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Abstract: We develop methodology and theory for a mean field varia-
tional Bayes approximation to a linear model with a spike and slab prior
on the regression coefficients. In particular we show how our method forces
a subset of regression coefficients to be numerically indistinguishable from
zero; under mild regularity conditions estimators based on our method con-
sistently estimate the model parameters with easily obtainable and (asymp-
totically) appropriately sized standard error estimates; and select the true
model at an exponential rate in the sample size. We also develop a practi-
cal method for simultaneously choosing reasonable initial parameter values
and tuning the main tuning parameter of our algorithms which is both
computationally efficient and empirically performs as well or better than
some popular variable selection approaches. Our method is also faster and
highly accurate when compared to MCMC.
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1. Introduction

Variable selection is one of the key problems in statistics as evidenced by papers
too numerous to mention all but a small subset. Major classes of model selection
approaches include criteria based procedures [1, 43, 59], penalized regression
[64, 17, 20] and Bayesian modeling approaches [7, 28, 38, 62]. Despite the amount
of research in the area there is yet no consensus on how to perform model
selection even in the simplest case of linear regression with more observations
than predictors. One of the key forces driving this research is model selection for
large scale problems where the number of candidate variables is large or where
the model is nonstandard in some way. Good overviews of the latest approaches
to model selection are [34, 19, 47, 9, 33].
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Bayesian model selection approaches have the advantage of being able to eas-
ily incorporate simultaneously many sources of variation, including prior knowl-
edge. However, care needs to be taken in specification of the priors. From a
computational perspective a careful choice of priors leads to closed form ex-
pressions for the marginal likelihood for a given model. Zellner’s g-prior for the
regression coefficients is usually used for this purpose [74]. The hyperparame-
ter g for Zellner’s g-prior also needs to be carefully specified in order to avoid
Bartlett’s paradox [4] or the information paradox [39]. For careful choices of prior
on g, closed form expressions are available for the marginal likelihood for a given
model (see for example 39; or 46). If the size of the model space is small then
all models can be enumerated and exact Bayesian inference can be performed,
otherwise Markov Chain Monte Carlo (MCMC) methods are employed. MCMC
for moderate to large scale problems can be computationally inefficient. For this
reason an enormous amount of effort has been put into developing MCMC and
similar stochastic search based methods which can be used to explore the model
space in a computationally efficient manner [51, 28, 52, 7, 38, 62].

Despite this research, MCMC can still be deemed to be too slow in practice
for sufficiently large scale problems. Further drawbacks to these methods include
sensitivity to prior choices, and for models with discrete random variables there
are no available diagnostics to determine whether the MCMC chain has either
converged or explored a sufficient proportion of highest posterior probability
models in the model space.

Recently Bayesian-like methods such as the empirical Bayes approach of [44,
45] and generalized fiducial inference [36] have also been proposed. The empirical
Bayes approach of [44] explores the space of models using MCMC and so can
still suffer the same aforementioned drawbacks. The approach of [36] uses a
combination of the sure independence screening (SIS) procedure of [18] and the
Lasso [64]. However, this can fail in situations when SIS fails (if the predictors
are sufficiently correlated) or the Lasso path does not contain the true model.

Mean field variational Bayes (VB) is a computationally efficient but approxi-
mate alternative to MCMC for Bayesian inference [5, 53]. While fair comparison
between MCMC and VB is difficult (for reasons discussed in Section 5.1), in gen-
eral VB is typically a much faster, deterministic alternative to stochastic search
algorithms. However, unlike MCMC, methods based on VB cannot achieve an
arbitrary accuracy in its estimation of the posterior distribution. Nevertheless,
VB has shown to be an effective approach to several practical problems includ-
ing document retrieval [35], functional magnetic resonance imaging [23, 50], and
cluster analysis for gene-expression data [63]. Furthermore, the speed of VB in
such settings gives it an advantage for exploratory data analysis where many
models are typically fit to gain some understanding of the data.

A criticism often leveled at VB methods is that they often fail to provide
reliable estimates of various inferential quantities, particularly posterior vari-
ances. Such criticism can be made on empirical [68, 11], or theoretical grounds
[71, 58]. However, as previously shown in [73] such criticism does not hold for VB
methods in general, at least in an asymptotic sense. Furthermore, variational
approximation has been shown to be useful in frequentist settings [26, 27].
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In this paper we consider a Bernoulli-Gaussian model to select regression
coefficients [see 60]. This entails using VB to approximate the posterior distri-
bution of indicator variables to select which variables are to be included in the
model. We consider this modification to be amongst the simplest such modifi-
cations to the standard Bayesian linear model (using conjugate priors) leading
to variable selection. Our main new contributions are as follows:

(i) We show how VB, for our chosen model, induces sparsity upon the regres-
sion coefficients;

(ii) We show, under mild assumptions, that our estimators for the model pa-
rameters are consistent with easily obtainable and asymptotically appro-
priately sized standard error estimates;

(iii) Under these same assumptions we prove that our VB method selects the
true model at an exponential rate in n; and

(iv) We develop a practical method for simultaneously choosing reasonable
initial parameter values and tuning the main tuning parameter of our
algorithms.

Contributions (i), (ii) and (iii) are the first results of their kind for VB ap-
proaches to model selection and suggest that our approach is promising and that
extensions to more complicated settings should enjoy similar properties. The VB
method used in (i) is standard. Result (ii) is in keeping with consistency results
of Bayesian inferential procedures [12]. However, as VB methods are inexact
these results are not applicable to VB-type approximations. Contribution (iii)
gives the rate of convergence, but only holds for the case where n > p and p
is fixed (but still possibly very large). For situations where p > n, our method
in (iv) is empirically competitive to other methods in the simulation settings
we considered. We believe that our approach will have the greatest impact for
cases where n > p, but where it is not computationally feasible to enumerate
all possible models using exact Bayesian approaches. Our empirical results also
suggest that this translates to at least some problems when p > n.

Most papers in the literature do not consider analysis of the rates of con-
vergence of model inclusion indicator variables, but instead consider the rate of
convergence for the probability that the true model dominates a given model
selection criteria. For example, [13, 44, 3], and [14] showed that the convergence
to the true model is power of p or at an exponential rate in log p, where the
number of variables p is allowed to grow exponentially in n. [49] is one excep-
tion who also showed that model inclusion indicator variables approach their
true values at an exponential rate with the sample size n and where again the
number of variables p is allowed to grow exponentially in n. However, all these
methods rely on a MCMC search over the parameter space and may suffer from
the drawbacks of MCMC, particularly for large scale problems.

We are by no means the first to consider model selection via the use of model
indicator variables within the context of variational approximation. Earlier pa-
pers which use either expectation maximization (which shares similarities with
VB) or VB include [32], [55], [40], [11], [67] and [57]. However, apart from [57],
there was no contribution to understand how sparsity was achieved and the
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later reference did not analyze the rates of convergence for their estimators.
Furthermore, each of these papers considered slightly different models and tun-
ing parameter selection approaches to those here.

Perhaps the most promising aspect of VB methodology in practice is the
potential to handle non-standard complications. Examples of the flexibility of
VB methods to handle such complications are contained in [42]. For example,
it is not difficult to extend the methodology developed here to handle responses
from elaborate distributions [68], missing data [16] or measurement error [54].
This contrasts with criteria based procedures, penalized regression and some
Bayesian procedures [for example 39, 46, where the models are chosen carefully
so that an exact expression for the marginal likelihood is obtainable]. For these
approaches their handling of such complications will have a large computational
overhead. Here we will consider the simple extension of our VB method from
using Gaussian errors to Laplace distributed errors to demonstrate the flexibility
of the approach.

The paper is organized as follows. Section 2 considers model selection for
a linear model using a spike and slab prior on the regression coefficients and
provides a motivating example from real data. Section 3 summarizes our main
results which are proved in Appendix A. Section 4 discusses initialization and
hyperparameter selection. Numerical examples are shown in Section 5 and illus-
trate the good empirical properties of our methods. We discuss our results and
conclude in Section 7.

2. Bayesian linear model selection

Suppose that we have observed data (yi,xi), 1 ≤ i ≤ n, and hypothesize that

yi
ind.∼ N(xT

i β, σ
2), 1 ≤ i ≤ n for some coefficients β and noise variance σ2

where xi is p-vector of predictors. Using a binary mask, a Bayesian version of
the linear regression model with conjugate prior on σ2 may be written as,

y|β, σ2,γ ∼ N(XΓβ, σ2I), σ2 ∼ Inverse-Gamma(A,B),

βj ∼ N(0, σ2
β) and γj ∼ Bernoulli(ρ), j = 1, . . . , p,

(1)

where X is a n × p design matrix whose ith row is xT
i (possibly including

an intercept), β = (β1, . . . ,βp)
T is a p-vector of regression coefficients, Γ =

diag(γ1, . . . , γp), and Inverse-Gamma(A,B) is the inverse Gamma distribution
with shape parameter A and scale parameter B. The parameters σ2

β , A and B
are fixed prior hyperparameters, and ρ ∈ (0, 1) is also a hyperparameter which
controls sparsity. Contrasting with [57] we use ρ rather than σ2

β as a tuning

parameter to control sparsity. The selection of ρ (or σ2
β for that matter) is

particularly important and is a point which we will discuss later.
In the signal processing literature this is sometimes called the Bernoulli-

Gaussian [60] and is closely related to �0 regularization (see 48, Section 13.2.2)
and the spike and slab prior [67]. [67] also considered what they call the Laplace-
zero model where the normal distributed slab in the spike and slab is replaced
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with a Laplace distribution. Using their naming convention this model might
also be called a normal-zero or Gaussian-zero model.

Note that the Bernoulli-Gaussian model is slightly different than the linear
model with spike and slab prior. The key difference is that if γj = 0 for the
Bernoulli-Gaussian model then βj |y, γj ∼ N(0, σ2

β). In contrast for the spike
and slab prior if γj = 0 then βj |y, γj is a point mass at zero.

VB methodology is based on minimizing the Kullback-Leibler distance be-
tween the true posterior distribution and a factorized approximation to the pos-
terior. Let θ be the set of all model parameters and d be a vector of data then
p(θ|d) is approximated by q(θ) =

∏K
k=1 qk(θk) where (θ1, . . . ,θK) is a parti-

tion of θ. Then it can be shown that the optimal qk densities, called q-densities,
satisfy

qk(θk) ∝ exp[E−qk(θk){log p(d,θ)}], (2)

where E−qk(θk) is the expectation with respect to all densities except qk(θk).
For any choice of the q-densities a lower bound for the marginal likelihood for
d can be obtained by

log p(d) = Eq

[
log

{
p(d,θ)

q(θ)

}]
,

where the underline is used to indicate the quantity is a lower bound. It can
be shown that updating qk via (2) for fixed values of the remaining q-densities
results in an increase in the lower bound log p(d). Cycling through the update
for each k results in a monotonic increase in log p(d). The resulting scheme
can be interpreted as a coordinate ascent method which, under mild regularity
conditions, will converge to a local maximizer of the lower bound [41].

Thus the VB approximation depends on the choice of factorization which
we will now discuss. A non-exhaustive list of choices for the factorization of
q(β, σ2,γ) include:

(A) q(β, σ2,γ) = q(β,γ)q(σ2);

(B) q(β, σ2,γ) = q(σ2)

p∏
j=1

q(βj , γj); and

(C) q(β, σ2,γ) = q(β)q(σ2)

p∏
j=1

q(γj).

We have dropped subscripts from the q’s for ease of reading.
Choice (A) leads to

q(β,γ) ∝ exp
[
λ1Tγ − 1

2β
T
(
τΓXTXΓβ + σ−2

β I
)
β + τβTΓXTy

]
,

where λ = logit(ρ) = log(ρ/(1− ρ)) and τ = Eq(1/σ
2). Hence

q(β|γ) ∼ N (μ(γ),Σ(γ)) and

q(γ) ∝
∫

q(β,γ)dβ = |Σ(γ)|1/2 exp
[
λ1Tγ + 1

2μ(γ)
TΣ(γ)−1μ(γ)

]
= f(γ),
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where Σ(γ) = (τΓXTXΓβ + σ−2
β I)−1 and μ(γ) = Σ(γ)ΓXTy. It follows that

q(γ) = f(γ)/
∑

γ̃∈{0,1}p f(γ̃), where
∑

γ̃∈{0,1}p is a combinatorial sum over all

2p possible values of γ̃. Then q(β) is a mixture of normals with 2p components
given by

q(β) =
∑

γ∈{0,1}p

q(γ) φ(β;μ(γ),Σ(γ)),

where φ(β;μ,Σ) is a multivariate Gaussian density with mean μ and covariance
Σ. Calculating a combinatorial sum over 2p terms is not computationally feasible
for large p. If the sum were computationally feasible, exact Bayesian methods
such as those proposed by [39] or [46] would be feasible and there would be no
point in using VB. For this reason we do not pursue choice (A) here.

Choice (B) has been used by [11] who used spike and slab priors for the
regression coefficients. This choice is computationally feasible for large p but
underestimates the posterior variances for the regression coefficients. For this
reason we will not pursue this choice of approximation here.

Choice (C) does not involve a computational sum over 2p terms but will do
better job at estimating the posterior variances of the regression coefficients by
keeping all of the regression coefficients in the same partition. The remainder of
the paper will explore this choice. For choice (C) the optimal q-densities are of
the form

q∗(β) is a N(μ,Σ) density,
q∗(σ2) is a Inverse-Gamma(A+ n/2, s) density

and q∗(γj) is a Bernoulli(wj) density for j = 1, . . . , p,

where a necessary (but not sufficient) condition for optimality is that the fol-
lowing system of equations hold:

Σ =
[
τ(XTX)�Ω+ σ−2

β I
]−1

=
(
τWXTXW +D

)−1
, (3)

μ = τ
(
τWXTXW +D

)−1
WXTy, (4)

s = B +
1

2

[
‖y‖2 − 2yTXWμ+ tr

{
(XTX�Ω)(μμT +Σ)

}]
(5)

τ =
2A+ n

2s
(6)

ηj = λ− τ
2 (μ

2
j +Σj,j)‖Xj‖2

+τ
[
μjX

T
j y −XT

j X−jW−j(μ−jμj +Σ−j,j)
]

(7)

wj = expit(ηj) (8)

where 1 ≤ j ≤ p, expit(x) = logit−1(x) = exp(x)/(1+exp(x)),w = (w1 . . . wp)
T ,

W = diag(w), Ω = wwT +W(I −W), the symbol � denotes the Hadamard
product between two matrices and D = τ(XTX)�W� (I−W) + σ−2

β I. Note
that D is a diagonal matrix. Algorithm 1 below describes an iterative process for
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finding parameters satisfying this system of equations via a coordinate ascent
scheme whose derivation can be found in Appendix A.

