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Abstract: We propose a flexible convex relaxation for the phase retrieval
problem that operates in the natural domain of the signal. Therefore,
we avoid the prohibitive computational cost associated with “lifting” and
semidefinite programming (SDP) in methods such as PhaseLift and com-
pete with recently developed non-convex techniques for phase retrieval. We
relax the quadratic equations for phaseless measurements to inequality con-
straints each of which representing a symmetric “slab”. Through a simple
convex program, our proposed estimator finds an extreme point of the in-
tersection of these slabs that is best aligned with a given anchor vector.
We characterize geometric conditions that certify success of the proposed
estimator. Furthermore, using classic results in statistical learning theory,
we show that for random measurements the geometric certificates hold with
high probability at an optimal sample complexity. We demonstrate the ef-
fectiveness of the proposed method through numerical simulations using
both independent random measurements and coded diffraction patterns.

We also extend this formulation to include sparsity constraints on the
target vector. With this additional constraint, we show that, considering
“nested” measurements, the number of phaseless measurements needed to
recover the sparse vector is essentially the same (to within a logarithmic fac-
tor) as the number of linear measurements needed by standard compressive
sensing techniques.
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1. Introduction

Let x, € CV be a signal that we would like to recover from noisy phaseless
measurements

bi = lajz.|? + & i=1,2,..., M, (1)
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Fic 1. A two-dimensional illustration of slabs intersecting at @

where the measurement vectors a; € CV are given. To solve this phase retrieval
problem with provable accuracy, different methods that rely on semidefinite re-
laxation have been proposed previously [e.g., 8, 7, 36]. While these methods
are guaranteed to produce an accurate solution in polynomial time, they are
not scalable due to the use of semidefinite programming (SDP). This drawback
of SDP-based methods has motivated development of alternative non-convex
methods that operate in the natural domain of the signal and exhibit better
scalability [e.g., 25, 10]. In this paper we follow a completely different approach
and propose a convex relaxation of the phase retrieval problem that not only
produces accurate solutions but also is scalable. Compared to the non-convex
phase retrieval methods our approach inherits the flexibility of convex opti-
mization both in analysis and application. In Section 3.3, we demonstrate this
flexibility by showing how sparsity constraints can (almost seamlessly) be in-
corporated into the recovery algorithm.

The geometric idea at the core of our proposed method is the following.
Relaxing each measurement equation in (1) to an inequality |af:c*\2 < b; creates
a symmetric slab S; of feasible solutions as illustrated in Figure 1. Collectively,
these slabs describe a “complex polytope” K of feasible solutions. In the noiseless
regime (i.e., & = 0 for all 7), the target signal x, would be one of the extreme
points of K. To distinguish x, among all of the extreme points, our idea is to
find a hyperplane tangent to IC at x,. The crucial ingredient in this approach
is an “anchor” vector ag € CV\ {0} that acts as the normal for the desired
tangent hyperplane and it is required to have a non-vanishing correlation with
x, in the sense that

lajz,| > & |laolly @l (2)
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for some absolute constant ¢ € (0,1). The above geometric intuition is explained
in more detail in Section 3.1. While our main result simply assumes that the
anchor vector is given by an oracle, which may use the existing measurements,
we discuss in Section 1.1 some realistic scenarios where a valid anchor vector
exists or can be computed.

We assume that the noise is non-negative (i.e., & > 0) and we have ||€]| <
n~t H:n*Hg for some constant 1 > 0. Note that the non-negativity of the noise
can be dropped at the cost of a slight reduction in the effective signal-to-noise
ratio. In particular, one can add the noise upperbound (i.e., n=! ||zc*||§) to each
measurement to ensure the non-negativity. Throughout we treat CV as an inner-
product space over R equipped with the symmetric inner-product

(-,) : (1, x2) — Re (xix2).

Clearly, in this setting CV will be a 2N-dimensional vector space.
With these assumptions in place, we propose the solution to the convex pro-

gram?!

max (aog, ) (3)
x
subject to \afa:|2 < 1<:< M,

as a computationally efficient estimator for «,. Of course, the points equal to x
up to a global phase, namely,

Te = {wz : |lw| =1},

yield the same phaseless measurements. Therefore, the goal is merely to estimate
a point in Tz, accurately from the phaseless measurements (1).

In Lemma 2, below in Section 3, we establish a geometric condition that is
sufficient to guarantee accurate estimation of x, via the convex program (3).

The sufficient condition given by Lemma 2 can be interpreted in terms of
(non-)existence of a particularly constrained halfspace that includes all of the
points a;a;x,. For random measurement vectors a;, this interpretation resem-
bles the model and theory of linear classifiers studied in statistical learning
theory, albeit in an unusual regime. Borrowing classic results from this area
(summarized in Appendix A), we show that with high probability (3) produces
an accurate estimate of x,.

Specifically, in our main result, Theorem 1 in Section 3, we show that drawing

s 1
M Z N +log —,
€

i.i.d. random measurements, with the hidden constant factor on the right-hand
side depending on §, would suffice for the conditions of Lemma 2 to hold with
probability > 1 — e. Consequently, solution Z of (3) would obey

|z — w*“z S 7771 ||$*H2 .

Mn the real case, (3) reduces to a linear program.
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1.1. Choosing the anchor vector

Our approach critically depends on the choice of the anchor vector ag that obeys
an inequality of the form (2). Below we discuss two interesting scenarios where
such a vector would be accessible.

Non-negative signals: Perhaps the simplest scenario is when the target sig-
nal x, is known to be real and non-negative. In usual imaging modalities these
model assumptions are realistic as natural images are typically represented
by pixel intensities. For these types of signals we can choose ag = \/%1 for

which we obtain |afz.| = ||z.|, /VN. Then, for (2) to hold it suffices that

|x.ll; = 6V N ||z,|, for some absolute constant 6 € (0,1). In particular, we
need x, to have at least §°/N non-zero entries.

