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Abstract: We study the interpretability of conditional probability esti-
mates for binary classification under the agnostic setting or scenario. Un-
der the agnostic setting, conditional probability estimates do not necessar-
ily reflect the true conditional probabilities. Instead, they have a certain
calibration property: among all data points that the classifier has pre-
dicted P(Y = 1|X) = p, p portion of them actually have label Y = 1.
For cost-sensitive decision problems, this calibration property provides ad-
equate support for us to use Bayes Decision Rule. In this paper, we define a
novel measure for the calibration property together with its empirical coun-
terpart, and prove a uniform convergence result between them. This new
measure enables us to formally justify the calibration property of condi-
tional probability estimations. It also provides new insights on the problem
of estimating and calibrating conditional probabilities, and allows us to
reliably estimate the expected cost of decision rules when applied to an
unlabeled dataset.

Received June 2017.

1. Introduction

Many binary classification algorithms, such as naive Bayes and logistic regres-
sion, naturally produce confidence measures in the form of conditional proba-
bility of labels. These confidence measures are usually interpreted as the condi-
tional probability of the label y = 1 given the feature x. An important research
question is how to justify these conditional probabilities, i.e., how to prove the
trustworthiness of such results.

In classical statistics, this question is usually studied under the realizable
assumption, which assumes that the true underlying probability distribution has
the same parametric form as the model assumption. More explicitly, statisticians
usually construct a parametric conditional distribution P(Y |X, θ), and assume
that the true conditional distribution is also of this form (with unknown θ). The
justification of conditional probabilities can then be achieved by using either
hypothesis testing or confidence interval estimation on θ.

However, in modern data analysis workflows, the realizable assumption is
often violated, e.g., data analysts usually try out several off-the-shelf classifica-
tion algorithms to identify those that work the best. This setting is often called
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agnostic — essentially implying that we do not have any knowledge about the
underlying distribution. Under the agnostic setting, conditional probability esti-
mates can no longer be justified by standard statistical tools, as most hypothesis
testing methods are designed to distinguish two parameter areas in the hypoth-
esis space (e.g., θ < θ0 v.s. θ ≥ θ0), and confidence intervals require realizable
assumption to be interpretable.

In this paper, we study the interpretability of conditional probability es-
timates in the agnostic binary classification setting: what kind of guarantees
can we have without making any assumption on the underlying distribution?
Justifying these conditional probability estimates is important for applications
that explicitly utilize them, including medical diagnostic systems [6] and fraud
detection [8]. In such applications, the misclassification loss function is often
asymmetric (i.e., false positive and false negative incur different loss), and ac-
curate conditional probability estimates are crucial empirically. In particular, in
medical diagnostic systems, a false positive means additional tests are needed,
while a false negative could potentially be fatal.

Summary of notation

We focus on the binary classification problem in this paper. Let us first define
some notation here that will be used throughout the paper:

• X denotes the feature space and Y = {±1} denotes the label space.
• P denotes the underlying probability distribution over X ×Y that governs

the generation of datasets.
• D = {(X1, Y1), . . . , (Xn, Yn)} denotes a set of i.i.d. data points from P .
• A fuzzy classifier is a function from X to [0, 1] where the output denotes

the estimated conditional probability of P(Y = 1|X).

Interpretations of conditional probability estimates

Ideally, we hope that our conditional probability estimates can be interpreted
as the true conditional probabilities. This interpretation is justified if we can
prove that the conditional probability estimates are close to the true values. Let
l1(f,P) be the l1 distance between the true distribution and the estimated dis-
tribution as a measure of the “correctness” of conditional probability estimates:

l1(f,P) = EX∼P |f(X)− P(Y = 1|X)|

Here X is a random variable representing the feature vector of a sample data
point, Y is the label of X and f(X) is a fuzzy classifier that estimates P(Y =
1|X). If we can prove that l1(f,P) ≤ ε for some small ε, then the output of f
can be approximately interpreted as the true conditional probability.

Unfortunately, as we will show in this paper, it is impossible to guarantee any
reasonably small upper bound for l1(f,P) under the agnostic setting. In fact,
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as we will demonstrate in this paper, for many such situations, the estimated
conditional probabilities are usually no longer close to the true values in practice.

Therefore, instead of trying to bound the l1 distance, we develop an alterna-
tive interpretation for these conditional probability estimates. We introduce the
following calibration definition for fuzzy classifiers:

Definition 1. Let X be the feature space, Y = {±1} be the label space and P
be the distribution over X × Y. Let f : X → [0, 1] be a fuzzy classifier, then we
say f is calibrated if for any p1 < p2, we have:

EX∼P [1p1<f(X)≤p2
f(X)] = P(Y = 1, p1 < f(X) ≤ p2)

Intuitively, a fuzzy classifier is calibrated if its output correctly reflects the
relative frequency of labels among instances they believe to be similar. For
instance, suppose the classifier output f(X) = p for n data points, then roughly
there are np data points with label Y = 1. We also define a measure of how
close f is to be calibrated:

Definition 2. A fuzzy classifier f is ε-calibrated if

c(f) = sup
p1<p2

|EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)| ≤ ε

f is ε-empirically calibrated with respect to D if

cemp(f,D) =
1

n
sup

p1<p2

|
n∑

i=1

1p1<f(Xi)≤p2
f(Xi)−

n∑
i=1

1p1<f(Xi)≤p2,Yi=1| ≤ ε

where D = {(Xi, Yi), . . . , (Xn, Yn)} is a size n dataset consisting of i.i.d. exam-
ples from P.

Note that the empirical calibration measure cemp(f,D) can be efficiently
computed on a finite dataset. We further prove that, with bounds on a cer-
tain complexity measure related to the hypothesis class, cemp(f,D) converges
uniformly to c(f) over all functions f in that hypothesis class. Therefore, the
calibration property of these classifiers can be demonstrated by showing that
they are empirically calibrated on the training data.

The calibration definition is motivated by analyzing the properties of com-
monly used conditional probability estimation algorithms: many such algorithms
will generate classifiers that are naturally calibrated. Our calibration definition
justifies the common practice of using calibrated conditional probability esti-
mates as true conditional probabilities: we show that if the fuzzy classifier is
(almost) calibrated and the output of the classifier is the only source of in-
formation, then applying Bayes Decision Rule on the conditional probability
estimates would result in a (near) optimal strategy.

The uniform convergence result of cemp(f,D) and c(f) has several appli-
cations. First, it can be directly used to prove a fuzzy classifier is (almost)
calibrated, which makes the conditional probability estimates interpretable to
users. Second, it suggests that we need to minimize the empirical calibration
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measure to obtain calibrated classifiers, which is a new direction for designing
conditional probability estimation algorithms. Third, taking uncalibrated con-
ditional probability estimates as input, we can calibrate them by minimizing
the calibration measure1. Finally, by using a calibrated fuzzy classifier f , one
can reliably estimate the label frequency in any decision region p1 < f(X) ≤ p2
for an unlabeled dataset, and thereby estimate the expected costs of decision
rules with confidence bounds.

Paper outline

The rest of this paper is organized as following. In Section 2, we argue that the
l1 distance cannot be provably bounded under the agnostic setting (Theorem 1)
and then motivate our calibration definition. In Section 3 we present the uni-
form convergence result (Theorem 2) and discuss the potential applications. In
Section 4, we report experiments that illustrate the behavior of our calibration
measure on several common classification algorithms. In Section 5, we discuss
some potential extensions of the calibration measure to multi-class settings.

Related work

Our definition of calibration is similar to the definition of calibration in predic-
tion theory [9], where the goal is also to make predicted probability values match
the relative frequency of correct predictions. In prediction theory, the problem
is formulated from a game-theoretic point of view: the sequence generator is
assumed to be malevolent, and the goal is to design algorithms to achieve this
calibration guarantee no matter what strategy the sequence generator uses.

There is another calibration measure in literature, which is derived from
the Brier score decomposition [14]. It is defined as the weighted average of the
squared distance between the actual relatively frequency of Y label and the
predicted value for each unique prediction f(X). Compared to our calibration
measure, this calibration measure requires binning (i.e., f(X) can only take
value from a small predefined set), and does not enjoy the properties established
in this paper.

To the best of our knowledge, there is no other work addressing the inter-
pretability of conditional probability estimates in the agnostic setting. Our def-
inition of calibration is also connected to the problem of calibrating conditional
probability estimates, which has been studied in many papers [21, 17].