Note that we use the notation that for a general matrix A, Aj is the jth
column of A, A−j is A with the jth column removed. We write Ai,j to be
the value of the component corresponding to the ith row and jth column of
A, Ai,−j to be the vector corresponding to the ith row of A with the jth
component removed and similarly A−i,j to be the vector corresponding to the
jth column of A with the ith component removed. The wj ’s can be interpreted
as an approximation to the posterior probability of γj = 1 given y, that is,
p(γj = 1|y). Using this, our data based decision for including the jth covariate
is wj and if wj > 0.5, say, we include the jth covariate in the model.

The VB approach gives rise to the lower bound

log p(y; ρ) ≥
∑
γ

∫
q(β, σ2,γ) log

{
p(y,β, σ2,γ)

q(β, σ2,γ)

}
dβdσ2 ≡ log p(y; ρ)

where the summation is interpreted as a combinatorial sum over all possible
binary configurations of γ. At the bottom of Algorithm 1 the lower bound of
log p(y; ρ) simplifies to

log p(y; ρ) = p
2 − n

2 log(2π)− p
2 log(σ

2
β) +A log(B)− log Γ(A)

+ log Γ
(
A+ n

2

)
−
(
A+ n

2

)
log(s) + 1

2 log |Σ|

− 1
2σ2

β
tr
(
μμT +Σ

)
+

p∑
j=1

[
wj log

(
ρ
wj

)
+ (1− wj) log

(
1−ρ
1−wj

)]
.

Let log p(t)(y; ρ) denote the value of the lower bound at iteration t. Algorithm 1
is terminated when the increase of the lower bound log-likelihood is negligible,
that is,

| log p(t)(y; ρ)− log p(t−1)(y; ρ)| < ε (9)

where ε is a small number. In our implementation we chose ε = 10−6. Note that
Algorithm 1 is only guaranteed to converge to a local maximizer of this lower
bound. For the n < p case Algorithm 1 is efficiently implemented by calculating
‖y‖2, XTy and XTX only once outside the main loop of the algorithm. Then
each iteration of the algorithm can be implemented with cost O(p3) and storage
O(p2).

To illustrate the effect of ρ on the sparsity of the VB method we consider the
prostate cancer dataset originating from a study by [61]. The data consists of
n = 97 samples with variables lcavol, lweight (log prostate weight), age, lbph (log
of benign prostate hyperplasia amount), svi (seminal vesicle invasion), lcp (log
of capsular penetration), gleason (Gleason score), pgg45 (percent of Gleason
scores 4 or 5), and lpsa (log of prostate specific antigen). [24] illustrate the
effect of tuning parameter selection for ridge regression and Lasso for a linear
response model using lpsa as the response variable and the remaining variables
as predictors. We also consider the regularization paths produced by the SCAD
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Algorithm 1 Iterative scheme to obtain optimal q∗(θ) for our model.

1: Input: (y,X, σ2
β , A,B, τ0, ρ,w)

2: where y ∈ R
n, X ∈ R

n×p, σ2
β > 0, A > 0, B > 0, τ (0) > 0, ρ ∈ (0, 1) and

w(1) ∈ [0, 1]p.

3: t ← 1 ; λ ← logit(ρ)

4: Cycle:

5: W(t) ← diag(w(t)) ; Ω(t) ← w(t)w(t)T +W(t)(I−W(t))

6: Σ(t) ←
[
τ (t−1)(XTX)�Ω(t) + σ−2

β I
]−1

; μ(t) ← τ (t−1)Σ(t)W(t)XTy

7: s ← B + 1
2

[
‖y‖2 − 2yTXW(t)μ(t) + tr

{
(XTX�Ω(t))(μ(t)μ(t)T +Σ(t))

}]
8: τ (t) ← (A+ n/2)/s
9: w∗ = [w∗

1 , . . . , w
∗
p] ← w(t)

10: For j = 1, . . . , p

11:
ηj ← λ− 1

2
τ (t)

[(
μ
(t)
j

)2
+Σ

(t)
j,j

]
‖Xj‖2

+τ (t)XT
j

[
yμ

(t)
j −X−jdiag(w

∗
−j)

(
μ

(t)
−jμ

(t)
j +Σ

(t)
−j,j

)]
12: w∗

j ← expit(ηj)

13: w(t+1) ← w∗ ; t ← t+ 1
14: until the increase of log p(y; ρ) is negligible.

penalty as implemented by the R package ncvreg [8]. These regularization paths
as a function of λ are illustrated in Figure 1 where for our VB method the values
of μ (which serve as point estimates for β) .

From Figure 1 we make several observations about the VB estimates:

(A) the estimated components of β appear to be stepwise functions of λ with
components being either zero or constant for various ranges of λ; and

(B) large negative values of λ tend to give rise to simpler models and positive
values tend to give rise to more complex models.

Note (A) holds only approximately but illustrates empirically the model selec-
tion properties of estimators obtained through Algorithm 1. This contrasts with
the Lasso and other penalized regression methods where the analogous penalty
parameter enforces shrinkage, and hence, bias for the estimates of non-zero co-
efficients. Observation (B) highlights that care is required for selecting ρ (or
equivalently λ).

3. Theory

The properties of μ, Σ, τ and {wj}1≤j≤p when the system of equations (3)–(8)
hold simultaneously are difficult to analyze. Instead we will analyze Algorithm
1 by examining the limiting properties of the estimators from one iteration to
the next. In Appendix B we will show, under certain assumptions, the following
two main results. The first result concerns the behavior of VB estimates when
particular wj ’s are small.
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Fig 1. Top left panel: An illustration the final values of the components of μ for multiple runs

of Algorithm 1 over a grid of λ = logit(ρ) values where we have used w
(1)
j = 1, j = 1, . . . , p,

τ = 1000 and hyperparameters selected as described in Section 4 on the prostate cancer
dataset originating in [61]. Remaining panels: The regularization paths for Ridge, Lasso and
SCAD penalized regression fits.

Main Result 1 (Proof in Appendix B.1). Suppose that w
(t)
j 
 1, 1 ≤ j, k ≤ p.

Then for observed y and X the updates in Algorithm 1 satisfy

τ (t) = O(1), μ
(t)
j = O(w

(t)
j ), Σ

(t)
j,k =

{
σ2
β +O(w

(t)
j ) if j = k

O(wjwk) = O(w
(t)
j ) if j �= k,

and w
(t+1)
j ← expit

[
λ− 1

2τ
(t)‖Xj‖2σ2

β +O(w
(t)
j )
]
.

Lemma 1 (Proof in Appendix B). Let a be a real positive number, then the
quantities expit(−a) = exp(−a) + O(exp(−2a)) and expit(a) = 1 − exp(−a) +
O(exp(−2a)) as a → ∞.

Remark: As a consequence of Main Result 1 and Lemma 1 we have that in

Algorithm 1, if w
(t)
j is small, updated value w

(t+1)
j is approximately equal to

exp(λ− τ (t)‖Xj‖2σ2
β/2). Thus, when σ2

β is sufficiently large, when implemented

on a computer, numerical underflow occurs and w
(t+1)
j is represented on the
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computer as 0. This explains why Algorithm 1 provides sparse estimates of w

and β. Furthermore, all successive values of w
(T )
j , T > t remain either small or

numerically zero and may be removed safely from the algorithm, reducing the
computational cost of the algorithm.

In order to establish various asymptotic properties in Main Result 2, we use
the following assumptions [which are similar to those used in 73] and treat yi
and xi as random quantities (only) in Main Result 2 and the proof of Main
Result 2 in Appendix B.2:

(A1) for 1 ≤ i ≤ n the yi|xi = xT
i β0 + εi where εi and εj are independent if

i �= j, E(εi) = 0, Var(εi) = σ2
0 and 0 < σ2

0 < ∞, β0 are the true values of
β and σ2 with β0 being element-wise finite;

(A2) for 1 ≤ i ≤ n the random variables xi ∈ R
p are independent and identically

distributed with p fixed;
(A3) the p×p matrix S ≡ E(xix

T
i ) is element-wise finite and X = [X1, . . . ,Xp]

where rank(X) = p; and
(A4) for 1 ≤ i ≤ n the random variables xi and εi are independent.

We view these as mild regularity conditions on the yi’s, εi’s and the distribution
of the covariates. Note that Assumption (A3) implicitly assumes that n ≥ p. In
addition to these we will assume:

(A5) for 1 ≤ j, k ≤ p the Var(xjxk) < ∞;
(A6) λ ≡ λn varies with n, ρn ≡ expit(λn) and satisfies λn/n → 0 and nρn → 0

as n → ∞.

Assumption (A5) will simplify later arguments, whereas Assumption (A6) is
necessary for our method to identify the true model.

We now define some notation to simplify later proofs. For an indicator vector
γ the square matrix Wγ (W−γ) is the principal submatrix of W by distin-
guishing (removing) rows and columns specified in γ. The matrix Dγ (D−γ)
is defined in the same manner. The matrix Xγ (X−γ) is the submatrix of X
by distinguishing (removing) columns specified in γ. For example, suppose the
matrix X has 4 columns, γ = (1, 0, 0, 1)T then Xγ is constructed using the first
and forth columns of X and Wγ is the submatrix of W consisting first and
forth rows, and first and forth columns of W. Similar notation, when indexing
through a vector of indices v, for example, if v = (1, 4), then Xv is constructed
using the first and the forth column of X and Wv is the submatrix of W con-
sisting of the first and forth rows, and the first and forth columns of W. We
rely on context to specify which notation is used. We denote Ov

p(·) be a vector
where each entry is Op(·), Om

p (·) to be a matrix where each entry is Op(·) and
Od

p(·) be a diagonal matrix where diagonal elements are Op(·). We use similar
notation for op(·) matrices and vectors.

Main Result 2 (Proof in Appendix B.2). If w(1) = 1 and assumptions (A1)-
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(A5) hold then

μ(1) = β0 +Ov
p

(
n−1/2

)
, Σ(1) =

1

nτ (0)

[
E
(
xix

T
i )
]−1

+Om
p

(
n−3/2

)
,

τ (1) = σ−2
0 +Op

(
n−1/2

) (10)

and for 1 ≤ j ≤ p we have

w
(2)
j = expit

(
η
(2)
j

)
=

{
expit

[
λn + n

2σ2
0
E(x2

j )β
2
0j +Op

(
n1/2

)]
j ∈ γ0,

expit [λn +Op(1)] j /∈ γ0.
(11)

If, in addition to the aforementioned assumptions, Assumption (A6) holds, then
for t = 2 we have

μ(2)
γ0

= β0,γ0
+Ov

p(n
−1/2), μ

(2)
−γ0

≤ exp(λn1+Ov
p(logn)),

Σ(2)
γ0,γ0

=
σ2
0

n

[
E
(
xix

T
i )
]−1

γ0,γ0

+Om
p

(
n−3/2

)
, Σ

(2)
−γ0,−γ0

= σ2
βI+E(2)

and Σ
(2)
γ0,−γ0

≤ exp(λn1+Om
p (1)),

(12)

where E(2) ≤ exp(λn1+Om
p (logn)). For 1 ≤ j ≤ p we have

w
(3)
j = expit

(
η
(3)
j

)
=

⎧⎨⎩ expit
[
λn + n

2σ2
0
E(x2

j )β
2
0j +Op

(
n1/2

)]
j ∈ γ0,

expit
[
λn − n

2σ2
0
E(x2

j )σ
2
β +Op

(
n1/2 + n2 expit(λn))

]
j /∈ γ0.

(13)
For t > 2 we have

μ(t)
γ0

= β0,γ0
+Ov

p(n
−1/2),

μ
(t)
−γ0

≤ exp(−n
2σ

−2
0 sminσ

2
β1+Ov

p(λn + n1/2)),

Σ(t)
γ0,γ0

=
σ2
0

n

[
E
(
xix

T
i )
]−1

γ0,γ0

+Om
p

(
n−3/2

)
,

Σ
(t)
−γ0,−γ0

= σ2
βI+E(t)

and Σ
(t)
γ0,−γ0

≤ exp(−n
2σ

−2
0 sminσ

2
β1+Om

p (λn + n1/2))

(14)

where smin = minj∈−γ0
E(x2

j ) and E(t) ≤ exp(−n
2σ

−2
0 sminσ

2
β1+Om

p (λn + n1/2)).
For 1 ≤ j ≤ p we have

w
(t+1)
j = expit

(
η
(t+1)
j

)
=

⎧⎨⎩ expit
[
λn + n

2σ2
0
E(x2

j )β
2
0j +Op

(
n1/2

)]
j ∈ γ0,

expit
[
λn − n

2σ2
0
E(x2

j )σ
2
β +Op

(
n1/2)

]
j /∈ γ0.

(15)

Remark: This result suggests, under assumptions (A1)–(A6) and in light of
Lemma 1, that the vector w(t) in Algorithm 1 approaches γ0 at an exponential
rate in n. For example, if j /∈γ0, then

wj = expit

[
n

{
−
β2
0j

2σ2
0

E(x2
j ) +

λn

n
+Op(n

−1/2)

}]
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Since λn = o(n), the term inside the curly brackets is negative for sufficiently
large n. An application of Lemma 1 shows that wj → 0 at an exponential rate.

