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Abstract: We consider three Bayesian penalized regression models and
show that the respective deterministic scan Gibbs samplers are geomet-
rically ergodic regardless of the dimension of the regression problem. We
prove geometric ergodicity of the Gibbs samplers for the Bayesian fused
lasso, the Bayesian group lasso, and the Bayesian sparse group lasso. Geo-
metric ergodicity along with a moment condition results in the existence of
a Markov chain central limit theorem for Monte Carlo averages and ensures
reliable output analysis. Our results of geometric ergodicity allow us to also
provide default starting values for the Gibbs samplers.
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1. Introduction

Let y € R™ be the observed realization of the response Y, X be the n x p model
matrix, and 5 € RP be the regression coefficient vector. The goal, generally,
is to identify important predictors amongst the p covariates and estimate the
corresponding coefficients in 5. However, for many problems in genetics, image
processing, chemometrics, economics etc, the number of covariates, p, can be
much larger than n, making it difficult to use classical regression techniques.
Bayesian and frequentist penalization methods have been useful in such situa-
tions. Consider the Bayesian regression model of the form

Y| B,0% ~ Nu(XB,0°I,)
5|77,02 ~ Np(0702277)

n ~ pn)

o° ~ Inverse-Gamma(a,§), (1.1)
where a, § > 0 are assumed known, 3, is a px p covariance matrix determined by
n € R%, and p(n) is a proper prior on 7. Many Bayesian penalized regression and
variable selection models can be presented in this framework (see for example
[11, 20, 25, 37]). The resulting posteriors are often intractable and Markov chain
Monte Carlo (MCMC) is used to estimate model parameters.
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Consider the Bayesian fused lasso, the Bayesian group lasso [20], and the
Bayesian sparse group lasso [36], all three of which belong to the family of
models in (1.1). The Bayesian group lasso and the Bayesian sparse group lasso
find use in medical research [5, 10, 23, 27]. The Bayesian fused lasso has been
used in breast cancer research [39]. Given the use of these models in medical
research, reliable inference is essential.

Reliable estimation from MCMC output rests heavily on the rate of conver-
gence of the Markov chain. In particular, a geometric rate of convergence lets
users appeal to the Markov chain central limit theorem (CLT), allowing for the
estimation of Monte Carlo error in posterior estimates and consistent estima-
tion of effective sample size. We show that the MCMC samplers used in the
three models converge to their respective stationary distribution at a geometric
rate. That is, we show that the Gibbs samplers are geometrically ergodic (formal
definitions are in Section 2).

In the models we study, the full conditionals for 3, 1, and ¢ are avail-
able in closed form so that it is straightforward to draw samples from f(8 |
n,0%y), f(n | B,0%,y), and f(o? | B,n,y). As a consequence, a three variable
deterministic scan Gibbs sampler is implemented to draw approximate samples
from the intractable posterior distribution and inference is done using sample
statistics. The quality of estimation is affected not only by the size of the Monte
Carlo sample, but also by the rate of convergence of the Gibbs sampler. We
show that all three Gibbs samplers converge to their respective stationary dis-
tribution at a geometric rate under reasonable conditions. Specifically, we only
require the number of observations, n, to be larger than three and require no
assumptions on the number of covariates, p or the model matrix X. This geo-
metric rate of convergence allows for reliable estimation of posterior quantities
in the following way.

Let F denote the posterior distribution of (3,7, 02) obtained from (1.1), de-
fined on the space X = R? x R x Ry and let f(3,n, 02 | y) be the associated
density. Let g : X — R% be an F-integrable function, then interest is in estimat-
ing

7= /xgw,n,a?) £(B.0,0% | y)df dydo® < oo.

Typically 6 represents means, variance or quantiles of the posterior distribution.
For t = 0,1,2,..., let (8®),5® 5%1) be the samples obtained using a Harris
ergodic Gibbs sampler. Then, with probability 1, for every (8, n(®), 52(0)) € X

N—1
1
== 3 g(A0, y®, 620 N
Oy : Nt_og(,B o)y -0 as N — oco.

However, in finite samples there is typically a non-zero Monte Carlo error 6 — 6
and an approximate sampling distribution of this error may be available via a
Markov chain CLT. Let || - || denote the Euclidean norm. If the deterministic
scan Gibbs sampler is geometrically ergodic and

/X 908, m,0%)||** 1(B.n, 0% | y)dB dn do® < o,
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then a Markov chain CLT holds as below:
Vi(Oy —0) 5 Ny0,%) as N — oo, (1.2)

where Y is the d x d asymptotic covariance matrix that is difficult to calculate
due to the serial correlation in the Markov chain. However, if the process is
geometrically ergodic, then [34] and [35] provide strongly consistent estimators
of X.. This leads to the construction of asymptotically valid confidence ellipsoids
around Oy and consistent estimation of effective sample size [34]. Under the
assumption of geometric ergodicity, the diagonals of ¥ were estimated by [6],
[7], [8], [12], and [17] leading to reliable univariate analysis of MCMC output.
For estimating quantiles, [4] show that geometric ergodicity leads to strongly
consistent estimators of the Monte Carlo error.

There has been a considerable amount of work done in establishing geomet-
ric ergodicity of Gibbs samplers; many of which are two variable Gibbs sam-
plers. Two variable Gibbs samplers are special because the marginal process
for each variable is a Markov chain with the same rate of convergence as the
joint chain. Thus, it is sufficient to study the marginal chains to ascertain the
properties of the joint chain. Higher variable Gibbs samplers do not benefit
from this property and thus studying their rate of convergence is often more
challenging. Geometric ergodicity of the three variable Gibbs samplers in the
Bayesian lasso and the Bayesian elastic net were shown by [19] and [31], respec-
tively; [24] proved geometric ergodicity of the three variable Gibbs sampler for
the normal-gamma model of [9]; [18] demonstrated geometric ergodicity of the
three variable Gibbs sampler in Bayesian quantile regression, and [3] and [16]
demonstrated geometric ergodicity of the three variable Gibbs sampler in hier-
archical random effects models. Recently, [14] established geometric ergodicity
of a four variable random scan Gibbs sampler for a hierarchical random effects
model.

The rest of the paper is organized as follows. In Section 2 we present im-
portant definitions and some relevant Markov chain background. In Section 3,
Section 4, and Section 5 we present the models and main results for the Bayesian
fused lasso, Bayesian group lasso, and the Bayesian sparse group lasso. We finish
with a discussion in Section 6. All proofs are deferred to the appendices.

2. Markov chain background

Recall that F' denotes the posterior distribution of (3,7, 0?) obtained from (1.1)
and f(B,7n,0? | y) is the associated density. Also recall that X = RP x R xRy
is the support of the posterior and let B(X) denote the Borel o-algebra. Let
f(B | n,02,y) be the density of the full conditional distribution of 8 and similarly
denote the densities of the conditional distributions of n and o2 with f(n |
B,0%,y) and f(o? | B,n,y), respectively. Let (8, (0 52(0)) be the starting
value for the Gibbs sampler and define the Markov chain transition density
(MTD) for the deterministic scan Gibbs sampler as
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k(80,7620 | (80,7©,620)) = (8 | D, 620, )
x fM | 8O, 0%, y)
x f(@*D [ 8O0, y).

Then, the one-step transition kernel P : X x B(X) — [0, 1] is such that for any
A € B(X),

P ((5(0),77(0)702(0))714)

=Pr ((5(1),77(1)’02(1)) €Al (5(0)777(0)702(0)))
- / E((89,10,0%0) | (59,70, 6%9)) dp® dy® do®).
A

Similarly, the t-step Markov chain transition kernel for the deterministic scan
Gibbs sampler is P! : X x B(X) — [0,1] such that for all A € B(X),

P ((B®,5®,02®), 4) = Pr (8,99, 0%0) € 4| (80,70, %)) .