Random measurements: A more interesting scenario is when we can con-
struct the vector ag from the (random) measurements. An effective strategy is
to set ag to be the principal eigenvector of the matrix X = ﬁ Z£1 bia;a}.
The principal eigenvector of X' and its “truncated” variants have been used
previously for initialization of the Wirtinger Flow algorithm [10] and its re-
fined versions [11, 42]. For example, the following result is shown in [10, Section
VILH].

Lemma 1 (Candes et al. [10]). For 1 <+i < M let b; be the phaseless measure-
ments obtained from i.i.d. vectors a; ~ Normal(0, $I) +:Normal(0, £I) and no

s
noise. If M 2 Nlog N and aq is the principal eigenvector of

1 M
X = M;biaia,’[,

then (2) holds with probability > 1 — O(N~2).

While Lemma 1 can be refined or extended in various ways, we do not pursue
these paths in this paper. We refer the interested reader to [23] which studies
certain generalizations for Lemma 1. The only important extension to Lemma 1
for us is to consider the effect of noise. Here we use a simple argument based on
eigenvalue perturbation. If b; is given by (1) then we compute ¥ a unit principal
eigenvector of

- 1< 1 <&
CHEE ORNRRUIE S
i=1 i=1
as the anchor. Let v denote a unit principal eigenvector of
XY= L f: la;z,|?a;a}
M i=1 ' o

that is aligned with ¥ (i.e. v*v > 0). Then, it follows from a variant of the
Davis-Kahan theorem [41, Corollary 1] that
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1 M
HM > i Giaia)

2
[E

o —wvlly, <

Depending on the noise model we may show that H ﬁ Zgl Sa;ar H is sufficiently

small (e.g., using matrix concentration inequalities). In that case, if for instance
lv —vl|l, <9, and |[v*x,| > 26 ||x,||, by Lemma 1, then we have

@] = (5~ v+ v) @] = o] — (@ - v) ]
> [v'e, | — [|[v — v, |z,
> (20 = 6) [|zslly = 0 lJxslly

which guarantees that v is also a valid anchor vector.

1.2. Sparse phase retrieval using an €, regularizer

One of the benefits of posing the phase retrieval problem as a convex program in
the natural domain of the signal is that the formulation is extensible. If we have
additional information about the signal to be recovered that can be expressed
using convex constraints and/or penalties, then the recovery procedure can take
advantage of this information while remaining computationally tractable.

A natural model for many imaging applications is that the target vector x,
is sparse. Here, we encourage the solution to be sparse by enforcing a constraint
on the ¢1 norm:

max {ag, )
xT

subject to |afx|? < b; 1<i<M (4)

]l < llzsll;

For our analysis below, we make the simplifying assumption that ||x.|; is
known. In practice, the problem can always be put into Largrange form, with
an appropriate multiple of ||x||; subtracted from the functional {(ag,x).

As in the case of ordinary phase retrieval, a complete analysis of (4) requires
(i) a rigorous method to construct the anchor, and (ii) a sample complexity
analysis given the anchor vector. For generic Gaussian measurements, there are
obstacles that make a tight mathematical analysis of these procedures compli-
cated. To keep things simple, we will introduce some simple structure on the
measurement vectors a;; this structure will make the sample complexity analysis
a relatively straightforward extension of the ordinary case, and will give us a con-
crete procedure for constructing an anchor vector from a nearly optimal number
of samples. We note, though, that a near-optimal sample complexity analysis
is possible using an analysis based on Rademacher complexity (see, e.g., the
general framework in [3]) in place of the VC-based analysis in Section 3. With
generic measurements, the main obstacle currently is construction of an anchor
with optimal sample complexity. We are not aware of any computationally effi-
cient construction that improves on the suboptimal sample complexity that is
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quadratic in ||z, ||,, but such constructions may exist (see, e.g., the discussion
in [32]).

In this paper, we consider measurement vectors that have a “nested struc-
ture”, a model proposed in [20, 1, 39]. Specifically, we have

a;, =¥ w, 1<i< M, (5)

where w; € CMo are i.i.d. standard complex Gaussian vectors, and ¥ € CV*Mo
is a (random) matrix satisfying the restricted isometry property (RIP), i.e., for
some constant yx € (0,1) we have

2 * 2 2
(1 =) 2l < [272f, < (1+7x) 2], (6)

for all K-sparse vectors x. These conditions are usually fulfilled for random ¥
[4] when

N
MOZKIOgE

Our second main result, stated precisely as Theorem 2 in Section 3.3 below,
shows that if we take noisy phaseless measurements of a K,-sparse vector x,
of the form (5) and we have an anchor vector in place that satisfies (2), then
solving (4) when

N
M Z K, log X (7

produces (with high probability) an estimate Z that again obeys ||Z — @,|j2 <
n~1||z4||2. Thus the number of phaseless nested measurements needed to recover
@, is of the same order as if we had taken linear measurements (a;, ) and used
standard compressive sensing techniques to form an estimate.

The nested measurements also give us a technique for forming a data-driven
anchor vector. To do this, we start by forming a matrix similar to the one used
for the ordinary case above, but formed from the w; instead of the a;. We take

1 M
3= M;blwlwf,

compute the principal eigenvector wg of X, and then form the anchor vector ag
by hard thresholding Wwy, retaining only its K, largest terms. In Section 3.3,
we show that when

M Z Mo IOg ]\4-07

this procedure results in an anchor vector that is sufficiently correlated with
x,. Thus it appears we merely pay an extra log factor over the number of
measurements in the sample complexity bound (7).

1.3. Other variations and extensions

There are several other ways the method proposed above can be extended.
We will briefly discuss some of these here, and leave further exploration for
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future research. While the core geometric ideas still apply to these extensions,
significant modifications of our theoretical arguments would be necessary to
analyze these extensions in full.