This paper is an extended version of our earlier conference paper [10], with
the following new contents:

• The claim in Section 2.4 has been revised, which now shows that the
optimality gap of Bayes Decision Rule is proportional to the calibration
measure c(f).

1In fact, one of the most well-known calibration algorithm, the isotonic regression algo-
rithm, can be interpreted this way.
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• A new section (Section 2.5) is added to discuss the intuition behind our
calibration measure.

• An improved bound (Claim 4) between c(f) and cemp(f,D) has been
derived for the important case where we use an independent validation
dataset to directly estimate c(f) through cemp(f,D).

• A new application of our calibration measure is discussed in Section 3.3.4:
we show that it is possible to use (almost) calibrated fuzzy classifiers to
estimate the expected cost of decision rules (with confidence bound) when
applied to an unlabeled dataset. The confidence interval length for such
an estimation depends linearly on the calibration measure of the fuzzy
classifier.

• A new experiment is added in Section 4: we demonstrate the applica-
tion of estimating Receiver Operating Characteristics (ROC) curve using
calibrated conditional probability estimates. We show that the expected
deviation between the estimated ROC curve and the true ROC curve can
be roughly estimated via the calibration measure.

• Finally, a new discussion section (Section 5) is added to discuss the po-
tential extensions of the calibration measure to multi-class settings.

2. The calibration definition: Motivation & impossibility result

2.1. Impossibility result for l1 distance

Recall that the l1 distance between f and P is defined as:

l1(f,P) = EX∼P |f(X)− P(Y = 1|X)|

Suppose f is our conditional probability estimator that we learned from the
training dataset. We attempt to prove that the l1 distance between f and P is
small. In the agnostic setting, we do not know anything about P , and the only
tool we can utilize is a validation dataset Dval that consists of i.i.d. samples
from P . Therefore, our best hope would be a prover Af (D) that:

• Returns 1 with high probability if l1(f,P) is small.
• Returns 0 with high probability if l1(f,P) is large.

The following theorem states that no such prover exists, and the proof can
be found in the appendix.

Theorem 1. Let Q be a probability distribution over a discrete feature space
X , and f : X → [0, 1] be a fuzzy classifier. Define Bf as:

Bf = EX∼Q min(f(X), 1− f(X))

If there exists ε > 0 such that ∀x ∈ X ,Q(x) < ε
n2 , then there is no prover

Af : {X × Y}n → {0, 1} for f satisfying the following two conditions:
For any probability distribution P over X × Y such that PX = Q (i.e., ∀x ∈

X ,
∑

y∈Y P(x, y) = Q(x)), suppose Dval ∈ {X × Y}n is a validation dataset
consisting of n i.i.d. samples from P:



On the interpretability of CPE in the agnostic setting 5203

1. If l1(f,P) = 0, then PDval
(Af (Dval) = 1) > 1+ε

2 .
2. If l1(f,P) ≥ Bf , then PDval

(Af (Dval) = 1) < 1−ε
2 .

The assumption we made in Theorem 1 (i.e., ∀x ∈ X ,Q(x) < ε
n2 ) is to

exclude the scenario where a significant amount of probability mass concentrates
on a few data points so that their corresponding conditional probability can be
estimated via repeated sampling. Note that the statement is not true in the
extreme case where all probability mass concentrates on one single data point
(i.e., ∃x ∈ X,Q(x) = 1). The assumption is true when the feature space X is
large enough that it is almost impossible for any data point to have significant
enough probability mass to be sampled more than once in the training dataset.

Note that Theorem 1 implies that it would be impossible to guarantee a small
upper bound of l1(f,P) with high probability under the agnostic setting, if the
dataset contains no (or very few) duplicate data points. Thus, we cannot inter-
pret the conditional probability estimates as the true conditional probabilities
under such setting. This result motivates us to develop a new interpretation of
the conditional probability estimates, together with a new measure of “correct-
ness” to justify the conditional probability estimates.

2.2. l1(f,P) in practice

The fact that we cannot guarantee an upper bound of the l1 distance is not
merely a theoretical artifact. In fact, when we are under the agnostic setting,
the value of l1(f,P) is often very large in practice. Here we use the following
document categorization example to demonstrate this point.

Example 1. Denote Z to be the collection of all English words. In this problem
the feature space X = Z∗ is the collection of all possible word sequences, and Y
denotes whether this document belongs to a certain topic (say, football). Let P
be the following data generation process: X is generate from the Latent Dirichlet
Allocation model [5], and Y is chosen randomly according to the topic mixture.

We use logistic regression, which is parameterized by a weight function w :
Z → R, and two additional parameters a and b. For each document X =
z1z2 . . . zk, the output of the classifier is:

f(X) =
1

1 + exp(−a
∑k

i=1 w(zi)− b)

The reason we are using automatically generated documents instead of true
documents here is that the conditional probabilities P (Y |X) are directly com-
putable (otherwise we cannot evaluate l1(f,P)). We conducted an experimental
simulation for this example, and the experimental details can be found in the
appendix. Here we summarize the major findings: the logistic regression classi-
fier has very large l1 error, which is probably due to the discrepancy between
the logistic regression model and the underlying model. However, the logistic
regression classifier is almost naturally calibrated in this example. This is not a
coincidence, and we will discuss the corresponding intuition in Section 2.3.
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2.3. The motivation of the calibration property

Let us revisit Example 1. This time, we fix the word weight function w. In this
case, every document X can be represented using a single parameter w(X) =∑

i w(zi), and we search for the optimal a and b such that the log-likelihood is
maximized. This is illustrated in Figure 1.

Fig 1. Example 1 with Fixed Word Weight

Now, intuitively, to maximize the log-likelihood, we need the sigmoid function
(1+exp(−aw(X)− b))−1 to match the conditional probability of Y conditioned
on w(X): P(Y = 1|w(X)). Therefore, for the optimal a and b, we could say that
the following property is roughly correct:

P(Y = 1|w(X)) ≈ 1

1 + exp(−aw(X)− b)

In other words,

∀0 ≤ p ≤ 1,E[P(Y = 1|X)|f(X) = p] ≈ p

Let us examine this example more closely. The reason why the logistic regres-
sion classifier tells us that f(X) ≈ p is because of the following: among all the
documents with similar weight w(X), about p portion of them actually belong
to the topic in the training dataset. This leads to an important observation: lo-
gistic regression classifiers estimate the conditional probabilities by computing
the relative frequency of labels among documents it believes to be similar.

This behavior is not unique to logistic regression. Many other algorithms,
including decision tree classifiers, nearest neighbor (NN) classifiers, and neural
networks, exhibit similar behavior:

• In decision trees, all data points reaching the same decision leaf are con-
sidered similar.

• In NN classifiers, all data points with the same nearest neighbors are
considered similar.
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• In neural networks, all data points reaching the same output layer values
are considered similar.

We can abstract the above conditional probability estimators as the following
two-step process:

1. Partition the feature space X into several regions.
2. Estimate the relative frequency of labels among all data points inside each

region.

The definition of the calibration property follows easily from the above two-
step process. We can argue that the classifier is approximately calibrated, if for
each region S in the feature space X , the output conditional probability of data
points in S is close to the actual relative frequency of labels in S. The definition
for the calibration property then follows from the fact that all data points inside
each region have the same output conditional probabilities:

∀p1 < p2, P(Y = 1|p1 < f(X) ≤ p2) = EX∼P [f(X)|p1 < f(X) ≤ p2]

2.4. Using calibrated conditional probabilities in decision making

The calibration property justifies the common practice of using estimated con-
ditional probabilities in decision making. Consider the following scenario: we
have a set of actions A = {A1, A2, . . . , Ak}, and each action Ai = (ai, bi) would
incur ai/bi cost for each positive/negative instance respectively. In this case, the
optimal strategy is to choose the action that minimizes the expected cost:

A∗ = argmin
Ai

[P(Y = 1|X)ai + P(Y = 0|X)bi]

Now, consider the more practical setting where we no longer know the actual
value of P(Y = 1|X), but instead only have access to a calibrated fuzzy classifier
f that estimates the conditional probabilities. If we can only use f(X) to make
decision, then the best strategy is to use f(X) in the same way as P(Y = 1|X):

Claim 1. Suppose we are given an ε-calibrated fuzzy classifier f : X → [0, 1]
(i.e., c(f) ≤ ε), and we need to make decisions solely based on the output of f .
Denote our decision D as a collection of mutually disjoint intervals:

D = {(l1, r1], (l2, r2], . . . , (lk, rk]}

indicating that our decision for X is Ai iff f(X) ∈ (li, ri]. Then we have,

|EXLP,D(X)− EXLf,D(X)| ≤ ε

k∑
i=1

|ai − bi|

where ai, bi are the cost of each positive/negative instance for action Ai (as
defined in the beginning of Section 2.4), and LP,D(X) and Lf,D(X) are the
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true/estimated expected cost of D for data point X respectively:

LP,D(X) =

k∑
i=1

1li<f(X)≤ri [aiP(Y = 1|X) + biP(Y = 0|X)]

Lf,D(X) =

k∑
i=1

1li<f(X)≤ri [aif(X) + bi(1− f(X))]

Proof. By rearranging terms, we have:

EXLP,D(X)− EXLf,D(X)

=

k∑
i=1

(ai − bi)EX1li<f(X)≤ri [P(Y = 1|X)− f(X)]

=

k∑
i=1

(ai − bi)[P(Y = 1, li < f(X) ≤ ri)− EX1li<f(X)≤rif(X)]

Since f is ε-calibrated, we have:

∀p1 < p2, |P(Y = 1, p1 < f(X) ≤ p2)− EX1p1<f(X)≤p2
f(X)| ≤ ε

Substituting into the previous equation, we get the desired result.

Intuitively, the term LP,D(X) is the expected cost of X if we take actions
according to D, and the term Lf,D(X) is basically the same as LP,D(X) except
P(Y = 1|X) is replaced by f(X). Claim 1 states that if f is almost calibrated,
then the true expected cost will be very close to the cost estimated through f .
Therefore, by applying Bayes Decision Rule on f(X), we are also minimizing
the true expected cost.

2.5. Intuition of the calibration measure

Recall that the calibration measure c(f) is defined as:

c(f) = sup
p1<p2

|EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)|

This expression has a very intuitive interpretation: the second term P(p1 <
f(X) ≤ p2, Y = 1) is the fraction of data points satisfying both p1 < f(X) ≤ p2
and Y = 1, while the first term EX∼P [1p1<f(Xi)≤p2

f(Xi)] means the estimated2

fraction of data points satisfying both p1 < f(X) ≤ p2 and Y = 1. Finally, the
calibration measure c(f) is simply defined to be the supreme absolute difference
between these two terms over all possible regions (p1, p2].

Therefore, if c(f) < ε, then the difference between terms
EX∼P [1p1<f(X)≤p2

f(X)] and P(p1 < f(X) ≤ p2, Y = 1) would be at most

2This estimation is made by assuming ∀X,P(Y = 1|X) = f(X)
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ε for any p1, p2. When ε is small enough, one can estimate the value of P(p1 <
f(X) ≤ p2, Y = 1) through EX∼P [1p1<f(X)≤p2

f(X)]. It is worth noting that
the latter term does not depend on the true label Y , and therefore can be es-
timated even on an unlabeled dataset. This observation has some interesting
implications, which will be discussed in Section 3.3.4.

3. Uniform convergence of the calibration measure

3.1. The uniform convergence result

Let G be a collection of functions from X × Y to [0, 1], the Rademacher Com-
plexity [1]3 of G with respect to D is defined as [18]:

RD(G) = 1

n
Eσ∼{±1}n [sup

g∈G

n∑
i=1

σig(Xi, Yi)]

Then we have the following result (the proof can be found in the appendix):

Theorem 2. Let F be a set of fuzzy classifiers, i.e., functions from X to [0, 1].
Let H be the set of binary classifiers obtained by thresholding the output of fuzzy
classifiers in F :

H = {1p1<f(X)≤p2
: p1, p2 ∈ R, f ∈ F}

Suppose the Rademacher Complexity of H satisfies:

2EDRD(H) +

√
2 ln(8/δ)

n
<

ε

2

Then,
PrD(sup

f∈F
|c(f)− cemp(f,D)| > ε) < δ

3.2. The hypothesis class H

In Theorem 2, H is the collection of binary classifiers obtained by threshold-
ing the output of a fuzzy classifier in F . For many hypothesis classes F , the
Rademacher Complexity of H can be naturally bounded. For instance, if F is
the d-dimensional generalized linear classifiers with monotone link function, then
EDRD(H) can be bounded by O(

√
d logn/n). We remark that H is different

from the hypothesis class Hp1,p2 , where the thresholds are fixed in advance:

Hp1,p2 = {1p1<f(X)≤p2
: f ∈ F}

In general, the gap between the Rademacher Complexities of H and Hp1,p2 can
be arbitrarily large. The following example illustrates this point.

3Our definition of Rademacher Complexity comes from Shalev-Shwartz and Ben-David’s
textbook [18], which is slightly different from the original definition in Bartlett and Mendel-
son’s paper [1].
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Example 2. Let X = {1, . . . , n}, and A1, A2, . . . , A2n be a sequence of sets
containing all subsets of X . Let F be the following hypothesis space:

F = {fi(x) =
i

2n
− 1

2n+1
1x∈Ai : i ∈ {1, 2, . . . , 2n}}

Intuitively, F contains 2n fuzzy classifiers, the ith classifier produces a output
of either i

2n or i
2n − 1

2n+1 depending on whether x ∈ Ai. One can easily verify
that for any p1, p2, the VC-dimension [19] of Hp1,p2 is at most 2, but the VC-
dimension of H is n.

However, if for any x ∈ X , f ∈ F , we have f(x) ∈ P ∗ with |P ∗| < ∞,
then RD(H) can be bounded using the maximum VC-dimension of Hp1,p2 and
log |P ∗| (the proof can be found in the appendix):

Claim 2. Suppose that for any f ∈ F , x ∈ X , we have f(x) ∈ P ∗ where P ∗ is
a finite set, and for all p1, p2 ∈ R, the VC-dimension of hypothesis space Hp1,p2

is at most d. If the size n of the dataset D satisfies n > d+ 1, then we have:

RD(H) ≤
√

2d(ln n
d + 1) + 4 ln(|P ∗|+ 1)

n

Therefore, as long as |P ∗| is O(1), we still have the O(n−0.5) convergence rate
for RD(H), and thus the resulting conditional probability estimates would still
be nearly calibrated for large enough n.

3.3. Applications of Theorem 2

3.3.1. Verifying the calibration of classifier

The first application of Theorem 2 is that we can verify whether the learned
classifier f is calibrated. For simple hypothesis classes F (e.g., logistic regres-
sion), the corresponding hypothesis space H has low Rademacher Complexity.
In this case, Theorem 2 naturally guarantees the generalization of calibration
measure.

There are also cases where the Rademacher Complexity of H is not small.
One notable example is SVM classifiers with Platt Scaling [17]:

Claim 3. Let X ⊆ R
d and ∀x ∈ X , ||x||2 ≤ 1. Let F be the following hypothesis

class:

F = {x → 1

1 + exp(awTx+ b)
: w ∈ R

d, ||w||2 ≤ B, a, b ∈ R}

If the training data size n < d and xi are linearly independent, then RD(H) ≥ 1
2 .

Proof. For any σ ∈ {±1}n, we can find a vector w such that for every xi, we
have wTxi = σi (this is always possible since the number of equations n is
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less than the dimensionality d). Let w∗ = Bw
||w||2 so that ||w∗||2 = B, and let

a = λ||w||2/B and b = 0. Then we have:

f(xi) =
1

1 + exp(a(w∗)Txi + b)
=

1

1 + eλσi

Let λ → −∞, then
∑n

i=1 σif(Xi) →
∑n

i=1 1σi=1, and the conclusion of the
claim follows easily.

In the case of SVM, the dimensionality of the feature space is usually much
larger than the training dataset size (this is especially true for kernel SVM). In
such situation, we can no longer verify the calibration property using only the
training data, and a separate validation dataset is needed to calibrate the clas-
sifier (as suggested by Platt [17]). When verifying the calibration of a classifier
on a validation dataset, we have the following result (the proof can be found in
the appendix):

Claim 4. Let f be any given fuzzy classifier, and D be a validation dataset
consisting of i.i.d. samples from P (i.e., D is not used when training f), then:

Pr(c(f) ≤ cemp(f,D) +

√
ln 2

δ

2n
) ≥ 1− δ

Pr(c(f) ≥ cemp(f,D)− [16
√
2π + 2

√
2 ln

8

δ
]

√
1

n
) ≥ 1− δ

3.3.2. Implications on learning algorithm design

Standard conditional probability estimation algorithms usually maximize the
likelihood of the training data to find the best fuzzy classifier. However, since
we can only guarantee the calibration property of conditional probability es-
timates under the agnostic setting, any calibrated classifier is as good as the
maximum likelihood estimation in terms of interpretability. Therefore, likeli-
hood maximization is not necessarily the only method for estimating conditional
probabilities.