Let || - ||rv denote total variation norm. If the Markov chain is aperiodic,
irreducible, and Harris recurrent (see [22, 29] for definitions), then for every
(B0, ) 52000) ¢ X

HPt ((B(O),U(O),o2(°))a ) _ F(.)HTV v 0ast—s oo,

However, convergence of the transition kernel to the invariant distribution is
not sufficient to ensure reliable inference and a geometric rate of convergence
is often required. The Gibbs sampler is geometrically ergodic if there exists a
function M : X — [0,00) and 0 < p < 1 such that for all (), 5(®) 520 ¢ X,

t 0) (0 52000y ) _ py. (0) (0) 52(0)y) ¢
[P (890,02 ) =) <2 (8O0, )) . (21)
Since p < 1, the upper bound in (2.1) decreases at a geometric rate as a function
of t. We will show that the three Gibbs samplers are geometrically ergodic by
establishing a drift condition and an associated minorization condition. In effect,
we will determine M up to a proportionality constant and minimize this quantity
to arrive at default starting values for the Gibbs samplers. Our results can also
be used to obtain quantitative upper bounds for (2.1) using the results of [30];
we do not explore that here.

Geometric ergodicity is often demonstrated by establishing a drift condition
and an associated minorization condition. A drift condition is said to hold if
there exists a function V' : X — [0,00), and constants 0 < ¢ < 1 and L < o0
such that for all (8y,n0,03) € X,

E [V(ﬂ,ﬂ302) ‘ 50377070-(2)] < QZ)V(B();T]O?O—(Q)) +L. (22)

In (2.2), the expectation is with respect to the MTD for the Gibbs sampler.
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Consider for d > 0, the set Cq = {(8,1,0?) : V(8,7,0%) < d}. A minorization
condition holds if there exists an € > 0 and a distribution @) such that for all
(Bo,m0,03) € Cq

P ((Bo,10,05), ) = €Q(-). (2.3)

It is well know that both (2.2) and (2.3) together imply geometric ergodicity (see
[15] and [22]). The drift rate ¢ determines how fast the Markov chain drifts back
to the small set Cy. A drift rate close to one signifies slower convergence and a
smaller value indicates faster convergence. See [15] for a heuristic explanation.

When a drift condition holds, [22], [28], and [29, Fact 10] explain that the
function M is proportional to the drift function V up to an unknown constant.
Thus, minimizing V over the state space leads to the tightest bound in (2.1) for
our choice of V. This will lead us to default starting values for the three Gibbs
samplers.

3. Bayesian fused lasso

Recall that y € R™ is the observed realization of the response Y, X is the n x p
model matrix, and 5 € RP is the regression coefficient vector. Tibshirani et al.
[33] proposed the fused lasso in an effort to account for ordering in the predictors.
In addition to penalizing the L; norm of the coefficients, the fused lasso also
penalizes pairwise differences. That is, for tuning parameters A, Ay > 0, the
fused lasso estimate is,

P p—1
5fused = argmgx ”y - Xﬂ”2 + A1 Z |ﬁ]‘ + A2 Z |/Bj+1 - /BJ| . (31)
j=1 j=1

A Bayesian formulation of the fused lasso requires a prior on 3 so that the re-
sulting posterior mode is Bgysed. Kyung et al. [20] present the following Bayesian
formulation of the fused lasso. Let

Y | 6#72,7'2 ~ Nn(XﬂaUQIn)

S| 2 w? o? ~ Np(O,U2 Srw)

1 A\2
72 ind 7167)‘17—1'2/2617'1-2 for 72 >0,i=1,...,p (3.2)
1 A\2
22 ind —26*)‘2“’1'2/2dwi2 for w? >0,i=1,...,p—1

o? ~ Inverse-Gamma(a, £) ,

where a, £ > 0 are known, A, Ay > 0 are fixed, and X, ,, is such that E;}J) is a
tridiagonal matrix with main diagonals

1 1 1 1 1 . 1
—2+—2 s —2+2—+—2 fOI'ZZQ,...7p*1, and —2+2— s
T Wi TP W1 W Tp Wp—1
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and off diagonals {—1/w? :i =1,...,p}. Specifically,

ri 4 1 _ 1 7

= Jrlw% ) 1w% 1 0

w2 Z + ] + s 0

0 —2y 0

1 w3
Z‘r,w - ..
0 1 + 1 4 1 _ 1
T2, wg_lz w2y ) wg_ll
0 0 - L+

L Wy o wp g ]

(3.3)

Let 72 = (71,...,77) and w? = (w?,...,w2_,). Kyung et al. [20] state that the
2

priors in (3.2) lead to the following marginal prior on g given o=.

) A p Ao p—1
m(B]0”) ox exp _?Z|ﬁj‘_?z‘ﬂj+l_ﬁjl . (3.4)
=1 =1

However, this is not the case and in particular, the independent exponential
priors on 72 and w? do not lead to the marginal prior in (3.4). Instead, our
proposed prior is

P p—1
7r(7'2, wz) x det (ZT,w)l/z (H (71'2)71/2 e_)\ﬁ?m) (H (w?)il/Q 6_/\2%2/2) :

i=1 i=1
(3.5)
In Appendix B.1, we show that the prior on (72,w?) in (3.5) is proper and
in Appendix B.2 we demonstrate that the marginal prior on § given ¢? is the
appropriate prior in (3.4). Thus, our model formulation is a valid Bayesian fused
lasso model.

3.1. Gibbs sampler for the Bayesian fused lasso
The resulting full conditionals from the model in (3.2) with prior (3.5) are,

ﬂ | 02a72aw27y ~ NP ((XTX+271

T, W

)71XTy,O_2(XTX 4 2;111))71)
1 i A202

= | B,02%,y ind Inverse-Gaussian( 1—3,)&) ,i=1,...,p

i

1 i A2
— | B,0%y nd Inverse—Gaussian( 27 /\§> Li=1,...,p—1
w3 ;

02 | ﬁaTQanay

nt+p+2a (y—XB)(y—XB)+ 78,8+ 2
~ Inverse-Gamma > , > .

(3.6)
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Here the Inverse-Gaussian(a,b) density is f(z) oc 27%/2 exp(—b(z — a)?/2az)
and the Inverse-Gamma(a, b) density is f(z) oc 27 !exp(—b/x). Notice that
the full conditionals for 72 and w? are independent and thus can be updated
in one block. This reduces the four variable Gibbs sampler to a three variable
Gibbs sampler. If (B, T(2t), w(zt), O'(Qt)) is the current state of the Gibbs sampler
the (¢ + 1)th state is obtained as follows.

