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1. Introduction

Markov jump processes (MJP) are natural extensions of Markov chains to con-
tinuous time. They are useful models of numerous phenomena examined in
chemical, biological, economic and other sciences. An important class of MJP
are continuous time Bayesian networks (CTBN) introduced by Schweder (1970)
under the name of composable Markov chains and then reinvented by Nodel-
man, Shelton and Koller (2002a) under the current name. Roughly, a CTBN is
a multivariate MJP in which the dependence structure between coordinates can
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be described by a graph. Such a graphical representation allows for decomposing
a large intensity matrix into smaller conditional intensity matrices.

In many applications it is necessary to consider a situation where the trajec-
tory of a Markov jump process is not observed directly, only partial and noisy
observations are available. Typically, the posterior distribution over trajectories
is then analytically intractable. In the literature there exist several approaches
to the above mentioned problem: based on sampling (Boys, Wilkinson and Kirk-
wood, 2008; El-Hay, Friedman and Kupferman, 2008; Fan and Shelton, 2008;
Golightly and Wilkinson, 2011; Golightly and Wilkinson, 2014; Golightly, Hen-
derson and Sherlock, 2015; Nodelman, Shelton and Koller, 2002b; Rao and Teh,
2013, 2012), and also based on numerical approximations. To the best of our
knowledge the most general efficient method for a finite state space is that pro-
posed by Rao and Teh (2013), and extended to a more general class of continuous
time discrete systems in Rao and Teh (2012). Their algorithm is based on intro-
ducing so-called virtual jumps and a thinning procedure for Poisson processes.

Geometric ergodicity is a key property of Markov chains which implies a
Central Limit Theorem for sample averages. Recently Miasojedow and Niemiro
(2016) proved geometric ergodicity of Rao and Teh’s algorithm in a special case
of the homogeneous MJPs observed at discrete moments and when the virtual
jumps are introduced by uniformization procedure. In the present paper we gen-
eralise these results to a larger class of MJPs, more general observation models
and also for more general class of state dependent thinning procedures. We also
establish geometric ergodicity of a Gibbs sampler for CTBNs. Overall scheme
of the proofs in the present paper is roughly similar to those in Miasojedow and
Niemiro (2016). However, in the more general setting the arguments are much
more subtle and require some new ideas, in particular in the case of CTBNs.
Also, to tackle the nonhomogeneous case, Lemma 2 uses the strong mixing
condition for discrete hidden Markov models, instead of the standard ergodic
theorem for homogeneous Markov chains.

Note that in practice the parameters of the hidden MJP may be unknown
and have to be estimated. Then for both Bayesian and frequentist statistical
inference Rao and Teh’s algorithm can be applied as a part of more complex
algorithms. In the Bayesian approach, Rao and Teh’s algorithm can be used
within a Gibbs sampler or Metropolis-Hastings algorithm which updates un-
known parameters, according to some posterior distribution. In the frequentist
approach, Rao and Teh’s algorithm can be applied to perform E-step of Monte
Carlo or stochastic approximation version of EM algorithm. Such extended ver-
sions of Rao and Teh’s algorithm are not considered in our paper. We assume
that the probability law of a hidden MJP is known. However we strongly believe
that geometric ergodicity of the Rao and Teh’s algorithm for a given parame-
ters of hidden process will be crucial in the theoretical analysis of such complex
methods.

The rest of the paper is organised as follows. In Section 2 we briefly intro-
duce hidden Markov jump processes, next in Section 3 we recall the dependent
thinning procedure and Rao and Teh’s algorithm. The main result is proved in
Section 4 and extensions for CTBNs are given in Section 5.
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Throughout this paper we use p(X) as the generic notation for a probability
density of a random object X, so it may denote different functions. Set {n, n+
1, . . . ,m} is denoted by [n :m] (for integer n ≤ m).

2. Hidden Markov jump processes

Consider a continuous time Markov process {X(t), tmin ≤ t ≤ tmax} on a finite
state space S. Its probability law is defined via the initial distribution ν(s) =
P(X(tmin) = s) and the transition intensities

Q(t; s, s′) = lim
h→0

1

h
P(X(t+ h) = s′|X(t) = s)

for s, s′ ∈ S, s �= s′. Let Q(t; s) =
∑

s′ �=s Q(t; s, s′) denote the intensity of leaving
state s. In general, process X can be time-inhomogeneous, that is we allow the
intensities to vary in time. For definiteness, assume that X has right continuous
trajectories. We say X is a Markov jump process (MJP).

Suppose that process X cannot be directly observed but we can observe
some random quantity Y with probability distribution L(Y |X). Let us say
Y is the data and L is the likelihood. The problem is to restore the hidden
trajectory of X given Y . From the Bayesian perspective, the goal is to com-
pute/approximate/sample from the posterior

p(X|Y ) ∝ p(X)L(Y |X).

Function L, transition intensities Q and initial distribution ν are assumed to
be known. We consider two typical forms of noisy observation. In the first part
of our paper we assume that the trajectory X([tmin, tmax]) is observed indepen-
dently at k deterministic time points with some random errors. Formally, we
observe Y = (Y1, . . . , Yk) where

L(Y |X) =
k∏

j=1

Lj(Yj |X(tobsj )), (1)

for some fixed known points tmin ≤ tobs1 < · · · < tobsk ≤ tmax. Another type of
evidence is considered later in Section 5, in the context of CTBNs. In Remarks 8
and 14 we mention some alternative assumptions about the form of evidence.

The obvious standing assumption in our paper is that L(Y |X) > 0 happens
with nonzero probability ifX is given by ν and Q. It means that the hidden MJP
under consideration is “possible”, i.e. the data do not contradict the probabilistic
model.