The gross noise model considered in this paper can be pessimistic in scenarios
where we have random noise or deterministic noise with a different type of
bound. In these scenarios, augmenting the estimator by a noise regularization
term could result in accuracy bounds that gracefully vary with the considered
noise.

Another interesting extension to the proposed method, is to adapt the current
theory to the case of blockwise independent measurements as in coded diffraction
imaging. Our numerical experiments in Section (2) suggest that the proposed
method still performs well with these structured measurements. Nevertheless, to
extend the analysis we may need to revise the current simple arguments based
on Vapnik-Chervonenkis theory using more sophisticated tools from the theory
of empirical processes.

Finally, it is possible to extend our convex formulation to the more general
problem of recovering a low-rank positive semidefinite matrix from rank-one
projections. Suppose that an N x N rank-R positive semidefinite matrix S, =
X, X] is observed through measurements of the form

bi = a;S.a; +¢

5 1=1,2,....M, (8)

= | X ailly + &
where the a; are measurement vectors and the ; represent measurement noise
— instead of measuring the magnitude of an inner product, we are measuring
the norm of a matrix-vector multiplication. One application of measurements
of this type is the problem of covariance sketching [6, 12, 2]. Similar to (3), we
can estimate X, via the convex program

max tr(AJ X
)?t(o ) )

subject to ||XTai||§ <b; i=12,...,M,

where Ag € RV*® is an anchor matrix that is appropriately correlated with
X,

tr(AJU.)| = 5] Ag (10)

[

where U, is a matrix that has orthogonal columns, each with ¢5-norm #, that

span the column space of X,.

1.4. Related work

There is a large body of research on phase retrieval addressing various aspect
of the problem (see [21] and references therein). However, we focus only on
the relevant results mostly developed in recent years. Perhaps, among the most
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important developments are PhaseLift and similar methods that cast the phase
retrieval problem as a particular semidefinite program [8, 7, 36]. The main idea
used in [8] and [7] is that by lifting the unknown signal using the transformation
xzx* — X, the (noisy) phaseless measurements (1) that are quadratic in @, can
be converted to linear measurements of the rank-one positive semidefinite matrix
X, = z,x}. With this observation, these SDP-based methods aim to solve the
corresponding linear equations using the trace-norm to induce the rank-one
structure in the solution. Inspired by the well-known convex relaxation of Max-
Cut problem, PhaseCut method [36] considers the measurement phases as the
unknown variables and applies a similar lifting transform to formulate a different
semidefinite relaxation for phase retrieval. While these SDP-based methods are
shown to produce accurate estimates of X, at optimal sample complexity for
certain random measurement models, they become computationally prohibitive
in medium- to large-scale problems where SDP is practically inefficient.

More recently, there has been a growing interest in non-convex iterative meth-
ods for phase retrieval [see e.g., 25, 10, 30, 11, 42, 37, 33]. These methods typi-
cally operate in the natural space of the signal and thus do not suffer the draw-
backs of the SDP-based methods. In [25], using a specifically chosen initializa-
tion, some accuracy guarantees for a variant of the classic methods of Gerchberg
and Saxton [15] and Fienup [14] are provided. This alternating minimization
method of [25] basically updates an estimate of the signal assuming an estimate
of the measurements’ phase and vice versa in an alternating fashion through sev-
eral iterations. The established sample complexity for this approach is (nearly)
optimal in the dimension of the target signal, but it does not vary gracefully
with the prescribed precision. Phase retrieval via the Wirtinger Flow (WF), a
non-convex gradient descent method at core, is proposed in [10]. It is shown
that for random measurements that have Normal distribution or certain coded
diffraction patterns, with an appropriate initialization the WF iterates exhibit
the linear rate of convergence to the target signal. More recent work on the WF
method introduce better initialization by excluding the outlier measurements
and achieve the optimal sample complexity [11, 42]. The WF class of algorithms
and our proposed method both achieve optimal sample complexity (up to the
constant factor) and have low computational cost. However, the WF methods
need careful tuning of a step size parameter and their convergence analysis often
relies on Gaussian measurements. This is partly because establishing robust-
ness of non-convex methods generally requires stronger conditions. Our method
provably works for a broader set of measurement distributions, has no tuning
parameters, and can be implemented in various convex optimization software.

Shortly after a draft of this manuscript was first posted online, a few indepen-
dent papers proposed and analyzed the same method and its variants. In [16],
which refers to (3) as PhaseMaz, a sharper constants in the sample complexity
is obtained by assuming a stronger condition that the anchor is independent of
the measurements in the analysis. Alternative proofs and variations that rely
on matrix concentration inequalities appeared later in [19, 18, 17]. Another dis-
tinctive feature of our analysis compared to the mentioned results is that it is
less sensitive to measurement distribution as it relies on VC-type bounds.
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Until very recently, convex programming approaches to sparse phase retrieval
considered some form of semidefinite relaxation combined with ¢;-regularization
to estimate the lifted sparse and rank-one target matrix [26, 22]. With stan-
dard Gaussian measurements, these methods are shown to require M = O(K?)
measurements to produce accurate solutions [22]. This suboptimal sample com-
plexity is observed more generally in estimation of simultaneously sparse and
low-rank matrices using naive convex relaxations [27]. The prohibitive com-
putational cost of (sparse) phase retrieval methods based on semidefinite pro-
gramming, motivated the study of iterative non-convex approaches. Among the
non-convex methods with provable guarantees, methods based on alternating
minimization [25] and gradient descent [38] are shown to produce accurate solu-
tions for sparse phase retrieval with suboptimal sample complexity M = O(K2).

While achieving optimal sample complexity for sparse phase retrieval with
generic Gaussian measurements is still open, a few techniques that exploit spe-
cially structured measurements are shown to reach optimal sample complexity
with a computationally efficient algorithm. Examples of these methods include
[28, 40] that construct measurements based on ideas from channel coding, as
well as [20, 1, 39] that rely on “nested” measurements that are restricted to a
low-dimensional subspace.