There are other loss functions that are already widely used for binary classi-
fication. For example, hinge loss is at the foundation of large margin classifiers.
Based on our discussion in this paper, we believe that these loss functions can
also be used for conditional probability estimation. For example, Theorem 2
suggests the following constrained optimization problem:

minL(f,D) s.t. cemp(f,D) = 0

where L(f,D) is the loss function we want to minimize. By optimizing over
the space of empirically calibrated classifiers, we can ensure that the resulting
classifier is also calibrated with respect to P .
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3.3.3. Connection to the calibration problem

Suppose that we are given an uncalibrated fuzzy classifier f0 : X → [0, 1], and
we want to find a function g : [0, 1] → [0, 1], so that g ◦ f0 presents a better
conditional probability estimation. This is the problem of classifier calibration,
which has been studied in many papers [21, 17].

Traditionally, calibration algorithms find the best link function g by maximiz-
ing likelihood or minimizing squared loss. In this paper, we suggest a different
approach to the calibration problem. We can find the best g by minimizing
the empirical calibration measure cemp(g ◦ f0). Let us assume w.l.o.g. that the
training dataset D = {(x1, y1), . . . , (xn, yn)} satisfies

f0(x1) ≤ . . . ≤ f0(xn)

and that g is monotonically nondecreasing. Then we have,

cemp(g ◦ f0, D) =
1

n
sup
p1,p2

|
n∑

i=1

1p1<g(f0(xi))≤p2
(1yi=1 − g(f0(xi)))|

≤ 1

n
max
a,b

|
∑

a<i≤b

(1yi=1 − g(f0(xi)))|

This expression can be used as the objective function for calibration: we
search over the space of hypothesis G to find a function g that minimizes this
objective function. Compared to other loss functions, the benefits of minimiz-
ing this objective function is that the resulting classifier is more likely to be
calibrated, and therefore provides more interpretable conditional probability
estimates.

In fact, one of the most well-known calibration algorithms, the isotonic re-
gression algorithm, can be viewed as minimizing this objective function (the
proof can be found in the appendix):

Claim 5. Let G be the set of all continuous nondecreasing functions from [0, 1]
to [0, 1]. Then the optimal solution found by the isotonic regression algorithm
(Algorithm 1) not only minimizes the squared loss

L2(g) =

n∑
i=1

(1yi=1 − g(f0(xi)))
2

as shown in [15], but also minimizes

Lc(g) = max
a,b

|
∑

a<i≤b

(1yi=1 − g(f0(xi)))|

Using this connection we proved several interesting properties of the isotonic
regression algorithm [15] (pseudo-code can be found in Algorithm 1 for refer-
ence):
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Algorithm 1: Isotonic Regression Calibration (PAV Algorithm) [15]

1. Order the data points so that f0(x1) ≤ f0(x2) ≤ . . . ≤ f0(xn)

2. For i = 0, . . . , n, Compute Pi = (i, Si =
∑

j≤i 1yj=1)

3. Let cv(P ) be the lower boundary of the convex hull of the set of points Pi

Remark: Implementing this step using the Graham’s algorithm [11] would result
in the exact same algorithmic procedure as in [15].

4. For i = 0, . . . , n, Let Zi = intersection of cv(P ) and the line x = i

5. Compute zi = Zi − Zi−1

6. Let g(f0(xi)) = zi, extrapolate these points to get continuous

nondecreasing function g.

Claim 6. Let g∗ be the output calibrating function of Algorithm 1, then:

1. The empirical calibration measure cemp(g
∗ ◦ f0, D) of the calibrated clas-

sifier is always 0.
2. For any asymmetric loss (1−p, p) (i.e., each false negative incurs 1−p cost

and each false positive incurs p cost), the empirical loss of the calibrated
classifier is always no greater that of the original classifier (both using the
optimal decision threshold p):

n∑
i=1

[(1− p)1g∗(f0(xi))≤p,yi=1 + p1g∗(f0(xi))>p,yi=0]

≤
n∑

i=1

[(1− p)1f0(xi)≤p,yi=1 + p1f0(xi)>p,yi=0]

In particular, when p = 0.5, the empirical accuracy of the calibrated classi-
fier is always greater than or equal to the empirical accuracy of the original
classifier.

We also used Theorem 2 to prove some non-asymptotic convergence results
for the PAV Algorithm, which can be found in the appendix.

3.3.4. Estimating & optimizing expected loss over unlabeled data

Recall the discussion in Section 2.5, the calibration measure c(f) has the fol-
lowing interpretation: for every pair p1 and p2, the difference between EX∼P
[1p1<f(X)≤p2

f(X)] and P(p1 < f(X) ≤ p2, Y = 1) is at most c(f):

∀p1, p2, |EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)| ≤ c(f)

Similarly, for the empirical calibration measure cemp(f,D), we have the following
interpretation: for any datasetD, the difference between

∑n
i=1 1p1<f(xi)≤p2

f(xi)
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and
∑n

i=1 1p1<f(xi)≤p2,yi=1 is at most cemp(f,D)n:

∀p1, p2, |
n∑

i=1

1p1<f(xi)≤p2
f(xi)−

n∑
i=1

1p1<f(xi)≤p2,yi=1| ≤ cemp(f,D)n (1)

Now consider an unlabeled dataset D, the first quantity∑n
i=1 1p1<f(xi)≤p2

f(xi) can be estimated on D since it does not involve the
label yi. Suppose that cemp(f,D) is sufficiently small, then Equation 1 tells
that

∑n
i=1 1p1<f(xi)≤p2

f(xi) is approximately equal to
∑n

i=1 1p1<f(xi)≤p2,yi=1

for every p1 < p2.
The latter term

∑n
i=1 1p1<f(xi)≤p2,yi=1 is of practical interest since it is

directly related to the costs of decision rules. As in Section 2.4, if we de-
note the action sets as A = {(a1, b1), . . . , (ak, bk)}, and the decision as D =
{(l1, r1], (l2, r2], . . . , (lk, rk]}, then the total cost for the dataset on decision D
is:

L(D) =

n∑
i=1

k∑
j=1

1lj<f(xi)≤rj [1yi=1aj + (1− 1yi=1)bj ]

=

n∑
i=1

k∑
j=1

1lj<f(xi)≤rj bj +

k∑
j=1

(aj − bj)

n∑
i=1

1lj<f(xi)≤rj ,yi=1

Substituting in the approximation in Equation (1), we have

|L(D)−
n∑

i=1

k∑
j=1

1lj<f(xi)≤rj bj −
k∑

j=1

(aj − bj)

n∑
i=1

1lj<f(xi)≤rjf(xi)|

≤ cemp(f,D)n

k∑
j=1

|aj − bj | (2)

Intuitively, the above result implies that the total cost of every decision D can
be estimated by the following quantity,

L(D) ≈
n∑

i=1

k∑
j=1

1lj<f(xi)≤rj bj +

k∑
j=1

(aj − bj)

n∑
i=1

1lj<f(xi)≤rjf(xi)

and the error for such an estimation is at most cemp(f,D)n
∑k

j=1 |aj − bj |. This
result allows us to explicitly search for the decision that optimizes the right
hand side of the above equation, which can be useful when Bayes Decision Rule
is not directly applicable (e.g., when each action has a certain start-up cost).

Equation 2 also gives us a confidence interval on the total cost, and its length
depends linearly on the empirical calibration measure cemp(f,D). As we have
discussed in Section 3.3.1 and 3.3.3, the calibration measure scales as O(n−1/2)
after the calibration procedure. Therefore, one can obtain tighter confidence
bound by using larger validation dataset if desired.
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4. Empirical behavior of the calibration measure

In this section, we conduct some preliminary experiments to demonstrate the
behavior of the calibration measure on some common algorithms. We use two
binary classification datasets from the UCI Repository4: ADULT5 and COV-
TYPE6. COVTYPE has been converted to a binary classification problem by
treating the largest class as positive and the rest as negative. Five algorithms
have been used in these experiments: naive Bayes(NB), boosted decision trees,
SVM7, logistic regression(LR), random forest(RF).