3. Dependent thinning and Rao and Teh’s algorithm

The so-called “dependent thinning” is a useful representation of a Markov jump
process in terms of potential times of jumps and the corresponding states (Rao
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and Teh, 2012). The intensities are assumed to be uniformly bounded, so the
process X has a finite number of jumps in the bounded interval [tmin, tmax].
Every trajectory X([tmin, tmax]) is right continuous and piecewise constant:
X(t) = Si−1 for Ti−1 ≤ t < Ti, where random variables Ti are such that
tmin < T1 < · · · < TN < tmax < TN+1. By convention, T0 = tmin. A random se-
quence of states S = (S0, S1, . . . , SN ) such that Si = X(Ti) is called a skeleton.
We do not assume that Si−1 �= Si, and therefore the two sequences

(
T
S

)
=

(
T0 T1 · · · Ti · · · TN

S0 S1 · · · Si · · · SN

)

represent the process X in a redundant way: many pairs (T, S) correspond to
the same trajectory X([tmin, tmax]). Let J = {i ∈ [1 :N ] : Si−1 �= Si} ∪ {0}, so
that TJ = (Ti : i ∈ J) are moments of true jumps and T−J = T \ TJ = (Ti : i �∈
J) are virtual jumps. By a harmless abuse of notation, we identify increasing
sequences of points in [tmin, tmax] with finite sets. Note that the trajectory of
X is uniquely defined by (TJ , SJ). Let us write X ≡ (TJ , SJ ) and also use the
notation J(X) = TJ for the set of true jumps.

The state-dependent thinning procedure taken from Rao and Teh (2012) is
the following. We choose a function R(t; s) ≥ Q(t; s), interpreted as intensity of
an inhomogeneous Poisson process depending on state s ∈ S. The first point of
this Poisson process after time u, say W , has the probability density

f(w|u, s) = R(w; s) exp

⎡
⎣−

w∫
u

R(t; s)dt

⎤
⎦ (w > u). (2)

Let

P (t; s, s′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q(t; s, s′)

R(t; s)
if s �= s′;

1− Q(t; s)

R(t; s)
if s = s′.

(3)

Sampling of (T, S) then proceeds as described in Algorithm 1.

Algorithm 1 Sampling by state-dependent thinning.

Let T0 = tmin and i = 0.
Sample S0 ∼ ν(·).
while Ti < tmax do

Let i = i+ 1.
Sample Ti ∼ f(·|Ti−1, Si−1) { given by (2)}.
Sample Si ∼ P (Ti;Si−1, · ) { given by (3)}.

end while

By (2) and (3), the joint probability distribution of (T, S) is the following.
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p(T, S) = ν(S0)

N∏
i=1

P (Ti;Si−1, Si)R(Ti;Si−1) exp

⎡
⎢⎣−

Ti∫
Ti−1

R(t;Si−1)dt

⎤
⎥⎦

× exp

⎡
⎣−

tmax∫
TN

R(t;SN )dt

⎤
⎦ .

(4)

The last part of the above expression is equal to P(TN+1 > tmax|TN , SN ). The
pair (T, S) produced by Algorithm 1 is a redundant representation of MJP X
defined by ν and Q (probability distribution of X obtains if we “integrate out”
virtual jumps).

Rao and Teh (2012) exploit dependent thinning to construct a special version
of a Gibbs sampler which converges to the posterior p(X|Y ). The key facts be-
hind their algorithm are the following. First, given the trajectory X ≡ (TJ , SJ)
the conditional distribution of virtual jumps T−J is that of the inhomogeneous
Poisson process with intensity R(t;X(t))−Q(t;X(t)) ≥ 0. Second, this distribu-
tion does not change if we add the likelihood. Indeed, L(Y |X) = L(Y |TJ , SJ),
so Y and T−J are conditionally independent and thus

p(T−J |TJ , SJ , Y ) = p(T−J |TJ , SJ ).

Third, the conditional distribution p(S|T, Y ) is that of a hidden discrete
time Markov chain and can be efficiently sampled from using the algorithm
FFBS (Forward Filtering-Backward Sampling, Carter and Kohn (1994); Frühwirth-
Schnatter (1994)). Indeed, from (4) and (1) it follows that

p(S|T, Y ) ∝ p(T, S)L(Y |T, S) ∝ ν(S0)g0(S0)

N∏
i=1

Pi(Si−1, Si)gi(Si), (5)

where Pi(s, s
′) = P (Ti, s, s

′) is the stochastic matrix defined by (3) and

gi−1(s) = R(Ti, s) exp

⎡
⎢⎣−

Ti∫
Ti−1

R(t; s)dt

⎤
⎥⎦×

∏
j:Ti−1≤tobs

j <Ti

Lj(Yj |s)

for i = 1, . . . , N ;

gN (s) = exp

⎡
⎣−

tmax∫
TN

R(t; s)dt

⎤
⎦×

∏
j:TN≤tobs

j <tmax

Lj(Yj |s).

(6)

(We use the convention that
∏

j:Ti−1≤tobs
j <Ti

· · · = 1 if there is no observation

between Ti−1 and Ti.) Note that functions gi include not only the likelihood but
also a part due to the prior distribution p(T, S).

Rao and Teh’s algorithm generates a Markov chain X0, X1, . . . , Xm, . . . where
Xm = Xm([tmin, tmax]) is a trajectory of a MJP, convergent to p(X|Y ). A single
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Algorithm 2 Single step of Rao and Teh’s algorithm.
input: previous state (TJ , SJ ) ≡ X and observation Y .

(V) Sample a Poisson process V with intensity R(t;X(t)) − Q(t;X(t)) on [tmin, tmax].
Let T ′ = TJ ∪ V {new set of potential times of jumps}.

(S) Draw new skeleton S′ from the conditional distribution p(·|T ′, Y ) by FFBS. The new
allocation of virtual and true jumps is via J ′ = {i : S′

i−1 �= S′
i} ∪ {0} {we discard

new virtual jumps T ′
−J′}.

return new state (T ′
J′ , S

′
J′ ) ≡ X′.

step, that is the rule of transition from Xm−1 = X to Xm = X ′ is described in
Algorithm 2.

Convergence of the algorithm has been shown by its authors in Rao and Teh
(2012). It follows from the fact that the chain has the stationary distribution
p(X|Y ) and is irreducible and aperiodic, provided that R(t; s) > Q(t; s).

4. Main result

Let A be the transition kernel of the Markov chain Xm generated by Rao and
Teh’s algorithm. Let Π be the target distribution. (It is the posterior distribution
of X given Y . In this paper we consider only Monte Carlo randomness, so Y is
fixed and can be omitted in notation.)