More recently, it is shown in [32] that, given a good initialization, the non-
convex projected gradient descent with sparsity constraint can produce accurate
solution to sparse phase retrieval with M = O(K, log(N/K,)) Gaussian mea-
surements. Furthermore, [17] considers the ¢;-regularized form of (4) in the
real-valued and noiseless scenario and shows that it achieves optimal sample
complexity assuming the anchor vector is given. We emphasize that our gen-
eral framework developed in [3] can establish optimal sample complexity for the
{1-regularized variant of (4), but it relies on tools other than VC-dimension to
control the sample complexity.

2. Numerical experiments

We evaluated the performance of our proposed method on synthetic data with
the target signal @, ~ Normal(0,3I) + «Normal(0,1I) and measurements

a; "~ Normal(0, 1) + 1Normal(0, £I) all having N = 500 coordinates. The
noisy measurements follow (1) with the uniform noise & "~ Uniform( [0,77]) in

one experiment and the Gaussian noise & '~ Normal(0, %) in the other. For the

latter noise model we replaced any negative b; by b; = 0 to avoid negative mea-

4
surements and defined the input signal-to-noise ratio as SNR = 101logyg H“;;”z

The vector ay is constructed as in initialization of the Wirtinger Flow mentioned
in Lemma 1 through 50 iterations of the power method. We implemented the
convex program (3) by TFOCS [5] with smoothing parameter p = 2 x 1073 and
at most 500 iterations. Figure 2 illustrates the 0.9-quantile and median of the
relative error mingeo 2 || — el¢w*||2 / |z |ly observed over 100 trials of our
algorithm for different sampling ratios M/N between 2 and 17. The plots also
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F1G 2. Empirical relative error of the proposed method at different sampling ratios (i.e., M/N)
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F1c 3. Relative error

show the effect of different levels of noise on the relative error for both of the
considered noise models.

We also have another set of experiments comparing our method with the
Wirtinger Flow method [10]. In these experiments we generate the measurement
matrix A = [a; az -+ ay]” with i.i.d. standard complex Gaussian entries for
different signal dimensions N and sampling ratios M/N. For each choice of
M and N we compared the performance of our approach and the Wirtinger
Flow in the noiseless setting over 75 trials. Figure 3 compares the two methods
in terms of the achieved accuracy. The graph shows the median of the rela-
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tive error achieved by each of the two methods over the 75 trials. As can be
seen, the Wirtinger Flow succeeds at a smaller sampling ratio (i.e., M/N = 4)
whereas our approach requires essentially twice more measurements to succeed
(i.e., M/N = 8). However, when both methods recover the signal accurately, our
approach appears to be less demanding in terms of the computation and thus
the running time. This claim is supported by Figure 4 that compares the median
of the number of multiplications by A or A* in each of the two approaches. We
excluded the operation counts of initializing for the Wirtinger Flow and con-
structing the anchor for (3) from the reported numbers as they are both based
on the method in Lemma 1. As Figure 4 suggests, the computational cost of
our method peaks at M/N = 7 which can be explained as follows. At sampling
ratios that our method fails (i.e., M/N < 8) the convex solver might not achieve
the tolerance level set to halt and run for the entire prescribed maximum num-
ber of iterations. Therefore, for these sampling ratios the convex solver runs
more iterations (without success) compared to the cases with M/N > 8 where
the method succeeds.

We examined the numerical performance of (4) in the sparse phase retrieval
problem as well. Let My = 2K, log(N/K,) and M = [¢Mj]. For N = 1000 and
different values of K, and ¢, we generated M measurement vectors according
to (5) with @ € CN*IMol and w; € CMMol being populated with i.i.d. standard
complex Gaussian entries. Figure 5 illustrated the median of the relative error
achieved by (4) over 100. As the graphs suggest for the considered range of K,
the proposed estimator recovers the signal (up to the numerical tolerance) for
M/My =~ ¢ > 14.

Furthermore, we evaluated our method using noiseless measurements with
coded diffraction patterns as described in [9]. Specifically, with indices i = (k, £)
for 1 <k < Nand1</{< L, we used measurements of the form a; = fir o ¢
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Relative Error
IOD,

10!

F1G 5. Relative error achieved (4) for sparse phase retrieval

which is the pointwise product of the k-th discrete Fourier basis vector (i.e., f)
and a random modulation pattern with i.i.d. symmetric Bernoulli entries (i.e.,
@¢). The target signal is an N = 960 x 1280 ~ 1.2 x 10° pixel image of a Persian
Leopard.? We used L = 20 independent coded diffraction patterns {be}1<o<p-
Therefore, the total number of (scalar) measurements is M = LN ~ 2.5 x 107.
Similar to the first simulation, the vector ag is constructed as the (approximate)
principal eigenvector of ﬁ >, bia;a; through 50 iterations of the power method.
The convex program is also solved using TFOCS, but this time with smoothing
parameter 1 = 107% and restricting the total number of forward and adjoint
coded diffraction operator to 500. The recovered image is depicted in Figure 6
which has a relative error of about 8.2 x 1078,

3. Theoretical analysis

In this section we provide the precise statement of the our results. Main proofs
are provided in Appendix B, and proofs of technical lemmas can be found in
Appendix C. For the sake of simplicity in notation and derivation, but without
loss of generality, we make the following assumptions. We assume that ajx, is
a positive real number since any point in Tx, is a valid target. Furthermore, we
assume that x, is unit-norm (i.e., [|z.|l, = 1) and thus the bound on the noise
reduces to ||€] < n~'. We first establish, in Lemma 2, a geometric condition
for success of phase retrieval through (3). Then we use this lemma to prove our
main result for random measurements in Theorem 1. We also rely on tools from
statistical learning theory that are outlined in Appendix A.