1. Draw 0'(2n+1) from f(o? | ﬁ(n),rfn),w%n),y).
2. Draw (1/7—(2n+1)71/w(2n+1)> from f(l/T2 | 5(n)70%n+1)7y) f(]-/w2 | B(n)a

U(2n+1)7y). 2 2 2
3. Draw B(,11) from f(3 | T(n+1)7w(n+1)7a(n+1)’y)'

This three variable deterministic scan Gibbs sampler has MTD,

k‘BFL(ﬁaTQanaO-Q | /BOaTOQawgva-g)
= f(B| 72,w2,a2,y) f(7—27w2 ‘ 50a027y)f(02 | ﬁomg,wg,y). (3.7)

First we note that the full conditional distribution of 1/72 is an Inverse-Gaussian
with mean parameter \/A\302/32. If the starting value for any f3; is zero, this
Inverse-Gaussian is still well defined as it is an Inverse-Gamma distribution
with shape parameter 1/2 and rate parameter \?/2. The same is true for the
full conditional of 1/w?. Thus, the MTD is strictly positive and well defined
which implies the Markov chain is aperiodic, irreducible almost everywhere,
and Harris recurrent.
We define the drift function Vprr, : RP % Rﬁ_ X ]Rﬁ__l x Ry — [0,00) as

A2 Z A2
2 2 2y _ T Tv-1 1 2 | A2 2
VerL(B, 77w, 0%) = (y = XB)" (y — XB) + 8 Zr,wﬁ—'_zi:ZlTi +I;wi~

(3.8)
The following theorem is proved by establishing (2.2) and (2.3) for the drift
function Vgry,.

Theorem 3.1. If n > 3, the three variable Gibbs sampler for the Bayesian
fused lasso is geometrically ergodic.

Proof. See Appendix C. O
Remark 3.1. In Appendix C.1, we arrive at the drift rate
o LB
=maxq{ ——————, — o .
BEL n+p+20—2"2

Thus, ¢prr is no better than 1/2 and as p increases, the drift rate approaches
one. Thus, convergence may be slower for problems with large p.
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Remark 3.2. Minimizing Vppy yields default starting value of [y being the
frequentist fused lasso estimate, Tg’i = 2|Bo.4|/ A1 and wai = 2|Bo,i+1 — Boil/Ae.
See Appendix C.3 for details.

4. Bayesian group lasso

Knowledge of correlation among predictors is ignored by the usual lasso. The
group lasso of [38] imposes sparsity across grouped predictors. For a fixed K,
partition 8 in K groups of size mq,mo,...,mg; the groups being denoted by
Bacy, BaGys - -+ Bak- Let X, denote the matrix of predictors for group k. The
group lasso estimate for tuning parameter A > 0 is,

R K 2 K
Busoun = argmax [y — 3~ Xe B | + A 18- (4.1)
k=1 k=1

Kyung et al. [20] present the following Bayesian analog of the group lasso. Let

Y|6702 ~ Nn(X67‘72In)
Ba, | 0%, 77 ' Ny (0,0%720,) k=1,...,K (4.2)
2
met L NNk
2 2
2

0° ~ Inverse-Gamma(q, &),

ind
7 N Gamma(

where A > 0 is fixed, o, & > 0 are known, and the density of a Gamma(a, b) is
f(z) o< 22 te7b2,

4.1. Gibbs sampler for Bayesian group lasso

Let 72 = (13,74,...,72%). Define
— 2 2 2 2 2 2
D, =diag(71, .., Ti s Tas e sToy e s Tieye ooy Tic) -
—_——— ———— ———
m1 mo mKg

The Bayesian group lasso in (4.2) leads to the following full conditionals for
B, 7% and o2

B | o2y ~ N, ((XTX +D;1)71XTy,cr2(XTX —|—D;1)71)
A2o?
8L, Bay’

1 in .
— | B, o2y 2 Tnverse-Gaussian ( )\2> Jk=1,....K (4.3)
Tk

o*| B, 7%y

2 - X (y—X Tp-1 2

- Tnverse-Gamma [ TP T a,(y B) ly—XP)+ 5 DB +26
2 2

These full conditionals lead to a three variable Gibbs sampler where the variables

are 3,72, and o2.
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Remark 4.1. Kyung et al. [20] propose a K + 2 variable Gibbs sampler where
the variables are g, , BG,,- -, Bax, T2, and o2. For this sampler, the full con-
ditionals for 02 and 72 are the same as above, but the full conditional for each

/BGk is

_ -1
5Gk | B—Gka(’Z:TQ»y ~ N"lk ( (ngXGk + T QImk) ng y—- Z Xc%ﬁGk’
k' £k

0% (XE X, + Tszmk)1> .

Kyung et al. [20] had an error in their full conditional where they had

1 .
Yy — 3 Z Xckﬂgk, instead of | y — Z X%BG)C,
k' £k k' £k

The motivation for using the K +2 sampler is to avoid the p X p matrix inversion
of (XTX +D;1), and instead do K matrix inversions each of size mjy, x my. This
reduces the computational cost from O(p?) to 0(22{:1 m3). Such a technique
was also discussed in [13]. However, it is known that a blocked Gibbs sampler
mixes as well as or better than a full Gibbs sampler (see [21]). In addition,
[2] recently proposed a linear time sampling algorithm to sample from high-
dimensional normal distributions of the form in (4.3). Using their method, the
computational cost of drawing from the full conditional of 3 is O(n?p), and thus
the K + 2 variable Gibbs sampler is not required.

We will study the rate of convergence of the three variable Gibbs sampler. If
(B(t)77'(2t), 0(2t)) is the current state of the Gibbs sampler, the (¢ + 1)th state is
obtained as follows.

1. Draw a(2n+1) from f(o? | ﬁ(n))T(Qn)7y)'
2. Draw 1/7(2n+1) from f(1/72 | 5(n),0(2n+1),y).
3. Draw B(,11) from f(8 | T(2n+1)70(2n+1)’y)'

The MTD for the above three variable deterministic scan Gibbs sampler is

kBGL(ﬁ)TQaOQ | 6057-0270'8) = f(B I 7'270'2,19) f(TQ | BOvUQay) f(U2 | 6077—37?/) :
(4.4)
As in the Bayesian fused lasso, the MTD is well defined and strictly positive
leading to an aperiodic, irreducible almost everywhere, and Harris recurrent
Markov chain.
Define the drift function Vgqgy, : RP x Rf x Ry — [0,00) as

2 K
Voar(8,7%,0%) = (y— XB)"(y — Xp) + 7D, p+ = S a2 . (45)
k=1
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Theorem 4.1. If n > 3, the three variable Gibbs sampler for the Bayesian
group lasso is geometrically ergodic.

Proof. See Appendix D. O
Remark 4.2. As in the Bayesian fused lasso Gibbs sampler, the drift rate,

1
¢BGL = max S 5 (0
n+p+2a0—-2"2

is no better than 1/2 and approaches 1 as p increases.
Remark 4.3. Minimizing Vpgr yields default starting values for the Markov

chain as 3y being the frequentist group lasso estimate and T& =24 /ﬁg: c.Bocy /A
See Appendix D.3 for details.

Remark 4.4. Since for K = p, the Bayesian group lasso is the Bayesian lasso, our
result of geometric ergodicity holds for the Bayesian lasso as well. Geometric
ergodicity of the Bayesian lasso was demonstrated by [19] under exactly the
same conditions. Our result on the starting values in Remark 4.3 also holds for
the Bayesian lasso Gibbs sampler.

5. Bayesian sparse group lasso

The group lasso induces sparsity across groups but does not induce sparsity
within a group. Simon et al. [32] added an L; penalty on the individual coef-
ficients to the group lasso to arrive at the sparse group lasso. As before, for a
fixed K, partition 8 in K groups each of size m1, mas, ..., mg, the groups being
denoted by Ba,,Bas;---,Bak. For tuning parameters A; > 0 and A2 > 0, the
sparse group lasso estimate is

) K
+/\1||6H1+)‘22H6Gk”’ (5.1)

K
ﬁsgroup = arg mBaX Hy - Z XGkﬁGk
k=1

k=1
where || - ||1 is the L; norm. The Bayesian sparse group lasso was introduced by
[36]. Let 77 1,77 95+ -+ s Viomys - - s Vieomse @0 71, ..., 75 be variables defined on

the positive reals. For each group k define,

-1

. 1 1 .