Theorem 1. Consider a hidden MJP in which the evidence is of the form (1).
Assume that

1. there exists an irreducible matrix Qmin such that Qmin(s, s′) ≤ Q(t; s, s′)
for all s, s′ ∈ S, s �= s′, t ∈ [tmin, tmax],

2. there exists η > 0 such that Q(t; s)/R(t; s) ≤ 1 − η for all s ∈ S, t ∈
[tmin, tmax],

3. there exists rmax < ∞ such that R(t; s) ≤ rmax for all s ∈ S, t ∈
[tmin, tmax].

Then the chain Xm produced by Rao and Teh’s Algorithm 2 is geometrically
ergodic, i.e. there exist constant γ < 1 and function M such that for every
initial trajectory X such that L(Y |X) > 0 and every m,

‖Am(X, ·)−Π(·)‖tv ≤ γmM(X).

We begin with some auxiliary results. In Lemmas 2 and 5 we consider an
inhomogeneous Markov chain S0, S1, . . . , Sn on a finite state space S with the
joint probability distribution given by

P(S0 = s0, S1 = s1, . . . , Sn = sn) ∝ ν(s0)g0(s0)

n∏
i=1

Pi(si−1, si)gi(si),

where Pi are stochastic matrices and gi are non-negative functions (formula (5)
shows that the conditional distribution of skeleton is of this form). Assuming
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that 0 < n0 ≤ i < n, we define

Pi−n0:i(si−n0 , s) =
∑

{si−n0+1,...,si−1}

(
i−1∏

l=i−n0+1

Pl(sl−1, sl)

)
Pi(si−1, s) . (7)

and

P g
i−n0:i

(si−n0 , s) =
∑

{si−n0+1,...,si−1}

(
i−1∏

l=i−n0+1

Pl(sl−1, sl)gl(sl)

)
Pi(si−1, s) .

Lemma 2. Consider fixed n0 and i such that 1 ≤ n0 ≤ i ≤ n− 1. Assume that

1. for some ξ > 0 inequality Pi−n0:i(si−n0 , s) ≥ ξ holds for all si−n0 , s ∈ S,
2. for some η > 0 inequality Pi+1(s, s) ≥ η holds for all s ∈ S,
3. for some gmin

l and gmax
l we have gmin

l ≤ gl(s) ≤ gmax
l for all s ∈ S,

l ∈ [i− n0 + 1: i].

Then

P(Si = s|Si+1 = s) ≥ δi, where δi = ξη

i∏
l=i−n0+1

gmin
l

gmax
l

.

Proof. We condition additionally on Si−n0 = si−n0 and use two-sided Markov
property to obtain

P(Si = s|Si−n0 = si−n0 , Si+1 = s) =
P g
i−n0:i

(si−n0 , s)gi(s)Pi+1(s, s)∑
s′ P

g
i−n0:i

(si−n0 , s
′)gi(s′)Pi+1(s′, s)

≥

(∏i
l=i−n0+1 g

min
l

)
Pi−n0:i(si−n0 , s)Pi+1(s, s)(∏i

l=i−n0+1 g
max
l

)∑
s′ Pi−n0:i(si−n0 , s

′)Pi+1(s′, s)
≥ ξη

i∏
l=i−n0+1

gmin
l

gmax
l

,

because
∑

s′ Pi−n0:i(si−n0 , s
′) = 1 and Pi+1(s

′, s) ≤ 1. Since the right hand
side of the obtained bound does not depend on si−n0 , by taking the sum over
all possible values of si−n0 we obtain the desired result. Finally let us remark
that conclusion of the lemma remains trivially true if gmin

l = 0 for some index
l ∈ [i− n0 + 1: i] and thus δi = 0.

Remark 3. In Lemma 2 we bound from below the backward transition prob-
ability used by the FFBS algorithm. However, the identical inequality is true
also for the forward transition probability P(Si = s|Si−1 = s).

Remark 4. In the time-homogeneous case, when Pi = P , the first assumption of
Lemma 2 is essentially equivalent to irreducibility and aperiodicity of matrix P .
Note also that the two constants ξ and η play different roles in Rao and Teh’s
algorithm.

Lemma 5. Let the assumptions of Lemma 2 hold for all i ∈ [n0 :n− 1]. Then

E|J | ≤ n+ 1−
n−1∑
i=n0

δi,

where J = {i ∈ [1 :n] : Si−1 �= Si} ∪ {0}.
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Proof. Note that |J | = 1 +
∑n−1

i=0 I(Si �= Si+1). We apply Lemma 2 to each
i ∈ [n0 :n− 1] to obtain P(Si = Si+1|Si+1) ≥ δi and consequently

EI(Si �= Si+1) = EP(Si �= Si+1|Si+1) ≤ 1− δi.

For i < n0 we apply the trivial bound EI(Si �= Si+1) ≤ 1.

In the next proposition we establish a geometric drift condition for the
Markov chain X0, X1, . . . , Xm, . . .. Consider a single step, that is transition from
Xm−1 = X toXm = X ′. The dependence on the input trajectoryX (and also on
Y ) is implicitly assumed but indicated only when necessary. Recall that |J(X)|
is the number of true jumps of the trajectory X([tmin, tmax]).

Proposition 6 (Drift Condition). Under the assumptions of Theorem 1, there
exist δ > 0 and c < ∞ such that in a single step of Rao and Teh’s algorithm,
E(|J(X ′)||X) ≤ (1− δ)|J(X)|+ c.