2Available online at: https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/
Persian_Leopard_sitting.jpg/1280px-Persian_Leopard_sitting.jpg
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F1G 6. Persian Leopard at 960 x 1280 resolution. Relative error is 8.2 x 1078,

3.1. Geometry of intersecting slabs

To understand the geometry of (3) it is worthwhile to first consider the noiseless
scenario. The feasible set is the intersection of the sets

Si= {:c eCV : |afz|* < bi}

corresponding to the pairs (a;,b;) fori = 1,2,--- , M. The sets S; are effectively
symmetric “complex slabs”. Denote their intersection by

M
K=
i=1

In (3) the objective function is linear, thus its maximizer is an extreme point
of the convex constraint set IC. Clearly, x, as well as any other point in T, are
extreme points of . However, C typically has other extreme points that are not
equivalent to «,. Intuitively, using the non-vanishing correlation of ag with x,,
the convex program (3) is effectively eliminating the superfluous extreme points
of K. The geometric interpretation is that the hyperplane normal to ay that
passes through x, is also tangent to K, as Figure 1 suggests. It is not difficult
to show that an analogous interpretation from the dual point of view is that
ag is in the interior of cone {a;a;x,}, .,y (ie., the conical hull of the points
a;,a;x,). -

More generally, with noisy measurements, K is still a symmetric complex
polytope that is convex and includes Tz, due to non-negativity of the noise.
We would like to find conditions that guarantee that the solution to (3) is close
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to x,. More specifically, we would like to show that if Z = @, + h is any solution
to (3) and ¢ > 0 is some constant, then with ||h|, > (tn)~" the inequalities

<a07h‘> 2 0
la} (z, + h))* < |aiz|* +& 1<i< M,

cannot hold simultaneously. The following lemma provides the desired sufficient
condition.

Lemma 2. Let
Rs={heC" : |h— (zih)z.|, > 6 Im(z;h)|} , (11)

and € > 0 be some constant. If every vector h € Rs with ||h|, > € violates at
least one of the inequalities

0
1, _ (12)
5 <

then any solution T to (3) obeys
1@ - ., <.

Proof. Tt suffices to show that h = T — x, obeys (12) and it belongs to Rs.
Given that

& 2 laf (. + h)|” — |ajz.|” = |afhl” + 2(a;a]z,. h) > 2aia]z.. h)

and & < n~', we have (a;ajx,, h) < 317" Feasibility of , and optimality of
Z guarantee that (ag, h) = (ag, ) — (ag, z.) > 0. Therefore, we have shown
that h satisfies (12).

The constraints of (3) are invariant under a global change of phase (i.e., the
action of T). It easily follows that the solution & to (3) should obey Im (aiZ) = 0.
Therefore, we have Im (ajh) = 0 as we assumed o = ajx, € R. The same
assumption also implies that ag = ax, + ag) for ag, = (I — x,x}) ag which
clearly obeys ®fap, = 0. Thus, using triangle inequality and the bound (2) we
obtain

0 = [Im (agh)| = [olm (@ k) + Im (ag, h)|
> a|lm (z;h)| — [Im (ag, )|
> 8 [|aolly [Tm (25 h)| — [[hLll; laoll, ,

where h = (I — z,xf) h = h — (zth) x,. The above inequality completes the
proof as it is equivalent to h € R;. O
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zd
Cs

FIG 7. Relative positioning of ao and a;a}x« with respect to the cones Cs and Cj

3.2. Guarantees for random measurements

In this section we will show that if the vectors a; for 1 < i < M are drawn from a
random distribution and (2) holds for a sufficiently large constant J, then with
high probability (3) produces an accurate estimate of x,. Our strategy is to
show that for a sufficiently large M the sufficient condition provided in Lemma
2 holds with high probability.

For § € (0,1) let Cs be the convex cone given by

Co={yeC :ziy>6lyl,} .

where 3}y is implicitly assumed to be a real number. The polar cone of a set C
is defined as
C = {z:(z,y)<O0foralyecC}.

It is easy to verify that the polar cone of Cs is

cj;:{zecN 8@y, 2) <—V1-62\/||z|3 — |wz}

Since ag € C5 by assumption, it follows that for every h € C; we have (ag, h) <
0. Therefore, the inequality (ag, h) > 0 can hold only for vectors z in the closure
of the complement of C; which we denote by

Cs = {ze(CN 5wy, 2)>—/1-62\/||z|5 — a:*z} (13)

A typical positioning of ay and a;a;x, needed to guarantee unique recovery is
illustrated in Figure 7.

Theorem 1. Suppose that noisy phaseless measurements of a unit vector x.,
are given as in (1) under bounded non-negative noise £1,&a,...,&n € [O,n_l].
Let ag be an anchor vector obeying (2) for some constant 6 € (0,1) and define
Rs and C§ respectively as in (11) and (13). Furthermore, given a constant t > 0,
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suppose that for 1 < i < M the measurement vectors a; are i.i.d. copies of a
random variable a € CN that obeys

1
inf P( (aa*x,,h) > =071 ) > pmin (6, 1),
hEC;NRs << ) > 277 >_p ( )
lRlly>(tn) "

for a constant puin(,t) € (0,1) depending only on parameters & and t.> For
any € > 0, if we have

1 1
M2z —————|N-+log-
~ p?nin (67 t) < * o8 E) 7

then with probability > 1 — e the estimate T obtained through (3) obeys
~ -1
1@ — @[], < (tn) .

To have a concrete example, we can apply Theorem 1 to the case of mea-
surements with normal distribution. Clearly, it suffices to quantify the constant
Pmin (9, t). For instance, Lemma 5 in Appendix C guarantees that we can choose

1 1-52 .,
Pmin (0, ) = (5 - g) o2V

The dependence of the sample complexity on pmin(d,t) in Theorem 1 is not
optimal and can be improved. In our analysis the most critical factor that de-
termines the sample complexity is a uniform lower bound for a certain empiri-
cal process. While we used Theorem 3 to establish the desired lower bound, a
sharper result can be obtained using “variance-normalized” variants of the the-
orem. For example, the term 1/p2; (,t) in the sample complexity guaranteed
by Theorem 1 can be improved to 1/pmin(d,t) by using [34, Theorem 4.4(2)]
instead of Theorem 3 in the analysis.