Fig 2. The empirical calibration error

Figure 2 shows the empirical calibration error cemp on test datasets for all
methods. From the experimental results, it appears that Logistic Regression
and Random Forest naturally produce calibrated classifiers, which is intuitive
as we discussed in the paper. The calibration measure of Naive Bayes seems to
depend on the dataset. For large margin methods (SVM and boosted trees), the
calibration measures are high, meaning that they are not calibrated on these
two datasets.

There is also an interesting connection between the calibration error and the
benefit of applying a calibration algorithm, which is illustrated in Figure 3. In
this experiment, we used a loss parameter p to control the asymmetric loss:
each false negative incurs 1−p cost and each false positive incurs p cost. All the
algorithms are first trained on the training dataset, then calibrated on a separate
calibration dataset of size 2000 using isotonic regression. For each algorithm, we
compute the prior-calibration and post-calibration average losses on the testing
dataset using the following decision rule: For each data point X, we predict
Y = 1 if and only if we predict that Pr(Y = 1|X) ≥ p. Finally, we report the
ratio between two losses:

loss ratio =
the average loss after calibration

the average loss before calibration

4These datasets are chosen from the datasets used in Niculescu-Mizil and Caruana’s
work [15]. We only used two datasets because the experiments are only explorative (i.e.,
identifying potential properties of the calibration measure). More rigorous experiments are
needed to formally verify these properties.

5https://archive.ics.uci.edu/ml/datasets/Adult.
6https://archive.ics.uci.edu/ml/datasets/Covertype.
7For SVM and boosting, we rescale the output score to [0, 1] by (x−min)/(max−min) as

in Niculescu-Mizil and Caruana’s paper [15]

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Covertype
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As we can see in the Figure 3, the calibration procedure on average reduces

Fig 3. The loss ratio on two datasets

the cost by 3%-5% for naive Bayes and random forest, 20% for SVM, 12% for
boosted trees, and close to 0% for logistic regression. Comparing with the results
in Figure 2, the two algorithms that benefit most from calibration (i.e., SVM
and boosted trees) also has high empirical calibration error. This result suggests
that if an algorithm already has a low calibration error to begin with, then it
is not likely to benefit much from the calibration process. This finding could
potentially help us decide whether we need to calibrate the current classifier
using isotonic regression [15].

It is also possible to use calibrated conditional probability estimates to com-
pute the Receiver Operating Characteristic (ROC) curve of classifiers. More
specifically, we estimate both the true positive rates and false positive rates via
conditional probability estimates:

TPR =

∑
i f(xi)1f(xi)<p∑

i f(xi)
FPR =

∑
i(1− f(xi))1f(xi)<p

n−
∑

i f(xi)

Figure 4 shows the estimated ROC curve for all 10 pairs of dataset-algorithm
combination. In this experiment, all algorithms are first trained on the training
dataset, then calibrated on the 2000-size calibration dataset. The calibrated
classifiers are then used to estimate the ROC curve on the test dataset using
the formulas above. Figure 4 also shows the true ROC curve of the test dataset
(red curve) and the ROC curve of the calibration dataset (yellow curve) for
comparison. As we can see, the estimated ROC curve matches reasonably well
with the actual ROC curve, and roughly resembles the calibration ROC curve.

Additionally, we evaluated the calibration measure c(f) of the calibrated
classifiers using a separate validation dataset, and used this value to plot the
expected deviation region of the ROC curve, via the following formulas:

TPRu =

∑
i f(xi)1f(xi)<p + cemp(f,Dval)∑

i f(xi)

TPRl =

∑
i f(xi)1f(xi)<p − cemp(f,Dval)∑

i f(xi)
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Fig 4. The estimated and actual ROC on two datasets

where cemp(f,Dval) is empirical calibration measure of f on the validation
dataset Dval.

As we can see from Figure 4, the expected deviation region matches pretty
accurately with empirical data. This result suggests that we can use the cali-
bration measure c(f) to evaluate the reliability of ROC curves, and the plotted
deviation region can be useful for decision makers.

5. Discussion: Potential extensions to multi-class setting

In this section, we discuss the potential extensions of the calibration measures
to multi-class setting. The simplest such extension is to take supreme over all
the binary calibration measures for each possible label:

c(f) = sup
y∗∈Y

sup
p1<p2

|EX∼P [1p1<f(X,y∗)≤p2
f(X, y∗)]

− P(p1 < f(X, y∗) ≤ p2, Y = y∗)|
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where f(X, y∗) denotes the estimated conditional probability of P(Y = y∗|X).
Intuitively, c(f) is small if the classifier is calibrated with respect to every pos-
sible label y∗ ∈ Y .

However, this calibration property is not very useful in practice: even if the
calibration error is 0 according to the above definition, we can still only guar-
antees the conditional probability estimates to be calibrated with respect to all
the simple regions of the following form:

{X : p1 < f(X, y∗) ≤ p2, y
∗ ∈ Y , p1, p2 ∈ R}

which is usually not good enough in practice. To see this, consider the general-
ization of Claim 1 to multi-class setting: assume for simplicity that there are 3
possible class labels: Y = {1, 2, 3}8. Denote A = {A1, . . . , Ak} to be the collec-
tion of actions available to us, with each action Ai = (ai, bi, ci) incurring cost
ai/bi/ci for each data point with label 1/2/3 respectively. Under this notation,
the Bayes-optimal decision region for each action is the following:

Di = {X : ∀j �= i, aif(X, 1) + bif(X, 2) + cif(X, 3)

≤ ajf(X, 1) + bjf(X, 1) + cjf(X, 1)}

Note that unlike the binary setting where all decision regions are intervals, the
shape of decision regions here depend on the action set cardinality k. In order to
generalize Claim 1 to multi-class setting, we need to make sure that conditional
probability estimates are calibrated with respect to all possible decision regions
(i.e., all possible intersections of k − 1 half-spaces). Denote Sk to be collection
of all possible sets obtained by intersecting k half-planes, then we have the
following definition for the multi-class calibration measure:

ck(f) = sup
y∗∈Y

sup
S∈Sk−1

|EX∼P [1X∈Sf(X, y∗)]− P(X ∈ S, Y = y∗)|

and we can denote the limit of ck(f) with k → ∞ as c(f):

c(f) = lim
k→∞

ck(f) = sup
y∗∈Y

sup
S∈C

|EX∼P [1X∈Sf(X, y∗)]− P(X ∈ S, Y = y∗)|

where C is the collection of all convex sets.
The above definition appears to be a more “natural” extension of the cal-

ibration measures to multi-class setting. However, there are still many other
questions that remain unanswered, for instance:

• How to compute cemp,k(f) when k is large, or cemp(f) as k → ∞?
• Is it still possible to calibrate the classifiers in multi-class setting?
• Is |c(f)− cemp(f)| still converging to 0 as n → ∞?

We haven’t been able to find definitive answers to these questions. Hope-
fully, future works along this line would bring us answers and improve our un-
derstanding regarding the interpretability of multi-class conditional probability
estimates.

8This is only to simplify notations, the argument generalizes to more possible label sce-
narios



On the interpretability of CPE in the agnostic setting 5217

6. Conclusion

In this paper, we discussed the interpretability of conditional probability esti-
mates under the agnostic assumption. We proved that it is impossible to upper
bound the l1 error of conditional probability estimates under such scenario.
Instead, we defined a novel measure of calibration to provide interpretability
for conditional probability estimates. The uniform convergence result between
the measure and its empirical counterpart allows us to empirically verify the
calibration property without making any assumption on the underlying distri-
bution: the classifier is (almost) calibrated if and only if the empirical calibration
measure is low. Our result provides new insights on conditional probability es-
timation: ensuring empirical calibration is already sufficient for providing inter-
pretable conditional probability estimates, and thus many other loss functions
(e.g., hinge loss) can also be utilized for estimating conditional probabilities. Fi-
nally, our calibration measure allows us to estimate and optimize the total cost
for decision making: if the fuzzy classifier is (almost) calibrated, then the total
cost of decision rules can be reliably estimated using the conditional probability
estimates, which is available even for unlabeled datasets.

Appendix

Experimental simulation of Example 1

Here we experimentally simulate Example 1 to illustrate that the logistic regres-
sion classifier has large l1 error. We use Latent Dirichlet Allocation (LDA) [5],
the state of the art generative model for documents, to generate datasets. The
detailed experiment settings are listed below:

• The dataset consists of 20000 documents, the number of topics is 20, the
dictionary size is 1000, and the average number of words in each document
is 200.