Proof. Let us analyse what happens in both two stages (V) and (S) of Algo-
rithm 2. The initial X is fixed. In stage (V) we add a new set V of potential
jumps. Since |V | has the Poisson distribution with intensity∫ tmax

tmin

(R(t;X(t))−Q(t;X(t)))dt,

we have E|V | ≤ μ := rmax(tmax − tmin). Thus we obtain T ′ with

E(|T ′||X) ≤ |J(X)|+ μ. (8)

In stage (S) the set T ′ is “thinned” to T ′
J ′ . We now condition on T ′ and write

n+1 = |T ′|. Our next goal is to bound the expected value of |J ′| using Lemma 5.
Recall that Pi and gi are defined by (5) and (6). We proceed to verifying the
assumptions of Lemma 2. First we use Assumption 1 of Theorem 1 to choose n0

such that (Qmin)n0(s, s′) ≥ ε for some ε > 0 and for all s, s′ ∈ S. Without loss
of generality we can assume that the diagonal of Qmin is ηrmax. Then Qmin is
aperiodic, irreducible and satisfies Qmin(s, s′)/rmax ≤ Pi(s, s

′) for all s, s′ and
all i. If we assume that n > n0 then Pi−n0:i is defined by (7) for all i ∈ [n0 :n− 1]
and satisfies

Pi−n0:i(si−n0 , s) ≥
(Qmin)n0(si−n0 , s)

(rmax)n0
≥ ξ := ε/(rmax)n0 , (9)

so Condition 1 of Lemma 2 holds. Condition 2 of Lemma 2 follows directly from
Assumption 2 of Theorem 1. Condition 3 of Lemma 2, that is the two-sided
bound gmin

l ≤ gl(s) ≤ gmax
l , is fulfilled with gmin

l and gmax
l defined as follows.

The upper bound is uniform for all l, gmax
l = gmax, where

gmax := rmax max
s,j

L(yj |s)k.

As for the lower bound, we consider two cases. Note that formula (6) for gl(s) in-
cludes the “likelihood factor”

∏
Lj(Yj |s) for at most k indices l, simply because
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there are k points tobsj . For these indices l we use the trivial bound gmin
l = 0.

For the remaining n− k indices, by (6), we have gmin
l = gmin, where gmin does

not depend on l. Indeed, we can choose gmin = qmin exp[−rmax(tmax − tmin)],
where qmin = mins Q

min(s) = mins
∑

s′ �=s Q
min(s, s′). Assumption 1 of Theo-

rem 1 entails R(t; s) ≥ qmin > 0. We now use Lemma 5, with n + 1 = |T ′| to
obtain

E(|J ′||T ′) ≤ n+ 1−
n−1∑
i=n0

δi, (10)

on the event |T ′| − 1 > n0. Notice that δi = 0 only if gmin
l = 0 for some

index l ∈ [i− n0 + 1: i], so there are at most kn0 zeros among δis. For at least
n− n0 − kn0 nonzero δis we have a lower bound

δi = ξη

(
gmin

gmax

)n0

=: δ > 0.

Therefore the right hand side of (10) satisfies the following inequality:

n+ 1−
n−1∑
i=n0

δi ≤ n+ 1− (n− n0 − kn0)δ

= (1− δ)(n+ 1) + (kn0 + n0 + 1)δ

≤ (1− δ)(n+ 1) + (k + 1)(n0 + 1).

Using (10) for |T ′| − 1 > n0 and the trivial bound |J ′| ≤ |T ′| ≤ n0 + 1 for
|T ′| − 1 ≤ n0 we obtain

E(|J ′||T ′) ≤ (1− δ)|T ′|+ (k + 1)(n0 + 1).

Finally, by (8) we get

E(|J(X ′)||X) = E (E(|J ′||T ′)|X) ≤ (1− δ)(|J(X)|+ μ) + (k + 1)(n0 + 1).

The conclusion of the proposition follows.

Proposition 7 (Small Set Condition). The set {X : |J(X)| ≤ h} is 1-small
for every h, i.e. there exists a probability measure Φ and a constant β > 0 such
that A(X, dX ′) ≥ βΦ(dX ′), whenever |J(X)| ≤ h.

Recall that A denotes the transition kernel of the Markov chain defined via
Algorithm 2. Φ is a called a regeneration measure.

Proof. The scheme of our proof is the following. We will define a sequence of
states s∗ = (s∗0, ..., s

∗
n) and a sequence of times t∗ = (t∗0, ..., t

∗
n). Both these

sequences are deterministic and fixed. The regeneration measure Φ(dX ′) is de-
scribed in terms of s∗ and t∗ as follows:

T ′
i ∼ Uniform(t∗i−1, t

∗
i ) independently for i = 1, . . . , n;

S′
i = s∗i for i = 0, 1, . . . , n.

(11)
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Trajectory X ′ is determined by (T ′, S′) as described in Section 3. Note that
the skeleton S′ is deterministic and random vector (T ′

1, . . . , T
′
n) has the uniform

distribution on the set

T = {(t1, ..., tn) : t∗i−1 ≤ ti ≤ t∗i for i = 1, . . . , n} .

We will show that Algorithm 2 can be equivalently executed in such a way that
the resulting X ′ is distributed according to Φ with probability at least β > 0,
provided that |J(X)| ≤ h (β must not depend on X; it will be defined in the
course of our proof).

Now we proceed to details of our construction. To define s∗ and t∗, let us
first choose a sequence s† = (s†1, s

†
2, . . . , s

†
k) such that

k∏
j=1

Lj(Yj |s†j) =: L† > 0.

Now we are going to use Assumptions 1 and 3 of Theorem 1. By irreducibility of
matrix Qmin we can embed s† in a skeleton s∗, which has probability bounded
below for the chain with transition matrices Pi appearing in (5) (whatever the
choice of the times of jumps, on which these matrices depend). Put differently, we
define a sequence s∗ = (s∗0, ..., s

∗
n) for some n ≥ k such that s† is a subsequence

of s∗, s∗i−1 �= s∗i and, uniformly in t, we have

ν(s∗0)
n∏

i=1

P (t; s∗i , s
∗
i+1) ≥ ν(s∗0)

n∏
i=1

Qmin(s∗i , s
∗
i+1)

rmax
=: β∗

1 > 0 .

To get a sequence of times “compatible with” the skeleton s, we embed the
sequence tobs = (tobs1 , . . . , tobsk ) in a longer sequence t∗ = (t∗0, t

∗
1, . . . , t

∗
n). More

precisely, we choose a sequence tmin = t∗0 < t∗1 < · · · < t∗n < tmax such that

t∗ij = tobsj implies s∗ij = s†j for j = 1, . . . , k.