3.3. Sparse phase retrieval

Theorem 2 below gives a precise recovery guarantee (in terms of number of
samples needed) for recovering a K ,-sparse vector. Its proof, which can be found
in Section B.2, follows that of Theorem 1, only with a modification of the set
C; in (13) that reflects the additional constraint that h be a descent vector for
the ¢; norm from x,.

To ease some of the notation, in what follows we denote the phase of any

z € C by
def ﬁ 2 #0
z =
<>T {0 ,2=0.

For any complex vector z, the operation (z); applies entry-wise.

3Clearly, the best pmin (8,t) decreases as t increases.
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Theorem 2. Suppose that noisy phaseless measurements of a K,-sparse unit
vector ., supported on X, are given as in (1) under bounded non-negative noise
&1,69,...,¢& € [0,77*1]. Let ag be an anchor vector obeying (2) for some con-
stant 6 € (0,1) and define Rs and C§ respectively as in (11) and (13). Further-
more, given a constant t > 0, suppose that for 1 < i < M we have a; = Pw;,
where @ € CN*Mo obeys (6) with K = K, and w;’s are i.i.d. copies of a random
variable w € CM that obeys

1
inf P ((!I’ww*&?*a:*,m > —17_1) > Pmin(0,1),  (14)
hEC:;ﬂR5 2

IRly>(tm) ™

||hxg 1+<(m*X*>T,hx* >§o

for a constant pmin(0,t) € (0,1) that depend on parameters 8, t, and implicitly
on W. For any € > 0, if we have

1 1
M>—— | My+log -
~ p? (fit)( o Ogé‘)’

min
then with probability > 1 — e the estimate T obtained through (4) obeys

. -1
1@ — .|, < (tn) .

As mentioned above, with My 2 K, log(N/K,) the matrix ¥ can satisfy (6)
for K = K, and a constant v < 1. Therefore, Theorem 2 implies that it suffices
to have ) N )

MZ——— (K log — —Hog—) ,
px2nin(6’ t) ) K* €
to guarantee accuracy of (4) with probability > 1 — e.

There is one important thing that we are leaving unaddressed. Unlike ordi-
nary unconstrained phase retrieval, we do not show the existence of a constant
Pmin(0,t) in (14) for a particular probability model for the w;. This appears to
be a very technical calculation even in the case where the w; are iid Gaussian,
and so we leave it for future work.

Constructing the anchor: As described above, the first step in forming the
anchor vector is computing the principal eigenvector wg of

| M
Z:M;biww*.

’

$
When M 2 Mylog My, Lemma 1 above guarantees that
[wo W@, | = " [ &, ], - (15)

Lemma 3 below shows that the best K,-sparse approximation of Wwy is suffi-
ciently correlated with x,. The proof is provided in Appendix B.
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Lemma 3. Let ag denote the best K, -sparse approximation of $wy where wy
is a unit vector that satisfies (15), and suppose that ¥ satisfies the (6) with
K = 2K, and parameter ok, . Then ag is a valid anchor for which (2) holds,
if we have

1+ 7k,
1 -k,

1-9§

2
@m+¢Hme—%)§ >

1

: ;7 _
For concreteness, if ¢’ = g and Y2k, = 55,

can have § = %

then Lemma 3 guarantees that we

Appendix A: Tools from statistical learning theory

For reference, here we provide some of the classic results in statistical learning
theory that we employed in our analysis. We mostly follow the exposition of the
subject presented by [13, chapters 13 and 14].

Definition 1 (Shatter coefficient). The n-th shatter coefficient (or growth func-
tion) of a class F of binary functions f : X — {0,1} is defined as

(f(®1), f(®2), ..., f(xn)) = f € F}.

F,on) ¥
sFm = amax el

Intuitively, the shatter coefficient s(F,n) is the largest number of binary
patterns that the functions in F can induce on n points.

Definition 2 (VC-dimension). The Vapnik—Chervonenkis (VC) dimension of
a class F of binary functions is the largest number n such that s(F,n) = 2,
namely,
dimyc(F) = max {n : s(F,n) =2"}.
Naturally, dimyc(F) = oo if s(F,n) = 2™ for all n.
If F can induce all binary patterns on n points, F is said to “shatter” n

points. Therefore, the VC—dimension of F is the largest number of points that
F can shatter.

Lemma 4 (Vapnik and Chervonenkis [35], Sauer [29], Shelah [31]). For a class
F of binary functions with VC—dimension d = dimyc(F) we have

d
n
<
s(F,n) < Z (z) .
=0
In particular,

en

s(F,n) < (U)d . (16)

The following theorem is originally due to Vapnik and Chervonenkis [35]. We
restate the theorem as presented in [13].
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Theorem 3 (Vapnik and Chervonenkis [35]). Let F be a class of binary func-

tions and x1, X3, ..., %, be i.i.d. copies of an arbitrary random variable . Then
for every t > 0 we have
1 2
P (sup — Zf(:l:l) —Ef(x)| > t) < 8s(F,n)e /8,
fer |3

Appendix B: Main proofs
B.1. Theorem 1

The main ingredient in the proof below is the VC-theorem (i.e., Theorem 3) that
helps bounding the deviation of an “empirical probability” from its expectation
uniformly.