Remark: To get some further intuition about the stepwise shape of the VB
regularization path consider (4) and (7) when w = 1. In this case we can
rearrange (4) to obtain

τXT (y −Xμ) = σ−2
β μ.

Substituting this expression after rearranging (7) we obtain

ηj = λ+ 1
2τμ

2
j‖Xj‖2 + μjτX

T
j (y −Xμ)− 1

2τΣjj‖Xj‖2 − τXT
j X−jΣ−j,j

= λ+ 1
2τμ

2
j‖Xj‖2 + τμ2

j/σ
2
β − 1

2τΣj,j‖Xj‖2 − τXT
j X−jΣ−j,j .

For large σ2
β the third term is small and μ will be approximately equal to the

least squares estimate for β. For large n, ‖Xj‖2 and XT
j X−j are Op(n), and

Σ = Op(n
−1). In such circumstances ηj can be approximated by the dominant

terms
ηj ≈ λ+ 1

2τμ
2
j‖Xj‖2.

When λ is a sufficiently large negative constant the updated wj will be small.
Main Result 1 and Lemma 1 shows that for large σ2

β all successive values of wj

will be extremely small. If λ is not sufficiently large then the term 1
2τμ

2
j‖X2

j‖2
is Op(n) and so the updated value of the wjs will be close to 1.

4. Hyperparameter selection and initialization

We will now briefly discuss selecting prior hyperparameters. We use A = B =
0.01, σ2

β = 10 and initially set τ = 1000. This leaves us to choose the parameter
ρ = expit(λ) and the initial values for w. The theory in Section 3 and 4 suggests
that if we choose w = 1 and say λ ∝ −√

n and provided with enough data then
Algorithm 1 will select the correct model. However, in practice this is not an
effective strategy in general since Algorithm 1 may converge to a local minimum
(which means w should be carefully selected), all values of λ satisfy Assumption
(A7) when n is fixed and we do not know how much data is sufficient for our
asymptotic results to guide the choice of λ.

To avoid local maxima problems, [57] used a deterministic annealing variant
of the EM algorithm proposed by [65] and it was proved to be successful in that
context. We instead employ a simpler stepwise procedure which initially “adds”
that variable j (by setting wj to 1 for some j) which maximizes the lower bound
log p(y; ρ) with ρ = expit(−0.5

√
n). We then,

(I) For fixed w select the ρj = expit(λj) which maximizes the lower bound
log p(y; ρj) where λj is an equally spaced grid between −15 and 5 of 50
points.

(II) Next, for each 1 ≤ j ≤ p, calculate the lower bound log p(y; ρ) when wj

is set to both 0 and 1. The value wj is set to the value which maximizes
log p(y; ρ) if this value exceeds the current largest log p(y; ρ).

(III) Return to (I).
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Algorithm 2 Iterative scheme to tune ρ and select initial w for Algorithm 1

1: Input: (y,X, σ2
β , A,B, τ) where y ∈ R

n, X ∈ R
n×p, A > 0, B > 0, σ2

β > 0, wcurr = 0 and
τ > 0
2: Set M = 100; P = 50; ρ = expit(−0.5

√
n); L = −∞

3: For i = 1, . . . ,max(p, P )
4: For j = 1, . . . , p

5: Lj ← log p(y; ρ) from Algorithm 1 with input
(
y,X, σ2

β , A,B, τ0, ρ,w
(1)
j

)
6: k ← argmax1≤j≤p{Lj}; If Lk > L then set L to Lk and w to w

(1)
k

7: For i = 1, . . . ,M
8: For j = 1, . . . , J
9: Lj ← log p(y; ρj) from Algorithm 1 with input

(
y,X, σ2

β , A,B, τ0, ρj ,w
)

10: k ← argmax1≤j≤p{Lj}; If Lk > L then set L to Lk and ρ to ρk
11: For j = 1, . . . , p

12: L0 ← log p(y; ρ) from Algorithm 1 with input
(
y,X, σ2

β , A,B, τ0, ρ,w
(0)
j

)
13: L1 ← log p(y; ρ) from Algorithm 1 with input

(
y,X, σ2

β , A,B, τ0, ρ,w
(1)
j

)
14: k ← argmaxj∈{0,1}{Lj}; If Lk > L then set L to Lk and w to w

(k)
j

15: If L does not improve return output of Algorithm 1 with input
(
y,X, σ2

β , A,B, τ0, ρ,w
)

This procedure is more specifically described in Algorithm 2. Note that in Algo-

rithm 2 we use the notation w
(k)
j to denote the vector w with the jth element

set to k.

5. Numerical examples

In the following numerical examples we only consider simulated, but hopefully
sufficiently realistic, examples in order to reliably assess the empirical qualities of
different methods where truth is known. We start with situations where p = 41
and n = 80 and with p = 99 and n = 2118. These examples have n > p, but
where it is not compuationalyl feasible to enumerate all possible models. We
then look at two p > n examples with n = 500 and p = 1000 and with n = 600
and p = 7381. Our methods were implemented in R and all code was run on
the first author’s laptop computer (64 bit Windows 8 Intel i7-4930MX central
processing unit at 3GHz with 32GB of random access memory).

We use the mean square error (MSE) to measure the quality of the prediction

error, MSE = 1
n

∑n
i=1(Xβ0 −Xβ̂)2i . The F1-score [see 66] is used to assess the

quality of model selection defined to be the harmonic mean between precision
and recall

F1 =
2× precision× recall

precision + recall

where

precision =
TP

TP + FP
and recall =

TP

TP + FN
,

with TP , FP and FN being the number of true positives, false positives and
false negatives respectively. Note that F1 is a value between 0 and 1 and higher
values are being preferred. We use this measure avoid preference of the two
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boundary models, that is selecting non or all of the variables. The performance
of our VB approach is based on Algorithm 2. We compare the performance of our
VB method against the Lasso, SCAD and MCP penalized regression methods
as implemented by the R package ncvreg [8]. We make use of the extended BIC
[15] to choose the tuning parameter λ that minimizes

EBIC(λ) = log(RSSλ/n) +
dλ
n

[log(n) + 2 log(p)] ,

where RSSλ is the estimated residual sum of squares ‖y − Xβ̂λ‖2, β̂λ is the
estimated value of β for a particular value of λ and dλ is the number of non-
zero elements of β̂λ. [69] showed that this criterion performs well in several
contexts.

We also compared our method with the Expectation Maximization Variable
Selection approach (EMVS) of [57]. We used the settings that the convergence
parameter ε equals 10−4 and the initial value of σ2 equals 1. The default initial
values for the regression parameters failed to converge when p is large, in such
a case we specified the initial values by screening down the non-zero coefficients
using Lasso, SCAD and MCP solution paths.

Finally, we compared our method with the Bayesian Model Selection (BMS)
method of [21, 22]. We used the settings that 106 samples were used for inference
after discarding a burn-in of 103, the hyper-g prior distribution was used with the
hyperparameter equal to 3 and same initial values for the regression parameters
as in the EMVS were used.

Note that for all of the simulations we center the simulated values of the
response and standardize the covariates for ease of comparison with EMVS and
BMS.

5.1. Comparison with MCMC for model (1)

Comparisons between VB and MCMC are fraught with difficulty. In terms of
computational cost per iteration VB has a similar cost to an MCMC scheme
based on Gibbs sampling. The later method has a slightly higher cost from draw-
ing samples from a set of full conditional distributions rather than calculating
approximations of them. The full conditionals corresponding to the model (1)
are given by

β|rest ∼ N
[(
ΓXTXΓ+ σ2σ−2

b I
)−1

XTy, σ2
(
ΓXTXΓ+ σ2σ−2

b I
)−1

]
σ2|rest ∼ Inverse-Gamma

[
A+ n

2 , B + 1
2‖y −XΓβ‖2

]
γj |rest ∼ Bernoulli

[
λ− 1

2σ2 ‖Xj‖2β2
j + σ−2βjX

T
j

(
y −X−jΓ−jβ−j

)]
,
(16)

where 1 ≤ j ≤ p for γj |rest. Using these Gibbs sampling can be easily imple-
mented.

Despite the similarity between Algorithm 1 and (16) a fair comparison of
these methods is difficult since choices for when each of these methods are
stopped and what statistics are used to compare the outputs of each of the
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methods can unduly favor one method or the other. This MCMC scheme is
appropriate when determining the quality of the VB method for performing
Bayesian inference for model (1). We do this to compare the quality of the VB
via Algorithm 1 with its Gibbs sampling counterpart (16). However, to compare
model selection performance we use BMS.

Firstly, comparison is hampered by the difficultly to determine whether a
MCMC scheme has converged to its stationary distribution, or in the model
selection context, whether the MCMC scheme has explored a sufficient portion of
the model space. Furthermore, the number of samples required to make accurate
inferences may depend on the data at hand and the choice of what inferences
are to be made. For these reasons both an overly large number of burn-in and
total samples drawn are commonly chosen. However, by making the number of
burn-in samples sufficiently large MCMC methods can be made to be arbitrarily
slower than VB.

Similarly, convergence tolerances for VB trade accuracy against speed. We
have chosen ε in (9) to be 10−6. Larger values of ε result in cruder approxi-
mations and smaller values of ε are usually wasteful. Since each completion of
Algorithm 1 takes very little time we are able to tune the parameter ρ via Al-
gorithm 2. In comparison, MCMC schemes can both be sensitive to the choice
of hyperparameter values and prohibitively time consuming to tune in practice.

With the above in mind we consider using (16) with identical hyperparam-
eters and ρ selected via Algorithm 2. For each of the examples we used 105

MCMC samples for inference after discarding a burn-in of 103. No thinning was
applied. For the comparisons with MCMC in addition to F1-score and MSE we
also compare the posterior density accuracy, introduced in [16], defined by

accuracy(θj) = 100×
(
1− 1

2

∫
|p(θj |y)− q(θj)|dθj

)
where θj is an arbitrary parameter and is expressed as a percentage and the
mean parameter bias for the regression coefficients

BIAS =
1

p

p∑
j=1

(β0j − β̂j)
2.

In our tables and figures the observed MSE and BIAS are reported on nega-
tive log scale (where higher values are better) and bracketed values represent
standard error estimates.

5.2. Example 1: Diets simulation

We use the following example modified from [25]. Let m1 and n be parameters
of this simulation which are chosen to be integers. For this example we suppose
that there are two groups of diets with n/2 subjects in each group. We generate
m1+1 explanatory variables as follows. First, we generate a binary diet indicator
z where, for each subject i = 1, . . . , n, zi = I(i > n/2) − I(i ≤ n/2). Next we
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Fig 2. Summaries of the model selection and prediction accuracies of VB, Lasso, SCAD and
MCP methods for the Diet Simulation example.

generate xk = [x1,k, . . . , xn,k]
T , k = 1, . . . ,m1, such that xik = uik + zivk,

where uik are independent uniform (0, 1) random variables, v1, . . . , v0.75m1 are
independent uniform (0.25, 0.75) random variables, and v0.75m1+1, . . . , vm1 are
identically zero. Thus, we have m1 variables, x1, . . . , xm1 where the first 75% of
the x’s depend on z. Finally, we generate the response vector as

y = β1z + β2x1 + β3x2 + β4x3 +

m1∑
k=5

βkxk−1 + βm1+1xm1 + ε,

where ε is normally distributed with mean 0 and covariance σ2I. For this
simulation we set m1 = 40, n = 80, σ2 = 1, and β = (1 − (κ − 1)/12) ×
(4.5, 3,−3,−3,0T , 3) where 0T is an (m1−4)-dimensional vector of zeros and κ
is a simulation parameter. The data x1, . . . ,xm1 are generated according to four
distinct categories whose interpretations are summarized in [25]. Correlations for
the first 0.75m1 variables are around 0.8 in absolute magnitude. The remaining
variables are independent from each other and the first 0.75m1 variables.

We generate 100 independent data sets for each value of κ in the set
{1, 2, 3, 4, 5, 6, 7} and apply each of the variable selection procedures we consider.
Note that larger values of κ in the range κ ∈ [1, 7] correspond to a smaller signal
to noise ratio. [25] considered the case where κ = 1 and n = 40. The results are
summarized in the two panels of Figures 2.

We can see that in the left panel of Figure 2, VB, EMVS and BMS work
almostly equally well to select the correct model, BMS works slightly better for
larger κ. In the right panel, VB and EMVS provide similar prediction errors
which are not as well as BMS but much better than the rest of methods. Note
that the mean times per simulation for our VB method, and the Lasso, SCAD,
MCP, EMVS and BMS were 2.08, 0.06, 0.04, 0.03, 0.57 and 15.87 seconds re-
spectively.
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The results for the comparisons between VB and MCMC based on 100 sim-
ulations are summarized in Table 1. The posterior density accuracy is better
for β, but less so for σ2 where accuracy decreases as the signal to noise ratio
decreases. Note that the MCMC approach took an average of 17.55 seconds per
simulation setting.

Table 1

Performance measure comparisons between VB and MCMC based on 100 simulations for
the diet simulation example.

κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
−log-MSE-VB 1.83 (0.42) 1.54 (0.52) 1.56 (0.46) 1.57 (0.42) 1.43 (0.40)
−log-MSE-MCMC 2.29 (0.05) 2.28 (0.05) 2.29 (0.05) 2.29 (0.05) 2.29 (0.05)
−log-BIAS-VB 3.55 (0.13) 3.13 (0.15) 3.16 (0.13) 3.23 (0.11) 3.01 (0.11)
−log-BIAS-MCMC 4.79 (0.01) 4.78 (0.01) 4.79 (0.01) 4.81 (0.01) 4.80 (0.01)
F1-VB 0.99 (0.04) 0.99 (0.05) 0.98 (0.06) 0.98 (0.06) 0.97 (0.07)
F1-MCMC 0.99 (0.03) 0.98 (0.03) 0.99 (0.03) 0.99 (0.03) 0.99 (0.03)
accuracy(β) 91.3 (9.11) 89.7 (12.5) 89.6 (12.7) 89.3 (12.9) 87.3 (15.9)
accuracy(σ2) 86.9 (17.3) 84.1 (22.6) 83.4 (14.2) 82.4 (25.5) 78.3 (30.5)

κ = 6 κ = 6
−log-MSE-VB 1.15 (0.40) 1.07 (0.37)
−log-MSE-MCMC 2.29 (0.06) 2.26 (0.06)
−log-BIAS-VB 2.26 (0.11) 2.26 (0.09)
−log-BIAS-MCMC 4.79 (0.01) 4.71 (0.01)
F1-VB 0.94 (0.09) 0.92 (0.11)
F1-MCMC 0.98 (0.03) 0.99 (0.03)
accuracy(β) 82.5 (19.0) 80.1 (18.9)
accuracy(σ2) 69.0 (36.8) 64.0 (37.1)

5.3. Example 2: Communities and crime data

We use the Communities and Crime dataset obtained from the UCI Machine
Learning Repository

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime

The data collected was part of a study by [56] combining socio-economic data
from the 1990 United States Census, law enforcement data from the 1990 United
States Law Enforcement Management and Administrative Statistics survey, and
crime data from the 1995 Federal Bureau of Investigation’s Uniform Crime Re-
ports.

The raw data consists of 2215 samples of 147 variables the first 5 of which we
regard as non-predictive, the next 124 are regarded as potential covariates while
the last 18 variables are regarded as potential response variables. Roughly 15%
of the data is missing. We proceed with a complete case analysis of the data.
We first remove any potential covariates which contained missing values leav-
ing 101 covariates. We also remove the variables rentLowQ and medGrossRent
since these variables appeared to be nearly linear combinations of the remain-
ing variables (the matrix X had two singular values approximately 10−9 when

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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these variables were included). We use the nonViolPerPop variable as the re-
sponse. We then remove any remaining samples where the response is missing.
The remaining dataset consist of 2118 samples and 99 covariates. Finally, the
response and covariates are standardized to have mean 0 and standard deviation
1. Empirical correlations between variables range from 3.3× 10−5 to 0.999.

For this data we use the following procedure as the basis for simulations.

• Use the LARS algorithm to obtain the whole Lasso path and its solution
vector β:

min
β

{
‖y −Xβ‖22 + λ‖β‖1

}
for all positive values of λ. The solution for β is a piecewise function of λ
with a finite number of pieces, say J , which can be represented by the set
{λ(j),β(j)}1≤j≤J .

• For the jth element in this path:

– Let X(j) be the columns of X corresponding to the non-zero elements
of β(j).

– Find the least squares fit (β̂
(j)

LS , σ̂
2
j ) of the data (y,X(j)).

– Simulate S datasets from the model y ∼ N(X(j)β̂
(j)

LS , σ
2I) for some

value σ2.

For this data we use σ2 = 1, the first J = 20 elements of the LARS path and
S = 50. Such datasets are simulated for each of these J = 20 elements. We
use the R package lars [29] in the above procedure. Results for the comparisons
between VB, Lasso, SCAD and MCP are summarized in Figure 3. We can
see that our VB approach is competitive to other methods especially when
model size is small. The Lasso performs well in model selection but gives larger
prediction error while EMVS works less well in model selection but provides very
stable prediction error in all simulation settings. The mean times per simulation
for our VB method, and the Lasso, SCAD, MCP, EMVS and BMS were 6.92,
5.13, 3.49, 2.72, 0.73 and 40.69 seconds respectively.

The results for the comparisons between VB and MCMC based on 20 simu-
lations are summarized in Table 2. In this table we see that parameter posterior
density accuracies are nearly perfect for all parameters when model size is small
and still reasonable when model size is large. Note that the MCMC approach
took an average of 48.75 seconds per simulation setting.

5.4. Example 3: Simulated SNP data

For our first p > n example we take a simulation setting from [11] that mimics
some properties of single-nucleotide polymorphism (SNP) data. We used the R
package varbvs [10] to generate the data. For all trials, we set n = 500, p = 1000,
the number of non-zero coefficients to m = 20 and σ = 3. Note that for this
example all covariates are uncorrelated. This process is repeated 50 times and
the results are summarized in Figure 4. For this example all methods, except
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Table 2

Performance measure comparisons between VB and MCMC based on 30 simulations for the
communities and crime example.

Model size 1 2 3 4 5

−log-MSE-VB 7.96(0.00) 7.21(0.00) 6.26(0.00) 4.89(0.00) 4.71(0.00)

−log-MSE-MCMC 7.24(0.00) 6.77(0.00) 5.93(0.00) 5.38(0.00) 5.15(0.00)

−log-BIAS-VB 12.57(0.00) 11.82(0.00) 7.53(0.00) 6.97(0.00) 7.14(0.00)

−log-BIAS-MCMC 11.13(0.00) 8.58(0.00) 7.91(0.00) 8.04(0.00) 7.78(0.00)

F1-VB 0.67(0.00) 0.80(0.00) 0.76(0.17) 0.61(0.15) 0.59(0.17)

F1-MCMC 0.67(0.00) 0.80(0.00) 0.73(0.14) 0.69(0.11) 0.61(0.13)

accuracy(β) 98.67(0.53) 96.25(2.68) 95.26(2.92) 91.72(4.89) 91.91(5.30)

accuracy(σ2) 97.90(2.40) 98.10(2.47) 97.75(2.95) 95.65(3.92) 95.95(3.10)

Model size 6 7 8 9 10

−log-MSE-VB 4.60(0.00) 4.42(0.01) 4.00(0.01) 3.86(0.01) 3.79(0.01)

−log-MSE-MCMC 4.96(0.00) 4.86(0.00) 4.70(0.01) 4.56(0.01) 4.44(0.00)

−log-BIAS-VB 7.39(0.00) 7.40(0.00) 7.35(0.00) 7.30(0.00) 7.41(0.00)

−log-BIAS-MCMC 7.67(0.00) 7.65(0.00) 7.66(0.00) 7.66(0.00) 7.50(0.00)

F1-VB 0.59(0.10) 0.57(0.11) 0.56(0.11) 0.51(0.10) 0.48(0.07)

F1-MCMC 0.55(0.11) 0.50(0.12) 0.55(0.11) 0.51(0.10) 0.47(0.08)

accuracy(β) 85.86(7.81) 84.83(9.25) 84.69(9.39) 84.33(9.26) 84.97(8.81)

accuracy(σ2) 94.55(4.20) 93.70(4.94) 90.15(5.98) 88.30(7.11) 86.85(5.06)

Model size 11 12 13 14 15

−log-MSE-VB 3.76(0.01) 3.76(0.01) 3.67(0.01) 3.53(0.01) 3.46(0.01)

−log-MSE-MCMC 4.50(0.00) 4.50(0.00) 4.37(0.01) 4.17(0.01) 4.08(0.01)

−log-BIAS-VB 7.27(0.00) 7.27(0.00) 7.20(0.00) 6.92(0.00) 7.10(0.00)

−log-BIAS-MCMC 7.64(0.00) 7.64(0.00) 7.58(0.00) 7.22(0.00) 7.18(0.00)

F1-VB 0.46(0.08) 0.46(0.08) 0.41(0.06) 0.40(0.08) 0.39(0.06)

F1-MCMC 0.45(0.10) 0.45(0.10) 0.45(0.07) 0.41(0.11) 0.40(0.09)

accuracy(β) 86.04(10.17) 86.04(10.17) 84.72(9.20) 81.88(10.79) 82.56(9.75)

accuracy(σ2) 87.90(6.85) 87.90(6.85) 87.95(6.78) 85.15(6.64) 82.55(5.99)

Model size 16 17 18 19 20

−log-MSE-VB 3.42(0.01) 3.38(0.01) 3.37(0.01) 3.29(0.01) 3.25(0.01)

−log-MSE-MCMC 4.05(0.01) 4.02(0.01) 3.98(0.01) 3.90(0.00) 3.90(0.00)

−log-BIAS-VB 6.98(0.00) 6.93(0.00) 6.92(0.00) 6.72(0.00) 6.68(0.00)

−log-BIAS-MCMC 7.23(0.00) 7.21(0.00) 7.12(0.00) 6.75(0.00) 6.74(0.00)

F1-VB 0.36(0.07) 0.36(0.05) 0.35(0.06) 0.31(0.06) 0.28(0.05)

F1-MCMC 0.38(0.10) 0.34(0.10) 0.35(0.09) 0.31(0.10) 0.30(0.09)

accuracy(β) 82.69(11.32) 76.87(15.91) 77.75(15.57) 74.15(17.34) 74.08(15.00)

accuracy(σ2) 83.45(6.06) 82.45(8.29) 82.70(8.43) 80.95(8.80) 81.35(8.70)

for perhaps the Lasso had similar model selection accuracy. However, VB and
BMS were superior when compared to the other selected methods in terms of
perdiction accuracy and bias. The Lasso, SCAD, MCP, EMVS, VB and BMS
methods took 0.1, 0.1, 0.1, 45, 197 and 299 seconds respectively.
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Fig 3. Summaries of the model selection and prediction accuracies of VB, Lasso, SCAD and
MCP methods for the Communities and Crime example.

5.5. Example 4: Simulated QTL data

For our final p > n simulation example we will use the design matrix based
on an experiment on a backcross population of n = 600 individuals for a single
large chromosome of 1800 cM. This giant chromosome was covered by 121 evenly
spaced markers from [72]. Nine ofthe markers overlapped with QTL ofthe main
effects and 13 out of the

(
121
2

)
= 7260 possible marker pairs had interaction

effects. The X matrix combines the main effects and interaction effects to make
a 600 × 7381 matrix. The values of the true coefficients are listed in Table 1
of [72] ranging from 0.77 to 4.77 in absolute magnitude and correlations range
from 0 to 0.8 where most of the higher correlation occurs along the off-diagonal
values of the correlation matrix of the covariates. Here we center the X matrix
and simulate new data from y = Xβ0 + ε where ε = (ε1, . . . , εn)

T and the εi
are independently drawn with εi ∼ N(0, 20). Similar simulation studies were
conducted in [72] and [37]. This process was repeated 50 times and the results
are summarized in Figure 3. For this simulation setting VB has the best model
selection accuracy, smallest MSEs and smallest parameter biases of all the meth-
ods compared. The Lasso, SCAD, MCP, EMVS, VB and BMS methods took
1.5, 1.5, 1.8, 1229, 2011, 5327 seconds respectively.

6. Extension to Bayesian robust linear regression

Here we will make the argument that variational Bayes allows relatively straight-
forward extensions to non-standard complications. We will further show that
the above methodology can relatively easily be extended to model selection
for robust fits of linear models. Here we do so by using the Laplace or dou-
ble exponential distribution to model the response, i.e., we replace y|β, σ2,γ ∼
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Fig 4. Summaries of the model selection, prediction accuracies and coefficient biases of the
VB, Lasso, SCAD, MCP, EMVS and BMS methods for theSimulated SNP data example.

Fig 5. Summaries of the model selection, prediction accuracies and coefficient biases of the
VB, Lasso, SCAD, MCP, EMVS and BMS methods for the Simulated QTL data example.

N(XΓβ, σ2I) in (1) by

y|β, σ2,γ ∼ Laplace(XΓβ, σ2I).

Following [2] we can represent the Laplace distribution by the normal scale-
mixture

yi|β,γ, σ2, ai ∼ N(xT
i Γβ, a

−1
i σ2), with ai ∼ Inverse-Gamma(1, 1/2),

where the remaining elements of the model specification are identical to (1).
Note that the above representation follows from the fact that∫ ∞

0

p(yi|β,γ, σ2, ai)p(ai)dai = p(yi|β,γ, σ2),
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Algorithm 3 Iterative scheme to obtain parameters in optimal q-densities for
our model.

1: Input: (y,X, τβ , A,B, τ, ρ,w, Ã)

2: where y ∈ R
n, X ∈ R

n×p, σ2
β > 0, A > 0, B > 0, τ > 0, ρ ∈ (0, 1), diag(Ã) = 1 and

w ∈ [0, 1]p.
3: W ← diag(w) ; Ω ← wwT +W(I−W) ; λ ← logit(ρ)
4: Cycle:

5: Σ ←
[
τ(XT ÃX)�Ω+ τβI

]−1
; μ ← τΣWXT Ãy

6: For j = 1, . . . , p

7:
wj ← expit

[
λ− 1

2
τXT

j ÃXj(μ
2
j +Σjj)

+τXT
j Ã

[
yμj −X−jW−j(μ−jμj +Σ−j,j)

]
8: w ← [w1, . . . , wp]T ; W ← diag(w)

9: Ω ← wwT +W(I−W)

10: s ← B + 1
2

[
‖y‖2 − 2yT ÃXWμ+ tr

(
(XT ÃX�Ω)(μμT +Σ)

)]
11: τ ← (A+ n/2)/s

12: For i = 1, . . . , n

13: Ãi ← τ−1/2
[
y2i − 2yix

T
i Wμ+ tr

(
(xix

T
i �Ω)(μμT +Σ)

)]−1/2

14: Ã ← diag(Ã1, . . . , Ãn)
15: Until the increase of log p

Laplace
(y; ρ) is negligible.

which can be shown using properties of the inverse Gaussian distribution. Using
a variational Bayes approximation of p(β, σ2,γ,a|y) by

q(β, σ2,γ,a) = q(β)q(σ2)

⎡⎣ p∏
j=1

q(γj)

⎤⎦[ n∏
i=1

q(ai)

]

the optimal q-densities are of the form

q∗(β) is a N(μ,Σ) density,

q∗(σ2) is a Inverse-Gamma(A+ n/2, s) density,

q∗(γj) is a Bernoulli(wj) density for j = 1, . . . , p,

and q∗(aj) is a Inverse-Gaussian(Ãj , 1) density for i = 1, . . . , n,

where the optimal values for the parameters are obtained via Algorithm 3 which
is derived in Appendix C. If x has an inverse Gaussian distribution, denoted
x ∼ Inverse-Gaussian(μ, λ) with mean μ and variance μ3/λ, then it has density

p(x) =

√
λ

2πx3
exp

{
−λ(x− μ)2

2xμ2

}
, x, μ, λ > 0.

