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Abstract: Spatiotemporal point processes (STPPs) are important in mod-
eling randomly appeared events developed in space and time. Statistical
methods of STPPs have been widely used in applications. In all of these
methods, evaluations and inferences of intensity functions are the primary
issues. The present article proposes a new method, which attempts to eval-
uate angles of gradient vectors of intensity functions rather than the in-
tensity functions themselves. According to the nature of many natural and
human phenomena, the evaluation of angle patterns of the gradient vec-
tors is more important than the evaluation of their magnitude patterns
because changes of angle patterns often indicate global changes of these
phenomena. This issue is investigated by simulation studies, where signif-
icant variations of gradient angle patterns are identified only when modes
of intensity functions are changed. To study these phenomena, the article
proposes an analysis method for gradient angles of the first-order intensity
function of STPPs. The proposed method is used to analyze aftershock
earthquake activities caused by great mainshock earthquakes occurred in
Japan 2011 and Indian Ocean 2004, respectively, where a significant global
change in the second case is identified.
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1. Introduction

The goal of the research is to develop a gradient-based approach to spatiotem-
poral point processes (STPPs) which can be used to describe the global trend
of point occurrences. To develop the approach, it is important to have a statisti-
cal way which can characterize the tendency of gradient vectors of the intensity
functions. It will point out that the usage of directions of gradient vectors is more
important than the usage of their magnitudes. Based on this point, we propose
a new statistical approach to gradient angle patterns of the first-order intensity
function of STPPs. An important assumption is the angle invariant condition,
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which means that the angle (or the direction) of gradient vectors of the first-
order intensity function in the whole study area is time invariant. The angle
invariant condition is useful in modeling many natural or human phenomena.
For instance, the frequently used ETAS (epidemic type aftershock sequences)
model for aftershock earthquakes [26, 40, 27] assumes that the occurrences of
aftershock earthquakes are symmetric about their mainshock earthquake cen-
ter, which satisfies the angle invariant condition. A similar issue has also been
pointed out in infectious disease studies since the spread of an infectious dis-
ease is roughly symmetric about the original occurrence center [24]. In these
examples, the direction of the tendency is more important than the magnitude
since the change of directions represents a global change while the change of
magnitudes only represents a local change. This issue has been justified in our
simulation studies. We find that gradient angle patterns have significant changes
only when the mode of the intensity functions has been changed. A mode change
is often caused by the change of the intensity functions in the entire study re-
gion. Therefore, the statistical inference on angle patterns of gradient vectors of
intensity functions is more important than the inference on the whole gradient
vectors themselves. This motivates us to study gradient angle-based analysis
methods in our research.

An STPP is a collection of random locations of points appeared in their
spatiotemporal domain. Specific applications in the development of statistical
approaches to spatial point processes (SPPs) or STPPs have appeared in many
disciplines, including forestry [17], forest wildfires [28, 31, 38], earthquakes [19],
and spatial epidemiology [11]. Many concepts and methods for SPPs have been
previously proposed. Examples include the K-function [29], the L-function [9],
the pair correlation function [34], stationarity tests [15, 39], nonstationary anal-
yses [1, 4], likelihood and composite likelihood analyses [8, 32, 36], first-order
analyses [17, 37], and second-order analyses [16]. However, none of them have
studied gradient-based properties of spatial or spatiotemporal point patterns.
The present article is the first one considering such an issue.

Although we only focus on STPPs, we believe that gradient-based methods
are also important in the analysis SPPs. Gradients belong to the first-order
properties. They describe changes of the first-order intensity function locally.
However, gradient angles can also provide the global trend. According to in-
sights from our simulations for STTP to be displayed in Section 5, we conclude
that nonparametric estimation of angle patterns is more reliable than that of
magnitude patterns in terms of the bandwidth selection. Understanding of angle
patterns is more critical than understanding of magnitude or entire intensity
patterns. We investigate possible impacts of our methods on invasive species
problems under the framework of SPPs. In ecology, the invasive species prob-
lem describes the spread of a certain plant or animal that is not native to a
specific region, which is believed to cause damage to the local environment or
human society [2]. If locations of invasive species are provided by a spatial point
pattern, then its magnitude pattern only provides the local trend of the invasion
but the angle pattern can also provide the source center. Thus, the analysis of
angle pattern is more important than the analysis of magnitude pattern.
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We have encountered many new challenges in the development of methods
for gradient patterns of STPPs. Our proposed method is different from those in
the literature in a variety of ways. First, in most articles of STPPs in the liter-
ature, the interest is to investigate the mean and covariance structures, which
are often described by the first-order intensity and pair correlation functions.
However in our method, the interest is to investigate the gradient patterns of
STPPs, which can be further specified by the magnitudes and angles of gradient
vectors. Second, unlike the scenarios considered in the classical methods, the di-
rection of a gradient vector may not be available in a stationary process since
the gradient of the first-order intensity function is zero everywhere. Thus, our
method is developed for a nonstationary process only, implying that it is not
recommended analyzing stationary spatiotemporal point patterns. Third, for
nonstationary spatiotemporal point patterns, the change of angle patterns of
gradient vectors of intensity functions is more interesting than the only change
of magnitude patterns since the previous one represents a global change while
the latter one represents a local change. Our simulations support the conclusion
that slight local changes of intensity functions do not affect the gradient angle
patterns significantly. Therefore, we can use our method to study whether there
is a global change. It is possible for us to conclude the existence of a global
change if gradient angle patterns are significantly changed. Since the approach
relies on the derivation of angles of gradient vectors, we propose a kernel-based
estimator to compute them. We provide asymptotic properties of our estimator.
We carry out simulations to study its performance. Our method is applied to
study the gradient patterns of aftershock earthquakes in the 2011 Japan Great
Tohoku Earthquake data and the 2004 Indian Ocean Great Sumatra-Andaman
Earthquake data. We conclude that the angle patterns are almost invariant in
the Great Tohoku Earthquake data but not in Great Sumatra-Andaman Earth-
quake data.

The statistical method proposed in this article is motivated from previous
gradient-based techniques which have been extensively used in image process-
ing and pattern recognition. Overall, estimation of the gradient pattern of an
image is a fundamental task in any field of object recognition, where the earliest
work appeared about forty years ago [12]. After that, gradient-based methods
have been extensively used in pattern recognition [25]. Basic gradient-based cri-
teria, which are detection, localization, and uniqueness of recognition, have been
proposed [5]. It is well acknowledged that images can be easily visualized if a
gradient-based method is used. For example, images can be segmented into visu-
ally sensible regions by finding watershed regions in a gradient magnitude image
[23]. Multiscale analysis of intensity extrema in the gradient magnitude image
can be used to define a hierarchy on the corresponding watershed regions [13].
In addition to pattern recognition, gradient estimation has been investigated
in nonparametric statistics [6], where the main interest is estimation of partial
derivatives (i.e., gradients) of a smoothness function but not the smoothness
function itself. Although gradient-based approaches have been used in other
fields, this kind of approaches has never been considered in the literature of
spatial or spatiotemporal point processes.
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The rest of the article is organized as follows. In Section 2, we propose a
few important concepts and properties of the first-order intensity function of
STPPs based on its gradient angles. In Section 3, we propose nonparametric
kernel estimation of angles of gradient vectors of the first-order intensity func-
tion. In Section 4, we provide the asymptotic properties of our estimator, which
includes the consistency, the asymptotic normality, and the bandwidth selec-
tion. In Section 5, we carry out a simulation study to evaluate the properties of
our estimator. In Section 6, we apply our method to study the angle patterns
of the Great Tohoku Earthquake data and the Great Sumatra-Andaman Earth-
quake data. In Section 7, we provide a discussion. The proofs of our asymptotic
properties are displayed in the Appendix.