Fix X with |J(X)| ≤ h. We are going to describe a special way in which
Algorithm 2 can be executed. Recall that Assumptions 1 and 2 of Theorem 1
ensure thatR(t; s) ≥ Q(t; s) =

∑
s′ �=s Q(t; s, s′) ≥

∑
s′ �=s Q

min(s, s′) ≥ qmin > 0.
Using again Assumption 2 we obtain

R(t; s)−Q(t; s) ≥ ηR(t; s) ≥ ηqmin =: ε > 0.

In stage (V) we can independently sample two Poisson processes on the inter-
val [tmin, tmax], say V 0 and V rest, with intensities ε and R(t; s) − Q(t; s) − ε,
respectively. Next let V = V 0 ∪ V rest and T ′ = J(X) ∪ V . Note that

P(V 0 ∈ T ) =: β0 > 0 .

Moreover, since V rest is a Poisson process with intensity bounded by rmax we
have

P(V rest = ∅) ≥ exp
[
−rmax(tmax − tmin)

]
=: βrest > 0 .
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In stage (S) of the Algorithm 2 we construct skeleton S′. Although the actual
sampling from p(S′|T ′, Y ) is by FFBS, an equivalent result can be obtained via

rejection sampling. We have
∏|T ′|

i=0 gi(S
′
i) ≤ (rmax)|T

′|Lmax, where

Lmax =

k∏
j=1

max
s

Lj(Yj |s).

The rejection sampling proceeds as follows.

(S1) Simulate Markov chain S′ (of length |T ′|) with transition matrices

Pi = P (T ′
i ; ·, ·)

and initial distribution ν, c.f. (5).

(S2) Accept the skeleton S′ with probability
∏|T ′|

i=0 gi(S
′
i)/[(r

max)|T
′|Lmax]. If

the skeleton is not accepted then go to (S1).

(Of course the rejection method is highly inefficient and is considered only to
clarify presentation.)

We consider the following random events Ei:
• E0: in stage (V) we obtain T ′ = J(X) ∪ V 0 and V 0 ∈ T .
• E1: in stage (S1) all points belonging to J(X) are changed to virtual jumps,

while jumps at V 0 form the skeleton s∗.
• E2: in stage (S2) we accept the skeleton obtained in stage (S1).

We can see that

• E0 happens with probability at least β0βrest.
• Given that E0 has happened, the probability of E1 is at least

β∗
1η

J(X) ≥ β∗
1η

h =: β1,

because P (T ′
i , s, s) ≥ η.

• Given that E0 and E1 have happened, the probability of E2 is at least(
qmin

rmax

)h+n

exp
[
−rmax(tmax − tmin)

] L†

Lmax
=: β2,

in view of (6), because |T ′| = |J(X)|+ |V 0| ≤ h+ n.

(Of course, all the probabilities in the above statements are conditional on X.)
Putting everything together, E := E0 ∩ E1 ∩ E2 happens with probability at
least β := β0βrestβ1β2 > 0. If E happens then the output X ′ of Algorithm 2
is independent of the input X and has the probability distribution Φ(dX ′)
described in the beginning of this proof.

Theorem 1 immediately follows from Propositions 6 and 7, see for example
Roberts and Rosenthal (2004, Th. 9). (In the cited paper the drift condition
appears in a form slightly different than in our Proposition 6; however (Johnson,
2009, Lem. 2.1) shows that both formulations are equivalent.)
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Remark 8. Note that Theorem 1 holds also for other observation models than
given by (1). For example, we could consider the observed object Y of quite gen-
eral nature but assume that L(Y |X) ≥ ε > 0. The proofs of the drift condition
and especially of the small set condition would be then much simpler. However,
assumption (1) does not imply L(Y |X) ≥ ε > 0, and we think that this latter
condition is less realistic in applications.

5. Continuous time Bayesian networks

Let (N ,K) denote a directed graph with possible cycles. We write w → u
instead of (w, u) ∈ K. For every node w ∈ N consider a corresponding space Sw

of possible states. Assume that each space Sw is finite. We consider a continuous
time homogeneous Markov process on the product space S =

∏
w∈N Sw. Thus

a state s ∈ S is a configuration s = (sw) = (sw)w∈N , where sw ∈ Sw. If W ⊆ N
then we write sW = (sw)w∈W for configuration s restricted to nodes in W . We
also use notation SW =

∏
w∈W Sw, so that we can write sW ∈ SW . The set

W \ {w} will be denoted by W − w and N \ {w} simply by −w. We define the
set of parents of node w by

pa(w) = {u ∈ N : u → w} ,

and we define the set of children of node w by

ch(w) = {u ∈ N : w → u} .

Suppose we have a family of functions Qw : Spa(w) × (Sw × Sw) → [0,∞). For
fixed c ∈ Spa(w), we consider Qw(c; ·, · ) as a conditional intensity matrix (CIM)
at node w (only off-diagonal elements of this matrix have to be specified, the
diagonal ones are irrelevant). The state of a CTBN at time t is a random element
X(t) of the space S of configurations. Let Xw(t) denote its wth coordinate. The
process {(Xw(t))w∈N , t ≥ 0} is assumed to be Markov and its evolution can be
described informally as follows. Transitions at node w depend on the current
configuration of the parent nodes. If the state of some parent changes, then
node w switches to other transition probabilities. Formally, CTBN is a time-
homogeneous MJP with transition intensities given by

Q(s, s′) =

{
Qw(spa(w), sw, s

′
w) if s−w = s′−w and sw �= s′w for some w;

0 if s−w �= s′−w for all w,

for s �= s′. Define also Qw(c; s) =
∑

s′ �=s Qw(c; s, s
′) for c ∈ Spa(w), s ∈ Sw.