• We use the non-informative Dirichlet prior α = (1, 1, . . . , 1) over topics.
The word distribution in each topic follows power law with a random order
among words.

• For each document, we randomly sample with replacement 10 topic labels
from the topic distribution.

Average l1 Error Empirical Calibration
0.1270± 0.0008 0.0083± 0.0003
Trivial l1 Error Frequency of Labels
0.2022± 0.0001 0.3448± 0.0001

Table 1

L1 error and empirical calibration

Table 1 reports the mean experiment results and the standard deviation
across five runs. For reference we also include the relative frequency of labels,
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and the l1 error achieved by the trivial classifier that always output the global
relative frequency of labels as conditional probability.

As we can see from Table 1, the logistic regression only achieves 0.13 average
l1 error, while even the trivial classifier can achieve 0.2. This implies that logistic
regression performed very badly with respect to the l1 error in this example.
However, the empirical calibration measure of logistic regression classifier is
relatively low (0.01), indicating that the classifier is almost calibrated.

Proof of Theorem 1

Proof. The proof relies on the following lemma:

Lemma 1. Let P be a distribution over X × Y where X is discrete. Let D be
a size n i.i.d. sample set from P. Let V be a verifier of P given D (i.e., V is a
function from {X × Y}n to {0, 1}), such that

1. With probability at least 1− δ1, a dataset D with n i.i.d. samples from P
will pass V :

PrD(V (D) = 1) ≥ 1− δ1

2. With probability at least 1− δ2, a dataset D with n i.i.d. samples from P
satisfies:

Pr(∀i �= j,Xi �= Xj) ≥ 1− δ2

Then there exists another probability distribution P ′ such that:

1. With probability at least 1− δ1 − δ2, a data D′ with n i.i.d. samples from
P ′ will also pass V .

PrD′(V (D′) = 1) ≥ 1− δ1 − δ2

2.
∀X ∈ X ,

∑
Y ∈Y

P(X,Y ) =
∑
Y ∈Y

P ′(X,Y )

3.
∀X ∈ X ,P ′(Y = 1|X) = 0 or 1

Proof. First we construct the following distribution over all possible P ′ satisfy-
ing the last two conditions:

Pr(P ′) =
∏
X∈X

Q(P ′(Y = 1|X), P (Y = 1|X))

where Q(p′, p) is defined as:

Q(p′, p) =

{
p p′ = 1
1− p p′ = 0

Now it suffices to show that if we sample P ′ according to the above distri-
bution and then sample D′ from P ′, then with probability at least 1− δ1 − δ2,
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D′ will pass V . Assuming this is true, then at least one distribution P ′ has to
satisfy the first condition, and thereby we have proved the existence of P ′.

To compute the probability thatD′ would pass V , denoteDX = {X1, X2, . . . ,
Xn} and DY = {Y1, Y2, . . . , Yn}. Note that all P ′ have the same marginal dis-
tribution over X , therefore:

PrP′,D′(V (D′) = 1) =
∑
P′

Pr(P ′)
∑
D′

Pr(D′|P ′)V (D′)

=
∑
D′

X

Pr(D′
X)

∑
P′

Pr(P ′)
∑
D′

Y

Pr(D′
Y |P ′, D′

X)V (D′)

We only consider all those D′
X with distinct Xi values. Based on the as-

sumption, such D′
X accounts for at least 1 − δ2 of the probability mass. Now

the important observation is that for every fixed D′
X with distinct X values,

the marginal distribution of D′
Y given D′

X (i.e. marginalize over P ′) is exactly
P(D′

Y |D′
X), the distribution that we sample labels independently from P(Y |X)

for each X ′
i in D′

X :∑
D′

X

Pr(D′
X)

∑
P′

Pr(P ′)
∑
D′

Y

Pr(D′
Y |P ′, D′

X)V (D′)

≥
∑
D′

X

Pr(D′
X)1∀i 
=j,X′

i 
=X′
j

∑
D′

Y

Pr(D′
Y |P , D′

X)V (D′)

The latter probability is actually the probability that D′ will pass V and have
distinct X values at the same time. Based on the assumptions in the lemma, it
occurs with probability at least 1− δ1 − δ2.

Now given this lemma, the proof of Theorem 1 is easy: We show that if any
prover Af satisfies the two conditions in the theorem, it can be used as the
verifier V in the lemma such that no P ′ can satisfy all three conditions.

Let δ1 = 1−ε
2 , then the first assumption in the lemma is satisfied, also since

∀x ∈ X ,Q(x) < ε
n2 , we have:

∀i �= j,Pr(Xi = Xj) =
∑
x

Q(x)2 ≤ ε

n2

By a union bound, we have:

Pr(∀i �= j,Xi �= Xj) ≥ 1− ε

Therefore we can set δ2 = ε. By the above lemma, there exists another P ′

such that

PrD′∼P′(Af (D
′)) ≥ 1− ε

2
and

∀X ∈ X , Y ∈ Y ,P ′(Y |X) = 0 or 1

On the other hand, note that the l1 distance between P ′ and P is at least Bf ,
then by the properties of Af , D

′ cannot pass Af with probability greater than
or equal to 1−ε

2 . This contradicts our earlier result. Therefore no such Af can
exist.
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Proof of Theorem 2

Proof. We will use the following uniform convergence result [18]:

Theorem 3 (Uniform Convergence of Functions [18]). Let D be i.i.d. samples
of (X × Y ,P), then with probability at least 1− δ,

sup
g∈G

| 1
n

n∑
i=1

g(Xi, Yi)− Eg(X,Y )| ≤ 2EDRD(G) +
√

2 ln(4/δ)

n
(3)

In the following we sometimes allow G to be a collection of functions from
X to [0, 1] in the above results. When used in this sense, we assume that the
function will not use y label: g(x, y) = g(x).

Define FD,p1,p2(f) to be the relative frequency of event {p1 < f(X) ≤ p2, Y =
1}:

FD,p1,p2(f) =
1

n

n∑
i=1

1p1<f(Xi)≤p2,Yi=1

Define FP,p1,p2(f) to be the probability of the same event:

FP,p1,p2(f) = P(p1 < f(X) ≤ p2, Y = 1)

Define ED,p1,p2(f) as the empirical expectation of f(X)1p1<f(X)≤p2
:

ED,p1,p2(f) =
1

n

n∑
i=1

f(Xi)1p1<f(Xi)≤p2

Define EP,p1,p2(f) as the expectation of the same function:

EP,p1,p2(f) = E[f(X)1p1<f(X)≤p2
]

When the context is clear, subscripts p1 and p2 can be dropped. Using this
notation, we can rewrite c(f) and cemp(f,D) as follows:

c(f) = sup
p1,p2

|FP(f)− EP(f)|

cemp(f) = sup
p1,p2

|FD(f)− ED(f)|

Note that:

| sup
p1,p2

|FD(f)− ED(f)| − sup
p1,p2

|FS(f)− ES(f)||

≤ sup
p1,p2

||FD(f)− ED(f)| − |FS(f)− ES(f)||

≤ sup
p1,p2

|FD(f)− ED(f)−FS(f) + ES(f)|

≤ sup
p1,p2

(|FD(f)−FS(f)|+ |ED(f)− ES(f)|)

≤ sup
p1,p2

|FD(f)−FS(f)|+ sup
p1,p2

|ED(f)− ES(f)|
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Therefore it suffices to show that

P( sup
f,p1,p2

|FD(f)−FS(f)|+ sup
f,p1,p2

|ED(f)− ES(f)| > ε) < δ

Define

H1 = {1p1<f(X)≤p2,Y=1 : p1, p2 ∈ R, f ∈ F}
H2 = {f(X)1p1<f(X)≤p2

: p1, p2 ∈ R, f ∈ F}

Then we have the following lemma:

Lemma 2. Let H1,H2 as defined above, then:

RD(H1) ≤ RD(H) RD(H2) ≤ RD(H)

Proof. For RD(H1), we have:

RD(H1) =
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n∑
i=1

σi1p1<f(Xi)≤p2,Yi=1]

We can replace 1Yi=1 with EZi∈{±1} max(Zi, Yi) (since Yi is either −1 or 1):

RD(H1) =
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n∑
i=1

σi1p1<f(Xi)≤p2
EZi∈{±1} max(Zi, Yi)]