Proof of Theorem 1. Let h = & —,. It suffices to show that for any h € C;NRs
with ||k, > (tn) " there exists at least one 1 < i < M such that (a;a’x,, h) >
%77_1. Specifically, we would like to show that with high probability

- 1
ZH‘ ((aiafac*,m > 577_1) >0.
i=1

Denote the empirical probability of (aa*z., h) > $n~! by

1 1
) = 7 Y (lasaia b > o).

i=1
which is an approximation of the true probability of the event denoted by

p(h) = E¥ <<aa*:c*,h> > %n1> =P <<aa*:c*,h> > %n1> )

Considering the set of binary functions
1 _
F = {z — ((z,h} > 5771) : heCsNRs and |k, > (tn) 1} ,

whose shatter coefficient is denoted by s(F, M), a direct application of Theorem
3 in Appendix A shows that

8s(F,M)
g

~ 8log

sup  [par(h) —p(h)| < ||
hGCgﬂR(s

IRl > ()~

with probability > 1 — €. Since F is a subset of H the set of indicators of all
half-spaces (with a common offset), it has a smaller VC-dimension than #.
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Moreover, it is well-known—as a direct implication of Radon’s theorem [see
e.g., 24]—that the VC-dimension of half-spaces indicators is no more than the
ambient dimension. In particular, we have dimyc(F) < dimyc(H) < 2N as our
domain is effectively a 2/N-dimensional real vector space. Therefore, invoking
Lemma 4 below we obtain

N 16N log +8 log 2
sup  [pm(h) —p(h)| < \/ M :
hGCéﬂRg

l[Rlly>(tn)

Now, because p(h) > pmin(d,t) for all h € C5 N Rs with ||kl > (tn)_l, the
above inequality implies that

. R 16N log S —|—8 log g
inf bPm (h) > Pmin (57 t) \/ M '

hEC:;ﬂ'R(s
7l > (tm) ~*
If M = m (c~2N+210g S), then we have
eM log 8e log & log
1 I3 1 1 g g
8oN Ton T8 fm(ét)Jrog(” N N
c logB log &
<log 5—— + = E — 1+ log2 £
Se c logd
1 _ _2 &
< log fmn(ét)—i_Q—’—N’

where we used the inequality logu —log2 = log 5§ < 5 — 1 in the second line.
Setting ¢ = 2log TG0 it follows that

Phin

(5t)7

16 N log +8 log = 16N eM log?
log — + £
M M 2N 2N

16 N 8e log &
< Vi (210g 2 (5 t) + NE) :p?nin(&t)

and thus we can guarantee that

inf pa(h) > min67t_min67t =0
. Par(h) > pmin(6, 1) — Pmin (6, 1)

Illy> ()~

5.t
This immediately implies that for M 2 N +log 1 we have

1
f KF(la;aliz,, h) > —n~ 1) = Mpy(h) >0,
et Z i h) > on~t) = Mp(h)

Rlly> ()~

as desired. O
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B.2. Theorem 2

Proof of Theorem 2. Let h =  — x,. By feasibility of  we have ||z, + hl|; <
|||, which implies

[P

Lt (@ax, ) b, ) <0. (17)

Therefore, similar to the case of ordinary phase retrieval it suffices to show
that for any h € C; N R4 that obeys (17) and ||h|l, > (tn)~! we should have
(a;a;x,, h) > %77_1 for at least one 1 < ¢ < M. The goal is again to show that

1 Y 1
~ _ ok |
pu(h) = i ig_l% ((alal Ty, h) > 277 )

1 & 1
— L ¥ 1
= ;Zli% <<¢wzwiw x,, h) > 57 ) )
is strictly positive for every h € C;NR; that obeys (17) and ||k||, > (tn)~'. Let

~ 1
p(h) =Epy(h) =P ((lew*q/*w*,m > 57)_1) )
The binary summands in pys(h) can be equivalently expressed as a function
of h' = Ww*h € CMo, Therefore, we can treat these binary functions as linear
classifiers in CMo and apply Theorem 3, in the same fashion that was applied
for ordinary phase retrieval, to show that

R 16 Mo log £L + 8log &

sup [pre(h) — p(h)| < \/ QAA? :
heCsNRs

lIRll,>(tm) !

Hth ||1+<<w*x*>ﬂ.,h(y*>§0

holds with probability > 1 — . As in the proof of Theorem 1, starightforward
calculations show that it suffices to have

1
M> -
~ pRia(0,t)

min

1
(Mo + log g)

to guarantee with probability > 1 — e that pys(h) > 0. |

B.3. Lemma 3

The proof below primarily uses the equivalent formulations of RIP given by (6)
and (18).

Proof of Lemma 3. By definition of ag, for any 5 € C we have
[#wo — aoll; < [[Fwo — Ba.|; ,
which is equivalent to

(ap — Bxx, a0 + Py — 2Pwo) < 0.
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Adding and subtracting Sz, to the second argument of the inner product and
rearranging the terms yields

lao = B3 < 2{ao — fz., Two — fa,).
Let e = wg — f¥*x,. Then, using the fact that (6) implies
| Prx®®" P — I|| <k, (18)

for every Py that is a projection onto K canonical coordinates, and the fact
that ag — Sx, has at most 2K, nonzero entries we can write

lao — Bz, |3 < 2(ag — fz., fPP x, + Te — fx,)
= 2(ag — By, (PP —I)x,) + 2(ag — Sz, Pe)
< 2v2k, [l@ao — B[y + 2 (¥ (a0 — Bz, [lell;
< 2k, |lao = Baully +2¢/1 4+ 12k, [[@ao — Bzl [lel, -
Assuming that ag is not perfectly aligned with «,, and by choosing § =

(xfPwo)p/ ||W*x, ||, which minimizes ||e]|,, we deduce that

|lwiw .|

llao — B, < 272k, +2¢/1 4 Yok, (/2 — 2W
*l2

< 279k, +2¢/1 + 72K, V2 — 20 .

Squaring both sides of the above inequality and expanding the squared norm
then yields

1

2
2[| .|,
By AM-GM inequality and (6) we obtain

lajz, |
||‘I'*37*H2

1 2
> (ag, Bz,) > 3 ||00H§+ -2 (72K*+\/1 +72r, V2 —25’> .