At the bottom of Algorithm 3 the lower bound on log p(y; ρ) simplifies to

log p
Laplace

(y; ρ) = log p(y; ρ) +
n

2
log(2π)− n log(2)−

n∑
i=1

1

2Ãi

,
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Fig 6. Summaries of the model selection and prediction accuracies of VB, Lasso, SCAD and
MCP methods for the Communities and Crime example with Laplace distribute errors.

where log p(y; ρ) is the expression for the lower bound defined in Section 2. Note

that the Ãi can be rewritten as

τ−1/2
[
(yi − xT

i Wμ)2 + xT
i WΣWxi + wi(1− wi)((x

T
i μ)

2 + xT
i Σxi)

]−1/2
.

Note that the term (yi − xT
i Wμ)2 can be interpreted as an estimate of the

error in prediction of the ith sample whereas xT
i WΣWxi can be interpreted as

a measure of the influence for the ith sample. Thus, the procedure will down-
weight both outliers and high influence points simultaneously.

6.1. Example 5: Diets simulation with Laplace errors

We now revisit Example 1 with Laplace distributed errors, i.e., where ε follows
the Laplace distribution with scale parameter σ2 = 0.5. The results are sum-
marized in Figure 6, which suggests that the performance of the other methods
compared is impaired by the non-Gaussian distributed errors. The VB method
based on the Laplace distribution has best model selection performance and
prediction accuracy over whole range of κ, except for the case where κ = 4
where BMS has comparable accuracy.

7. Conclusion

In this paper we have provided theory for a new approach which induces sparsity
on the estimates of the regression coefficients for a Bayesian linear model. We
have shown that these estimates are consistent, can be used to obtain valid
standard errors, and that the true model can be found at an exponential rate in
n. Our method performs well empirically compared to the penalized regression
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approaches on the numerical examples we considered and is both much faster
and highly accurate when comparing to MCMC.

Our theory is limited to assuming that p < n. This might be mitigated to a
certain extent by the use of screening procedures such as SIS [18] or the High-
dimensional Ordinary Least-squares Projection (HOLP) method of [70] which
can be seen as searching for a correct model with high probability whereas
extending the theory to p > n is future research.

Theoretical extensions include considering the case where both p and n di-
verge. Such theory would be important for understanding how the errors of our
estimators behave as p grows relative to n. Expansions along this line of research
would require combining the theory developed here with a detailed understand-
ing of how ridge regression estimators behave as n and p grow such as developed
by [31] or [70].

A second important theoretical extension would be to analyze the effect of
more elaborate sparisity inducing priors on the regression coefficients, e.g., where
the normal “slab” in the spike and slab is replaced by the Laplace, horseshoe,
negative-exponential-gamma and generalized double Pareto distributions [see
67]. Another theoretical extension includes adapting the theory presented here
to non-Gaussian response. However, such methodological (as opposed to the-
oretical) extensions would be relatively straightforward, as would extensions
which handle missing data or measurement error highlighting the strength and
flexibility of our approach.

Appendix A: Derivation of Algorithm 1

The q-densities corresponding to Algorithm 1 are derived below. The density
q(β) is given by:

q(β) ∝ exp
[
E−q(β)

{
− 1

2σ2 ‖y −XΓβ‖2 − ||β||2
2σ2

β

}]
∝ exp

[
−1

2β
T
(
τ(XTX)�Ω+ σ−2

β I
)
β + βTWXTyτ

]
= N(μ,Σ),

where Σ = (τ(XTX)�Ω+ σ−2
β I)−1, μ = τΣWXTy, w = Eqγ, W = diag(w),

Ω = wwT +W� (I−W) and τ = Eq(1/σ
2). Note that in the above derivation

we have used
Eq(ΓX

TXΓ) = Eq((X
TX)� (γγT ))

= (XTX)� Eq(γγ
T )

= (XTX)�Ω.

The density q(σ2) is given by:

q(σ2) ∝ exp
[
E−q(σ2)

{
− n

2
log(σ2)− 1

2σ2
‖y −XΓβ‖2

−(A+ 1) log(σ2)− B

σ2

}]
.
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Hence, q(σ2) = Inverse-Gamma(A+ n
2 , s), where

s = B +
1

2

[
‖y‖2 − 2yTXWμ+ tr

(
(XTX�Ω)(μμT +Σ)

)]
.

Next noting that γj = γ2
j as γj ∈ {0, 1}, the optimal q(γj), 1 ≤ j ≤ p, take the

form

q(γj) ∝ exp

[
γj E−qγj

{logit(ρ) + βj

σ2
XT

j

(
y −X−jW−jβ−j

)
−

β2
j

2σ2
XT

j Xj}
]
.

Hence, q(γj) = Bern(wj), where wi = expit(ηj) and

ηj = λ− 1
2τX

T
j Xj(μ

2
j +Σjj) + τXT

j

[
yμj −X−jW−j(μ−jμj +Σ−j,j)

]
.

Appendix B: Proofs

Proof Lemma 1:Note that | expit(−a)−exp(−a)| = exp(−2a)/(1+exp(−a)) <
exp(−2a), and also note that expit(a) = 1 − expit(−a). Hence the result is as
stated. �

Result 1. If w
(t)
j > 0, 1 ≤ j ≤ p, then Ω is positive definite.

Proof of Result 1: A matrix is positive definite if and only if for all non-
zero real vector a = [a1, . . . , ap]

T the scalar aTΩa is strictly positive [30, Sec-
tion 7.1]. By definition aTΩa = aT

[
wwT + W(I − W)

]
a = (

∑p
j=1 ajwj)

2 +∑p
j=1 a

2
jwj(1 − wj). As 0 < w

(t)
j ≤ 1, 1 ≤ j ≤ p, we have wj(1 − wj) ≥ 0

and hence
∑p

j=1 a
2
jwj(1 − wj) ≥ 0. Again, as w

(t)
j > 0, 1 ≤ j ≤ p, we have

(
∑p

j=1 ajwj)
2 > 0 for any non-zero vector a. Hence, the result is as stated. �

Let

dof(α,w) = tr
[
(XTX�Ω)

{
(XTX)�Ω+ αI

}−1
]

and

Udiag(ν)UT be the eigenvalue decomposition of (XTX)�Ω, (17)

where U is an orthonormal matrix and ν = [ν1, . . . , νp]
T is a vector of eigenval-

ues of (XTX)�Ω.

Result 2. Suppose XTX is semi-positive definite and wj ∈ (0, 1], 1 ≤ j ≤ p
and α ≥ 0 then the function dof(α,w) is monotonically decreasing in α and
satisfies 0 < dof(α,w) ≤ rank(XTX�Ω) ≤ p.

Proof of Result 2 : Let the eigenvalue decomposition (17) hold. Since wj ∈
(0, 1], 1 ≤ j ≤ p is positive, by Result 1 the matrix Ω is positive definite. By
the Schur product theorem [30, Theorem 7.5.2], the matrix (XTX)�Ω is also
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semi-positive definite. Hence, νi, i = 1, . . . , p defined in Equation (17) is non-
negative and number of non-zero νi, i = 1, . . . , p equals rank(XTX�Ω). Then,
using properties of the orthonormal matrix U, we have

dof(α,w) = tr
[
Udiag(ν)UT

(
Udiag(ν)UT + αI

)−1
]

=

p∑
j=1

νj
νj + α

=
∑
νj �=0

νj
νj + α

≤ rank(XTX�Ω).

Note that XTX � Ω is a p × p matrix, hence rank(XTX � Ω) ≤ p. Clearly,
dof(α,w) is monotonically decreasing in α and dof(α,w) only approaches zero
as α → ∞. �

The next lemma follows from [30, Section 0.7.3]:

Lemma 2. The inverse of a real symmetric matrix can be written as[
A B
BT C

]−1

=

[
I 0

−C−1BT I

] [
Ã 0
0 C−1

] [
I −BC−1

0 I

]
(18)

=

[
Ã −ÃBC−1

−C−1BT Ã C−1 +C−1BT ÃBC−1

]
(19)

where Ã =
(
A−BC−1BT

)−1
provided all inverses in (18) and (19) exist.

Lemma 3. Let M be a real positive definite symmetric p × p matrix, a =
[a1, . . . , ap]

T be a real vector, and let the elements of the vector b = [b1, . . . , bp]
T

be positive. Then the quantity aT [M+ diag(b)]
−1

a is a strictly decreasing func-
tion of any element of b.

Proof of Lemma 3: Let the matrix M+ diag(b) be partitioned as

M+ diag(b) =

[
M11 + b1 mT

12

m12 M22 +B2

]
where m12 = [M12, . . . ,M1p]

T , B2 = diag(b2, . . . , bp) and

M22 =

⎡⎢⎣M22 · · · M2p

...
. . .

...
Mp2 · · · Mpp

⎤⎥⎦ .

Then, by Equation (18) in Lemma 2,

aT [M+ diag(b)]
−1

a =
c21

b1 +M11 −mT
12(M22 +B2)−1m12

+cT2 (M22 +B2)
−1c2

(20)
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where

c =

[
1 −mT

12(M22 +B2)
−1

0 I

]
a and c2 = [c2, . . . , cp]

T .

Note any principal submatrix of a positive definite matrix is positive definite
[30, Chapter 7.1.2]. Hence, the matrix (M+ diag(b))−1 is positive definite and
(b1+M11−mT

12(M22+B2)
−1m12)

−1 is a positive scalar. Clearly, (20) is strictly
decreasing as b1 increases. The result follows for bj , 2 ≤ j ≤ p after a relabeling
argument. �

The following result bounds the values that τ can take and is useful because
these bounds do not depend on μ, Σ or w.

Result 3. Suppose the updates in Algorithm 1 hold, then τL ≤ τ (t) ≤ τU for all
t where

τL =
2A+ n− p

2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p 2A+n−p
(2A+n)τ (0)

and

τU =
2A+ n

2B + ‖y −X(XTX)−1XTy‖2 .

Proof of Result 3: From Algorithm 1 we can express τ (t) as

τ (t) = (2A+ n)
[
2B + ‖y −XW(t)μ(t)‖2

+μ(t)T [(XTX)�W(t) � (I−W(t))]μ(t)

+τ (t−1)−1
dof(τ (t−1)−1

σ−2
β ,w(t))

]−1

.

The upper bound for τ (t) where t > 0 follows from the above equation and
following these inequalities:

(a) dof(τ (t−1)−1
σ−2
β ,w) > 0 for any τ (t−1)> 0;

(b) ‖y −XWμ‖2 ≥ ‖y −X(XTX)−1XTy‖2 (from least squares results); and
(c) μT [(XTX)�W � (I−W)]μ ≥ 0 (as (XTX)�W� (I−W) is clearly at

least positive semidefinite).

To obtain a lower bound for τ (t) first note that for any vector u,v ∈ R
p,

‖u + v‖2 ≤ 2‖u‖2 + 2‖v‖2, as ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 and
‖u − v‖2 is non-negative. Hence ‖y − XWμ‖2 ≤ 2‖y‖2 + 2‖XWμ‖2. Using
Result 2 and the fact μT [(XTX)�W � (I−W)]μ ≥ 0 we have

τ (t) ≥ (2A+ n)
[
2B + 2‖y‖2 + p/τ (t−1)

+μ(t)T [2W(t)XTXW(t) + (XTX)�W(t) � (I−W(t))]μ(t)
]−1

≥ (2A+ n)
[
2B + 2‖y‖2 + p/τ (t−1)

+μ(t)T [2W(t)XTXW(t) + 2(XTX)�W(t) � (I−W(t))]μ(t)
]−1

=
2A+ n

2B + 2‖y‖2 + 2μ(t)T [(XTX)�Ω(t)]μ(t) + p/τ (t−1)
.
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Let the eigenvalue decomposition (17) hold. Then

μT [(XTX)�Ω]μ

= yTXW
[
Udiag(ν)UT + τ−1σ−2

β I
]−1

Udiag(ν)UT

×
[
Udiag(ν)UT + τ−1σ−2

β I
]−1

WXTy

=

p∑
j=1

νj(U
TWXTy)2j

(νj + τ−1σ−2
β )2

≤ yTXTW
[
(XTX)�Ω

]−1
WXTy

= yTX
[
XTX+W−1

{
(XTX)�W � (I−W)

}
W−1

]−1
XTy

≤ yTX(XTX)−1XTy,

where the last line follows from Lemma 3. Combining this inequality the lower
bound for τ (t), t > 0 can be expressed as

τ
(t)
L =

2A+ n

2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p/τ (t−1)
. (21)

Note that τ (t−1) ≥ τ
(t−1)
L and expand the recursive inequality, we obtain

τ (t) ≥ 2A+ n

2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p/τ
(t−1)
L

≥ 2A+ n
pt

(2A+n)t−1τ (0) + (2B + 2‖y‖2 + 2yTX(XTX)−1XTy)
∑t−1

k=0
pk

(2A+n)k

.

Note that as p < n,

t−1∑
k=0

pk

(2A+ n)k
≤ 2A+ n

2A+ n− p
and

pt

(2A+ n)t−1
< p.