Move the expectation over Z out of the supremum operator, we have:

RD(H1) ≤
1

n
Eσ∼{±1}n,Z∈{±1}[ sup

p1,p2,f

n∑
i=1

1p1<f(Xi)≤p2
σi max(Zi, Yi)]

Now define Ti = σi max(Zi, Yi), then

RD(H1) ≤
1

n
EZ∈{±1}Eσ∼{±1}n [ sup

p1,p2,f

n∑
i=1

1p1<f(Xi)≤p2
Ti]

Note that Ti is always uniformly distributed over {±1}, which is independent
of Zi and Yi. Therefore,

RD(H1) ≤
1

n
ET∼{±1}n [ sup

p1,p2,f

n∑
i=1

1p1<f(Xi)≤p2
Ti] = RD(H)

For RD(H2), we have:

RD(H2) =
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n∑
i=1

σif(Xi)1p1<f(Xi)≤p2
]

Replace f(Xi) with
∫ 1

0
1t<f(Xi)dt, we have

RD(H2) =
1

n
Eσ∼{±1}n [ sup

p1,p2,f

∫ 1

0

n∑
i=1

σi1t<f(Xi)1p1<f(Xi)≤p2
dt]
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Move the integral out of the supremum operator, we have:

RD(H2) ≤
1

n
Eσ∼{±1}n

∫ 1

0

[ sup
p1,p2,f

n∑
i=1

σi1max(p1,t)<f(Xi)≤p2
]dt

Define p′1 = max(t, p1), then we have:

RD(H2) ≤
1

n
Eσ∼{±1}n

∫ 1

0

[ sup
p′
1≥t,p2,f

n∑
i=1

σi1p′
1<f(Xi)≤p2

]dt

Remove the restriction over p′1:

RD(H2) ≤
1

n
Eσ∼{±1}n

∫ 1

0

[ sup
p′
1,p2,f

n∑
i=1

σi1p′
1<f(Xi)≤p2

]dt

Now the expression inside the bracket no longer depends on the value of t,
therefore we conclude:

RD(H2) ≤
1

n
Eσ∼{±1}n [ sup

p′
1,p2,f

n∑
i=1

σi1p′
1<f(Xi)≤p2

] = RD(H)

Combining this lemma with the assumptions in the theorem:

EDRD(H1) +

√
2 ln(8/δ)

n
<

ε

2

EDRD(H2) +

√
2 ln(8/δ)

n
<

ε

2

By Equation (3):

P( sup
f,p1,p2

|FD(f)−FS(f)| >
ε

2
) <

δ

2

P( sup
f,p1,p2

|ED(f)− ES(f)| >
ε

2
) <

δ

2

Proof of Claim 2

Proof. By Massart Lemma [18], we have:

RD(H) ≤
√

2 ln |H(D)|
n

where H(D) is the restriction of H to D. It suffices to show that

|H(D)| ≤ (|P ∗|+ 1)2(en/d)d

Note that
H(D) = ∪p1,p2Hp1,p2(D)
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Since f(x) only takes finite possible values, we only need to consider values
of p1, p2 in P ∗ ∪ {−∞}. Therefore,

|H(D)| ≤
∑

p1,p2∈P∗∪{−∞}
|Hp1,p2(D)|

Since each Hp1,p2 has VC-dimension at most d, by Sauer’s Lemma [18]:

∀p1, p2, |Hp1,p2(D)| ≤ (en/d)d

Combining the last two inequalities, we get the desired result.

Proof of Claim 4

Proof. We first prove the first inequality. For any p1, p2, we have:

EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)

=ED
1

n

n∑
i=1

1p1<f(Xi)≤p2
[f(Xi)− 1Yi=1]

Therefore, by Hoeffdding’s inequality, with probability 1− δ:

| 1
n

n∑
i=1

1p1<f(Xi)≤p2
[f(Xi)− 1Yi=1]

−EX∼P [1p1<f(X)≤p2
f(X)] + P(p1 < f(X) ≤ p2, Y = 1)| ≤

√
ln 2

δ

2n

Therefore with probability 1− δ,

| 1
n

n∑
i=1

1p1<f(Xi)≤p2
[f(Xi)− 1Yi=1]|

≥|EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)| −

√
ln 2

δ

2n

For any ε > 0, we can choose p1 and p2 such that

|EX∼P [1p1<f(X)≤p2
f(X)]− P(p1 < f(X) ≤ p2, Y = 1)| > c(f)− ε

Then with probability 1− δ,

cemp(f,D) ≥ | 1
n

n∑
i=1

1p1<f(Xi)≤p2
[f(Xi)− 1Yi=1]| > c(f)− ε−

√
ln 2

δ

2n

Since ε can be any positive real number, the desired result follows immediately.
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To prove the second inequality, by Theorem 2, it suffices to show that

∀D,RD(H) ≤
√

32π

n

for F = {f}. Assume w.l.o.g. that D = {(x1, y1), . . . , (xn, yn)} satisfies

f(x1) ≤ f(x2) ≤ . . . ≤ f(xn)

Then,

RD(H) =
1

n
Eσ sup

p1,p2

|
n∑

i=1

1p1<f(xi)≤p2
σi| ≤

1

n
Eσ max

a,b
|
∑

a<i≤b

σi|

Denote Si =
∑

j≤i σj , then Si is a simple one-dimensional random walk, by the
reflection principle of symmetric random walk [7], we have:

∀C ≥ 0,Pr(sup
i

|Si| > C) ≤ 2Pr(|Sn| > C)

Therefore,
Eσ[sup

i,j
|Si − Sj |] ≤ 2Eσ[sup

i
|Si|] ≤ 4Eσ|Sn|

By Hoeffding’s inequality,

∀C ≥ 0,Pr(|Sn| ≥ C
√
n) ≤ 2 exp(−1

2
C2)

Therefore,

RD(H) ≤ 4

n
Eσ|Sn| =

√
16

n

∫ ∞

0

Pr(|Sn| ≥ x
√
n)dx

≤
√

64

n

∫ ∞

0

e−
1
2x

2

dx =

√
32π

n

Proof of Claim 5

Proof. Let zi = g(f0(xi)), then we can rewrite the objective function as:

max
a,b

|
∑

a<i≤b

(1yi=1 − zi)|

To prove Algorithm 1 also minimizes this objective function, we first state
the minimization problem as a linear programming:

min ξ1 + ξ2 s.t. ξ1, ξ2 ≥ 0

0 ≤ z1 ≤ z2 ≤ . . . ≤ zn ≤ 1
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∀1 ≤ k ≤ n,
∑
i≤k

zi ≥
∑
i≤k

1yi=1 − nξ1

∀1 ≤ k ≤ n,
∑
i≤k

zi ≤
∑
i≤k

1yi=1 + nξ2

Define Sk =
∑

i≤k 1yi=1 and Zk =
∑

i≤k zi. Then we have the following
constraints:

∀1 ≤ k ≤ n− 1, Zk − Zk−1 ≤ Zk+1 − Zk

∀1 ≤ k ≤ n, Sk − nξ1 ≤ Zk ≤ Sk + nξ2

Let Z∗
i be the solution produced by Algorithm 1, it should be obvious that

Z∗
i ≤ Si for all i. Therefore,

ξ∗2 =
1

n
min
i
(Si − Z∗

i ) = 0 ξ∗1 =
1

n
max

i
(Si − Z∗

i )

We need to prove that ξ∗1 ≤ ξ1 + ξ2 for every feasible solution (Zi, ξi). Suppose
ξ∗1 = 1

n (Si − Z∗
i ), and Z∗

i lies on the line segment {(j, Sj), (k, Sk)}. Then we
have:

Si − nξ∗1 = Z∗
i =

i− j

k − j
Sk +

k − i

k − j
Sj

Because of the convexity constraint of Z, it must satisfy the following in-
equality:

Zi ≤
i− j

k − j
Zk +

k − i

k − j
Zj

Computing the difference between these two, we get

Zi − Si + nξ∗1 ≤ i− j

k − j
(Zk − Sk) +

k − i

k − j
(Zj − Sj)

Substituting in

Zi − Si ≥ −nξ1 Zk − Sk ≤ nξ2 Zj − Sj ≤ nξ2

We get
nξ∗1 ≤ nξ1 + nξ2

which proves the optimality of Z∗.