Vi, = diag —+ 5 cg=1,...,my
T i

The notation 7,%7 ; is used for convenience and may be replaced with 42 for all
i. Let 72 = (17,73,...,7%) and let 7% = (%7 1, ..., 7% s - - ,ﬁm, . ,ﬁ()mK).
The Bayesian sparse group lasso model formulated by [36] is

Y |B,0* ~ Nu(XB,0%I,)

Ba, | 02,7592 % N (0,02Vi) fork=1,... K (5.2)
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T(Veds- s VhomysTe) = 7  independently for k=1,..., K

0? ~ Inverse-Gamma(a, €),

where o, £ > 0 are fixed and the independent prior on each (V.,1,- -, Vkmes TH)
is
_% 2 mg
,; 1 1 _1
T X H Vk,j i (7’,?) 2 exp —72 - —Tk
Teg Tk =

(5.3)
Here A, A2 > 0 are fixed. Xu and Ghosh [36] show that the prior in (5.3) is
proper with the normalizing constant being a function of A\; and As.

5.1. Gibbs sampler for Bayesian sparse group lasso

Define V;, to be the diagonal matrix with diagonals being that of Vi,..., Vg
in that sequence. In addition, let 3 ;, refer to the jth coefficient in the kth
group. The Bayesian sparse group lasso model in (5.2) leads to the following full
conditionals for 3, 72,2 and o2

Blo*, 727y ~ Ny (XTX+ V) ' Xy, o> (XTX +V, )7

ind )\%0’2
— | B,02,y '~ Inverse-Gaussian 7 A2, for all k (5.4)
k ﬁGkBGk
202

s

1 ind .
— | B, o2,y "X Inverse-Gaussian
k.j

>\2> , for all k, j

02 ‘ 637—27727:’/

ntp+2 (y—XB)(y—XB)+p V1B +2
~ Inverse-Gamma 5 , 5 .

Note that the full conditionals for 72 and 42 are independent and thus can be up-
dated in one block yielding a three variable Gibbs sampler. If (8, T(Zt) , V(Qt), O'(Qt)>

is the current state of the Gibbs sampler, the (¢t41)th state is obtained as follows.

1. Draw a(2n+1) from f(02 | ﬁ(n),T(Qn)7’Y(2n)ay)-
2. Draw (1/7(2n+1),1/'y(2n+1)) from f(1/7 | Bny 08, 41y,4) F/Y? | By

U(2n+1)7y)‘
3. Draw f(,,41) from f(B T(2n+1),'y(2n+1),0(2n+1),y).

The MTD for the three variable Gibbs sampler is
kBSGL(B; 7-2) 727 02 ‘ ﬁ07 Tga fyga 0-8)

= f(ﬁ | 7—27727027?/) f(7—2a’y2 | 6070-23y) f(0_2 | 50/7—3,’73;?/) . (55)
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As in the Bayesian group lasso Gibbs sampler, the MTD is strictly positive and
thus aperiodic, irreducible almost everywhere, and the chain is Harris recurrent.
We will prove geometric ergodicity by establishing a drift and an associated
minorization condition.

Define the drift function Vgggr, : RP x Rf x RE xRy — [0,00) as,

QKmk

A2 K
Visar(B,7,7%,0%) = (y=XB)" (y=X B)+6 jkE_j —2;_)2_2
(5.6)

Theorem 5.1. If n > 3, the three variable Gibbs sampler for the Bayesian
sparse group lasso is geometrically ergodic.

Proof. See Appendix E. O
Remark 5.1. Define M = maxy my. In Appendix E.1 the drift rate is determined

to be
)\2 )\2
1 1
o lrx) (3

n+p+20—2 < A2 Ag)’ < 22 Ag)
2(1+2L+2) am (1+2L+22
PYIDY: YD

$BsGr = max

Unlike the drift rate in the previous two models, the drift rate here can be
lower than 1/2. However, it is likely that p is large enough so that ¢psayr is
determined by the first term p/(n 4+ p + 2a — 2). In this case again, the drift
rate will tend to 1 as p increases and thus convergence may be slower for large
p problems.

Remark 5.2. A reasonable starting value for this Markov chain is 8y being the

sparse group lasso estimate, ngk = 2, /ﬁngkﬁO,Gk/)\l and 'yg’k = 2|Bok,j1/ A2
See Appendix E.3.

6. Discussion

As discussed in Section 1, reliable estimation from MCMC output rests heavily
on the rate of convergence of the Markov chain. Our geometric ergodicity results
immediately imply the existence of a Markov chain CLT and strong consistency
of some estimators of the asymptotic covariance matrix in this CLT. As a con-
sequence, practitioners can use tools such as effective sample size to understand
the quality of the Monte Carlo estimates.

Our results of geometric ergodicity hold under reasonable conditions. We
require no conditions on p, and only need n to be larger than 3. However, our
results suggest that it may be possible for the Gibbs samplers to converge at
a slower rate if p > n. This agrees with the results in [26]. Users might then
be inclined to first use Bayesian variable selection alternatives to these models.
For example, [36] introduced the Bayesian variable selection alternatives to the
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group and the sparse group lasso by using spike-and-slab type priors. A natural
direction for future research would be to investigate the convergence rate for
the Gibbs samplers in these Bayesian variable selection models.

Appendix A: Preliminaries

In general, E ;) represents expectation with respect to the MTD being studied
in the section. Expectations with respect to a full conditional is denoted by E..
The index 0 on variables denotes starting values for the Markov chain.

Below are some properties of known distributions that will be used often.

If 1/X ~ Inverse-Gaussian(a, b), then E[X] = 1/a + 1/b.
If X ~ Np(u,¥), then E[XXT] =% + pup”.

If X ~ Inverse-Gamma(a,b), then E[X] =b/(a — 1).

If X ~ Inverse-Gamma(a,b), then E[1/X] = a/b.

A.1. Useful lemmas

We present some results that will used in the proofs of geometric ergodicity for
all three samplers. Most of the results are generalizations of the results in [19]
and the proofs are presented here for completeness.

Lemma A.1. Let y, X, and 3 be the observed n x 1 response, the n X p matrix
of covariates and the p X 1 vector of regression coefficients. Let 3 be the p X p
positive definite matrix such that

BN, (XTX+2 D)X Ty, (X X +27H)7)
for o > 0. Then,
Elly—XB)"(y—XB)+BTS78] <y"y+po’.

Proof. Consider,

E[(y—XB8)"(y—XpB)+8"57'5]
=y y -2 XE[B| +E[BT(X"X +£71)4]
=y y 2" X( XX+ ) ' Xy + E[tr(8T (XX +571B)]
= yTy — 2yTX(XTX + 271)71XTy
+tr (P XTX+2 H)XTX+2H)
+tr (XTX 4+ 8 XX+ ) X Ty X (XTX + 57171
=yTy — QyTX(XTX + E_l)_lXTy + po?
+tr (YT X(XTX + 577X Ty)
<yly+po?. O
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Lemma A.2. Fora = (aq,...,0,) € RP and § = (01,...,0,) such that §; # 0,

Proof. Using the fact that the square of a number is non-negative,

p 2 P 2 P
E :&52 E :% 52
P 2 52 52 g P
i=1 %% =1t i=1 ¢ \4=1 o 52 O
P 2/52 °  p — _§ : i
ie105/0;

P
S e =
i=1

i=1

Lemma A.3. For \?,a% 02 > 0, if X has a probability density function f(x)

such that ) )
A

then 1/X ~ Inverse-Gaussian distribution with mean parameter \/A\202/a? and
scale parameter \2.

