∑n
i=1 Wi ×

K
(

x−Xi

h

)
Di, where the weights Wi correspond either to the multinomial boot-

strap or the multiplier bootstrap in Section 3.
Call γ a heat flow of the tensor field Qh = Q(x, h) where Q : U ×H → Pd

if γ solves the evolution equation

∂γ(t, h)(x)

∂t
= ∇ · [Qh∇γ(t, h)(x)], γ(0, h) = x0 ∀h ∈ H,

for initial condition x0 ∈ C1(U ,R). Fix the initial condition x0, and let the heat
flows associated to each of Dh = D(x, h), D̂h = D̂(x, h), and D̂◦

h = D̂◦(x, h) be
denoted, respectively, γ(t, h), γ̂n(t, h) and γ̂◦

n(t, h). Assume throughout that the
vector field Dh associated to the heat equation is locally Lipschitz so that there
exists some G = {(t, h) ∈ R ×H : t ∈ Jh ⊂ R} on which its heat flow is well-
defined. The following result justifies performing inference for the resolution-h
heat flow via bootstrapping.
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Theorem 8. Let U and H be compact subsets of Rd and (0,∞), respectively. If
vec(D(x, h)) is twice continuously differentiable, then

√
n(γ̂n− γ) and

√
n(γ̂◦

n −
γ̂n) converge weakly over G to the same mean-zero U-valued Gaussian process.

6. Future work

We conclude with a discussion on possible future research directions. First, the
uniform-in-bandwidth results in this paper could lead to methods of bandwidth
selection based on the idea of stability, e.g. in the spirit of Rinaldo and Nugent
(2012); Chen et al. (2015); Ciollaro, Genovese and Wang (2016). In these works,
a range of bandwidths is considered desirable if the features of interest persist
across it.

Second, more refined statements in the current framework may be possible
if we focus on specific classes of evolution equations. Gradient flow equations
provide one such example. These equations, whose study forms an active re-
search area, naturally appear in many real systems trying to decrease energy
(or increase entropy at fixed energy) over time. Gradient flow equations take
the form

γ̇ = −∇I(γ) and γ(0) = x0,

where I is a functional from a metric space X to R. Intuitively, the solution
γ(t) “flows downhill” in the direction −∇I/‖∇I‖ with velocity proportional to
‖∇I‖.

It is easy to see that the gradient line of Section 5.1 falls under this framework
since the vector field is the gradient of a probability density function. That the
anisotropic heat equation in Section 5.4 can also be encompassed in the gradient
flow framework is truly surprising, however. The results of Lisini (2009) make
apparent that the heat flow associated to Equation (5.2) is also the gradient
flow of the functional I(u) =

∫
Rd F (u(x)) dx where F (z) = z log z with respect

to the 2-Wasserstein distance between probability measures on the space R
d,

endowed with the Riemannian distanced induced by D−1, the inverse of the
diffusion tensor.

Finally, future directions of research might extend the current framework to
more exotic evolution equations. For instance, time-dependent vector fields are
not treated here but are important tools in the visualization field (Theisel et al.,
2004). Also, the increasing interest in manifold data leading to applications
involving integral curves on manifolds (using the idea of charts (Lee, 2012)) is
not yet treatable by the current work.

Appendix A: Linear differential equations in Banach spaces

The review in this section relies heavily on Krein (1971). Consider an equation
of the form

u̇ = A(t)u+ f(t), u(0) = u0 ∈ E (A.1)
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where A(t) is a bounded operator in a Banach space E, f(t) is a given function
taking value in E, and u(t) is an unknown function also taking value in E. The
derivative u̇ is understood to be the limit of the difference quotient with respect
to the norm of E.