2. Gradient angles of the first-order intensity function

Let N be an STPP on D×T , where D ∈ B(R2) is the spatial domain, T ∈ B(R)
is the temporal domain, and B(A) represents the collection of Borel subsets of A.
LetN(A×B) be the number of points in A×B, where A ∈ B(D) and B ∈ B(T ).
Then, N(A × B) is finite if A and B are bounded. For a fixed B ∈ B(T ), we
can define a collapsed SPP denoted by NB(·) with NB(A) = N(A × B) for
any A ∈ B(D). Throughout this article, we assume that D is a bounded two-
dimensional manifold with |∂D| = 0 and T is a bounded interval, where ∂ is
the boundary operation and |A| means the Lebesgue measure of A in R

2. For
convenience, we assume T = [0, T ] with T ∈ R

+ and write s = (x, y) and
si = (xi, yi) for any s, si ∈ D.

Let the kth-order intensity function of N be denoted by λk((s1, t1), · · · ,
(sk, tk)), k ∈ N

+. Write the first-order intensity function of N as λ(s, t) =
λ1(s, t). For any A,A1, A2 ∈ B(D) and B,B1, B2 ∈ B(T ), there are

E[N(A×B)] =

∫
B

∫
A

λ(s, t)dsdt,

and
Cov[N(A1 ×B1), N(A2 ×B2)]

=

∫
B2

∫
A2

∫
B1

∫
A1

[g((s, t), (s′, t′))− 1]λ(s, t)λ(s′, t′)dsdtds′dt′

+

∫
B1∩B2

∫
A1∩A2

λ(s, t)dsdt,

where g((s, t), (s′, t′)) = λ2((s, t), (s
′, t′))/[λ(s, t)λ(s′, t′)] if λ(s, t)λ(s′, t′) > 0 or

g((s, t), (s′, t′)) = 1 if λ(s, t)λ(s′, t′) = 0 is the pair correlation function.

Assume λ(s, t) is continuous differentiable at any interior point (s, t) in D×T .
Let

∇sλ(s, t) = (∇1λ(s, t),∇2λ(s, t)) =

(
∂λ(s, t)

∂x
,
∂λ(s, t)

∂y

)
(2.1)



4428 T. Zhang and Y.-N. Huang

be the gradient of the first-order intensity function projected to the spatial
domain. If ‖∇sλ(s, t)‖ > 0, then there exists a unique function θ(s, t) ∈ [−π, π)
such that

cos θ(s, t) =
∇1λ(s, t)

‖∇sλ(s, t)‖
(2.2)

and

sin θ(s, t) =
∇2λ(s, t)

‖∇sλ(s, t)‖
. (2.3)

The function θ(s, t) represents the spatial angle patterns of λ(s, t), which can
be used to describe the directions of the gradient vectors of λ(s, t) in the spatial
domain.

It is clear that θ(s, t) is not well-defined if ‖∇sλ(s, t)‖ = 0, which is attained if
(s, t) is a spatial stationary point of λ(s, t) (i.e. point (s, t) satisfying ∇sλ(s, t) =
0). We say spatial stationary points of λ(s, t) are isolated if there exists a δ > 0
such that ‖s1 − s2‖ > δ for any distinct spatial stationary points (s1, t) and
(s2, t) of λ(s, t). If spatial stationary points of λ(s, t) are isolated, then for a
given interior point s0 ∈ D we can define θ(s, t) for any s �= s0 in a sufficiently
small neighborhood of s0, indicating that gradient angles of an STPP are almost
surely available. We do not expect that our method can be used if λ(s, t) is only
a function of t in the entire spatial domain. As ∇sλ(s, t) = 0 everywhere, we
cannot define θ(s, t) at any s ∈ D. Therefore, our method is developed for a
spatially nonstationary STPP.

Definition 1. The STPP N is called angle invariant at s ∈ D with ‖∇sλ(s, t)‖ >
0 if θ(s, t) is invariant in t for any t ∈ T . The STPP N is called angle invariant
if θ(s, t) is angle invariant at every interior point s ∈ S with nonzero ‖∇sλ(s, t)‖
values. We write θ(s) = θ(s, t) for any interior point s ∈ D with nonzero
‖∇sλ(s, t)‖ values. We call λ(s, t) angle invariant if N is angle invariant.

Let Ñ be an SPP on D with its first-order intensity function denoted by λ̃(s).
Assume λ̃(s) is continuous differentiable at any interior point s ∈ D. Let

∇λ̃(s) = (∇1λ̃(s),∇2λ̃(s)) =

(
∂λ̃(s)

∂x
,
∂λ̃(s)

∂y

)

be the gradient vector of λ̃(s). Then, ∇λ̃(s) exists if s is an interior point of D.
The angle function θ̃(s) of ∇λ̃(s) can be defined similarly as those in (2.2) and
(2.3). If ∇λ̃(s) �= 0 (i.e., not a stationary point), then it is uniquely determined
by

cos θ̃(s) =
∇1λ̃(s)

‖∇λ̃(s)‖
and

sin θ̃(s) =
∇2λ̃(s)

‖∇λ̃(s)‖
.
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Let λ̃(s) and λ̃′(s) be the first-order intensity functions of two SPPs. Let θ̃(s)
and θ̃′(s) be the angle functions of ∇λ̃(s) and ∇λ̃′(s), respectively. We say the
two functions θ̃ and θ̃′ are equal if θ̃(s) = θ̃′(s) at any interior point s ∈ D when
none of ‖∇λ̃(s)‖ and ‖∇λ̃′(s)‖ is zero. We define that the angle functions of
∇λ̃(s) and ∇λ̃′(s) are equal at s if one of ‖∇λ̃(s)‖ and ‖∇λ̃′(s)‖ is zero. Then,
we provide the following definition.

Definition 2. Let Ñ and Ñ ′ be two distinct SPPs on D with their first-order
intensity functions denoted by λ̃(s) and λ̃′(s), respectively. Assume λ̃(s) and
λ̃′(s) are continuously differentiable. We say that Ñ and Ñ ′ have similar (first-
order) patterns if the angle functions of ∇λ̃(s) and ∇λ̃′(s) are equal at every
interior point s ∈ D.

If stationary points of λ̃(s) and∇λ̃′(s) are isolated, then they do not affect the
concept of similarity given by Definition 2. This provides the following theorem.

Theorem 1. Let N be an STPP on D × T with a continuous differentiable
λ(s, t), whose stationary points are isolated. Then, N is angle invariant if and
only if NB1 and NB2 have similar patterns for any subintervals B1, B2 ⊆ T .

Theorem 1 provides a way to study the angle invariant property of the first-
order intensity function of an STPP. It is useful if an STPP only has one or a
few stationary points. An example is the case when λ(s, t) is derived from an
ETAS model (to be discussed in Example 3 below). Since λ(s, t) only has one
stationary point, which is its mode, the angle functions can be studied at any
points other than the mode. It is expected to see similar patterns of the first-
order intensity function if the STPP is compared among different time periods.
We provide a few examples to illustrate the issues discussed in Definition 2 and
Theorem 1.

Example 1 (First-order separable model). If the STPP N has a separable first-
order intensity function such that λ(s, t) = λs(s)λt(t) for any (s, t) ∈ D × T ,
then ∇sλ(s, t) = λt(t)∇λs(s). Therefore, θ(s, t) does not depend on t implying
that N is angle invariant.

Example 2 (Condensed model). Assume the first-order intensity function of
N can be written as λ(s, t) = F [f(s), t] = F [f(x, y), t], where f is a bivariate
function and F is a positive bivariate function. Then,

∇sλ(s, t) = F1[f(s), t]

(
∂f(s)

∂x
,
∂f(s)

∂y

)
,

where F1 is the first component of the partial derivative vector of F . Therefore,
θ(s, t) does not depend on t implying that N is angle invariant. A few interesting
cases can be derived. If f(x, y) = x2+y2 and F (u, v) is decreasing in u, then an
isotropic model is derived. If f(x, y) = ax2 + 2bxy + cy2 with b2 − ac < 0 and
a, c > 0, then an elliptical model is derived. Both models are angle invariant.