For a CTBN, the density of sample path X = X([tmin, tmax]) in a bounded
time interval [tmin, tmax] decomposes as follows:

p(X) = ν(X(tmin))
∏
w∈N

p(Xw‖Xpa(w)) , (12)

where ν is the initial distribution on S and p(Xw‖Xpa(w)) is the density of piece-
wise homogeneous MJP with intensity matrix equal to Qw(c; ·, · ) in every time
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sub-interval such that Xpa(w) = c. Formulas for the density of CTBN appear e.g.
in Nodelman, Shelton and Koller (2002b, Sec. 3.1), Fan, Xu and Shelton (2010,
Eq. 2), Fan and Shelton (2008, Eq. 1) and Miasojedow et al. (2014). Our nota-
tion p(Xw‖Xpa(w)) – with double vertical lines – is consistent with the notion of
“conditioning by intervention” see e.g. Pearl (1994) or Lauritzen (2001). In fact,
p(Xw‖Xpa(w)) coincides with the usual conditional density p(Xw|Xpa(w)) in a
modified network in which all arrows leading to pa(w) have been removed. For
details see e.g. Lauritzen (2001) in the context of static Bayesian Networks and
Miasojedow et al. (2014) in the context of CTBNs. Below we explicitly write an
expression for p(Xw‖Xpa(w)). We need the following notations:

Let ιXw (c; s, s′) denote the number of jumps from s ∈ Sw to s′ ∈ Sw at
node w, which occurred when the parent configuration was c ∈ Spa(w).
Let τXw (c; s) be the length of time that node w spent in state s ∈ Sw

when the parent configuration was c ∈ Spa(w).

With these notations we can write

p(Xw‖Xpa(w)) =

{ ∏
c∈Spa(w)

∏
s∈Sw

∏
s′∈Sw
s′ �=s

Qw(c; s, s
′)ι

X
w (c; s,s′)

}

×
{ ∏

c∈Spa(w)

∏
s∈Sw

exp
[
−Qw(c; s)τ

X
w (c; s)

]}
.

(13)

Let us also write pjump(Xw‖Xpa(w)) and pstay(Xw‖Xpa(w)) for the first and
second expression in (13), respectively, to facilitate future references.

The problem of probabilistic reasoning for a CTBN can be formulated as
follows. Assume that the available evidence is the complete observation of some
nodes, sayXO([t

min, tmax]) for some setO ⊂ N . We are to compute the posterior
distribution over unobserved nodes, i.e. on the trajectories of XW([tmin, tmax]),
where W = N \ O. The basic idea, proposed in (Rao and Teh, 2013) is to use
“Algorithm 2 within Gibbs sampler”. Let us fix a node w ∈ W . By (12), the
full conditional distribution is the following.

p(Xw|X−w) ∝ ν(Xw(t
min)|X−w(t

min))p(Xw‖Xpa(w))
∏

u∈ch(w)

p(Xu‖Xpa(u)) .

(14)
The density ν(Xw(t

min)|X−w(t
min))p(Xw‖Xpa(w)) corresponds to a piecewise

homogeneous Markov process and can be treated as the prior distribution in
Algorithm 2. The expression

∏
u∈ch(w) p(Xu‖Xpa(u)) can be treated as likeli-

hood. In Algorithm 2 we can use “instrumental” intensities Rw(t; s) different
for different nodes w, and possibly time-inhomogeneous (in practical implemen-
tations however, Rw will usually be time-homogeneous).
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Algorithm 3 Random scan Gibbs sampler for CTBN.
input: previous trajectory XW and evidence XO.

Choose at random w ∈ W (according to some probability distribution on W).

Update Xw to X′
w. Apply Algorithm 2 with the target distribution p(Xw|X−w) given

by (14) { X−w includes all nodes u ∈ O as well as u ∈ W, u �= w }.
return new trajectory X′

W = (XW−w, X′
w).

Theorem 9. Consider a CTBN in which we observe trajectories

XO([t
min, tmax]).

Assume that

1. for every w ∈ W = N \ O there exists an irreducible matrix Qmin
w such

that Qmin
w (s, s′) ≤ Qw(c; s, s

′) for all s, s′ ∈ Sw, s �= s′, c ∈ Spa(w),
2. there exists η > 0 such that Qw(c; s)/Rw(t; s) ≤ 1 − η for all w ∈ W,

s ∈ Sw, c ∈ Spa(w) and t ∈ [tmin, tmax],
3. there exists rmax < ∞ such that Rw(t; s) ≤ rmax for all w ∈ W, s ∈ Sw,

t ∈ [tmin, tmax],
4. for every w ∈ N , the supports of Qw(c; ·, ·) do not depend on the parent

configuration c ∈ Spa(w), i.e. Qw(c; s, s
′) > 0 implies Qw(c

′; s, s′) > 0.

Then the chain (XW)m produced by Algorithm 3 is geometrically ergodic.

As in Section 4, we will show a drift condition towards a small set. The
Lyapunov function in the CTBN setting will be the global number of jumps
|J(XW)| =

∑
w∈W |J(Xw)|. Let us begin with an elementary fact, needed in

the proof of the drift condition.

Lemma 10. Let 0 ≤ � < 1. For any x1, . . . , xn such that
∑n

i=1 xi ≤ nb,

n∑
i=1

�xi ≥ n�b.

Proof. The function x �→ �x, for 0 ≤ � < 1 is convex and decreasing, so that

1

n

n∑
i=1

�xi ≥ �
1
n

∑n
i=1 xi ≥ �b.

Proposition 11 (Drift Condition). Under the assumptions of Theorem 9, there
exist ε > 0 and c < ∞ such that in a single step of Algorithm 3,

E(|J(X ′
W)||X) ≤ (1− ε)|J(XW)|+ c.

Proof. For a given XW , there always exists a node w ∈ W such that

|J(Xw)| ≥ |J(XW)|/|W|,
e.g. a node with maximum number of jumps. From now on, node w is fixed. We
will prove that for some c0 and ε0 > 0,

E(|J(X ′
w)||X, node w is updated) ≤ (1− ε0)|J(Xw)|+ c0. (15)
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This is a “local version” of the drift condition. The conclusion of the proposition
will easily follow from (15). Indeed, for every node u we have

E(|J(X ′
u)||X, node u is updated) ≤ |J(Xu)|+ μ,

with μ := rmax(tmax − tmin), as in the proof of Proposition 6. Let pmin denote
the minimum probability of selecting a node for update in Algorithm 3. The
singled out node w is chosen with probability at least pmin. Therefore

E(|J(X ′
W)||X) ≤ pmin ((1− ε0)|J(Xw)|+ c0 + |J(XW−w)|)

+ (1− pmin) (|J(XW)|+ μ)

≤ pmin ((1− ε0)|J(Xw)|+ |J(XW)| − |J(Xw)|)
+ (1− pmin)|J(XW)|+ c0 + μ

≤ |J(XW)| − pminε0|J(Xw)|+ c0 + μ

≤ |J(XW)|
(
1− pmin ε0

|W|

)
+ c0 + μ,

which is the desired conclusion.