If A(t) and f(t) are continuous (or, more generally, measurable and integrable
on every finite interval), then the solution to the homogeneous counterpart to
(A.1),

u̇ = A(t)u, u(0) = u0 (A.2)

exists for any u0 ∈ E and is given by u(t) = U(t, 0)u0 where U(t, s) is known as
the evolution operator of (A.2), and is given by

U(t, s) = I+

∫ t

0

A(t1) dt1+
∞∑

n=2

∫ t

s

∫ tn

s

· · ·
∫ t2

s

A(tn) · · ·A(t1) dt1 . . . dtn (A.3)

where I is the identity operator. Going back to the non-homogeneous equation
in (A.1), its solution is u(t) = U(t, 0)u0 +

∫ t

0
U(t, τ)f(τ) dτ.

Example 1. Suppose E = R and A(t) = 1. Then U(t, 0) = 1+ t+ t2

2! +
t3

3! + . . .
i.e. the power expansion of exp(t).

Example 2. Suppose E = R and A(t) = t. Then U(t, 0) = 1 + t2

2·1! +
t4

2·2! + . . .
i.e. the power expansion of exp(t2/2).

These examples suggest that in the Euclidean setting, the solution to the
linear differential equation in (A.1) simplifies substantially, which is indeed the
case. Suppose E = R

d, then u and f are vector-valued functions. Take the op-
erator A(t) to be a d× d matrix. First, suppose A commutes, i.e. A(t1)A(t2) =
A(t2)A(t1), the evolution operator in (A.3) simplifies to U(t, s) =

exp
{∫ t

s
A(τ) dτ

}
exp

{
−
∫ s

0
A(τ) dτ

}
where, for a matrix A, the matrix ex-

ponential exp tA is formally defined as the convergent power series exp tA =

I + tA + t2A2

2! + . . . . The reader is referred to Moler and Van Loan (2003) on
various ways to compute the exponential of a matrix.

In general, however, the matrix A will not commute. In that case the solution
to (A.1) is given by

u(t) = V (t)u0 + V (t)

∫ t

0

V −1(τ)f(τ) dτ (A.4)

where V (t) is the solution to

V̇ = A(t)V, and V (0) = I.

The Magnus expansion discussed in Appendix A can be used for V (t) whereby
we first write V as a matrix exponential V (t) = expΩ(t) where Ω(0) = O.
The Magnus expansion is a series expansion for the matrix in the exponent
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Ω(t) =
∑∞

k=1 Ωk(t). We refer the reader to Blanes et al. (2009) for derivation
details of the expansion. To illustrate, the first three terms of the series are

Ω1(t) =

∫ t

0

A(t1) dt1

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A(t1), A(t2)]

Ω3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]])

where [A,B] = AB − BA is the matrix commutator of A and B. Thus ap-
proximation of the solution in (A.4) via the Magnus expansion is obtained by
truncating the series expansion.

Appendix B: Proofs of formal statements

Proof of Theorem 1. Define the parameter space Θ to be a closed subset of
C1(I,U) that contains an open neighborhood of γ0. Additionally, suppose Θ is
such that supθ∈Θ‖θ‖C1 < ∞ and θ(0) = x0 for all θ in Θ. We endow Θ with
the C1 norm which makes it a Banach space. Also consider the Banach space
L = C(I,X ) equipped with the supremum norm.

Consider the operators Ψ and Ψn, treated as elements of l∞(Θ,L), given by
Ψ(γ) = γ̇−v0 ◦γ and Ψn(γ) = γ̇− v̂n ◦γ. The integral curve γ0 ∈ C1(I,U) of v0
may now be formulated as a zero of Ψ. Viewing the extraction of the zero from
Ψ and Ψn as a continuous mapping allows the application of a functional delta
method on the process rn(Ψn − Ψ) to derive the limiting distribution of the
empirical integral curve. Heuristically, as Ψn approaches Ψ in an appropriate
sense, so too should their respective roots. We will apply the master Z-estimator
result that is Corollary 13.7 of Kosorok (2008) which makes this idea rigorous.