Example 3 (ETAS model). The ETAS model is a spatiotemporal marked point
process model representing the activities of earthquakes of a certain magnitude
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and larger in a region during a period of time [26, 27, 40]. The model includes
background activities and aftershock clusters. Events in each aftershock cluster
are independently produced by the mainshock earthquake. The size of the af-
tershock cluster is related to the magnitude of the mainshock earthquake. The
ETAS model is composed of the background rates and the intensity functions
derived from all of the mainshock earthquakes and their aftershock clusters. If
there is only one extremely large mainshock earthquake with magnitude M∗ at
space-time location (s∗, t∗), then the first-order intensity function of the loca-
tions of aftershock earthquakes can be approximately expressed as

λ(s, t) = κ(M∗)u(t− t∗)v(s− s∗|M∗). (2.4)

It is clear that λ(s, t) given by (2.4) is angle invariant. Model (2.4) is useful in
the study of aftershock earthquake activities produced by an extremely large
earthquake. The reason is because the impact of other mainshock earthquakes
and the impact of background earthquakes can be roughly ignored within a few
months after its occurrence. The ETAS model will be used with more details in
Section 6.

3. Estimation

We propose a nonparametric kernel method to estimate θ(s) for an angle invari-
ant STPP. Suppose that observations of N are collected in D × T and denoted
by (s1, t1), · · · , (sn, tn), where n = N(D × T ) is the total number of events. To
estimate λ(s, t), we can use the classical Berman-Diggle estimator [4, 10] as

λ̂h(s, t) =
1

Ch(s, t)

n∑
i=1

Kh(s− si, t− ti), (3.1)

where h = (h1, h2) is the bandwidth (h1 for space and h2 for time), Kh(s, t) =
K(s/h1, t/h2)/(h

2
1h2) with K(s, t) = K(1,1)(s, t) being a kernel function and

Ch(s, t) =
∫
D
∫
T Kh(s− u, t− v)dvdu being the edge-correction.

According to Theorem 1, it is not necessary to consider a full spatiotemporal
kernel function in estimation of θ(s). Here, we recommend considering estima-
tion of the first-order intensity function of NT , which is denoted by λT (s). We
use a purely spatial full symmetric kernel in (3.1) such that K(s, t) = K(s) =
K(‖s‖). Then, (3.1) becomes

λ̂h,T (s) =
1

Ch(s)

n∑
i=1

Kh(s− si), (3.2)

where Ch(s) =
∫
D Kh(s−u)du is the edge correction. Using notation of Stochas-

tic integrals, (3.2) can be equivalently expressed as

λ̂h,T (s) =
1

Ch(s)

∫
D

∫
T
Kh(s− u)N(du× dv). (3.3)
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In the following, we always use u to represent the integration variable for space
and v to represent the integration variable for time. We treat (3.3) as an esti-
mator of the first-order intensity function of NT , which will be used to derive
an estimator of θ(s). To get the estimator, we consider the gradient of λ̂h,T (s),

denoted by ∇λ̂h,T (s), which is composed of

∇j λ̂h,T (s)

=

∫
D

∫
T
[

1

Ch(s)

∂Kh(s− u)

∂z
− 1

C2
h(s)

∂Ch(s)

∂z
Kh(s− u)]N(du× dv),

(3.4)

where z = x if j = 1 and z = y if j = 2. The kernel estimator of ∇λT (s) is

∇λ̂h,T (s) = (∇1λ̂h,T (s),∇2λ̂h,T (s)) =

(
∂λ̂h,T (s)

∂x
,
∂λ̂h,T (s)

∂y

)
. (3.5)

If ‖∇λ̂h,T (s)‖ > 0, then we can uniquely solve a function θ̂h(s) on [−π, π) by

cos θ̂h(s) =
∇1λ̂h,T (s)

‖∇λ̂h,T (s)‖
,

sin θ̂h(s) =
∇2λ̂h,T (s)

‖∇λ̂h,T (s)‖
.

(3.6)

The expected vector and the covariance matrix of ∇λ̂h,T (s) are important

in the evaluation of the properties of θ̂h(s), where the method of Stochastic
Integrals in Campell’s theorem is useful. Taking the expected values of (3.4), we
have

E(∇j λ̂h,T (s))

=

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂u
− 1

C2
h(s)

∂Ch(s)

∂x
Kh(s− u)]λT (u)du,

(3.7)

where u = x if j = 1 and u = y if j = 2. Taking the variances and covariance of
(3.4), we have

Cov(∇j1 λ̂h,T (s),∇j2 λ̂h,T (s))

=Cov(
∂λ̂h,T (s)

∂z1
,
∂λ̂h,T (s)

∂z2
)

=

∫
D

∫
D

∫
T

∫
T
[

1

Ch(s)

∂Kh(s− u)

∂z1
− 1

Ch(s)

∂Ch(s)

∂z1
Kh(s− u)]

× [
1

Ch(s)

∂Kh(s− u′)

∂z2
− 1

C2
h(s)

∂Ch(s)

∂z2
Kh(s− u′)]

× [g((u, v), (u′, v′))− 1]λ(u, v)λ(u′, v′)dudu′dvdv′

+

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂z1
− 1

C2
h(s)

∂Ch(s)

∂z1
Kh(s− u)]

× [
1

Ch(s)

∂Kh(s− u)

∂z2
− 1

C2
h(s)

∂Ch(s)

∂z2
Kh(s− u)]λT (u)du,

(3.8)
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where z1 = x if j1 = 1, z1 = y if j1 = 2, z2 = x if j2 = 1, and z2 = y if j2 = 2.
Equation (3.8) can be used to compute the whole variance-covariance matrix of

∇λ̂h,T (s) since it represents a formula of the variances if j1 = j2 or covariance
if j1 �= j2. If N is Poisson, then (3.8) becomes

Cov(∇j1 λ̂h,T (s),∇j2 λ̂h,T (s))

=

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂z1
− 1

C2
h(s)

∂Ch(s)

∂z1
Kh(s− u)]

× [
1

Ch(s)

∂Kh(s− u)

∂z2
− 1

C2
h(s)

∂Ch(s)

∂z2
Kh(s− u)]λT (u)du.

(3.9)

The function θ̂h(s) given by (3.6) is treated as an estimator of θ(s), which is

well-defined if ‖∇λ̂h,T (s)‖ > 0. It is clear that θ̂h(s) depends on the bandwidth
h and the kernel function K(s), which does not rely on T . However, it does
not mean that the temporal structure of the spatiotemporal point pattern is
not important in θ̂h(s). According to (3.8), the temporal structure affects the

properties of ∇λ̂h,T (s) and therefore it also affects the properties of θ̂h(s). Based
on our asymptotic results to be displayed in Section 4, we find that the temporal
dependence structure has significant impacts on the bias, the variance, and the
optimal bandwidth selection in θ̂h(s).

4. Asympotics

We provide the asymptotic properties of θ̂h(s) under T → ∞ with a bounded
connected D in this section. The asymptotic properties include the consistency,
the asymptotic normality, and the optimal strategy for the selection of h in
(3.6). The derivation is based on the properties of θ̂h(s), where the asymptotic

properties of ∇λ̂h,T (s) are important. We use
P→ to represent convergence in

probability and
D→ to represent convergence in distribution.

To derive the asymptotic properties, the most important regularity condition
is the strong mixing condition, which was first proposed by [30] and then followed
by many other authors [18, 20]. The strong mixing condition has later been used
for asymptotics in spatial point processes [21]. Since D is bounded, we modify
the definition of the strong mixing condition such that it can be interpreted by
T → ∞.

Let P be the distribution of N . Denote Ft as the σ-field generated by {N(A×
B) : A ⊆ D, B ⊆ [0, t]} and Gt as the σ-field generated by {N(A × B) : A ⊆
D, B ⊂ (t, T ]}. Define

αT (v) = sup{|P (E1 ∩ E2)− P (E1)P (E2)| : E1 ∈ Ft, E2 ∈ Gt+v}, (4.1)

where 0 < v < T . The coefficient of strong mixing condition introduced by [30]
then can be modified as

α(v) = sup
T∈R+

αT (v). (4.2)



Gradient angle for STPP 4433

To derive the asymptotic properties, we need the following regularity condi-
tions.