It remains to show (15). Since node w is fixed, we will omit subscript w in
notation whenever the context permits. The reasoning leading to (15) is similar
to the proof of Proposition 6, but more delicate due to a different form of the
likelihood. The role of observed Y is now played by X−w. We can write the
conditional distribution of the skeleton S (at node w) given times of possible
jumps T (at node w) in the same form as (5), namely

p(S|T,X−w) ∝ ν̃(S0)g0(S0)
N∏
i=1

Pi(Si−1, Si)gi(Si), (16)

where N +1 = |T |, ν̃(Xw(t
min)) := ν(Xw(t

min)|X−w(t
min)) and Pis are defined

by Pi(s, s
′) = P (Ti, s, s

′), as in (5), with

P (t; s, s′) =

⎧⎪⎪⎨
⎪⎪⎩

Qw(Xpa(w)(t); s, s
′)

Rw(t; s)
if s �= s′;

1−
Qw(Xpa(w)(t); s)

Rw(t; s)
if s = s′.

(The “prior distribution” at node w is that of a piecewise-homogeneous MJP).
However, the expressions for the gis are different than (6). We now have

gi−1(s) = Rw(Ti, s) exp

⎡
⎢⎣−

Ti∫
Ti−1

Rw(t; s)dt

⎤
⎥⎦×

∏
u∈ch(w)

p(X(i)
u ‖X(i,w,s)

pa(u) ),

for i = 1, . . . , N,

gN (s) = exp

⎡
⎣−

tmax∫
TN

Rw(t; s)dt

⎤
⎦×

∏
u∈ch(w)

p(X(N)
u ‖X(N,w,s)

pa(u) ), (17)
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where X(i) = X([Ti−1, Ti)) is the process restricted to an inter-jump-at-w in-

terval and X
(i,w,s)
pa(u) denotes the trajectories of X

(i)
pa(u) with X

(i)
w replaced by

s ∈ Sw. The likelihood parts p(·‖·) in equation (17) can be decomposed into
p(·‖·) = pjump(·‖·)× pstay(·‖·), c.f. (13). If we write

gi(s) = hi(s)
∏

u∈ch(w)

pjump(X(i)
u ‖X(i,w,s)

pa(u) ),

then hi is easy to bound (at least qualitatively), because by (13) we have

exp
[
−rmax(tmax − tmin)|N |

]
≤

∏
u∈ch(w)

pstay(X(i)
u ‖X(i,w,s)

pa(u) ) ≤ 1.

The part of hi which corresponds to the prior can be bounded analogously as
in the proof of Proposition 6 and thus we obtain

qmin exp
[
−rmax(tmax − tmin)|

]
≤ hi(s) ≤ rmax, (18)

with qmin = minw mins
∑

s′ �=s Q
min
w (s, s′), c.f. Assumption 1 of Theorem 9.

We are now left with a task of bounding the expression with pjump. This
is more difficult, because this part of the likelihood depends on |J(XW)|. By
Assumptions 2 and 3 of Theorem 9, we have Qu(c; s, s

′) ≤ rmax for all s �= s′,
s, s′ ∈ Su, c ∈ Spa(u), for all u. To obtain a lower bound, we define qmin

+ as the
minimum of nonzero values of Qu(c; s, s

′), s �= s′, s, s′ ∈ Su, c ∈ Spa(u), all u.
From (13) it follows that(

qmin
+

)|J(X(i)

ch(w)
)| ≤

∏
u∈ch(w)

pjump(X(i)
u ‖X(i,w,s)

pa(u) ) ≤ (rmax)
|J(X(i)

ch(w)
)|
. (19)

Note that Assumption 4 of Theorem 9 is needed to justify the lower bound
above. Indeed, under the obvious assumption that X is possible, i.e. p(X) > 0,

the jumps of X
(i)
u are possible under the configuration X

(i)
pa(u). By Assumption 4

of Theorem 9, they must be possible also under the configuration X
(i,w,s)
pa(u) . Com-

bining (18) and (19) we obtain

a1�
|J(X(i)

ch(w)
)|

1 ≤ gi(s) ≤ a2�
|J(X(i)

ch(w)
)|

2

for some constants a1, a2 and �1, �2 which depend only on the parameters of the
network and on the instrumental intensity R (they depend neither on w nor on

i). Of course, |J(X(i)
ch(w))| = |J(X(i)

ch(w)∩W)| + |J(X(i)
ch(w)∩O)|. Since XO is fixed,

the parts with the exponent |J(X(i)
ch(w)∩O)| can be absorbed in constants, which

leads to the bound

ã1�
|J(X(i)

ch(w)∩W )|
1 ≤ gi(s) ≤ ã2�

|J(X(i)

ch(w)∩W )|
2 . (20)

Assume that stage (V) of Algorithm 2 has been completed, resulting in a new
set T ′ of potential times of jumps at node w. Just as in the proof of Proposition 6,
we infer that E(|T ′||X,w is updated) ≤ |J(Xw)|+ μ, where

μ = rmax(tmax − tmin).
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Now consider stage (S) of Algorithm 2. After sampling a new skeleton S′ at node
w, the set T ′ is “thinned” of to the set of true jumps J(X ′

w). We are to bound
|J(X ′

w)| from above. We are going to apply Lemmas 2 and 5 to the skeleton
chain S′ at node w which has the probability distribution p(S′|T ′, X−w) given
by (16). We now decompose the process X into inter-jump parts according to
T ′ and use the notation X(i) := X([T ′

i−1, T
′
i )). From (20) we infer that the

conclusion of Lemma 2 holds with

δi = a�
|J(X(i)

ch(w)∩W )|
(21)

for some constants a, �, n0 and for i ≥ n0. Indeed, we can choose, analogously
as in the proof of Proposition 6, the diagonal of Qmin, n0 and ξ such that
(Qmin

w )n0(s, s′)/(rmax)n0 ≥ ξ, c.f. Assumption 1 of Theorem 9. Then put

� = (�2/�1)
n0

and

a = (ã2/ã1)ξη/|Sw|,

where η appears in Assumption 2 of Theorem 9.