We first check Ψn,Ψ ∈ l∞(Θ,L). We have the following

‖Ψγ‖
L
=‖γ̇ − v0 ◦ γ‖∞
=
∥∥(γ̇ − v0 ◦ γ)− (γ̇0 − v0 ◦ γ0)

∥∥
∞

≤
∥∥(γ̇ − γ̇0)

∥∥
∞ + k‖γ − γ0‖∞

≤ k
(∥∥(γ̇ − γ̇0)

∥∥
∞ +‖γ − γ0‖∞

)
≤ k

(
‖γ̇‖C1 +‖γ‖C1

)
< ∞

where we have, in the third line, used the fact that v0 is locally Lipschitz and
γ, γ0 ∈ Θ, and taken k to be greater than or equal to 1. We can show that
Ψn ∈ l∞(Θ,L) in a similar way.

Next, the unique existence of γ0 is guaranteed by the fact that v0 is locally
Lipschitz. Thus the identifiability condition in Corollary 13.7 of Kosorok (2008)
is satisfied. To derive the Fréchet derivative of Ψ at γ0, write Ψ(γ̃) − Ψ(γ0) =
∂
∂t (γ̃ − γ0)− (Dv0 ◦ γ0)(γ̃ − γ0) + R(γ̃, γ0) where γ̃ is an element of Θ and the
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remainder term is R(γ̃, γ0) = (Dv0 ◦ γ)(γ̃− γ0)− [v0 ◦ γ̃− v0 ◦ γ0]. The notation
(Dv◦γ0) is understood to be the map from I to L(X ,X ). By Assumption A1, we
have

∥∥v0(γ̃(t))− v0(γ0(t))−Dv0(γ0(t))(γ̃(t)− γ0(t))
∥∥
X = o(

∥∥γ̃(t)− γ0(t)
∥∥
U ).

From this it follows that
∥∥R(γ̃, γ0)

∥∥
∞ /‖γ̃ − γ0‖C1 → 0 as‖γ̃ − γ0‖Θ → 0. Hence

the Fréchet derivative, Ψ̇γ0
: Θ → L, is Ψ̇γ0(h) = ḣ− (Dv0 ◦ γ0)h.

We now show that Ψ̇γ0 is continuously invertible. First, note that Ψ̇−1
γ0

(f)(t)
is the solution to the following linear differential equation in the Banach space
X

u̇(t) = (Dv0 ◦ γ0)(t)u(t) + f(t), u(0) = 0. (B.1)

Since the linear operator (Dv0 ◦ γ0)(t) acting in the Banach space X is the
Fréchet derivative of v0 at γ0(t), it is bounded and continuous. The general
theory on linear differential equations reviewed in Appendix A includes (B.1)

as a special case. It shows Ψ̇−1
γ0

(f)(t) =
∫ t

0
U(t, τ)f(τ) dτ where U(t, τ) is the

evolution operator given by

U(t, τ) = I+

∫ t

τ

(Dv0 ◦ γ0)(t1) dt1

+

∞∑
j=2

∫ t

τ

∫ tj

τ

· · ·
∫ t2

τ

(Dv0 ◦ γ0)(tj) · · · (Dv0 ◦ γ0)(t1) dt1 . . . dtj (B.2)

where I is the identity operator. That the inverse operator Ψ̇−1
γ0

is continuous
can be seen from this form.

Now we check the conditions regarding the estimating equation Ψn. First,

we check that Ψn
p→ Ψ uniformly in l∞(Θ,L). Asymptotic normality of v̂n

implies v̂n
p→ v0 uniformly in l∞(U ,X ). It then follows that the restriction

(v̂n ◦ γ)
p→ (v0 ◦ γ) uniformly in l∞(I,X ) and thus Ψn

p→ Ψ in l∞(Θ,L). The

asymptotic normality of v̂n gives rn(Ψn − Ψ)
d→ X in (l∞(Θ,L),‖·‖∞) where

X(γ) = −(G ◦ γ). Now all of the conditions of Corollary 13.7 in Kosorok (2008)

are satisfied and we have rn(γ̂n − γ0)
d→ −Ψ̇−1

γ0
X(γ0), i.e. the desired result in

(2.2).
Finally, if G is a Gaussian process, the process G ◦ γ0 is a Gaussian pro-

cess. This is because all finite dimensional distributions of a Gaussian process
are Gaussian. Since Ψ̇−1

γ0
is continuous and continuous mappings preserve Gaus-

sianity, ξ is itself a Gaussian process if G is a Gaussian process.