(C1) N is simple and angle invariant with uniformly bounded first-order, second-
order, third-order, and fourth-order intensity functions.

(C2) The function λs(s) = limT→∞ T−1
∫ T

0
λ(s, t)dt positively exists and is

third-order continuously differentiable at every interior point s ∈ D.
(C3) There exists a u > 0 such that

lim
dt(A1×B1,A2×B2)→∞

t−(1+u)Corr[N(A1 ×B1), N(A2 ×B2)] = 0,

for any A1 × B1, A2 × B2 ⊆ D × T , where dt(A1 × B1, A2 × B2) =
mint1∈B1,t2∈B2 |t1 − t2|.

(C4) There exists a uniformly bounded continuously differentiable bivariate
function ϕ(u,u′) on D such that

ϕ(u,u′) = lim
T→∞

1

T

∫ T

0

∫ T

0

[g((u, v), (u′, v))− 1]λ(u, v)λ(u′, v)dvdv′.

(C5) There exists a β > 2 and γ = 2/β such that lim supa∈R+ ‖N(D × [a, a +
u])‖β < ∞ and

∫∞
0

α1−γ(v)dv < ∞ for any u > 0.
(C6) The kernel function K is full symmetric and satisfies limu→∞ u2K(u) = 0.

Condition (C1) concerns the properties of the first-order and second-order
intensity functions, which can be easily understood. To derive the asymptotics
of θ̂h(s), we need the functional central limit theorem theory for spatial point
process. It can be established by Corollary 1 of [18]. The condition that λ4 exists
and is bounded upto k = 4 is proposed to apply the corresponding conclusion.
If Condition (C2) also holds, then based on Theorem 1 there exists a function
λ′(s, t) such that for any interior point s ∈ D there is

∇λs(s) = (cos θ(s), sin θ(s)) lim
T→∞

T−1

∫ T

0

λ′(s, t)dt. (4.3)

Condition (C3) states that N is weakly dependent, which is strengthened by
Condition (C4). The connection between (C3) and (C4) is given in Lemma 1
below. Condition (C5) is the usual mixing condition for functional central limit
theorems with a weakly dependent structure [18]. For the kernel function, if
Condition (C6) holds, then the term related to ∂Ch(s)/∂x and ∂Ch(s)/∂y in
(3.7) and (3.8) can be ignored in asymptotic studies.

Lemma 1. Assume (C1)–(C3) hold. If f((u, v), (u′, v′)) is a uniformly bounded
continuous bivariate function on D × T , then

1

T

∫ T

0

∫ T

0

f((u, v), (u′, v′))[g((u, v),u′, v′)− 1]λ(u, v)λ(u′, v′)dvdv′ (4.4)

is uniformly bounded.
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Lemma 1 states that the right-hand side of the equation given by Condition
(C4) is bounded, implying that ϕ(u,u′) is well-defined if the limit exists. Let

μh,z(s) = lim
T→∞

T−1E(∇j λ̂h,T (s)),

where z = x if j = 1 and z = y if j = 2, and

σh,z1z2(s) = lim
T→∞

T−1Cov(∇j1 λ̂h,T (s),∇j2 λ̂h,T (s)),

where z1 = x if j1 = 1, z1 = y if j1 = 2, z2 = x if j2 = 1, and z2 = y if j2 = 2.
Using (C2) and (C3), there are

μh,z(s) =

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂z
− 1

C2
h(s)

∂Ch(s)

∂z
Kh(s− u)]λs(u)du (4.5)

and

σh,z1z2(s)

=

∫
D

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂z1
− 1

C2
h(s)

∂Ch(s)

∂z1
Kh(s− u)]

× [
1

Ch(s)

∂Kh(s− u′)

∂z2
− 1

C2
h(s)

∂Ch(s)

∂z2
Kh(s− u′)]ϕ(u,u′)dudu′

+

∫
D
[

1

Ch(s)

∂Kh(s− u)

∂z1
− 1

C2
h(s)

∂Ch(s)

∂z1
Kh(s− u)]

× [
1

Ch(s)

∂Kh(s− u)

∂z2
− 1

C2
h(s)

∂Ch(s)

∂z2
Kh(s− u)]λs(u)du.

(4.6)

Equations (4.5) and (4.6) are important in our asymptotic studies.

Lemma 2. Assume (C1)–(C5) hold. Let μh(s) = (μh,x(s), μh,y(s))
T and

Σh(s) =

(
σh,xx(s) σh,xy(s)
σh,yx(s) σh,zz(s)

)
.

If s is an interior point of D, then for any fixed h there is

T− 1
2 [∇λ̂h,T (s)− μh(s)]

D→ N(0,Σh(s)) (4.7)

as T → ∞.

Theorem 2. Assume (C1)–(C5) hold and μh(s) �= 0. Let

θh(s) = arccos(μh,y(s)/‖μh(s)‖), if μh,y(s) ≥ 0,

=− arccos(μh,y(s)/‖μh(s)‖), if μh,y(s) < 0,
(4.8)

and

τ2h(s) =‖μh(s)‖−2[μ2
h,y(s)σh,xx(s)− 2μh,x(x)μh,y(x)σh,xy(s)

+ μ2
h,x(s)σh,yy(s)].

(4.9)
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Then for any fixed h, there is
√
T (θ̂h(s)− θh(s))

D→ N(0, τ2h(s)) (4.10)

as T → ∞.

Theorem 3. (Consistency) Assume (C1)–(C5) hold and ‖∇sλT (s)‖ �= 0. If

h → 0 and h4T → ∞ as T → ∞, then θ̂h(s)
P→ θ(s) at any interior point s ∈ D.

Theorem 4. (Asymptotic Normality) Assume (C1)–(C6) hold and
‖∇sλT (s)‖ �= 0. Let λs,x(s) = ∂λs(s)/∂x and λs,y(s) = ∂λs(s)/∂y. Denote

ḟ(s) as the vector of gradient and f̈(s) as the Hessian matrix of f(s). Denote

ν(s) =
1

2(λ2
s,x(s) + λ2

s,y(s))

×
∫
R2

K(u)uT [λs,x(s)λ̈s,y(s)− λs,y(s)λ̈s,y(s)]udu

(4.11)

and

τ2(s) = λs(s)‖∇λs(s)‖2(ξxλ2
s,y(s) + ξyλ

2
s,y(s)), (4.12)

where ξz =
∫
D[

∂Kh(u)
∂z ]2du with z = x and z = y, respectively. If h = cT− 1

8 as
T → ∞, then

T
1
4 (θ̂h(s)− θ(s))

D→ N(c2ν(s), τ2(s)/c4). (4.13)

It is important to provide the best strategy for the selection of the bandwidth
h used in the estimator. Here we consider the usual mean integrated squared
error (MISE) of θ̂h(s) criterion which is defined as

MISE(θ̂h(s)) =

∫
D
E[θ̂h(s)− θ(s)]2ds. (4.14)

The best strategy for the selection of h is derived by minimizing MISE(θ̂h(s)).

Theorem 5. Assume (C1)–(C6) hold. The MISE(θ̂h(s)) is asymptotically

minimized by taking h = cT− 1
8 with

c =

{∫
D τ2(s)ds∫
D ν2(s)ds

} 1
8

(4.15)

as T → ∞.

5. Simulation

We carried out simulation studies to evaluate the advantage of our gradient
angle-based analysis method comparing with traditional intensity-based analysis
methods. We wanted to address three basic issues. In the first, we wanted to
study the sensitivity of θ̂h(s) to the bandwidth h. As the choice of the bandwidth
is critical in estimating intensity functions, it is important to study the impact
of the values of h on estimates of gradient angles. This was evaluated within
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individual realizations. In the second, we wanted to study the reliability of θ̂h(s)

in the entire study region. We wanted to know whether the pattern of θ̂h(s) was
reliable to the change of intensity functions. We designed a mode change to
represent the global change of intensity functions. This was evaluated between
individual realizations. In the third, we evaluated the precision of θ̂h(s). We

compared θ̂h(s) with its true values. This was conducted via a large number of
simulation repetitions.