Hence,

τ
(t)
L ≥ 2A+ n− p

2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p 2A+n−p
(2A+n)τ (0)

,

which is independent to t. Hence the lower bound on τ (t) is as stated. �

B.1. Proof of Main Result 1

It is clear from the numerical example in Section 2 that sparsity in the vector
μ is achieved (at least approximately). In order to understand how sparsity is
achieved we need to understand how the quantities μ, Σ and η behave when
elements of the vector w are small. Define the n×n matrix Pj for 1 ≤ j ≤ p by

Pj ≡ X−jW−j

(
W−jX

T
−jX−jW−j + τ−1D−j

)−1
W−jX

T
−j ; (22)
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for j �= k, 1 ≤ j, k ≤ p we define

P(j,k) ≡ X−(j,k)W−(j,k)

(
W−(j,k)X

T
−(j,k)X−(j,k)W−(j,k) + τ−1D−(j,k)

)−1

×W−(j,k)X
T
−(j,k),

and for a indicator vector γ we define

Pγ ≡ X−γW−γ

(
W−γX

T
−γX−γW−γ + τ−1D−γ

)−1
W−γX

T
−γ . (23)

Result 4. If (3) holds then

Σγ,γ =
(
τWγX

T
γXγWγ +Dγ − τWγX

T
γPγXγWγ

)−1
(24)

and

Σγ,−γ = −Σγ,γWγX
T
γX−γW−γ

(
W−γX

T
−γX−γW−γ + τ−1D−γ

)−1
; (25)

for 1 ≤ j ≤ p we have

Σj,j =
(
σ−2
β + τwj‖Xj‖2 − τw2

jX
T
j PjXj

)−1

, (26)

and

Σ−j,j = −
(
τW−jX

T
−jX−jW−j +D−j

)−1
W−jX

T
−jXj(τwjΣj,j); (27)

and for j �= k, 1 ≤ j, k ≤ p we have

Σj,k = −τwjwkX
T
j (I−P(j,k))Xk

×
[ (

σ−2
β + τwj‖Xj‖2 − τw2

jX
T
j P(j,k)Xj

)
×
(
σ−2
β + τwk‖Xk‖2 − τw2

kX
T
kP(j,k)Xk

)
−{τwjwkX

T
j (I−P(j,k))Xk}2

]−1

.

(28)

If (3) and (4) hold then

μγ = τΣγ,γWγX
T
γ (I−Pγ)y; (29)

and

μj =
τwjX

T
j (I−Pj)y

σ−2
β + τwj‖Xj‖2 − τw2

jX
T
j PjXj

, 1 ≤ j ≤ p. (30)

Proof of Result 4: For a given indicator vector γ we can rewrite (3) as[
Σγ,γ Σγ,−γ

Σ−γ,γ Σ−γ,−γ

]
=

[
τWγX

T
γXγWγ +Dγ τWγX

T
γX−γW−γ

τW−γX
T
−γXγWγ τW−γX

T
−γX−γW−γ +D−γ

]−1 .
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Equations (24) and (25) can be obtained by applying Equation (19) in Lemma
2 and equations (26) and (27) can be obtained by letting γ = ej (where ej is
the zero vector except for the value 1 in the jth entry). Similarly,

Σ1,2 =

[
1
0

] [
D(1,2) + τW(1,2)X

T
(1,2)(I−P(1,2))X(1,2)W(1,2)

]−1
[

0
1

]
= −τw1w2X

T
1

(
I−P(1,2)

)
X2

/[ (
τw2

1X
T
1

(
I−P(1,2)

)
X1 +D1

)
×
(
τw2

2X
T
2

(
I−P(1,2)

)
X2 +D2

)
−
(
τw1w2X

T
1

(
I−P(1,2)

)
X2

)2 ]
= −τw1w2X

T
1

(
I−P(1,2)

)
X2

/[(
σ−2
β + τw1‖X1‖2 − τw2

1X
T
1 P(1,2)X1

)
×
(
σ−2
β + τw2‖X2‖2 − τw2

2X
T
2 P(1,2)X2

)
−
{
τw1w2X

T
1 (I−P(1,2))X2

}2]
and (28) follows after a relabeling argument. Equation (29) follows by substi-
tuting Σγ,γ and Σγ,−γ into,

μγ =
[
Σγ,γ Σγ,−γ

] [ τWγX
T
γy

τW−γX
T
−γy

]
and (30) follows by letting γ = ej . �

From Result 3 we have that τ (t) is bounded for all t as (yi,xi) are observed

so that all quantities are deterministic. From Equation (30) we see that μ
(t)
j is

clearly O(w
(t)
j ) as Pj does not depend on wj . Noting that limwj→0 Σ

(t)
j,j = σ2

β

follows from Equation (26) and the result for Σ
(t)
j,j follows after a Taylor series

argument. The result Σ
(t)
j,k = O(w

(t)
j w

(t)
k ), j �= k follows from Equation (28). We

can see that the update for w
(t+1)
j in Algorithm 1 is as stated by combining

Equation (7) with the fact that μ
(t)
j = O(w

(t)
j ), Σ

(t)
j,j = σ2

β + O(w
(t)
j ), Σ

(t)
j,k =

O(w
(t)
j w

(t)
k ) and from Result 3 we have τ (t) = O(1). This completes the proof

of Main Result 1.

B.2. Proof of Main Result 2

For the remainder of this section we will assume that y and X (and conse-

quently μ(t),Σ(t),τ (t) and w(t) for t = 0, 1, . . .) are random quantities. Note
that Results 1–4 are still valid, when assuming random quantities y and X.
Define the following stochastic sequences:

An = n−1XTX, bn = n−1XTy,
cn = dof(τ (t)σ−2

β ,1) and βLS = (XTX)−1XTy.
(31)

Assuming (A1)–(A4) [73] proved consistency results for Bayesian linear models.
We will need stronger results to prove consistency of the estimates corresponding
to Algorithm 2. Lemma 4 will aid in obtaining these results.
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Lemma 4 (6, Theorem 14.4.1). If {Xn} is a stochastic sequence with μn =
E(Xn) and σ2

n = Var(Xn) < ∞, then Xn − μn = Op(σn).

Hence, from Lemma 4 and assumptions (A1)–(A5) we have

An = S+Om
p

(
n−1/2

)
,

A−1
n = S−1 +Om

p

(
n−1/2

)
,

‖Xj‖2 = nE(x2
j ) +Op

(
n1/2

)
,

‖ε‖2 = nσ2
0 +Op

(
n1/2

)
,

n−1Xε = Ov
p

(
n−1/2

)
and

bn = n−1XT (Xβ0 + ε) = Sβ0 +Ov
p

(
n−1/2

)
.

(32)

Before we improve upon the results of [73] we need to show that τ (t) is bounded
for all t. In fact τ (t) is bounded in probability for all t as the following result
shows.

Result 5. Assume (A1)–(A5), then for t > 0 we have τ (t) = Op(1) and 1/τ (t) =
Op(1).

Proof of Result 5: Using Result 3, we obtain τL < τ (t) < τU and τ−1
U <

1/τ (t) < τ−1
L for t > 1 where

τ−1
U =

2B + ‖y −X(XTX)−1XTy‖2
2A+ n

=

(
n

2A+ n

)
2B + ‖y −X(XTX)−1XTy‖2

n

and 1
n‖y −X(XTX)−1XTy‖2 = 1

n‖y‖2 −
1
ny

TX(XTX)−1XTy. By (A1)–(A4)
and the strong law of large numbers

1
n‖y‖

2 = 1
n‖Xβ0 + ε‖2 = 1

nβ
T
0 X

TXβ0 +
1
n2ε

TXβ0 +
1
n‖ε‖

2

a.s.→ βT
0 Sβ0 + 2E(εi)E(x

T
i )β0 + E(ε2i ) = βT

0 Sβ0 + σ2
0 .

Using (32), we have 1
ny

TX(XTX)−1XTy = bT
nA

−1
n bn

P→ βT
0 Sβ0 and hence

τ−1
U

P→ σ2
0 . By the continuous mapping theorem τU

P→ σ−2
0 .

In a similar manner to τU we have

τ−1
L =

2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p 2A+n−p
(2A+n)τ (0)

2A+ n− p

=

(
n

2A+ n− p

) 2B + 2‖y‖2 + 2yTX(XTX)−1XTy + p 2A+n−p
(2A+n)τ (0)

n
P→ 2σ2

0 + 4βT
0 Sβ0.

By the continuous mapping theorem τL
P→ [4βT

0 Sβ0 + 2σ2
0 ]

−1. Hence τ (t), t > 1
is bounded in probability between two constants. Similarly, τ (1) is bounded as
τ (0) = 1 is Op(1). �



3580 J. T. Ormerod et al.

We will now define what we call “correct models” and the “true model”. Let
β0 be the true value of β.

Definition: A correct model γ is a p-vector with elements such that γj ∈ {0, 1}
if β0j = 0 and γj = 1 if β0j �= 0.

Definition: The true model γ0 is the p-vector with elements such that γj = 0
if β0j = 0 and γj = 1 if β0j �= 0.

Hence, for example, the true model γ0 and the full model γ = 1 are both correct
models. We will next derive some properties for correct models. Note that, by
definition, β0,−γ = 0 and we denote j ∈ γ if γj = 1 and j �∈ γ if γj = 0.

Definition: Let γ be a correct model. Then we say that w(t) is “close” to γ in
probability if

w
(t)
j =

{
1− dnj j ∈ γ
dnj j /∈ γ

, 1 ≤ j ≤ p,

where dnj , 1 ≤ j ≤ p, is a sequences of positive random variables such that ndnj
converges in probability to zero.

In the main results we assume that w(t) is close to a correct model. Under
this assumption we prove, in the following order, that:

• μ(t) is a consistent estimator of β;
• τ (t) is a consistent estimator of σ−2

0 ;

• Σ(t) = cov(βLS) +Om
p (n−3/2); and

• w(t+1) is also “close” to the true model in probability.

We can then use these results recursively to obtain similar results for the T th
iteration of the Algorithm 1, where T > t. In the next few results we use the
following quantities:

T1 = T2 −T3T4,

T2 = (n−1XT
γXγ)� (Ω(t)

γ − 11T ) + (nτ (t−1)σ2
β)

−1I,

T3 = (nτ (t−1)σ2
β)T

T
4 W

(t)
−γ [I+T5]

−1
,

T4 = W
(t)
−γ(n

−1XT
−γXγ)W

(t)
γ ,

T5 = (nτ (t−1)σ2
β)(n

−1XT
−γX−γ)�Ω

(t)
−γ and

t1 = (W(t)
γ − I)(n−1XT

γy)−T3W
(t)
−γ(n

−1XT
−γy).

(33)

Result 6. Assume (A1)–(A5) hold. Let γ be a correct model. Suppose that w(t)
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is close to γ then
T1 = Om

p (n−1),

T2 = Om
p (n−1),

T3 = Om
p (n‖dn,−γ‖∞),

T4 = Om
p (‖dn,−γ‖∞),

T5 = Om
p (n‖dn,−γ‖∞) and

t1 = Ov
p(‖dn,γ‖∞).

Proof of Result 6: Firstly,

Ω(t)
γ − 11T = (w(t)

γ )(w(t)
γ )T +W(t)

γ (I−W(t)
γ )− 11T

= (1− dn,γ)(1− dn,γ)
T + (I−Dn,γ)Dn,γ − 11T

= dn,γd
T
n,γ − 1dT

n,γ − dn,γ1
T + (I−Dn,γ)Dn,γ

= Om
p (‖dn,γ‖∞)

where Dn,γ = diag(dn,γ). Similarly, Ω
(t)
−γ = Od

p(‖dn,−γ‖∞). Again, using (32)

and Result 5 we have T2 = [Sγ,γ +Om
p (n−1/2)]�Om

p (‖dn,γ‖∞) +Od
p(n

−1) =
Om

p (n−1 + ‖dn,γ‖∞). Next, using (32) and Result 5 we have

T5 = (nτ (t−1)σ2
β)(n

−1XT
−γX−γ)�Ω

(t)
−γ

= Op(n)[S−γ,−γ +Op(n
−1/2)]�Om

p (‖dn,−γ‖∞)

= Om
p (n‖dn,−γ‖∞).

Expanding and simplifying the above equation obtains the result for T5. Now
since, using the assumption of w(t) being close to γ we have n‖dn,−γ‖∞ = op(1)
and so T5 = om

p (1). By the continuous mapping theorem, we have (I+T5)
−1 =

I+Om
p (n‖dn,−γ‖∞). Next, T4 = Dn,−γ [S−γ,γ +Om

p (n−1/2)](I−Dn,γ).
Expanding and simplifying the above expression obtains the result for T4.

Furthermore,

T3 = nτ (t−1)σ2
βT

T
4 (I+T5)

−1 = Op(n)O
m
p (‖dn,−γ‖∞)[I+Om

p (n‖dn,−γ‖∞)].

Expanding and simplifying the above expression obtains the result for T3. Sub-
stituting the order expressions for T2, T3 and T4 in the expression for T1. Then
expanding and simplifying obtains the result for T1. Finally, using (32) we have

t1 = (W(t)
γ − I)(n−1XT

γy)−T3W
(t)
−γ(n

−1XT
−γy)

= Om
p (‖dn,γ‖∞)[Sγ,γβ0,γ +Ov

p(n
−1/2)]

−Om
p (n‖dn,−γ‖∞)Om

p (‖dn−γ‖∞)[S−γ,γβ0,γ +Ov
p(n

−1/2)]

= Ov
p(‖dn,γ‖∞ + n‖dn,γ‖∞‖dn,−γ‖∞))

which simplifies to the result for t1 under the assumption that dnj = op(n
−1).�
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Result 7. Assume (A1)–(A5) hold. If w(t) is close to a correct model γ in
probability then

μ(t)
γ = β0,γ +Ov

p(n
−1/2),

μ
(t)
−γ = Ov

p(n‖dn,−γ‖∞),

Σ(t)
γ,γ = (nτ (t−1))−1S−1

γ,γ +Om
p (n−3/2)

Σ
(t)
−γ,−γ = σ2

βI+Om
p (n‖dn,−γ‖∞) and

Σ
(t)
γ,−γ = Om

p (‖dn,−γ‖∞).