Remark 1. The differential operator that appears in Ψ̇γ0 is typically un-
bounded between two Banach spaces. For instance, consider the differential
operator from C1[0, 1] to C[0, 1] where both spaces are endowed with the uni-

form norm; if fn = xn, then ‖fn‖∞ = 1 and
∥∥∥ḟn∥∥∥

∞
= n. However, with our

particular choice of Θ and L and the norms they are equipped with, the differ-
ential operator is bounded and thus continuous.

Proof of Theorem 2. This is an adaptation of the proof of Theorem 1 in Kolt-
chinskii, Sakhanenko and Cai (2007) to the Banach space setting. Without loss
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of generality, we take the interval I ⊂ R to be I = [0, T ] for some T > 0. Let
us begin by representing the integral curves γ0 and γ̂n in their integral form:
γ0(t) = x0+

∫ t

0
v0(γ0(s)) ds and γ̂n(t) = x0+

∫ t

0
v̂n(γ̂n(s)) ds. These integrals are

to be interpreted as Bochner integrals (Mikusiński, 1978), whose construction
for Banach-space-valued functions is analogous to that of a Lebesgue integral
for real-valued functions.

Next, define η̂(t) =
∫ t

0
[v̂n(γ0(s))− v0(γ0(s))] ds and

R̂(t) =

∫ t

0

[
v̂n(γ̂n(s))− v̂n(γ0(s))−Dv0(γ0(s))(γ̂n(s)− γ0(s))

]
ds.

Consider the difference of the empirical integral curve and the population inte-
gral curve, decomposed as a sum of two terms: γ̂n(t)− γ0(t) = ẑ(t) + δ̂(t). The

first term satisfies ẑ(t) =
∫ t

0
η̂(s) ds+

∫ t

0
Dv0(γ0(s))ẑ(s) ds and the second term

satisfies δ̂(t) =
∫ t

0
Dv0(γ0(s))δ̂(s) ds+ R̂(t).

We say F ∈ C1
0 (I,X ) if F ∈ C1(I,X ) and F (0) = 0. Let D be an operator

from C1
0 (I,X ) to C(I,X ), where for F ∈ C1

0 (I,X ), u = DF satisfies

du(t) = (Dv0 ◦ γ0)(t)u(t) dt+ dF (t), u(0) = 0. (B.3)

Writing rn(γ̂n(t)−γ0(t)) = rnzn(t)+rnδn(t), we will show that rnzn(t) converges
weakly to the tight process ξ(t) = Dη(t) and sup0≤t≤T

∥∥δn(t)∥∥ = op(r
−1
n ). These

two statements will be established below in Lemmas 1 to 3. Then applying
Slutsky’s, we get the desired result.

Lemma 1. Under the conditions of Theorem 2, we have uniform consistency

of the empirical integral curve sup0≤s≤T

∥∥γ̂n(s)− γ0(s)
∥∥
X

p−→ 0.

Proof. By definition we have

γ̂n(t)− γ0(t) =

∫ t

0

[
v̂n(γ̂n(s))− v0(γ0(s))

]
ds

=

∫ t

0

(v̂n − v0)(γ̂n(s)) ds+

∫ t

0

[
v0(γ̂n(s))− v0(γ0(s))

]
ds.