We evaluated the performance of ∇λ̂h,τ (s) displayed by (3.6) via simula-
tion studies. We simulated realizations from Poisson STPPs and Poisson cluster
STPPs on R

2 × [0, T ] with T = 1, 2, 5, 10. We considered these processes due to
their popularity in modeling geological and ecological data. In both processes,
we chose λ(s, t) = κφ[(s− s0)/σ0(t)]/σ

2
0(t) with κ = 1000T , where φ(s) was the

standard bivariate normal density, σ0(t) = 0.5 + 0.2(t/T ) was a time variant
scale parameter, and s0 was either fixed or varied to represent the gradient cen-
ter of ∇sλ(s, t) or the spatial mode of λ(s, t) equivalently. If s0 was fixed, then
λ(s, t) depended on time but angles of its gradient vectors projected to its spa-
tial domain did not, implying that λ(s, t) was angle invariant; otherwise, λ(s, t)
was not angle invariant. To study the impact of varied s0 on our approach, we
divided the time domain into two periods. We fixed s0 at distinct locations in
each of the two periods. This reflected the case when a sudden event occurred
at the beginning of the second period (or the end of the first period) which
significantly changed the global pattern of the point occurrences. It was similar
to the issue to be discussed in Great Sumatra-Andama earthquake data set in
Section 6. We chose κ = 1000, 2000, 5000, 10000 such that the total expected
number of points were equal to 1000, 2000, 5000, and 10000, respectively.

In order to generate a Poisson STPP, we first generated the total number of
points n from a Poisson random variable with expected values equal to κ. We
then generated temporal locations t1, · · · , tn uniformly on [0, T ]. For every ti, we
generated the spatial locations si independently from φ[(s− s0)/σ0(ti)]/σ

2
0(ti).

A Poisson STPP was then derived. In order to generate a Poisson cluster STPP,
we first generated the total number of parent points n0 from a Poisson random
variable with expected values equal to κ/k. We then generated parent tem-
poral locations t1, · · · , tn0 uniformly on [0, 1] as well as their spatial locations
s1, · · · , sn0 independently from φ[(s − s0)/σ0(ti)]/σ

2
0(ti). After parent points

were derived, we independently generated offspring points around parent points,
where each parent point had the Poisson(k) number of offsprings and the spa-
tiotemporal locations of offspring points to their parent points were determined
by a Gaussian distribution with the standard deviation equal to σ. We chose
k = 4 and σ = 0.01 in our simulation.

At the beginning of our simulations, we evaluated the performance of the
classical estimator of intensity functions based on simulated realizations. We
ignored the time of occurrences and attmpted to estimate λT (s) by λ̂h,T (s)
using (3.2) for each individual realization. We chose Kh(s) as the density of
the independent bivariate normal distribution with both means equal to 0 and
both variances equal to h2. We used various options of h to study the impact
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Fig 1. Contour plots of estimated intensity derived within a realization in the simulation for
a Poisson STPP with respect to selected h when κ = 1000 (or T = 1) and s0 is fixed at (0, 0).

of the bandwidth on λ̂h,T (s). For a given h, we studied variations of λ̂h,T (s)
by comparing the values between different realizations. We found that for each
individual realization values of λ̂h,T (s) highly depended on the choices of h

(Figure 1). For distinct realizations, values of λ̂h,T (s) significantly changed even
if values of h were not changed (not shown). Although their values varied greatly,

the circular shapes in the contour plot of λ̂h,T (s) were not significantly affected
by h. The entire pattern was extremely reliable among distinct realizations.
Based on the findings, we guessed that the gradient angles of intensity functions
might not be sensitive to the bandwidth h although it could significantly affect
estimates of intensity functions. This motivated us to study the performance of
estimated gradient angles rather than estimated values of intensity functions.

The performance of θ̂h(s) given by (3.6) were evaluated in two situations.
In the first situation, we assumed s0 was always fixed at (0, 0), implying that
λ(s, t) was angle invariant in the entire time domain. In the second situation, we
partitioned the time domain into two periods. The first period was formed by
time within [0, T/2], where s0 was fixed at (0, 0). The second period was formed
by time within (T/2, T ], where s0 was fixed at (0.5, 0). This situation reflected
the case when a sudden event occurred at t = 0.5T , which moved the gradient
center of ∇sλ(s, t) or the spatial mode of λ(s, t) from (0, 0) to (0.5, 0).

We used all of the point occurrences in the computation of θ̂h(s) when s0 was

always fixed at (0, 0) (Figure 2). The values of θ̂h(s) contained the length and
the direction information of the gradient vectors. It showed that the lengths of
the gradient vector were significantly affected by the choices of h but the angles
were not. This was consistent with our previous findings obtained from Figure
1. To study the reliability of θ̂h(s), we compared the gradient angle patterns
among different realizations in our simulations. We did not find any significant
changes visually.
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Fig 2. Estimated gradient patterns derived within a realization in the simulation for a Poisson
STPP with respect to selected h when κ = 1000 (or T = 1) and s0 is fixed at (0, 0).

Fig 3. Estimated gradient patterns derived from realizations in the simulation for a Poisson
STPP with respect to selected h when κ = 1000 (or T = 1) and s0 moves from (0, 0) in the
first period to (0.5, 0) in the second period.

We studied the performance of θ̂h(s) according to the two time periods when

s0 varied (Figure 3). In the first time period, we computed the values of θ̂h(s)
using points with ti ≤ 0.5T . In the second time period, we computed the values
of θ̂h(s) using points with ti > 0.5T . We had identified significant changes
in the comparison of gradient angle patterns between the two periods. The
gradient center was almost fixed at (0, 0) in the first period or at (0.5, 0) in
the second period, indicating that a global change of point occurrences was
identified in the data. Gradient angles were not sensitive to the choices of h in
both periods, which were also reliable in the comparison of patterns between
distinct realizations.
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Table 1

Simulation results for the root MISE of the differences between the true and estimated
spatial angles of gradient vectors of the first-order intensity functions in the Poisson STPPs
and Poisson cluster STPPs, respectively, when s0 = (0, 0), κ = 1000T , and the number of

replications is 10, 000.

Poisson for different h Poisson cluster for different h
T 2.2 2.0 1.8 1.6 2.2 2.0 1.8 1.6
1 0.0305 0.0304 0.0310 0.0318 0.0334 0.0332 0.0329 0.0345
2 0.0213 0.0212 0.0215 0.0216 0.0229 0.0247 0.0239 0.0246
5 0.0135 0.0134 0.0135 0.0136 0.0150 0.0148 0.0153 0.0158
10 0.0096 0.0095 0.0096 0.0100 0.0107 0.0105 0.0106 0.0109

Based on our findings in the two situations, we further studied the perfor-
mance of θ̂h(s) if points were partitioned into more than two time periods (not
shown). When s0 was fixed at (0, 0), as the case considered in the first situa-
tion, we found that the angle patterns were almost identical among all of these
periods. If s0 varied from (0, 0) to (0.5, 0), as the case considered in the second
period, the angle patterns had significant changes as time approached to 0.5T .
After that, no significant changes were founded. Therefore, we conclude that
the usage of gradient angle patterns can be more efficient in the study of the
change of global patterns of spatiotemporal point data.

Although we have only displayed the results for Poisson STPPs, we also stud-
ied similar issues for Poisson cluster STPPs. We did not found any significant
differences in our studies for Poisson cluster STPPs. Therefore, we decided not
to show the results. In addition, we used a data driven approach to study the
robustness of our findings. We carried out the cross-validation approach for in-
dividual realizations. We did not find any significant changes of the patterns
of θ̂h(s) in the approach. Based on our studies, we conclude that the findings
reflected by Figures 2 and 3 should be general in all types of STPPs.