Proof of Claim 6

Proof. Throughout the proof, let C be the convex hull computed in Algorithm 1:

C = {(i0 = 0, 0), (i1, Si1), . . . , (im−1, Sim−1), (im = n, Sn)}

We will use the following notation:

zi = g∗(f0(xi)) Zk =

k∑
i=1

zi Sk =

k∑
i=1

1yi=1
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1. For any p1, p2, let l, r be such that:

l = max
k≤n,zk≤p1

k r = max
k≤n,zk≤p2

k

If no such k exists for p1 or p2 (i.e., ∀k, zk > pi for either i = 1 or i = 2),
we simply set l or r to be 0 respectively. By Algorithm 1, we have

∀ij < k ≤ ij+1, zk =
Sij+1 − Sij

ij+1 − ij

Thus we have (l, Sl), (r, Sr) ∈ C, Zl = Sl, Zr = Sr, and therefore

n∑
i=1

1p1<zi≤p2,yi=1 −
n∑

i=1

1p1<zi≤p2zi

=(Zr − Zl)− (Sr − Sl) = 0

which implies that cemp(g
∗ ◦ f0) = 0

2. Let a = max{i : f0(xi) ≤ p}, b = max{i : zi ≤ p}, then we need to show
that

(1− p)

b∑
i=1

1yi=1 + p

n∑
i=b+1

1yi=0

≤ (1− p)

a∑
i=1

1yi=1 + p

n∑
i=a+1

1yi=0

We consider two separate cases:

(a) a ≤ b, in this case we only need to show that

b∑
i=a+1

[p1yi=0 − (1− p)1yi=1] ≥ 0

or equivalently,

p[(b− a)− (Sb − Sa)]− (1− p)(Sb − Sa) ≥ 0

Rearrange terms, it suffices to show

p(b− a)− (Sb − Sa) ≥ 0

Since Sb = Zb, Sa ≥ Za

Sb − Sa ≤ Zb − Za ≤ zb(b− a) ≤ p(b− a)

(b) a > b, in this case we only need to show

a∑
i=b+1

[p1yi=0 − (1− p)1yi=1] ≤ 0

or equivalently,

p[(a− b)− (Sa − Sb)]− (1− p)(Sa − Sb) ≤ 0
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Rearrange terms, it suffices to show

p(a− b)− (Sa − Sb) ≤ 0

Since Sb = Zb, Sa ≥ Za

Sa − Sb ≥ Za − Zb ≥ zb+1(a− b) ≥ p(a− b)

Convergence of the PAV algorithm

We can also use Theorem 2 to derive the following non-asymptotic convergence
result of Algorithm 1.

Claim 7. Let F (t) = P(f0(X) ≤ t) be the distribution function of f0(X), and
define G(t) as:

G(t) = P(f0(X) ≤ t, Y = 1)

Let cv : [0, 1] → [0, 1] be the convex hull of all points (F (t), G(t)) for all t ∈ [0, 1].
Define Ge as:

Ge(t) = E[1f0(X)≤tg
∗(f0(X))]

Then under the same condition in Theorem 2,

P(sup
t

|Ge(t)− cv(F (t))| > 2ε) < 5δ

In particular, if P(Y = 1|f0(X)) is monotonically increasing, then

P(sup
t

|Ge(t)−G(t)| > 2ε) < 5δ

The intuition behind this claim can be explained as follows: F (t) is the per-
centage of data points satisfying f0(X) ≤ t, and G(t) is F (t) times the con-
ditional probability of Y = 1 in the region {f0(X) ≤ t}. Now consider points
Pi = (i, Si) in Algorithm 1, it is not hard to show that as n → ∞, the limit of
points Pi are the curve (F (t), G(t)), t ∈ [0, 1] (after proper scaling). Similarly,
Ge(t) is F (t) times the expected value of g∗(f0(X)) in the region {f0(X) ≤ t},
and it is not hard to show that (F (t), Ge(t)) is the limit of (i, Zi) (after proper
scaling). Now the claim states that in the PAV algorithm, (F (t), Ge(t)) converge
uniformly to the convex hull of (F (t), G(t)), which should not be surprising, since
we explicitly computed the convex hull of {Pi} in Algorithm 1.

When P(Y = 1|f0(X)) is monotonically increasing w.r.t. f0(X), (F (t), G(t))
is convex, and Claim 7 immediately implies that Ge(t) will converge uniformly
to G(t). In this case, the PAV algorithm will eventually recover the “true” link
function g∗(f0(X)) = P(Y = 1|f0(X)) given sufficient training samples, and
Claim 7 provides a rough estimate of the number of samples required to achieve
the desired precision.

Proof. Throughout the proof, let C be the convex hull computed in Algorithm 1:

C = {(i0 = 0, 0), (i1, Si1), . . . , (im−1, Sim−1), (im = n, Sn)}
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We will use the following notation:

zi = g∗(f0(xi)) Zk =
k∑

i=1

zi Sk =
k∑

i=1

1yi=1

We will use the following facts in the proof of Theorem 2:

P( sup
g,p1,p2

|FD(g ◦ f0)−FP(g ◦ f0)| >
ε

2
) <

δ

2

P( sup
g,p1,p2

|ED(g ◦ f0)− EP(g ◦ f0)| >
ε

2
) <

δ

2

For any t ∈ [0, 1], let u be any continuous increasing function from [0, 1] to
[0, 1]. Let k = max{i : f0(xi) ≤ t}, p1 = −∞, p2 = u(t) in the above inequalities,
then we have:

P(| 1
n
Sk −G(t)| > ε

2
) <

δ

2
(4)

P(| 1
n

k∑
i=1

u(f0(xi))− E[1f0(X)≤tu(f0(X))]| > ε

2
) <

δ

2

Now we set u to be such that ||u − g∗||∞ < λ, where λ > 0 can be arbitrarily
small9. Let λ ↓ 0, then the second inequality implies

P(| 1
n
Zk −Ge(t)| >

ε

2
) <

δ

2
(5)

Similarly, we can set u to be such that |u(x)− 1| < λ for any x. Let λ ↓ 0, then
the second inequality implies

P(| 1
n
k − F (t)| > ε

2
) <

δ

2
(6)

For any t ∈ [0, 1], let k = max{i : f0(xi) ≤ t}. Let [ij−1 = l, ij = r] be the
segment of C with l < k ≤ r. Then we have

zl+1 = . . . = zk = . . . = zr

Sl = Zl = Zk − (k − l)zk

Sr = Zr = Zk + (r − k)zk

On the other hand, by (4), with probability at least 1− δ:

1

n
Sl ≥ G(f0(xl))−

ε

2

1

n
Sr ≥ G(f0(xr))−

ε

2

9Note that we cannot simply have u = g∗ here because u need to be strictly monotonically
increasing so that the inverse function is well-defined. The same goes for the next part where
we cannot simply set u ≡ 1.
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Since cv is the convex hull of (F (t), G(t)), we have

qG(f0(xl)) + (1− q)G(f0(xr)) ≥ cv(F (t))

where q = F (f0(xr))−F (t)
F (f0(xr))−F (f0(xl))

. Combining all, with probability at least 1− δ:

1

n
Zk +

1

n
[ql + (1− q)r − k]zk +

ε

2
≥ cv(F (t))

By (6), with probability at least 1− 3
2δ:

1

n
l ≤ F (f0(xl)) +

ε

2

1

n
r ≤ F (f0(xr)) +

ε

2

1

n
k ≥ F (t)− ε

2

Therefore, we have with probability at least 1− 5
2δ,

1

n
Zk +

3ε

2
≥ cv(F (t))

Then by (5), with probability at least 1− 3δ,

Ge(t) + 2ε ≥ cv(F (t))

Conversely, suppose (F (t), cv(F (t))) is on the line segment between (F (a),
G(a)) and (F (b), G(b)), then

G(a) = cv(F (t))− w(F (t)− F (a))

G(b) = cv(F (t)) + w(F (b)− F (t))

where w = G(b)−G(a)
F (b)−F (a) (if F (a) = F (b) then just let w = 1).

By (4) and (5) and the fact that Sk ≥ Zk, with probability at least 1− 2δ:

G(a) + ε ≥ Ge(a) G(b) + ε ≥ Ge(b)

Also since (F (t), Ge(t)) is convex, we have:

qGe(a) + (1− q)Ge(b) ≥ Ge(t)

where q = F (b)−F (t)
F (b)−F (a) . Combining all above, with probability at least 1− 2δ:

cv(F (t)) + ε ≥ Ge(t)

Combining two directions, the proof is complete.
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