The local Lipschitz property of v0 gives us

∥∥γ̂n(t)− γ0(t)
∥∥
X ≤ T sup

x∈U

∥∥v̂n(x)− v0(x)
∥∥
X + L

∫ t

0

∥∥γ̂n(s)− γ0(s)
∥∥
X ds.

By the Grönwall-Bellman inequality, e.g. Lemma 1 of Chandra (1970), we have

∥∥γ̂n(t)− γ0(t)
∥∥
X ≤ T sup

x∈U

∥∥v̂n(x)− v0(x)
∥∥
X exp

{∫ t

0

Lds

}
.

Uniform consistency now follows immediately from Assumption A3.

Lemma 2. Under the conditions of Theorem 2, rnzn(t)
d−→ ξ(t) = Dη(t) where

D is as in (B.3).
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Proof. We proceed by showing that D is a continuous operator which implies

rnzn(t) = Dη̂n(t)
d−→ ξ(t) = Dη(t). Now, D is a linear operator between two

normed spaces. Thus by e.g. Theorem 2.2.4 in Atkinson and Han (2009), D is
continuous if and only if it is bounded, i.e. there exists some M > 0 such that
for all F ∈ C1

0 (I,X ), ‖DF‖ ≤ M‖F‖ . We can write u = DF in its integral

representation: u(t) = F (t) +
∫ t

0
Dv0(γ0(s))u(s) ds. Then we have

∥∥u(t)∥∥X ≤
∥∥F (t)

∥∥
X +

∫ t

0

∥∥Dv0(γ0(s))
∥∥
op

∥∥u(s)∥∥X ds

≤ sup
t∈I

∥∥F (t)
∥∥
X +

∫ t

0

∥∥Dv0(γ0(s))
∥∥
op

∥∥u(s)∥∥X ds

≤
{
sup
t∈I

∥∥F (t)
∥∥
X

}
exp

(∫ t

0

∥∥Dv0(γ0(s))
∥∥
op

ds

)

where the last line follows from an application of the Grönwall-Bellman inequal-
ity, which can be applied since the map t �→

∥∥Dv0(γ0(t))
∥∥
op

is continuous on I

by Assumption A2.

Lemma 3. Under the conditions of Theorem 2, sup0≤t≤T

∥∥δn(t)∥∥X = op(r
−1
n ).

Proof. We will show that

sup
0≤t≤T

∥∥Rn(t)
∥∥
X = op

(∫ T

0

∥∥γ̂n(t)− γ0(t)
∥∥
X dt

)
(B.4)

and ∥∥δn(t)∥∥X ≤ C sup
0≤t≤T

∥∥Rn(t)
∥∥
X (B.5)

If (B.4) and (B.5) hold, we get the desired result:

sup
0≤t≤T

∥∥δn(t)∥∥X = op

(∫ T

0

∥∥γ̂n(t)− γ0(t)
∥∥
X dt

)

= oP

(∫ T

0

∥∥zn(t) + δn(t)
∥∥
X dt

)

= oP

(∫ T

0

∥∥zn(t)∥∥X dt

)

= oP (OP (r
−1
n )) = oP (r

−1
n )

where the fourth line follows from the third since Lemma 2 implies∫ T

0

∥∥zn(t)∥∥X dt = OP (r
−1
n ).

Now, let us establish (B.4). We decompose Rn as follows

Rn(t) =

∫ t

0

[
(v̂n − v0)(γ̂n(s))− (v̂n − v0)(γ0(s))

]
ds

+

∫ t

0

[
v0(γ̂n(s))− v0(γ0(s))−Dv0(γ0(s))(γ̂n(s)− γ0(s))

]
ds.
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Let us take a look at each of these terms in turn. First we have∥∥(v̂n − v0)(γ̂n(s))− (v̂n − v0)(γ0(s))
∥∥
X