Proof. For the change of variable z = 1/,

2 _2
L 2 a2z L a? (—Aag + z2)
f(z) xz7°22 exp ¢ — =z 2exp{ ————F+

22 202 202z
242 5 o* (AZgQ —2,/2F 2+ ZQ)
= — -2 —
exp{ \/ e }z exp 557,

A2 ()\202 -9 )\zazz + 22)

a2 a?

_3
Xz 2expy —

A202
223

Thus, Z ~ Inverse-Gaussian with mean parameter y/A202/a? and scale param-

eter \2. O

Lemma A.4. If1/X ~ Inverse-Gaussian with mean parameter \/A202/a? and
scale parameter \? and a® < d? for some d* > 0, then

[(@) > exp { V! } o).

g

where f(x) is the pdf of X and q(z) is the pdf of the reciprocal of the Inverse-
Gaussian distribution with mean parameter \/\202/d? and scale parameter \2.
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Proof. By Lemma A.3, we have
32 (AQZQ ., A2g21+12>
X . a V a2 =2 =
f(x) %(17) 2 exp o2 1
2
a? z
2 2 2 A2 ()\202 + i)
Ma A _1 a? x>
:eXP{ 7} or (1) 7O T
a? x
A202 1
2 (2~ _
A2 _1 A ( a? +x2 A2 {2
2\ 5 (@) 2expq— Vo1 =expy—|\/—5 rdl@). O
a?

Lemma A.5. Let y, X, and B be the observed n X 1 response, the n X p matriz

of covariates and the p X 1 vector of regression coefficients respectively. Let ¥
be a p X p positive definite matriz. Then,

(y—XB) T (y—XB)+ BT 18> y"y —y" X (XX + 51 XTy
Proof. The proof mainly requires completing the square in the following way,
(y—XB)"(y—XB)+ 87578

=yTy -2 X(XTX + S H(XTX + 2 H 18+ 87 (XTX + 271
+ T X(XTX + 2 ) Y XTX + 2 H(XTX + 27 )" 1xTy
— ' X(XTX + 2 Y M XTX + 2 H(XTx + 27 )t xTy

— yTy _ yTX(XTX _|_ 271)71XTy

+B-(XTX+S ) XY (XTX + 5 H(B - (XTX +57H) 71 XxTy)
>yly -y’ X(XTX + 27 1xTy.

|
Appendix B: Bayesian fused lasso prior
B.1. Propriety of the prior
First note that det (X;,,,) = (det (E;}U))_l. We decompose X1, into
S =1Li+ Lo, (B.1)

where
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1 1 1
lelag(2 50530152 and ,
Ti Ty Tp
r_1 1 1 7
27—1" + w% w% 0
1 1 1 1
wf 27’22 + wi + wg 0
0 —— 0
w3
Ly =
0 1 + 1 + 1 1
27}371 wiiz waI L w§711
0 —— 52 T o2
L w1 Tp wy_1

The diagonal matrix L; is clearly positive definite. The tridiagonal matrix Lo
is also positive definite since Lo is real symmetric, has positive diagonals, and
is strictly diagonally dominant [1, Theorem 1.2]. Here the condition of strict
diagonal dominance is satisfied since

1 1
2

—+—5
27; w;_q ;

Thus,

p
1
det(X71) = det(Ly + Ly) > det(Ly) + det(Ly) > det(Ly) = | | (2—2>
) Ti

=1
p
= (det (X % H 1/2
i=1

Thus, the joint prior on (72, w?) satisfies,

b
(%, w?) ox det (Sr0)' (H ()" />

1

p

—

(u?) " e—Azwm)

i=1 =1
1/2 £ —1/2 _x,72/2 = 0 —1/2 _xw?/2
= H H (Tz) e ! (wz) e !
i=1 i=1 i=1
p—1
— op/2 (H e)‘l"?/2> (H (w?)_l/2 e)‘wa/2> .
i=1 i=1

This is the product of p exponentials densities and p—1 Gamma densities. Thus,
the prior is proper.

B.2. Validity of the prior

In this section we demonstrate that our choice of prior in the Bayesian fused lasso
leads to the Laplace prior in (3.4). First we expand 6TE; I B in the following
way:
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[Cap YA
[ L1\ B 1"
()
1 1 1
—6—12+/32 Sttt —ﬂ—?é b
%’1 712 “11 “{2 %’2 B2
R Rl R R R Ps
wy 73 w3 w3 :
. Bp
Bp—1 1 1
g (Lo
Wy Ty Wp1 ]

1 2
ﬁﬁ 1 Ié;
et ( _>‘i§4+

Bp lﬁp (i )
2
P

1 1 1 1
(_ _%) 152 5152 b2 (? n - n _) _ 5263

52

B3

_ 25_2 B + /izw . 26162 LB Bi . 2285 . Bt 62-152—12/%—1
iﬁ_gﬁHM. (B:2)
2ot

Using (B.2),

(8| o

Tz—l
o st enf 25
RP RP g

P p—1
% det Tw % (H -1/2 7/\17' /2) (H (w?)—l/Q 6)\2wi2/2> dw2d7'2

i=1
oc/ﬁ 1/2 J dr?
2027'
p—1 2 2
172 Xow;  (Bit1— Bi) 2
X/H {_ 2 202w? dw
M w
=€Xp{—72|ﬁz|——2|ﬁz+1 ﬁz}
p 2
-1/2 _)\17'1- B Ao 2
% /H { 2 2cr27'i2 * o |'61|}d7-
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et Aow?  (Birr—B)° A
b R e s R
A
ocexp{—;lZWJ - _Z|ﬂz+1 Bz }
i=1

where the last equality is due to the integrands being the densities of the recip-
rocal of Inverse-Gaussian distributions; see Lemma A.3.

Appendix C: Proof of geometric ergodicity in Bayesian fused lasso

We will establish geometric ergodicity of the three variable Gibbs sampler for
the Bayesian fused lasso by establishing a drift condition and an associated
minorization condition.

C.1. Drift condition

Consider the drift function

22 A2 2 -1
2 2 2y _ T Ty—1 1 2y Az
VerL(B,77,w",0%) = (y = XB)" (y — XB) + 8 ET,wB—i_ZZE:lTi 4 E:

(C.1)
Then Vppr : RP? x RE x R?fl x Ry — [0,00). To establish the drift condition
we need to show that there exists a 0 < ¢pprr < 1 and Lgpr > 0 such that,

E(k) [VBFL(,B,T27U)2,U2) | ﬁ077-g7w(2)70'(2):| S ¢BFLVBFL(/80aT()2aw870-8) + LBFLa

for every (89,73, w3,08) € R? x R x RE"" x Ry. The left hand side is the
expectation with respect to the MTD, that is,

By [Vors (8,7, 0%,0%) | fo, il o
= [ Vars(37 0t 0?)0* | o1t b

x f(r%,w? | o, 0%, y) f(B | 7% w?, 0%, y)dB dr* dw® do®
— [ 117t wbow) [ £ 0 B )

X /VBFL(BvT27w27U2)f(ﬂ|7—27w270'2ay)dﬂd7-2dw2 d02
:EO'2 [ETQ w? I:E,@ [VBFL(B7T w O )‘T ’LU2 a ay] |60a ay] |6057027wgay:|'

We will evaluate these sequentially, starting with the innermost expectation. By
Lemma A.1,

p

2 /\2
AT 2, A2 2 2
Eg [Vero(8,7%,w?,0°) | 7%, 0w, 0% y] <y"y+ =L E Ti‘*‘ZE_lwi'i‘PU-
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Next we move on to the expectation with respect to the full conditional of
72 w?. Note that

B3 1 A3 (Boit1 — Boi)?