In the end, we evaluated the accuracy of θ̂h(s) when s0 was fixed at (0, 0),
indicating that the issue was considered only for an angle invariant λ(s, t) in the
entire temporal domain. We computed the angle difference between the true
and the estimated angles at each point in the study area using

dθ,h(s) = 2 arcsin

(
‖θ(s)− θ̂h(s)‖

2

)
,

where θ(s) always pointed to the spatial origin based on our simulation patterns.
After values of dθ,h(s) were derived, we computed the mean integrated square
error (MISE) of angle differences by integrating the squares of their values over
the whole study area. We then compared the root MISE values for selected
bandwidth h based on 10,000 simulation replications (Table 1). We found that
the MISEs of the Poisson cluster STPPs were a little bit larger than the MISEs
of the Poisson SPPs. The MISE decreased as κ increased. The change of MISEs
was not large in all of the cases that we had studied.

In summary, we found that angles of gradient vectors of the first-order inten-
sity function were not sensitive to the choice of the bandwidth. Gradient angle
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patterns were extremely stable among different realizations. We did not find
any siginificant changes if the mode of the first-order intensity function did not
vary. Estimates of gradient angles were more precise than estimates of intensity
functions. Therefore, it is important to pay more attention to the change of
angle patterns in practice.

6. Applications

We expected that our method would have wide applications in natural haz-
ard studies. Earthquakes are considered as the most important natural hazard
events. They often result in numerous deaths and damages. This motivated us
to apply our method to earthquake data. Many sources of earthquake data have
been established and available via internet and can be downloaded for free. Ex-
amples include the websites of the United States National Geophysical (USGS)
data center, the Northern California Earthquake Data Center (NCEDC), the
GeoCommunity data center, and many others. The database contains dates,
depths, longitude, latitude, and magnitude of earthquakes at the regional or
global level from thousands of years ago to recent years.

An important issue in the analysis of earthquake data is the problem of
earthquake clusters caused by aftershocks. The presence of earthquake clusters
often makes it hard to understand earthquake activities. A number of statistical
methods have been proposed for earthquake clusters. One of the most important
model is the epidemic-type aftershock sequences (ETAS) model [26, 27, 40].
The ETAS model, which is defined by a conditional intensity function only
affected by ancestors but not offsprings, has been widely used for earthquakes
[3, 7, 35]. The ancestors may be understood as mainshock earthquakes, which
are described by their spatiotemporal locations and corresponding magnitudes.
If an extremely large mainshock earthquake occurs, then within a short time
period the ETAS model is primarily dominated by its aftershock patterns, which
implies the impact of the other mainshock earthquakes can be ignored. Let the
magnitude and the spatiotemporal location of the extremely large mainshock
earthquake be denoted by M∗ and (s∗, t∗) = (x∗, y∗, t∗), respectively. Then, the
conditional intensity function [27, 40] can be approximately expressed as

λ∗(s, t,M) = j(M)[μ(x, y) + κ(M∗)u(t− t∗)v(x− x∗, y − y∗|M∗)], (6.1)

where μ(x, y) represents the background earthquakes, j(M) satisfies∫∞
0

j(m)dm = 1, M represents the magnitude, and (s, t) = (x, y, t) represents
the spatiotemporal location of aftershock earthquakes. By integrating out the
magnitude term given by j(M), if the point pattern is only considered within a
short time period after the extremely large mainshock earthquake, then μ(x, y)
can be ignored, which implies that the intensity function of the point pattern
can be approximately expressed by (2.4) in Example 3 of Section 2, which is
angle invariant.

To investigate whether a spatiotemporal point pattern of aftershocks of ex-
tremely large earthquake satisfies Model (2.4), we collected the historical earth-
quake data from the NCEDC website. The website contained global earthquake
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activities since 1900. Since our interests were earthquake patterns in this cen-
tury, we collected earthquake data with magnitude greater than or equal to 4.0
from 2000 to 2014 from the website. The data contained 197 major earthquakes
(≥ 7.0) and 16 great earthquakes (≥ 8.0). Since Model (2.4) was approximately
derived for extremely large earthquakes based on the ETAS, we focused on great
earthquakes in the data. We had two interesting and important cases. The first
case was the Great Tohoku Earthquake which occurred in March 11, 2011 with
magnitude 9.1 at 38.30 latitude North and 142.37 longitude East. The Great
Tohoku earthquake was the most powerful earthquake ever recorded to have
hit Japan [33], which caused over twenty thousand life lost. Importantly, the
Great Tohoku Earthquake also produced a severe tsunami which caused seri-
ous nuclear accidents in Fukushima Nuclear Power Plants affecting hundreds of
thousands of residents in a few thousands square kilometers area. Besides the
Great Tohoku Earthquake, the second important case was the Great Sumatra-
Andama Earthquake which occurred in December 26, 2004 with magnitude 9.0
at 3.30 latitude North and 95.98 longitude East. The Great Sumatra-Andama
earthquake was the most powerful earthquake in the area of Indian Ocean near
the coast of Indonesia in the recorded history [22]. The earthquake caused over
two hundred thousand life lost in over fourteen countries. Most of those were
killed by the tsunami triggered by the earthquake.

To investigate the earthquake pattern caused by the Great Tohoku Earth-
quake, we focused on aftershock earthquakes that occurred within an area from
30 latitude north to 45 latitude north and from 130 longitude east to 150 lon-
gitude east from March 11, 2001 to September 10, 2001, which contained a six-
month time period of aftershock earthquake occurrences of the Great Tohoku
Earthquake. The dataset contained 4543 aftershock earthquakes with magnitude
greater than or equal to 4.0. There were 656 earthquakes with magnitude be-
tween five and six, 72 earthquakes between six and seven, and three earthquakes
between seven and eight. The largest aftershock earthquake with magnitude 7.9
and the second largest aftershock earthquake with magnitude 7.7 occurred in
the same day of the mainshock earthquake. After the first day, the largest after-
shock earthquake with magnitude 7.1 occurred about 27 days later. Therefore,
there were no extremely large (i.e. great) aftershock earthquakes in the Great
Tohoku Earthquake dataset.

We partitioned the sixth-month time period into six 30-day or 31-day time
intervals. Within each time interval, we estimated the gradient pattern of after-
shock occurrences using ∇λ̂h,τ (s) given by (3.5), where the normal kernel with
bandwidth equal to 100km was used. The bandwidth value was obtained by
a cross-validation procedure with a number of candidate values. We also con-
sidered other bandwidth values and found that the patterns were similar. We
compared the patterns of ∇λ̂h,τ (s)/n (Figure 4), where n was the number of
aftershock earthquakes in the time period. We had n equal to 3087 the first,
563 in the second, 308 in the third, 217 in the fourth, 195 in the fifth, and 173
in the sixth time periods, respectively. We had several interesting findings in
the comparison between these patterns: (a) the gradient centers of all of the
six patterns were almost fixed at 37.5 latitude north and 142.5 longitude east,
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Fig 4. Gradient patterns of aftershock earthquakes for the 2011 Great Tohoku Earthquake,
where the mainshock (magnitude 9.1) occurred on March 11, 2011.

which was about 90km away from the epicenter; and (b) the angles of all of
gradient vectors considered in the study area almost kept constants but their
lengths varied significantly. Based on our findings, we could roughly conclude
that the patterns displayed by Figure 4 were consistent with the assumptions
of the ETAS model.