=

∥∥∥∥∥
∫ 1

0

D(v̂n − v0)(aγ̂n(s) + (1− a)γ0(s))(γ̂n(s)− γ0(s)) da

∥∥∥∥∥
X

≤
∫ 1

0

∥∥D(v̂n − v0)(aγ̂n(s) + (1− a)γ0(s))(γ̂n(s)− γ0(s))
∥∥
X da

≤
∫ 1

0

∥∥D(v̂n − v0)(aγ̂n(s) + (1− a)γ0(s))
∥∥
op

∥∥γ̂n(s)− γ0(s)
∥∥
X da

≤ sup
0≤a≤1

∥∥D(v̂n − v0)(aγ̂n(s) + (1− a)γ0(s))
∥∥
op

∥∥γ̂n(s)− γ0(s)
∥∥
X

≤ sup
x∈U

∥∥D(v̂n − v0)(x)
∥∥
op

∥∥γ̂n(s)− γ0(s)
∥∥
X .

Next, we look at the second term of Rn. We have∥∥v0(γ̂n(s))− v0(γ0(s))−Dv0(γ0(s))(γ̂n(s)− γ0(s))
∥∥
X

=

∥∥∥∥∥
∫ 1

0

[Dv0(aγ̂n(s) + (1− a)γ0(s))−Dv0(γ0(s))](γ̂n(s)− γ0(s)) da

∥∥∥∥∥
X

≤ sup
0≤a≤1

∥∥Dv0(aγ̂n(s) + (1− a)γ0(s))−Dv0(γ0(s))
∥∥
op

∥∥γ̂n(s)− γ0(s)
∥∥
X

≤ r(
∥∥γ̂n(s)− γ0(s)

∥∥
X )

∥∥γ̂n(s)− γ0(s)
∥∥
X

where r(δ) = supx∈U supy∈U,‖y‖≤δ

∥∥Dv0(x+ y)−Dv0(x)
∥∥
op

. Note that by As-

sumption A2, r(δ) as δ → 0. Thus for all t ∈ [0, T ], we have

∥∥Rn(t)
∥∥
X ≤ sup

x∈U

∥∥Dv̂n(x)−Dv0(x)
∥∥
op

∫ t

0

∥∥γ̂n(s)− γ0(s)
∥∥
X ds

+ r

(
sup

0≤s≤T

∥∥γ̂n(s)− γ0(s)
∥∥
X

)∫ t

0

∥∥γ̂n(s)− γ0(s)
∥∥
X ds.

We showed in Lemma 1 the uniform consistency of the empirical integral curve.
This, in addition to Assumption A3, shows (B.4) holds.

Finally, we establish (B.5). From Assumption A2, we get that the map t �→∥∥Dv0(γ0(t))
∥∥
op

is continuous on I. Then it follows that

∥∥δn(t)∥∥ ≤ sup
0≤t≤T

∥∥Rn(t)
∥∥+

∫ t

0

∥∥Dv0(γ0(s))
∥∥
op

∥∥δn(s)∥∥ ds

≤ sup
0≤t≤T

∥∥Rn(t)
∥∥ exp

{∫ t

0

∥∥Dv0(γ0(s))
∥∥
op

ds

}

by the Grönwall-Bellman inequality, see Lemma 1 of Chandra (1970). Thus we
have (B.5).
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Proof of Theorem 3. First, for a Donsker class F = {fx : x ∈ U}, we have
√
n(v̂n − v0)

d→ B and
√
nc(v̂◦n − v̂n)

p→
W

B. We will employ Corollary 13.8

in Kosorok (2008). Let Ψn and Ψ be as in the proof of Theorem 1. Define
Ψ◦

n(γ) = γ̇− v̂◦n◦γ. Then γ̂◦
n is a zero of Ψ◦

n. Since we have bootstrap consistency

of the vector field, we also have
√
nc(Ψ◦

n − Ψn) =
√
nc(v̂n − v̂◦n)

P
d→
W

−G. Thus
√
nc(Ψ◦

n − Ψn) and
√
n(Ψn − Ψ) have the same limiting distribution, and the

desired result on bootstrap consistency for the integral curve follows.