21)
T 1
SRS DM A EE DI =

(C.2)

9

ET2,w2 [Eﬁ [VBFL(ﬁvTvaQ»UQ) | 727@0270279] | 5070—27y]
3 [

using the properties of the Inverse-Gaussian distribution mentioned in Ap-
pendix A. Since for a,b > 0, 2ab < a? + b2,
E,2 .2 [Eg [VBFL(ﬂ w? 0?) | 72w 0%yl | Bo,o%,y]

Bs.i (n+p+2a) 1
< 21 : —
vy e 2[20271—1—])—&-2@)_'_ 202 +)\%

1
sz (Bo,i+1 — Bo,i)? n (n+p+2a) 1
202(n +p + 2a) 2)3 A3

p
p 2 )\% Bo,i
<yly+=(2 2 — )
<y y+4( +(n+p+2a))+po +8(n+p+2a) 2 52

-1
N ”Z ﬁom ﬁoo
8n—|—p+2a ~

Finally, the last expectation,

Ea'2 I:ETZ,’Ll)z [EB [VBFL(B77_27’LU270- ) | T 'U} y O 7y] | 60, 7y] | 60,’7’02,’(1)(2),3/]
<yly+ g (n+p+2a+2) 4+ pEy2[0? | Bo, 78, wh, ]

o 83
0,7
n+p+2a Z [ |Bo,70,w8,y]

=1
A3 ] [ﬁo i1 — Bosi)?
=1

2 2
+8n+p+2a 50a707w07y:|

<y y+1(n+p+206+2)
(y — XBo)" (y — XBo) + B X7, e Bo + 26

+p

n+p+2a—2
. z”: (n+p+ 2053,
8n+p+2a — (y— XBo)T(y — XBo) + B SrorweBo + 26
1
N = (n+p+2a)(Bo,i+1 — Bo,i)?
8(n+p+2a — (y— XB0)"(y — XPo) + B Srowuwo Bo + 26
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(y — XBo)" (y — X Bo) + B3 X7ty Bo + 2¢

< T
Syyte n+p—|—2a—2
-1 2
D _153. A3 ST (Bositr — Bosi)
—|—7(n+p—|—2a—|—2)—|—f + == - — . (C3)
4 8 ﬂo 27’0 woﬂO 8 532701@050
Using (B.2),
p /32 -
0, 50 z+1 (Bojit1 — Boi)*
szlwoﬂo > E 2. and BI% TO wo B g . (C4)

1

(2

Using (C.4) in (C.3),

EDO'2 [ET2,w2 [EB I:‘/BFL(/BaT2 ’11}2 02) l 7-2 w25027y} | ﬁ0702ay:| ‘ BOaTgaw(%ay]
(y — XBo)" (y — XBo) + B3 X7y B0 + 26

< T
Syyte n+p+2a—2
P MO8 A Y (Boir — Bos)?
+-(m+p+2a+2)+ + o= ’ :
4 8 > ! 1501/7'01 8 Z?:ll(ﬁo,i-i-l_ﬁo,i)z/w%}i
By Lemma A.2,
E02 [E'rz,w2 [Eﬁ [VBFL(63723w2aO— ) | T w y O 7y} | 607 7y] ‘ ﬁOaTng?)ay]
p 2p¢
<7 - 2 2 _
<y y+4(n+p+ a+ )+n+p+2a—2
p
_ -X -X b
+n+p+2 72((1/ Bo)" (y Bo) + B3 S70-who)
A2
A L 22
Z O 8 w ,l
i=1
< ¢BFLV(50,7'07U13700) +Lprr,
where )
ff)BFL:max{% 2}<1f01"n>3 and (05)
LBFL:yTy—i—B(n—&—p—i—Qa—l—Z)—i—L. (C.6)
2 n+p+ 20 —2

C.2. Minorization

To establish a one-step minorization, we need to show that for all sets Cy defined

as
Ca={(B, 7% w? 0%) : VgpL(B, 7%, w*, 0%) < d},

there exists an € > 0 and a density g such that for all (8y, 78, w3, 02) € Cy4

kBFL(ﬂvT2,w2ao_2 | ﬁOvT(??wgao—g) Z 6Q(5>T2,w2»02) .
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To establish this condition, recall that,
2 2 2 2 2 2
kBFL(BaTaw7O- ‘ﬁ077—07w0a00) (6'7- ’UJ U7y)f(7— U) |ﬂ07 7y)
2
X f(O' | BOaTOawo,y) .

For our drift function, for all (B, 78, wé,o2) € Cy the following relation holds
due to (B.2):

2P1

2 /4
(v = XB0)"(y = XBo) + B3 Sr Lo + jZ QZ%H

p 2 p—1 21”1

. . p
iy =X+ 3 gt 4 3 e e il B S <

i=1 "0 i=1

Using the above and Lemma A.2, for each 3y,

p p
Bi; <D B < (ZT&-) (Z ?) < 2, (C.7)
=1 =1

i=1 0,
and similarly for each i =1,...,p—1
G Boi — Boa)®\ _ Ad?
(Boj+1 = Bos)” (Zw02> <Z T) < e . (C8)
i=1 it

With these bounds involving 3y and using Lemma A.4,

f(TQawZ | /60702ay)
T2 | 6030—2ay) ( 2 | 507 2ay)

A
e o e
_exp{ Nidi \/W} [qu 2)] L[[lhxw?o?)]-

Since for a,b > 0, 2ab < a? + b2,

PG
202 202

f(T27w2 | 5070—27y) Z €xXp {_1 -

p p—1
X [H qi(? | 02)1 [H hi(w? | 02)] , (C.9)

where ¢; and h; are densities of the reciprocal of an Inverse-Gaussian distribution
with parameters \/A202/d? and A2, and \/\302/d3 and )3, respectively.
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Recall the decomposition ', = Lo, + Lo in (B.1); here the 0 in the
index indicates 7¢ and wg entries. Here Lo is the diagonal matrix with entries
1/(273,;). Then since

y'X(XTX 4+ Loy 4+ Lo2) X y > y" X(XTX + Lo1) Xy
= ' X(XTX + Lot + Loo) ' XTy <oy" X(XTX +Lo1) ' XTy.

Using the above, the fact that for each i = 1,...,p, 27’0271- < 8d/)?, and Lem-
ma A.5,

(y— XBo)" (y — XBo) + B3 7 e Bo
>yTy — "X (XTX +37L) 7 X Ty
>y"y —y " X(XTX + Loa) ' X"y

A2\
>yly —yT'X <XTX + 861l1p> XTy. (C.10)

Using (C.10) and the fact that for (8o, 72, w3, 02) € Cq, (y— X Bo)T (y — X Bo) +
681271 BO S da

T0,Wo

1 p?A3di 1 pPAId3 2 2,2
exp{—§_ 202 2 202 U |507T07w0,y)

m+a
(y=XB0)T (y=XBo)+B3 £7p o Po+26 | 2
—epd 1 pPA3ds  pPAidi 2
w2 T o)
o\ —ER a1 (y — XBo)T (y — XBo) + B3 7. e Bo + 26
X (O’ ) exXp — 20_2
_ _ m+a
- <yTy —yTX(XTX + N2(8d)'L,) ' X Ty + 25) 2 1
) e
_ndp o d + 2& + p?\2d% + p? \2d?
< (02) 2 exp{— 20222 191
ntp
1 (VY — YT X(XTX 4 N (8d)7H,) I X Ty + 2€ B (0?), (C11)
= g .
d+ 26 1 PP AR + PP A2 "o

where g(0?) is the Inverse-Gamma density with parameters, (n + p)/2 + a and
d + 2¢ + p?\3d3 + p*\2d3. Finally, using (C.9) and (C.11),

kBFL(BaT27w270-2 | /6077-02711}870-(%) Z € f(ﬂ | 7-27w250-27y) q(02)

X lHqi(T? | 02)1 [H hi(w} | 02)] ;
i=1 i
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where

i «
o (V= XX N (8d) M) X Ty + 2 2t
N d+ 2¢ + p?A3d3 + p?M\id? '
C.3. Starting values

Starting value (8y, 78, w3, 08) can be chosen so that
2 2 2 . 2 2 2
(Bo, 1y, wg,04) = argmin Vepr (8,77, w*, o).