To investigate the earthquake pattern caused by Great Sumatra-Andama
earthquake, we focused on aftershock earthquakes that occurred within an area
from 10 latitude south to 15 latitude north and from 90 longitude east to 105
longitude east from December 26, 2004 to June 26, 2005, which contained a six-
month time period of aftershock earthquake occurrences of the Great Sumatra-
Andama earthquake. The dataset contained 4381 aftershock earthquakes with
magnitude greater than or equal to 4.0. There were 687 earthquakes with magni-
tude between five and six, 43 earthquakes with magnitude between six and seven,
3 earthquakes with magnitude between seven and eight, and one extremely large
aftershock earthquake with magnitude 8.6 at 2.09 latitude north and 97.11 lon-
gitude east on March 28, 2005. We also partitioned the sixth-month time period
into six 30-day or 31-day time intervals. Within each time interval, we also com-
puted ∇λ̂h,τ (s) using (3.5), where the normal kernel with bandwidth equal to
100km were used. This was also obtained by a cross-validation procedure with
a number of candidate values. We also considered other bandwidth values and
found that the patterns were similar. Similarly, we compared the patterns of
∇λ̂h,τ (s)/n (Figure 5). We had n equal to 1288 in the first, 964 in the second,
201 in the third, 1348 in the fourth, 343 in the first, and 237 in the sixth time
periods, respectively. Based on Figure 5, we had: (a) the gradient center of the
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Fig 5. Gradient patterns of aftershock earthquakes for the 2004 Great Sumatra-Andaman
Earthquake, where the mainshock (magnitude 9.0) and the largest aftershock (magnitude 8.6)
occurred on December 26, 2004 and March 28, 2005, respectively.

first three months was almost fixed at latitude 7.0 north and longitude 93.5
east, which was about 500km northwest of the mainshock earthquake epicenter;
(b) the largest aftershock earthquake with magnitude 8.6 occurred three month
later at the opposite direction of the first three month gradient center from the
location of the mainshock earthquake, which was at about 184km southeast of
the mainshock epicenter; and (c) the gradient center gradually moved back to
the mainshock epicenter after the largest aftershock earthquake occurred and
the two centers were almost identical a few months later. It was clear that the
gradient patterns displayed by Figure 5 was inconsistent with the assumption
of the ETAS model. The ETAS model assumes aftershock earthquakes occur
symmetrically in space about the epicenter of the mainshock earthquake, but
this was not true in the pattern displayed by Figure 5.

In summary, we concluded that the angle patterns of gradient vectors of the
first-order intensity function was almost time invariant in the 2011 Great Tohoku
Earthquake data but not in the 2004 Great Sumatra-Andaman Earthquake data.
The possible reason was the existence of extremely large aftershock earthquakes
a few months later, which appeared in the 2004 Great Sumatra-Andaman Earth-
quake data but not in the 2011 Great Tohoku Earthquake data. The extremely
large aftershock earthquake reflected the unbalanced release of energy which sig-
nificantly affected the earthquake aftershock pattern. The ETAS model would
be appropriate in modeling the aftershock earthquake patterns if there were not
extremely large aftershock earthquakes. Otherwise, other models should be con-
sidered. If the gradient center of aftershock earthquakes was far away from the
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epicenter, then it was possible that there existed an extremely large aftershock
earthquake in the opposite direction of the gradient center. This is an important
future research topic.

7. Discussion

We have proposed a gradient angle-based analysis method for spatiotemporal
point processes (STPPs). The method is developed based on a gradient-based
assumption, called the angle invariant assumption, for the first-order intensity
function of STPPs. If the angle invariant assumption holds, then the angle of
gradient vectors of the first-order intensity in the spatial domain does not vary
in time but the length may be time varied. This concept is important in the
study of many human and natural phenomena when clusters of point patterns
are present. Because angle patterns of gradient vectors within clusters are more
reliable than their length patterns as time varies, it is possible for us to capture
the main feature of STPPs by studying patterns of gradient angles of its first-
order intensity function. The method based on gradient angles suggests that
one should pay more attention to the angles rather than the lengths of gradient
vectors for dynamics of spatiotemporal point patterns. If gradient angle patterns
have significant changes, then a global change may appear.

Since only the first-order property is assumed, the choice of the second-order
property is flexible. Both the first-order and the second-order intensity functions
are important in applications. It is interesting to combine our method with
other methods for analysis of the second-order properties. For instance, if the
second-order intensity is also modeled by the second-order intensity-reweighted
stationary or isotropic process [1], then both the first-order and the second-
order intensity functions are specified. The joint use of our gradient angle-based
method and other statistical methods for second-order properties may provide
efficient and effective approaches to understand the dynamics of spatiotemporal
point patterns.

We expect that our gradient angle-based method will have wide applications
in natural hazard and infectious disease studies. Many natural hazard phenom-
ena can be described by spatiotemporal point processes with marks. The angle
pattern of gradient vectors describes the tendency of changes of occurrences,
which may depend on the magnitude (i.e. marks) of events. The usage of angle
patterns is likely to provide solutions to visualize the linkage between different
time periods of the occurrences of natural hazard events. For infectious diseases,
the angle pattern is even more important since it can be easily interpreted as the
way of the spread of a disease. We suspect that the way of infection is changed
if a significant change of the gradient angle pattern has been found.

There are a few possible extensions to our approach. First, the gradient angle-
based analysis method only needs that the angle of gradient vector is invariant
in time. It does not provide any further methods to model the angle patterns.
To make the model more precise, one can use a parametric method to model
the angle pattern such that a parametric approach is derived. Second, although
we have provided a kernel-based nonparametric approach to estimate the angle
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pattern, we have not considered other approaches such as the smoothing spline
approach [14]. Therefore, many nonparametric approaches may be considered.
Third, explanatory variables are usually important in statistics but the problem
has not been considered in our approach. It is of interest to consider a way to
incorporate explanatory variables in our model and this should be an important
problem in future research.

Appendix A: Proofs

Proof of Theorem 1: Let λ(s, t), λB(s) and λB̃(s) be the first-order intensity
functions of N , NB , and NB̃ , respectively. If N is angle invariant, then there
exists a function θ(s) defined on D taking values on [−π, π) such that

∂λ(s, t)

∂x
= ‖∇sλ(s, t)‖ cos θ(s)

and
∂λ(s, t)

∂y
= ‖∇sλ(s, t)‖ sin θ(s).

Then, the gradient of λB(s) is

∇λB(s) =(

∫
B

∂λ(s, t)

∂x
dt,

∫
B

∂λ(s, t)

∂y
dt) = (cos θ(s), sin θ(s))

∫
B

‖∇sλ(s, t)‖dt,

which implies that the angle of ∇λB(s) is still θ(s). Therefore, the angle of
∇λB(s) does not depend on B, which implies that NB and NB̃ have similar

patterns for any B, B̃ ⊆ T . In addition, if the angle of ∇λB(s) is invariant in
B, then there exists a function θ(s) defined on D taking values on [−π, π) such
that

∇λB(s) = (cos θ(s), sin θ(s))‖∇λB(s)‖ = (

∫
B

∂λ(s, t)

∂x
dt,

∫
B

∂λ(s, t)

∂y
dt). (A.1)

Let Bt0(a) = [t0 − a, t0 + a] for any t0 ∈ R and a ∈ R
+. Then, ‖∇sλ(s, t0)‖ =

lima→0 ‖∇λBt0 (a)
‖/(2a) for any t ∈ T . Since λ(s, t) is continuously differentiable

in s and t, ‖∇λB(s)‖ is continuous in s. Therefore, θ(s) is continuous in s
if supt∈T ‖∇sλ(s, t)‖ > 0, which implies that θ(s) is uniquely determined by
(A.1). If ‖∇s(s, t)‖ = 0 for any t ∈ T , then θ(s) is not uniquely defined in (A.1).
In this case, we have ‖∇λB(s)‖ = 0 for any B ⊆ T , which is not included in
Definition 1. Therefore, N is angle invariant.