2
.| = laoll, - 2v/T+ 2k, (v2. +v/T+ 20, V2= 20)

1+ 7k,

2
(721(* + 1472k, V2 — 25') ;
1 — kK,

2 llaolly = llaoll; - 2
which completes the proof. O

Appendix C: Technical lemmas

Lemma 5. If a ~ Normal(0, 1I) + :Normal(0, 1I) and x, is a unit vector,
then for every h € C5 N Rs with |k|y, > (tn)~" we have

1 1 1—62 2
P ., 2ol s [ 22 —2v26 t
((aaaz,h)>277 )_(2 5 >e

Proof. We can decompose h as h = (zih)x, + h,, where xfh, = 0. There-
fore, we have (aa*z,,h) = (x,, h)|a*z,|* + Re (a*z,a*h,). Using the facts
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that #;h, = 0 and a ~ Normal(0, 1) + :Normal(0, $I) it is straightforward
to show that (z,,h)|a*z,)* + Re (a*z,a*hy) has the same distribution as

3 (., h) gzl + sk Lll,97g2 where gi,g2 € R? are independent standard

Normal random variables:
* 1 _ —
P ((aa'enh) > 37t ) =P (@) lgal3 + o glon > 7).

Since g5 has a standard normal distribution, its norm and (normalized) direction
are independent. Thus, we can treat —g{ﬁ = g as a standard Normal scalar
2

which is independent of ||g2||, = v ~ Rayleigh(1). Therefore, we have

. 1 _ go _
P ((aatenh) > i) = (@) gl + I, loal ol 22 > )
2

=P ((@.,h)v —n v > ||ho],9).
Since h € R;s and ||h|, > (tn)~" we have
(tn) "% < ||kl = [hll; + (Im (zh))? + (2., h)?
< (14672 |ho|? + (@, h)>. (19)

We consider two cases depending on [|h ||, = 0 or not. If |h |, = 0, then
|(@,, k)| > (tn)”". The fact that h € Cs as well, implies that (x,,h) is non-
negative and thereby (a,, h) > (tn)”'. Consequently, we have

1
P ((aa*w*7h> > 5771) =P (<93*,h>’0 —n Tt > Rl 9)

>P(tlv—v'>0) =P > Vi)=e"3.

(zs,h)
lhLlly

If ||k, ]| > 0, then we can invoke Lemma 6 below with o = to show that

1 — <$*’h> 77_1 —1
P((aa*ax*,h>>—n 1) ZIP’( v — v >g
2 Rl IRl

1 -1
S
2 2va2+1 |hill, Va2 +14+a

Then by rewriting (19) as () 7 < 14§72 + a2 we have

lhollz =
1 1 ! V1+672+a?
P( (aa*z,, h >—_1>Z<—+7>ex —_— .
<< wh) 2"l 2 2va2+1 P Vo2 +1+a
The fact that h € C§, guarantees that @ > —+/0=2 — 1. Since \/u‘j—ﬂ and

VIti—2taZ ; S :
JaTTTre A€ both increasing in «, we obtain

1, 1 VI-é 20~2
* - > DX 7 —
]P’((aa w*,h)>277 )(2 5 )exp< N *52_115)7
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(1 V1I-42 V2
B R Al i

> (% ~ 17_62> exp (~2v267%) .

The above lower bound is the smaller one of the two considered cases and thus
the proof is complete. O

Lemma 6. Let v ~ Rayleigh(1) and g ~ Normal(0,1) be independent random
variables. Then we have

[ ) 2
Plav+Bv™" > 9) =9 Jerrita 5/(atva?si)
We fOT 6 < 0.

for all a, B € R.

Proof. We denote the standard normal cumulative distribution function and
its derivative by ®(-) and ¢(-), respectively. Let F(3) = P(av + fv™t > 7) =
E® (av + Sv~'). By Leibniz’s rule we have

F'(B) =E (¢ (aw + /3’1)_1) v_l)

7%(av+ﬁU71)QU71 — 142

e -ve 2Y do

il

e=B oo

- V2m Jo

e_%((a%l)vz"'ﬁ%%)dv.

Now let G(ﬁ) = \/%IO e_%((a2+1)vz+ﬁ2u*2)dv’ o that F/(B) = e—aﬁG(ﬂ).
Using Leibniz’s rule again, we can write

G/(B) = _\/% Ooo 07267%((a2+1)v2+ﬁ27j_2)d’0

— f@ = —3((a?+1)u+5%u"2)
B V2m /0 c du
= Ve 16(9).

where the second line follows from the change of variable v = \/Oﬁ;ﬂu_l. It is

straightforward to show that G(0) = 5 \/a12—+1 A simple integration then yields

1
G(B) = G(0)e AVrHl — __—___=Avaitl
(8) = G(O) e

for 8 > 0, and since G(8) is even for all 5 we have

1
_ = —IBVer+1
G(B) = Wb -
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It then follows that

F'(B) = 1 —(aB+|81Va?+1)

Integrating again we obtain

a?t+l—a _
Foy =" (0)+5varm (!
Va «a —B(a—va?
P(0) - YEte (1 - e V™) g <o

—ﬁ(a-O—\/W) a/B ZO

e

We can calculate F'(0) as

F(0)=P(av > g)
_ % + %P(a%ﬁ >g?) fora>0
iP(a*v? < ¢?) for a <0

1,1 2 2
B {5 + §P(a§+1 > —vgi!ﬁ) for a >0

T )11 o? g°
575P(az+1>v2+g2) fora <0

_ Vaz+1l+a
a2 +1 '

where the last line follows from the fact that g has a uniform distribu-

tion over [—1, 1]. Replacing F'(0) in the expression of F(8) and straightforward

simplifications yield the desired result. O
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