Proof of Theorem 4. We can apply the arguments in the proof of Theorem 1
with the following specifications to obtain the desired result. Let the Banach
space Θ be a closed subset of C1(D,U) that contains an open neighborhood
of γ. In addition suppose Θ is such that supθ∈Θ‖θ‖C1 < ∞ and θ(0, h) = x0

for all θ ∈ Θ, h ∈ H. Let L be the Banach space C(D,X ). The operators
Ψ(γ)(t, h) = γ̇(t, h) − v(γ(t, h), h) and Ψn(γ)(t, h) = γ̇(t, h) − v̂n(γ(t, h), h) are
both to be considered elements of l∞(Θ,L).

Proof of Theorem 5. The proof can proceed in the same manner as in the proof

of Theorem 3. Namely, the Donsker property of F implies
√
n(v̂n−v0)

d→ B and√
nc(v̂◦n− v̂n)

p→
W

B. Again, Corollary 13.8 in Kosorok (2008) can be applied with

Ψn and Ψ as in the proof of Theorem 4 and Ψ◦
n(γ)(t, h) = γ̇(t, h)− v̂◦n(γ(t, h), h)

to get the desired result.

Proof of Theorem 6. Define the vector fields v(x, h) = ∇f(x, h) and v̂n(x, h) =

∇f̂(x, h). Considering the two-parameter process
√
n(∇f̂(x, h)−∇f(x, h)) as an

empirical process with (x, h) ∈ U ×H, its weak convergence can be established
using Theorem 3.1 of Chaudhuri and Marron (2000) when d = 1. The result
for d > 1 can be established in a similar way. Bootstrap consistency of the
gradient vector fields is also given by Theorem 3.1 of Chaudhuri and Marron
(2000), i.e.

√
n(∇f̂◦(x, h) − ∇f̂(x, h)) converges weakly to the same limiting

distribution as
√
n(∇f̂(x, h)−∇f(x, h)). Finally, since f is twice continuously

differentiable, v is locally Lipschitz and Fréchet differentiable at (γ(t, h), h) for
all (t, h) ∈ D. Thus the conditions of Theorem 5 are satisfied and we have the
desired result.

Proof of Theorem 7. For d = 1, the conditions of Theorem 3.2 of Chaudhuri
and Marron (2000) are satisfied, yielding the weak convergence of

√
n(v̂n(x, h)−

v(x, h)) and its bootstrapped version over (x, h) ∈ U ×H to a Gaussian process.
Similar arguments can be applied for d > 1. Thus the conditions of Theorem 5
are satisfied and we have the desired result.

Proof of Theorem 8. When d = 1, Theorem 3.2 in Chaudhuri and Marron
(2000) can be used to establish the weak convergence of the two-parameter
stochastic process D̂(x, h) as well as for the bootstrapped process D̂◦(x, h).
A similar argument could be applied to extend the result to d(d + 1)/2 when
d > 1. Then vectorizing symmetric positive-definite matrices in R

d×d would give
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us
√
n(D̂(x, h)−D(x, h)) converges weakly to a matrix-valued Gaussian process

on U × H. The continuous mapping theorem next gives the weak convergence
of

√
n(v̂n(f, h) − v(f, h)) and

√
n(v̂◦n(f, h) − v̂n(f, h)) over (f, h) to the same

C(Rd,R)-valued tight process. This allows us to apply Theorem 5 to conclude
bootstrap consistency for the heat flow.
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timation of Ordinary Differential Equations With Orthogonality Conditions.
Journal of the American Statistical Association 109 173–185.

Chandra, J. (1970). On a Generalization of the Gronwall-Bellman in Partially
Ordered Banach Spaces. Journal of Mathematical Analysis and Applications
681 668–681.

Chaudhuri, P. and Marron, J. S. (2000). Scale Space View of Curve Esti-
mation. The Annals of Statistics 28 408–428.