Proof of Result 7: Firstly, note that

τ(XTX)�Ω+ σ−2
β I = τWXTXW +D (34)

by definition. Using equations (23), (24), (34) and Result 5 we have

Σ(t)
γ,γ =

(
nτ (t−1)

)−1
[
(n−1XT

γXγ)�Ω(t)
γ + (nτ (t−1)σ2

β)
−1I

−W(t)
γ (n−1XT

γX−γ)W
(t)
−γ

×
{
(n−1XT

−γX−γ)�Ω
(t)
−γ + (nτ (t−1)σ2

β)
−1I

}−1

×W
(t)
−γ(n

−1XT
−γXγ)W

(t)
γ

]−1

=
(
nτ (t−1)

)−1
[
(n−1XT

γXγ) +T1

]−1

=
(
nτ (t−1)

)−1
[
Sγ,γ +Om

p (n−1/2) +Om
p (n−1)

]−1

= (nτ (t−1))−1S−1
γ,γ +Om

p (n−3/2) = Om
p (n−1).

Using equations (23), (29), (32) and (34), Result 6, and the continuous mapping
theorem we have

μ(t)
γ = τ (t−1)Σ(t)

γ,γW
(t)
γ XT

γ (I−P(t)
γ )y

=
[
(n−1XT

γXγ) +T1

]−1[
W(t)

γ (n−1XT
γy)−W(t)

γ (n−1XT
γX−γ)W

(t)
−γ

×
{
(n−1XT

−γX−γ)�Ω
(t)
−γ + (nτ (t−1)σ2

β)
−1I

}−1

W
(t)
−γ(n

−1XT
−γy)

]
=
[
(n−1XT

γXγ) +T1

]−1[
(n−1XT

γy) + t1

]
=
[
S−1
γ,γ +Om

p (n−1/2 + ‖T1‖∞)
][
Sγ,γβ0,γ +Ov

p(n
−1/2 + ‖t1‖∞)

]
= β0,γ +Ov

p(n
−1/2 + ‖dn,γ‖∞).

Since by assumption ‖dn‖∞ = op(n
−1) we have μ

(t)
γ as stated. Using equations

(23), (24) and (34) we have

Σ
(t)
−γ,−γ =

[
σ−2
β I+ τ (t−1)(n−1XT

−γX−γ)� (nΩ
(t)
−γ)

−nT4

{
(n−1XT

γXγ) +T2

}−1
TT

4

]−1

.
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From Equation (32) and Result 6, we can show that (n−1XT
γXγ)+T2 = Sγ,γ +

Om
p (n−1/2) and T4 = Om

p (‖dn,−γ‖∞). Using the continuous mapping theorem
we find that

τ (t−1)(n−1XT
−γX−γ)� (nΩ

(t)
−γ)− nT4

[
(n−1XT

γXγ) +T2

]−1
TT

4

= Op(1)[S−γ,−γ +Om
p (n−1/2)]�Om

p (n‖dn,−γ‖∞)

−nOm
p (‖dn,−γ‖∞)

[
Sγ,γ +Om

p (n−1/2)
]
Om

p (‖dn,−γ‖∞)

= Om
p (n‖dn,−γ‖∞).

Noting that by assumption dnj = op(n
−1) and applying the continuous mapping

theorem, we obtain the result for Σ
(t)
−γ,−γ . Next, from equations (23), (29), (32)

and Result 6 we obtain

μ
(t)
−γ = τ (t−1)Σ

(t)
−γ,−γ

[
(nW

(t)
−γ)(n

−1XT
−γy)

−nT4

{
(n−1XT

γXγ) +T2

}−1
W(t)

γ (n−1XT
γy)

]
= Op(1)[σ

2
βI+Om

p (n‖dn,−γ‖∞)]

×
[
[Om

p (n‖dn,−γ‖∞)][S−γ,−γβ0,−γ +Ov
p(n

−1/2)]

−n[Om
p (‖dn,−γ‖∞)][Sγ,γ +Om

p (n−1/2)]

×[I−Od
p(‖dn,γ‖∞)][Sγ,γβ0,γ +Ov

p(n
−1/2)]

]
= Ov

p(n‖dn,−γ‖∞).

Lastly, using equations (23), (25), (32), Result 6 and by the assumption that
dnj = op(n

−1) we obtain

Σ
(t)
γ,−γ = −Σ(t)

γ,γW
(t)
γ XT

γX−γW
(t)
−γ

[
XT

−γX−γ �Ω
(t)
−γ + (τ (t−1)σ2

β)
−1I

]−1

= −
[
(n−1XT

γXγ) +T1

]−1

n−1τ (t−1)−1
T3

=
[
Sγ,γ +Om

p (n−1/2)
]−1

×Om
p (‖dn,−γ‖∞).

After expanding the above expression and dropping appropriate lower order
terms the result is proved. �
Result 8. Assume (A1)–(A5) hold. If w(t) is close to a correct model γ then
τ (t) = σ−2

0 +Op(n
−1/2).

Proof of Result 8: In Algorithm 1 the value τ (t) satisfies

τ (t) = (2A+ n)
[
2B + ‖y −XW(t)μ(t)‖2

+(μ(t))T [(XTX)�W(t) � (I−W(t))]μ(t)

+dof((τ (t−1))−1σ−2
β ,w(t))/τ (t−1)

]−1

=
1 + 2A/n

2B/n+ T1 + T2 + T3
,
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where

T1 = n−1τ (t−1)−1
dof((τ (t−1))−1σ−2

β ,w(t)), T2 = n−1‖y −XW(t)μ(t)‖2

and T3 = (μ(t))T [An �W(t) � (I−W(t))]μ(t).

Firstly, T1 = Op(n
−1) follows from results 2 and 5. Secondly, using y = Xβ0+ε

we have

T2 = n−1‖ε+X(W(t)μ(t) − β0)‖2

= n−1‖ε‖2 + 2(n−1εTX)(W(t)μ(t) − β0)

+(W(t)μ(t) − β0)
T (n−1XTX)(W(t)μ(t) − β0).

Using Equation (32) we have n−1‖ε‖2 = σ2
0 + Op(n

−1/2) and n−1εTX =
Ov

p(n
−1/2) and n−1XTX = S +Om

p (n−1/2). Note that from Result 7 we have

μ
(t)
γ = β0γ + Ov

p(n
−1/2) and μ

(t)
−γ = Ov

p(n‖dn,−γ‖∞). Then μ(t) = β0 + en
where en,γ = Ov

p(n
−1/2) and en,−γ = Ov

p(n‖dn,−γ‖∞). Lastly, by assumption

W(t)μ(t) − β0 =

[
en,γ − dn,γ � β0,γ − dn,γ � en,γ

dn,−γ � en,−γ

]
=

[
Ov

p(‖dn,γ‖∞ + ‖en,γ‖∞)
Ov

p(‖dn,−γen,−γ‖∞)

]
=

[
Ov

p(n
−1/2 + ‖dn,γ‖∞)

Ov
p(n‖dn,−γ‖2∞)

]
.

Hence, T2 = σ2
0 +Op(n

−1/2 + ‖dn,γ‖∞ +n‖dn,−γ‖2∞). By assumption ‖dn,γ‖∞
and n‖dn,−γ‖2∞ are of smaller order than n−1/2 so T2 = σ2

0 +Op(n
−1/2). Next,

T3 =

p∑
j=1

(n−1‖xj‖2)(w(t)
j (1− w

(t)
j ))(μ

(t)
j )2.

Using (32) we have n−1‖xj‖2 = E(x2
j ) + Op(n

−1/2). Using the assumption for

w
(t)
j we have w

(t)
j (1−w

(t)
j ) = dnj(1−dnj) = Op(dnj) and from Result 7 we have

(μ
(t)
j )2 = β2

0j +Op(enj). Hence, T3 = Op(‖dn‖∞) and so

τ (t) =
1 +Op(n

−1)

σ2
0 +Op(n−1/2)

= σ−2
0 +Op(n

−1/2).
�

We will now examine the updates for ηj and wj , 1 ≤ j ≤ p defined at Line
8–9 in Algorithm 1. Note that w∗ is updated one component, w∗

j , at a time
iterating through j = 1, . . . , p and in each iteration w∗

j is updated using wj .

Also note that w(t+1) is updated after w∗ is completely updated. Here we will
employ the notation γ∗ ⊆ γ to mean that γj = γ∗

j for all j ∈ γ∗. We will now

show that, provided the w(t) is close to a correct model γ and w∗ is close to
a correct model γ∗ such that γ∗ ⊆ γ then the next updated w∗ is close to a
correct model γ̃ such that γ̃ ⊆ γ.
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Result 9. Assume (A1)-(A6). If w(t) and w∗ are close to two correct models
γ and γ∗ respectively, such that γ∗ ⊆ γ, i.e.,

w
(t)
k =

{
1− dnk k ∈ γ
dnk k /∈ γ

and

w∗
k =

{
1− d∗nk k ∈ γ∗

d∗nk k /∈ γ∗ 1 ≤ k ≤ p,

where {dnk}1≤k≤p and {d∗nk}1≤k≤p by Definition 1 are two sequences of positive
random variables such that ndnk and nd∗nk are converging in probability to zero.
Then if the next w∗ is to update w∗

j , we have

ηj =

⎧⎨⎩
λn + n

2σ
−2
0 E(x2

j )β
2
0j +Op(n

1/2) j ∈ γ0

λn +Op(1) j ∈ γ and j /∈ γ0

λn − n
2σ

−2
0 E(x2

j )σ
2
β +Op(n

1/2 + n2‖dn,−γ‖∞) j /∈ γ

and after updating w∗ with w∗
j = wj = expit(ηj) in Algorithm 1 the w∗ is close

to a correct model γ̃ where for 1 ≤ k ≤ p we have

w∗
k =

⎧⎪⎪⎨⎪⎪⎩
1− d̃nk j = k and k ∈ γ0

d̃nk j = k and k /∈ γ0

1− d∗nk j �= k and k ∈ γ∗

d∗nk j �= k and k /∈ γ∗

and

γ̃k =

⎧⎨⎩
1 j = k and k ∈ γ0

0 j = k and k /∈ γ0

γ∗
k otherwise

where

• d̃nj = exp
[
−n

2σ
−2
0 E(x2

j )β
2
0j − λn +Op(n

1/2)
]
if j ∈ γ0;

• d̃nj = Op(exp(λn)) if j ∈ γ and j /∈ γ0; and

• d̃nj = exp
[
λn − n

2σ
−2
0 E(x2

j )σ
2
β +Op(n

1/2 + n2‖dn,−γ‖∞)
]
if j /∈ γ.

Proof of Result 9: Consider the update ηj at Line 11 in Algorithm 1. From
results 7 and 8 we have that if w(t) is close to a correct model γ then

μ(t)
γ = β0,γ +Ov

p(n
−1/2),

μ
(t)
−γ = Ov

p(n‖dn,−γ‖∞),

Σ
(t)
−γ,−γ = σ2

βI+Om
p (n‖dn,−γ‖∞)

Σ
(t)
γ,−γ = Om

p (‖dn,−γ‖∞),

τ (t) = σ−2
0 +Op(n

−1/2) and

Σ(t)
γ,γ = Om

p (n−1).
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We also have the fact that y = Xβ0 + ε. Hence,

ηj = λ− 1
2τ

(t)
(
(μ

(t)
j )2 +Σ

(t)
j,j

)
‖Xj‖2

+τ (t)XT
j

[
(Xβ0 + ε)μ

(t)
j −X−jdiag(w

∗
−j)
(
μ

(t)
−jμ

(t)
j +Σ

(t)
−j,j

)]
= λ+ T6 − T7 + T8 − T9 + T10

where
T6 = τ (t)‖Xj‖2

(
β0,jμ

(t)
j − 1

2 (μ
(t)
j )2

)
,

T7 = 1
2τ

(t)‖Xj‖2Σ(t)
j,j

T8 = τ (t)μ
(t)
j

∑
k �=j

XT
j Xk

(
β0,k − w∗

kμ
(t)
k

)
,

T9 = τ (t)
∑
k �=j

XT
j Xkw

∗
kΣ

(t)
k,j

and T10 = τ (t)μ
(t)
j XT

j ε.

Firstly,

• If j ∈ γ0 then

T6 = n
2

[
σ−2
0 +Op(n

−1/2)
] [

E(x2
j ) +Op

(
n−1/2

)] [
β2
0j +Op(n

−1/2)
]

= n
2σ

−2
0 E(x2

j )β
2
0j +Op(n

1/2).

• If j ∈ γ and j /∈ γ0 then

T6 = n
2

[
σ−2
0 +Op(n

−1/2)
] [

E(x2
j ) +Op

(
n−1/2

)]
Op(n

−1) = |Op(1)|.

• If j /∈ γ then

T6 = n
2

[
σ−2
0 +Op(n

−1/2)
] [

E(x2
j ) +Op

(
n−1/2

)]
Op(n

2‖dn,−γ‖2∞)

= |Op(n
3‖dn,−γ‖2∞)|.

Secondly,

• If j ∈ γ then

T7 = n
2

[
σ−2
0 +Op(n

−1/2)
] [

E(x2
j ) +Op

(
n−1/2

)]
Op(n

−1) = |Op(1)|.

• If j /∈ γ then

T7 =
n
2

[
σ−2
0 +Op(n

−1/2)
] [

E(x2
j ) +Op

(
n−1/2

)] [
σ2
β +Op(n‖dn,−γ‖∞)

]
= n

2σ
−2
0 E(x2

j )σ
2
β +Op(n

1/2 + n2‖dn,−γ‖∞)

Next note that since γ∗ ⊆ γ we have γk = γ∗
k = 1 for all k ∈ γ∗ so that if

k ∈ γ∗ then k ∈ γ and the consequently the combination k ∈ γ∗ then k /∈ γ is
not possible.

Next consider β0,k − w∗
kμ

(t)
k .
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• If k ∈ γ and k ∈ γ∗ then

β0,k − w∗
kμ

(t)
k = β0,k − (1− d∗nk)(β0,k +Op(n

−1/2)) = Op(n
−1/2).

• If k ∈ γ and k /∈ γ∗ then

β0,k − w∗
kμ

(t)
k = β0,k − d∗nk(β0,k +Op(n

−1/2)) = Op(d
∗
nkn

−1/2).