Proof of Lemma 1: Let ai = (i/m)T for any positive T with i = 0, · · · ,m.
Define U(u; ε) as the small disc centered at u with diameter ε in D. Let

Sm =
1

T

m∑
i=1

m∑
j=1,j �=i

f((u, v), (u′, v))

× Corr{N [U(u; ε)× [ai−1, ai)], N [U(u′; ε)× [aj−1, aj)]},
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where u and u′ are interior points of D. If |f((u, v), (u′, v′)| < M and λ(s, t) ≤
C, then there exists a c > 0 such that

|Sm| ≤ 1

T

m∑
i=1

m∑
j=1,j �=i

|f((u, v), (u′, v))

× Corr{N [U(u; ε)× [ai−1, ai)], N [U(u′; ε)× [aj−1, aj)]}|

≤ 1

T

m∑
i=1

m∑
j=1,j �=i

cMλ(u, ai)λ(u
′, aj)

× [max(1,
T

m
(j − i))]−(1+α)|U(u, ε)||U(u′, ε)|

≤ 1

T

m∑
i=1

m∑
j=1,j �=i

cMC2[max(1,
T

m
(j − i))]−(1+α)|U(u, ε)||U(u′, ε)|

→2cMC2(1 +

∫ T

1

t−(1+α)dt)|U(u, ε)||U(u′, ε)|

as m → ∞. Therefore, Sm absolutely converges as T → ∞. The conclusion is
drawn since with Condition (C2) the quantity defined by (4.4) is the limit of
Sm/(|U(u, ε)||U(u′, ε)|) under m → ∞ and ε → 0.

Proof Lemma 2: For any measurable A ⊆ D and m ∈ R
+, let Xi = N(A ×

[(i − 1)T/m, iT/m)) −
∫
A

∫ iT/m

(i−1)T/m
λ(s, t)dtds. Then, N(A × T ) =

∑m
i=1 Xi.

Using Condition (C1), there are E(Xi) = 0 and V (Xi) < ∞. Using Conditions
(C3) and (C4), there is

b2h(A) = lim
T→∞

V [N(A× T )]

T
=

∫
A

∫
A

ϕ(u,u′)dudu′ −
∫
D

λs(u)du.

Since the conclusion of Corollary 1 in [18] can be applied if Condition (C5) holds,
there is N(A× [0, aT ])/(bh(A)

√
T ) weakly converges to the standard Brownian

motion on [0, 1]. Note that this conclusion holds for any fixed measurable A ⊆ D.
Using the standard method of simple functions for Lebesgue Integral, we can
show the left-hand side of (4.7) is normally distributed. Using (4.5) and (4.6),
we derive the conclusion of the lemma.

Proof of Theorem 2: Using the polar transformation of x = r cosω and y =
r sinω, where 0 ≤ r < ∞ and ω ∈ [−π, π), there are r =

√
x2 + y2 and ω =

arccos(x/
√
x2 + y2) if y > 0 and ω = − arccos(x/

√
x2 + y2) if y < 0. The

gradient of ω is ∇ω = (−y/(x2 + y2), x/(x2 + y2)). Putting x = μh,x(s) and
y = μh,y(s) in ω and ∇ω, we have cos θh(s) = μh,y(s)/‖μh(s)‖ and sin θh(s) =
μh,x(s)/‖μh(s)‖. Then, the conclusion of the theorem is drawn using the Delta
Theorem.

Proof of Theorem 3: For any interior point s ∈ D, there are limh→0 Ch(s) = 1
and limh→0 ‖∇Ch(s)‖ = 0. Using the integral by part in (4.5), there is
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lim
h→0

μh,z(s) = lim
h→0

∫
D

∂Kh(s− u)

∂z
λs(u)du

= lim
h→0

∫
D

∂λs(u)

∂z
Kh(s− u)du

=
∂λs(s)

∂z
.

Therefore, limh→0 T
−1μh(s) = ∇λs(s). For σh,z1z2 given by (4.6), we study

∇Kh(s) = h3∇K(s) and find limh→0 h
3+v sups∈D ‖∇Kh(s)‖ = 0. Then

lim
h→0

h4σh,z1z2 ≤ lim
h→0

h3 sup
s∈D

‖∇Kh(s)‖
∫
D

∂Kh(s− u)

∂z2
λs(u)du

= lim
h→0

h3 sup
s∈D

‖∇Kh(s)‖
∂λs(s)

∂z2

<∞.

Therefore,

lim
T→∞

‖V(∇λ̂h,T (s)

T
)‖ = lim

T→∞

1

T
‖V( λ̂h,T (s)√

T
)‖ ≤ lim

T→∞

1

h3T
h3‖Σh(s)‖ = 0,

where ‖M‖ represents the L2-norm of the matrix M. Therefore, using the

Chebychev inequality, we have T−1∇λ̂h,T (s)
P→ ∇λs(s). Using the Continuous

Mapping theorem, there is

∇λ̂h,T (s)

‖∇λ̂h,T (s)‖
P→ (cos θ(s), sin θ(s)).

Therefore, θ̂h(s)
P→ θ(s).

Proof of Theorem 4: For any small sufficient h, using the Taylor expansion,
there is

λs,z(s− hu) = λs,z(s)− hλ̇T
s,z(s)u+

h2

2
uT λ̈s,z(s)u+ o(h2),

where z = x or z = y. Using the integral by part, there is

lim
h→0

h−2∇μh(s)

=( lim
T→∞

h−2

∫
D

∂Kh(s− u)

∂x
λs(u)du, lim

T→∞
h−2

∫
D

∂Kh(s− u)

∂y
λs(u)du)

=( lim
T→∞

h−2

∫
D
Kh(s− u)λs,x(u)du, lim

T→∞
h−2

∫
D
Kh(s− u)λs,y(u)du)

=( lim
T→∞

h−2

∫
D
K(u)λs,x(s− hu)du, lim

T→∞
h−2

∫
D
K(u)λs,y(s− hu)du).

Then,

lim
T→∞

h−2[∇μh(s)−∇μ(s)]
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= (
1

2

∫
R2

K(u)uT λ̈s,x(s)udu,
1

2

∫
R2

K(u)uT λ̈s,y(s)udu).

Using θh(s) in (4.8), we derive the expression of the bias as

ν(s) = lim
h→0

h−2(θh(s)− θ(s))

=
1

2(λ2
s,x(s) + λ2

s,y(s))

∫
R2

K(u)uT [λs,x(s)λ̈s,y(s)− λs,y(s)λ̈s,y(s)]udu.

Next, we study the behavior of σh,z1z2 as h → 0. Since the first term in (4.6)
can be ignored, for z = x or z = y there is

lim
h→0

h4σh,zz = lim
h→0

h3

∫
D
[
∂Kh(s− u)

∂z
]2λs(u)du

= lim
h→0

∫
R2

[
∂K(u)

∂z
]2λs(s− hu)du = λs(s)ξz

and

lim
h→0

h4σh,xy = lim
h→0

h4

∫
D

∂Kh(s− u)

∂x

∂Kh(s− u)

∂y
λs(u)du

= lim
h→0

h4

∫
R2

K2
h(s− u)

∂2λs(u)

∂x∂y
du

=0.

Then,

lim
h→0

h4τ2h(s) = λs(s)‖∇λs(s)‖2(ξxλ2
s,y(s) + ξyλ

2
s,y(s)).

If h = cT− 1
8 , then

T
1
4 (θ̂h(s)− θ(s)) =T

1
4 [(θ̂h(s)− θh(s)) + (θh(s)− θ(s))]

=
h2

c2
[
√
T (θ̂h(s)− θh(s))] +

c2

h2
(θh(s)− θ(s))

D→N(c2ν(s), τ2(s)/c4),

as T → ∞.
Proof of Theorem 5: Straightforwardly, there is

MISE(θ̂h(s)) =

∫
D
[Bias2(θ̂h(s) + V(θ̂h(s))]ds

=
1

T 1/2

∫
D
[c4ν2(s) + τ2(s)/c4]ds+ op(1/T

1/2)

=
c4

T 1/2

∫
D
ν2(s)ds+

1

c4T 1/2

∫
D
τ2(s)ds+ op(1/T

1/2),

where is asymptotically minimized at h = cT− 1
8 with c given by (4.15).
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