We will find the minimum by profiling out 72 and w?. By (B.2) in Appendix B.2,

OVBrL Bii A} 2 463,

873_’2- :Oé:—TS{iJrZ:OéTOJ: 32

v i - 7 2 )\2 4 i — i 2
B§L=0:>:—(ﬁ0’+14’8°’) I S (ﬁ0,+12 Boi)®

aww wy ; 4 ’ A

The By that minimizes Vgpy, is,

- ‘ )\1/82 )\2/81-‘:-1 )
ﬁo—arggel}l?p{( - X8y - XB) +Z ZT@)
P2 42 /\Qpl ; l_2
Zf 7, 55 M}

P p—1
= al"gﬁnel%; {(y —XB) " (y—XB) + D 1Bil+ XD [Biy1 — Bz|} :

i=1 i=1

which is equivalent to the fused lasso solution. Thus, a reasonable starting value
is By being the fused lasso estimate, 75, = 2|80:|/A1 and w§,; = 2|Boi11 —

Bo,il/ Az

Appendix D: Proof of geometric ergodicity in the Bayesian group
lasso

D.1. Drift condition

Consider the drift function

7 K
VBG’L(ﬁaTQaOQ) = (y - XB)T(y - Xﬁ) BTD 16+ )\_ Tl? . (Dl)
k=1

For the drift condition we need to show that there exists a 0 < ¢pgr < 1 and
Lpcr > 0 such that,

Ew) [Vear(8,7%,0%) | Bo,75,04] < ¢BcLVear(Bo.75,03) + Lear
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for every (8o, 7¢,08) € R? x RE x R, Just as in the proof for BFL,
E(k) [VBGL(/Ba T2a 02) ‘ 50) TOZa 08]
= E172 [ET2 [E,B [VBGL(577_270—2) | T2,027y] | 6070—2ay] | BO,Tgay} .

We will evaluate the expectations sequentially, starting with the innermost ex-
pectation. By Lemma A.1 and following the steps as before (C.2),

E‘f'2 [EB [VBGL(ﬁaTQaO-Q) ‘ 7'270'2’29] ‘ 6050'273/}

A2 K ﬁgc,ﬁO,G 1
vty T I e e
k=1

Let M = max{my,...,mg}. Then,

E.2 [Eg [Vear(8,7%,0%) | 72,0%, 4] | Bo,0?,y]

g Be e Bo.ci M(n+p+2a) 1
< T 2 - Tk "k J—
<yytpt + T [202M(n+p+2a) A2 A2

4

k=1

<yTy+po+ 2

(1 N M(n+p+2a)> A2 Z;i.{:l 5€Gk50,Gk
4

2 8o2M(n+p+2a)
For the last expectation, using steps as before (C.3), we get

Ea'2 [E72 [Eﬁ [VBGL<57T270-2) | 7270-27y:| | ﬁ0,0-27y:| | BO?TO27y:|

K
< yTy+ P 1+M n A2 (31 Bl g Poc
—T 2 sM " 67D o
n ly — XBoll* + B85 D5' Bo + 2¢
P n+p+2a—2 ’
Recall that,
DTO:diag(T0271,...,7'g)1,7'§72,...,7'3)2,...,7'027K,...,7'3)K).
my ma mx

Let the diagonals of D, be 7§ ,; for i = 1,...,p. Then 5§ D, 'Bo = Y27 53,/
g and Y7 78 < MZ?:l 73 5~ Using this and Lemma A.2,

2

E0'2 [ET2 [EB [VBGL(/B7T27U2) | T2a027y] | ﬂ07027y] | 5077-0273/]

M 2 2 E
<yTy+?L 1+—(n+p+ ) + 2N,
4 2 8 — ’

(y — XBo)" (y — X Bo) + Bd D Bo + 2¢

TP n+p+2a—2

< ¢paLVear(Bo: 14, 08) + Lecr »
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where
bpor —maxd ——P Il >3 and (D.2)
BGL = mMax nTpt20-2'2 or n > n )
P M(n+p+2a) 2p€
L =yTy+=(1 . D.3
BGL ?”“Lz;(+ 2 i pr2a 2 (D-3)

D.2. Minorization condition

For d > 0, define Cy = {(B,7%,02) : Vear(B,7%,0%) < d}. To establish the
minorization condition, we recall that,

kBGL(BvTQaU2 | BOaTgaUS) = f(ﬁ | T27027y) f(T2 | 607025y) f(UZ | 6077-02&:1;) )
D4

By our choice of drift function, for all (8y,73,02) € Cy the following relation
holds,

. 2 &
(= XB0)" (y = XBo) + B8] D7, Bo + 7 Y _ 7 <. (D.5)
k=1
By (D.5), each of 8 D, '8y and (A\?/4) S 73 1, is less than or equal to d, so
B6.a.Boc, <4d®/N? :=dj for all k=1,..., K. By Lemma A 4,

1 K222 1
16 oot z e {3 - S [t 104, 00)
k=1

where g, is the density of the reciprocal of an Inverse-Gaussian distribution with
parameters \/A2¢2/d; and A\*. Now, since for each i = 1,...,p, 75, < 4d/)*, by
Lemma A.5

- A2\
(y— XB0)" (y — XBo) + B3 D' Bo =2 y'y —y' X (XTX + 4de> X'y,
(D.7)
Using (D.7) and following steps as before (C.11), we arrive at the following,

1 K223 . o, .
exp{_ﬁ_ 202 }f(g |607T07y)

n+p
Ty —yTX(XTX + X2(4d)11,) 2 X Ty + 26 = ©
> e—% yy—y ( + ( ) 2;11) Y+ § q(O’Z), (DS)
d+ 26 + K2N2 2
where ¢(0?) is the Inverse-Gamma density with parameters, (n + p)/2 + a and
d+ 26 + K2\2d2.
Finally, using (D.6) and (D.8) in (D.4)

K
kBGL(BaT2aO—2 | 50’7_0270,(2)) 2 € f(ﬁ | 7—2a0—2>y) Q(O—z) H qk(T2 ‘ 02)7 (Dg)
k=1

where

17— aiey
R yTy —yTX(XTX 4+ X2(4d) 1 L) ' X Ty 426 2 ™ (D.10)
d+2¢ + 4K2d> ' '
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D.3. Starting values

As before, we first differentiate with respect to 72 and then with respect to j3.
Note that

v, Biaboc. N2 464 ¢, o.c
B2GL _ 0 = = _ O,Gk4 0,Gk + A 0 = TOQk _ O,Gk2 0,Gk )
BTO’k To.k 4 ’ A