Chen, Y.-C. C., Genovese, C. R. and Wasserman, L. (2015). Asymptotic
theory for density ridges. Annals of Statistics 43 1896–1928.

Chen, Y.-C., Genovese, C. R. and Wasserman, L. (2016). A Compre-
hensive Approach to Mode Clustering. Electronic Journal of Statistics 10
210–241.



Empirical evolution equations 275

Chen, Y. C., Genovese, C. R. and Wasserman, L. (2017a). Density Level
Sets: Asymptotics, Inference, and Visualization. Journal of the American Sta-
tistical Association 1–13.

Chen, Y. C., Genovese, C. R. and Wasserman, L. (2017b). Statistical
inference using the morse-smale complex. Electronic Journal of Statistics 11
1390–1433.

Chen, Y.-C., Genovese, C. R., Ho, S. and Wasserman, L. (2015). Optimal
Ridge Detection using Coverage Risk. In Advances in Neural Information
Processing Systems 28 316–324.

Ciollaro, M., Genovese, C. R. and Wang, D. (2016). Nonparametric Clus-
tering of Functional Data Using Pseudo-Densities.

Delaigle, A. and Hall, P. (2010). Defining probability density for a distri-
bution of random functions. Annals of Statistics 38 1171–1193.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The
Annals of Statistics 7 1–26.

Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans.
Society for Industrial and Applied Mathematics.

Einbeck, J. and Dwyer, J. (2011). Using principal curves to analyse traffic
patterns on freeways. Transportmetrica 7 229–246.

Einbeck, J., Evers, L. and Bailer-Jones, C. (2008). Representing complex
data using localized principal components with application to astronomical
data. In Lecture Notes in Computational Science and Engineering 58 178–
201.

Einbeck, J., Tutz, G. and Evers, L. (2005). Local principal curves. Statistics
and Computing 15 301–313.

Genovese, C. R., Perone-Pacifico, M., Verdinelli, I. and Wasser-

man, L. (2009). On the path density of a gradient field. Annals of Statistics
37 3236–3271.

Hageman, N. S., Toga, A. W., Narr, K. L. and Shattuck, D. W. (2009).
A diffusion tensor imaging tractography algorithm based on Navier-Stokes
fluid mechanics. IEEE Transactions on Medical Imaging 28 348–60.

Hall, P. and Heckman, N. E. (2002). Estimating and depicting the structure
of a distribution of random functions. Biometrika 89 145–158.

Hastie, T. and Stuetzle, W. (1989). Principal Curves. Journal of the Amer-
ican Statistical Association 84 502–516.

Hill, B. J., Kendall, W. S. and Thönnes, E. (2012). Fibre-generated point
processes and fields of orientations. Annals of Applied Statistics 6 994–1020.

Huckemann, S., Hotz, T. and Munk, A. (2008). Global models for the ori-
entation field of fingerprints: An approach based on quadratic differentials.
IEEE Transactions on Pattern Analysis and Machine Intelligence 30 1507–
1519.

Koltchinskii, V., Sakhanenko, L. and Cai, S. (2007). Integral curves of
noisy vector fields and statistical problems in diffusion tensor imaging: non-
parametric kernel estimation and hypotheses testing. Annals of Statistics 35
1576–1607.



276 S. Wei and V. M. Panaretos

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semipara-
metric Inference. Springer August 1–491.

Krein, S. G. (1971). Linear differential equations in Banach space. American
Mathematical Society, Providence, R.I.

Lee, K. K. (1992). Lectures on Dynamical Systems, Structural Stability and
Their Applications. World Scientific, Singapore.

Lee, J. M. (2012). Introduction to Smooth Manifolds, 2 ed. Springer New York,
New York.

Lisini, S. (2009). Nonlinear diffusion equations with variable coefficients as gra-
dient flows in Wasserstein spaces. ESAIM: Control, Optimisation and Calcu-
lus of Variations 15 712–740.
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