We are now prepared to use Lemma 10. To verify its assumption, it is neces-

sary to bound the sum of the exponents in (21). Recall that J(X
(i)
u ) is the set

of jumps at u in the time interval between consecutive potential jumps at w,
i.e. [T ′

i−1, T
′
i ). Therefore

|T ′|−2∑
i=n0

|J(X(i)
ch(w)∩W)| ≤ |J(XW)|

≤ |J(Xw)| · |W| ≤ |T ′| · |W| ≤ 2|T ′ − n0 − 1||W|,
where the last inequality holds for |J(Xw)| ≥ 2(n0 +1), Lemma 10 implies that

|T ′|−2∑
i=n0

δi ≥ a(|T ′| − n0 − 1)�2|W|.

Lemma 5 implies that

E(|J(X ′
w)|T ′) ≤ max

⎧⎨
⎩2(n0 + 1), |T ′| −

|T ′|−2∑
i=n0

δi

⎫⎬
⎭

≤ |T ′|(1− a�2|W|) + (a+ 2)(n0 + 1).

It is now enough to use E(|T ′||X,w is updated) ≤ |J(Xw)|+ μ to complete the
proof.

Note that the evidence, i.e. the trajectory XO([t
min, tmax]) is considered as

fixed. In particular the constants in Proposition 11 may depend on XO.

The following proposition is an analogue of Proposition 7 in the CTBN set-
ting. Now A denotes the transition kernel of the Markov chain defined via Al-
gorithm 3.
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Proposition 12. The set {XW : |J(XW |)| ≤ h} is |W|-small for every h, i.e.
there exists a probability measure Φ and a constant β > 0 such that

A|W|(XW , dX ′
W) ≥ βΦ(dX ′

W),

whenever |J(XW)| ≤ h.

Proof. In contrast to the drift condition, the proof of the small set condition
is easier in the present setting. Under the assumptions of Theorem 9, for the
regeneration measure Φ we can take the measure concentrated at a deterministic,
constant trajectory s∗W = (s∗u, u ∈ W) ∈ SW . The only requirement is that
ν̃(s∗W) > 0, where ν̃ is the posterior initial distribution of XW(tmin), given
XO(t

min). We are to bound from below the probability that X ′
W(t) = s∗W , for

t ∈ [tmin, tmax], where X ′
W is the result of |W| steps of Algorithm 3, starting

from an arbitrary XW such that |J(XW) ≤ h.
With probability at least (pmin)|W|, Algorithm 3 in |W| steps will visit and

update all nodes belonging to W . Let us now consider a single step, in which
w ∈ W is updated via Algorithm 2. In the rest of the proof w is arbitrary but
fixed. (T ′, S′) denote the times of potential jumps and the skeleton of X ′

w. Since
Assumptions 1, 2 and 3 of Theorem 9 are, for a fixed w, essentially the same as
Assumptions 1, 2 and 3 of Theorem 1, the reasoning is similar as in the proof
of Proposition 7. We assume that stage (S) of Algorithm 2 is executed in a
way described in that proof, via rejection sampling. We consider the following
random events Ei:

• E0: in stage (V) we obtain V = ∅ so T ′ = J(Xw).
• E1: in stage (S1) all points belonging to J(Xw) are changed to virtual

jumps.
• E2: in stage (S2) we accept the skeleton obtained in stage (S1).

It is easy to obtain the following lower bounds.

• E0 happens with probability at least exp
[
−rmax(tmax − tmin)

]
=: β0, be-

cause V is a Poisson process with intensity R(t; s)−Q(t; s) ≤ rmax.
• Given that E0 has happened, the probability of E1 is at least

η|J(Xw)| ≥ ηh =: β1,

because P (T ′
i , s, s) ≥ η.

• Given that E0 and E1 have happened, the probability of E2 is at least(
ã1�1
ã2�2

)h

=: β2,

where ã1, �1, ã2, �2 are constants appearing in (20). Indeed, the acceptance
criterion can be

∏
gi(S

′
i) ≤ (ã2�2)

h and it is always true that∏
gi(S

′
i) ≥ (ã2�1)

h

(by (20); note that
∑

i |J(X
(i)
ch(w)∩W)| ≤ |J(XW)| ≤ h and also the number

of summands is at most |J(Xw)| ≤ h).
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Of course, if E0 ∩ E1 ∩ E2 happens then X ′
w(t) = s∗w for t ∈ [tmin, tmax]. Putting

everything together, we get X ′
w([t

min, tmax]) = s∗w with probability at least

β := pminβ0β1β2 > 0.

In |W| steps we get X ′
W([tmin, tmax]) = s∗W with probability at least ν̃(s∗W)β|W|.

The proof is complete.

Theorem 9 follows from Propositions 11 and 12.

Remark 13. In this paper the focus is on qualitative results. The constants in
our bounds are chosen in a way which makes presentation clearer, and we did
not attempt to optimize them.

Remark 14. For clarity of presentation we have proved Theorem 9 under the
assumption that some nodes of CTBN are fully observed. However, by minor
modification of the proofs we can establish geometric ergodicity of Rao and Teh’s
algorithm in a more general case. Our results remain true if we assume that
some nodes are only partially observed with random noise at discrete moments,
just as in (1). Clearly, for a drift condition, the likelihood part can be treated
in the same way as in proof of Proposition 6. For a small set condition, we
can repeat the construction from the proof of Proposition 7 for every node
w ∈ N , and then define the regeneration measure for whole network as a product
of regeneration measures for single nodes. The proofs of the key propositions
in the more general case are not essentially different but become notationally
complicated and awkward. For this reason they are omitted.
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