Thus, the £y that minimizes Vpqgy, is then,

K
Bo =arg min (y — XB)T(y — XB) +ZM )‘_Z 4ﬂGkﬂGk

AER? =1 2\/5Gk/BGk s
—arggreli{n (y— XB) ' (y — XB) +/\Z\/6ka6Gk’

which is equivalent to the group lasso solutlon. Thus a reasonable starting value
for the Markov chain is 5y being the group lasso estimate and Tgykz 24 /B({Gk Bo,c, /A

Appendix E: Proof of geometric ergodicity in the Bayesian sparse
group lasso

E.1. Drift condition

Consider the drift function

K 22 K
Vesar(8,7°.7%,0%) = (y=XB)" (y=X )+ j]; —QZ;%J.

k=1
By Lemma A.1 and following the steps as before (C.2)

E'rz,'yz [EB [VBSGL(57T27’V270'2) ‘ 7—27’\/270—27:% | 5070273/]

. 2 M| [BeBoc A2 & /)’O,w 1
<y y+po+— Z T2 +)\2 ZZ Ao
k=1 k=1 j=1

Define M = max{my,...,mg}. In addition, define

DYDY
A= <1+ 32 + )\2> (n+p+2a).
Then,
ET27’Y2 [Eﬁ I:VBSGL(ﬂvT2 02) | 7—2 027y} | 1807027y]

Bo.c Bog,  AM 1
<y"y+po +—Z[0Gko T

202AM ' 2X2 X2
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)\QKm;C

DD
k=1j=1

= yTy + po? +4(2+AM) {

ﬂg}k’j AM n 1
202AM  2)\3 A2
AT+ A3 B3 Bo
SAM o2

For the last expectation, using steps as before (C.3), we get
E02 [ETZ,'yQ [E,B [VBSGL(ﬂvT277270-2) | 7_2372 02)2/] | BO? 2ay:| | 5077—02773,y}
)\2 )\2 T
SyTy+§(2+AM)+ (AT +23) [8M <1+A2+ ﬂ (ﬂ>

)\2 BgVTE}’YOBO
(y—XBo)" (y — XBo) + 55 Vi, V050+2§

E.2
TP n+p+2a—2 (E.2)

Let vo; denote the diagonals of V;, ,. Then by Lemma A.2, and the fact that
the harmonic mean of positive numbers is less than their arithmetic mean,

-1
_ BEBo = 1
V"’o 'Yoﬂo ZUOZ_ ZZ (Tok )

i=1 k 1j=1 70’”
SEZZ—’<—ZTM@+ ZZ%M (E.3)
k=1 j=1 k=1j=1

Using (E.3) in (E.2),
E0'2 [E 2 [Eﬁ I:VBSGL<ﬁ7T270-2) | TQ,UQ,ZU] | 60)027y] | 6077-027yj|
<yTy+= 1 (2 + AM)

) ) )\2 )\g —1 K my
+ (>\1+A2) |:8M(1+>\2+)\%>:| ZTOIC+4ZZ,YOIC,]

k=1j=1
(y — XBo)"(y — XBo) + B3 Vi, L, Bo + 26

tp n+p+2o—2
P 2p¢
<47 -2+ AM _
Sy yt A+ o
p Ty,
- - X - X
TPt 202 [(y Bo)" (y Bo) + B3 Vo 5o Bo)

A2 PYEND AN R VA,
+ <1+/\2> {8 <1+ N + A%)] ZZ:TM

\2 A Y R
)i n)] (TEX
k=1 j=1

2 2 2
< ¢Bsar Vesar(Bo, 157, 05) + Lesar
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A \2
, ) ()

where for n > 3

¢BsGL = max ; 5 5 5 5 <1,
ntpt2a -2 8(1+iz+;> 8M(1+iz+;>
(E.4)
and
Lusor =y y+ "2 (2+AM) + B S— : (E.5)
4 n+p+2a—2

E.2. Minorization

For d > 0, define Cg = {(B,7%,~%,0%) : V(B,7%,~4%,0%) < d}. Recall that,
kBSGL(ﬁ)72572a02|60a7—ga73703) = f(6|7-2772a0-27y> f(T2772|6070-27y)
X f(0®1Bo, 70,75, y) - (E.6)

By our definition of the drift function, for all (8o, 73,73, 05) € Cy the following
relation holds:

Boakﬁon K ﬁok]
d> (y—XBo)(y Awo+§j XD

0 k k1 j=1 ’Yo g
2 K 2 K mi
AT
S IUTE D D) DL
k=1 k=1j=1
Using the above and following on the lines of (D.5) we get for all k =1,..., K
and j=1,...,my
4d? 4d?
Bg)?Gkﬁo,Gk S A_% = d% and Bg,k,j S )\—% = dg . (E?)

Using Lemma A.4 and (E.7) and following steps as before (C.9),
P8 )

f(7-2a72 | 180702ay) 2 exp {_1 -

202 202
K my
< [T |G Vo) ] ariij 1) (E.8)
k=1 =1

where gi (77 | 0%) and gk ;(7;; | %) are the densities of the reciprocal of an

Inverse-Gaussian distribution with parameters VA202/d? and A2, and \/A\302/d3
and A3, respectively. Since each 75, < 4d/A} and each g kg < 4d/)\2, SO

—1
1 1 A2 az\ !
| < (22 22) =gy
<T37k + ’y&k’j> - <4d * 4d 3
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By Lemma A.5
—1
(5 — XBo)(y — XPBo) + BTV Bo > 4Ty — y X(XTX+d—3I> X7y,
(E.9)
Using (E.9) and following steps as before (C.11)
242 72 242 72
p Ayd;  KZAidy 2 2 2
exp{—l— 202 - 202 f(O' |BO;TO7’Yan)
_ _ +a
— 1 yTy —yT X(XTX +d3 ') X Ty + 2¢ 4(0?) (E.10)
d+ 26 + p?\3d3 + K2)\3d3 ’ '

where q(c?) is the density of the Inverse-Gamma distribution with parameters,
(n+p)/2+ a and d + 26 + p?>A\3d3 + K2)\2d2. Using (E.8) and (E.10) in (E.6),

kBSGL(ﬁ772a727U2 | BO?T()Q7’787U§) Z € f(ﬁ | 7-2’,)/270-27y) Q(U2)

K mg
< [T (a2 1 o) [ aws (i 1 ™)
k=1 j=1

n+p
Ty T X(XTX d*l[ -1xT 9 — ta
I (y y—y" X( +dy 1) y+ €> . (B11)

d+2¢ + p?A3d3 + K2M\3d3

E.3. Starting values

To minimize Vpsar,

0Vpsar Bo.c Bocy A2 9 Bo.c,.Bo.c
s 0=+ =07, = P
8T0,k To.k 4 Af
Vpscr Boks A3 2 4Bg,k,y
2 0== T = 0=k, 2
a’)’o,k,j Y0,k,; 4 A3

For the starting value for 3,

by K my A 2
BO:arg/?é]iRI}a{ (y—Xﬂ)T( Xﬁ +Z IBGk/BGk ZZ ZB]CJ

k=1 21/BE Ba.  k=1j=12,/B%
K K m
Z_% / Bckﬁek %Z . 4ﬂk,a}
k=1 4 k=1 j=1
K my

= arg min (y = XA)" (y - X0) +/\12\/5Gkﬁck+>\222|ﬂml,

k=1 j=1
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which corresponds to the sparse group lasso solutions. Thus a reasonable starting
value for is By being the sparse group lasso estimate, To%k = 2, /ﬁg;GkﬁQ’Gk/)\l
and ’)’&k = 2|50,k,j‘/)\2'
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