• If k /∈ γ and k /∈ γ∗ then

β0,k − w∗
kμ

(t)
k = β0,k − d∗nkOp(n‖dn,−γ‖∞) = Op(nd

∗
nk‖dn,−γ‖∞).

noting that if k /∈ γ or if k /∈ γ∗ then β0,k = 0 (since both γ and γ∗ are correct
models). Hence, ∑

k �=j

XT
j Xk

(
β0,k − w∗

kμ
(t)
k

)
= n

[
E(xjxk) +Op

(
n−1/2

)]
Op(n

−1/2)

= Op(n
1/2).

The second line follows from the assumption that dnj = op(n
−1) and d∗nj =

op(n
−1) for all j so that Op(n

2d∗nk‖dn,−γ‖∞) = op(1). Hence,

T8 =

⎧⎨⎩
Op(n

1/2) j ∈ γ0

Op(1) j ∈ γ, j /∈ γ0

Op(n
3/2‖dn,−γ‖∞) j /∈ γ.

Next consider w∗
kΣk,j .

• If j ∈ γ, k ∈ γ and k ∈ γ∗ then

w∗
kΣk,j = (1− d∗nk)Op(n

−1) = Op(n
−1).

• If j ∈ γ, k ∈ γ and k /∈ γ∗ then

w∗
kΣk,j = Op(d

∗
nkn

−1) = op(n
−2).

• If j ∈ γ, k /∈ γ and k /∈ γ∗ then

w∗
kΣk,j = Op(d

∗
nk‖dn,−γ‖∞) = op(n

−2).

• If j /∈ γ, k ∈ γ and k ∈ γ∗ then

w∗
kΣk,j = (1− d∗nk)Op(‖dn,−γ‖∞) = Op(‖dn,−γ‖∞).

• If j /∈ γ, k ∈ γ and k /∈ γ∗ then

w∗
kΣk,j = Op(d

∗
nk‖dn,−γ‖∞).



3588 J. T. Ormerod et al.

• If j /∈ γ, k /∈ γ and k /∈ γ∗ then

w∗
kΣk,j = d∗nk(σ

2
β +Op(n‖dn,−γ‖∞)) = Op(d

∗
nk).

Hence,

T9 =

{
Op(1) j ∈ γ
op(1) j /∈ γ.

Finally by noting that Xj is independent to ε, we have

T10 =

⎧⎨⎩
(β0,k +Op(n

−1/2))Op(n
1/2) = Op(n

1/2) j ∈ γ and j ∈ γ0,

Op(n
−1/2)Op(n

1/2) = Op(1) j ∈ γ and j /∈ γ0,

Op(n‖dn,−γ‖∞)Op(n
1/2) = Op(n

3/2‖dn,−γ‖∞) j /∈ γ,

From T6, T7, T8, T9 and T10 we obtain the expression for η∗j in the result. From
Lemma 1 we have

w∗
k =

{
1− d̃nk k ∈ γ0

d̃nk k /∈ γ0,

where all possible d̃nj are specified in the result.
Now note that

• If λn > 0 and λn → ∞ as n → ∞ then w∗
j defined in Algorithm 1 will

converge in probability to 1.
• If λn is Op(1) then dnj will converge to zero at a faster rate than required

for j ∈ γ0, for j /∈ γ0 the value w∗
j will be Op(1).

• If λn < 0 and λn/n → κ for some constant κ then w∗
j may not converge

in probability to 1 depending on the size of κ.
• If λn < 0 and λn grows at a faster rate than Op(n) then w∗

j will converge
in probability to 0.

• If λn → −∞ and λn/n → 0 then dnj will converge to 0, but for j /∈ γ0

the sequence nd̃nj may not converge in probability to zero.

Thus, we require λn → −∞, λn/n → 0 and n expit(λn) = nρn → 0. These are
the conditions specified by Assumption (A6). Thus, under Assumption (A6) the
vector w∗ will be close to the model γ̃. �

Proof of Main Result 2: If w
(1)
j = 1 for 1 ≤ j ≤ p and assumptions (A1)–(A6)

hold then w(1) = 1 corresponds to a correct model γ = 1 and results 7–8 hold
with dnj = 0 for 1 ≤ j ≤ p. Applying Result 9 repeatedly over indexes 1 ≤ j ≤ p
obtains the result for w(2) with the sequence dnj = 0 for 1 ≤ j ≤ p where the
convergence rate of ndnj being satisfied. Hence, equations (10) and (11) are
proved. We can then apply results 7–8 to prove Equation (12). We now note
that the term n2 expit(λn) is op(n) or smaller by Assumption (A6). However,

by Assumption (A6) this term and λn in w
(3)
j with j /∈ γ0 are dominated by

−nE(x2
j )σ

2
β/2σ

2
0 . Thus, we have w

(3)
j = 1 − dnj for j ∈ γ0 and w

(3)
j = dnj for
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j /∈ γ0 where dnj are sequences of random variables with n2dnj converging in
probability to zero. Thus, after applying Results 6–8 repeatedly over indexes
1 ≤ j ≤ p the equations (14) and (15) are proved for t = 3. However, these
results give rise to the same conditions for t = 4 as those required for t = 3.
Thus, we can continue applying Results 6–8 recursively to prove the Main Result
2 for all t. �

Appendix C: Deriviation of Algorithm 3

The q-densities corresponding to Algorithm 3 are:

q(β) ∝ exp
[
E−q(β)

{∑n
i=1 − ai

2σ2 ||yi − xT
i Γβ||2 −

||β||2
2σ2

β

}]
∝ exp

[
E−q(β)

{
− 1

2σ2 (y −XΓβ)Tdiag(a)(y −XΓβ)− ||β||2
2σ2

β

}]
= N(μ,Σ),

whereΣ = (τ(XT ÃX)�Ω+τβI)
−1, μ = τΣWXT Ãy,w = Eqγ,W = diag(w),

Ω = wwT+W�(I−W), τ = Eq(1/σ
2), τβ = σ−2

β and Ã = Eqdiag(a). Similarly,
we have

q(σ2) ∝ exp
[
E−q(σ2)

{
− 1

2σ2 (y −XΓβ)Tdiag(a)(y −XΓβ)

−n

2
log σ2 − (A+ 1) log σ2 − B

σ2

}]
Hence, q(σ2) = Inverse-Gamma(A+ n

2 , s), where

s = B +
1

2

[
yT Ãy − 2yT ÃXWμ+ tr

(
(XT ÃX�Ω)(μμT +Σ)

)]
.

Next noting that γj = γ2
j as γj ∈ {0, 1}, the optimal q(γj), 1 ≤ j ≤ p, takes the

form

q(γj) ∝ exp
[
γj E−q3j

{
λ+

βj

σ2X
T
j Ã

(
y −X−jW−jβ−j

)
− β2

j

2σ2X
T
j ÃXj

}]
.

Hence, q(γj) = Bern(wj), where wi = expit(ηj) and

ηj = λ− 1

2
τXT

j ÃXj(μ
2
j +Σjj) + τXT

j Ã
[
yμj −X−jW−j(μ−jμj +Σ−j,j)

]
.

Next, we have

q(aj) ∝ exp

[
E−q(aj)

{
1

2
log aj −

aj
2σ2

||yj − xT
j Γβ||2 − 2 log aj −

1

2aj

}]
∝ exp

[
−3

2
log aj −

aj
2
Eq

1

σ2
||yj − xT

j Γβ||2 −
1

2aj

]
= Inverse-Gaussian

(
Ãj , 1

)
,
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where

Ãj =

(
Eq

1

σ2
||yj − xT

j Γβ||2
)−1/2

= τ−1/2
[
y2j − 2yjx

T
j Wμ+ tr

(
(xjx

T
j �Ω)(μμT +Σ)

)]−1/2
.
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Consistency of Bayesian procedures for variable selection. The Annals of
Statistics 37 1207–1228. MR2509072

[13] Castillo, I., Schmidt-Hieber, J. and van der Vaart, A. W. (2014).
Bayesian linear regression with sparse priors. Annals of Statistics 43 1986–
2018. MR3375874

[14] Castillo, I. and van der Vaart, A. W. (2012). Needles and straw in a
haystack: Posterior concentration for possibly sparse sequences. Annals of
Statistics 40 2069–2101. MR3059077

[15] Chen, J. and Chen, Z. (2008). Extended Bayesian information crite-
ria for model selection with large model spaces. Biometrika 95 759–771.
MR2443189

[16] Faes, C., Ormerod, J. T. and Wand, M. P. (2011). Variational
Bayesian inference for parametric and nonparametric regression with miss-
ing data. Journal of the American Statistical Association 106 959–971.
MR2894756

[17] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association 96 1348–1360. MR1946581

[18] Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh di-
mensional feature space (with discussion). Journal of the Royal Statistical
Society, Series B 70 849–911. MR2530322

[19] Fan, J. and Lv, J. (2010). A selective overview of variable selection in high
dimensional feature space. Statistica Sinica 20 101-148. MR2640659

[20] Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a
diverging number of parameters. The Annals of Statistics 32 928–961.
MR2065194

[21] Feldkircher, M. and Zeugner, S. (2009). Benchmark priors revisited:
on adaptive shrinkage and the supermodel effect in Bayesian model aver-
aging. IMF Working Paper 09/202.

[22] Feldkircher, M. and Zeugner, S. (2013). BMS 03.3. Bayesian Model
Averaging Library. R package. http://cran.r-project.org.

[23] Flandin, G. and Penny, W. D. (2007). Bayesian fMRI data analysis
with sparse spatial basis function priors. NeuroImage 34 1108-1125.

[24] Friedman, J., Hastie, T. and Tibshirani, R. (2001). The Elements of
Statistical Learning. Springer. MR1851606

[25] Garcia, T. P., Müller, S., Carroll, R. J., Dunn, T. N.,
Thomas, A. P., Adams, S. H., Pillai, S. D. andWalzem, R. L. (2013).
Structured variable selection with q-values. Biostatistics 14 695–707.

[26] Hall, P., Ormerod, J. T. and Wand, M. P. (2011). Theory of Gaussian
variational approximation for a Poisson mixed model. Statistica Sinica 21
369–389. MR2796867

[27] Hall, P., Pham, T., Wand, M. P. and Wang, S. S. J. (2011). Asymp-
totic normality and valid inference for Gaussian variational approximation.
The Annals of Statistics 39 2502–2532. MR2906876

[28] Hans, C., Dobra, A. and West, M. (2007). Shotgun stochastic search

http://www.ams.org/mathscinet-getitem?mr=2509072
http://www.ams.org/mathscinet-getitem?mr=3375874
http://www.ams.org/mathscinet-getitem?mr=3059077
http://www.ams.org/mathscinet-getitem?mr=2443189
http://www.ams.org/mathscinet-getitem?mr=2894756
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=2530322
http://www.ams.org/mathscinet-getitem?mr=2640659
http://www.ams.org/mathscinet-getitem?mr=2065194
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=2796867
http://www.ams.org/mathscinet-getitem?mr=2906876


3592 J. T. Ormerod et al.

for “large p” regression. Journal of the American Statistical Association
102 507–516. MR2370849

[29] Hastie, T. and Efron, B. (2013). lars 1.2. Least angle regression, lasso
and forward stagewise regression. R package. http://cran.r-project.org.

[30] Horn, R. A. and Johnson, C. R. (2012). Matrix Analysis. Cambridge
University Press. MR2978290

[31] Hsu, D., Kakade, S. and Zhang, T. (2014). Random design analysis of
ridge regression. Foundations of Computational Mathematics 14 569-600.
MR3201956

[32] Huang, J. C., Morris, Q. D. and Frey, B. J. (2007). Bayesian infer-
ence of MicroRNA targets from sequence and expression data. Journal of
Computational Biology 14 550–563. MR2344257

[33] Johnson, V. E. and Rossell, D. (2012). Bayesian model selection in
high-dimensional settings. Journal of the American Statistical Association
107 649-660. MR2980074

[34] Johnstone, I. M. and Titterington, D. M. (2009). Statistical chal-
lenges of high-dimensional data. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 367 4237-
4253. MR2546386

[35] Jordan, M. I. (2004). Graphical models. Statistical Science 19 140-155.
MR2082153

[36] Lai, R. C. S., Hannig, J. and Lee, T. C. M. (2015). Generalized fiducial
inference for ultrahigh dimensional regression. Journal of the American
Statistical Association 110 760–772. MR3367262

[37] Li, S. M. J. Z. (2012). Estimation of quantitative trait locus effects with
epistasis by variational Bayes algorithms. Genetics 190 231–249.

[38] Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured
high-dimensional covariate spaces with applications in genomics. Journal
of the American Statistical Association 105 1202–1214. MR2752615

[39] Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O.

(2008). Mixtures of g priors for Bayesian variable selection. Journal of the
American Statistical Association 103 410–423. MR2420243

[40] Logsdon, B. A., Hoffman, G. E. and Mezey, J. G. (2010). A varia-
tional Bayes algorithm for fast and accurate multiple locus genome-wide
association analysis. BMC Bioinformatics 11 1–13.

[41] Luenberger, D. G. and Ye, Y. (2008). Linear and Nonlinear Program-
ming, 3rd edition ed. Springer, New York. MR2423726

[42] Luts, J. and Ormerod, J. T. (2014). Mean field variational Bayesian
inference for support vector machine classification. Computational Statistics
and Data Analysis 73 163–176. MR3147981

[43] Mallows, C. L. (1973). Some comments on Cp. Technometrics 15 661–
675.

[44] Martin, R., Mess, R. and Walker, S. G. Empirical Bayes poste-
rior concentration in sparse high-dimensional linear models. Bernoulli 23.
MR3624879

[45] Martin, R. and Walker, S. G. (2014). Asymptotically minimax empir-

http://www.ams.org/mathscinet-getitem?mr=2370849
http://www.ams.org/mathscinet-getitem?mr=2978290
http://www.ams.org/mathscinet-getitem?mr=3201956
http://www.ams.org/mathscinet-getitem?mr=2344257
http://www.ams.org/mathscinet-getitem?mr=2980074
http://www.ams.org/mathscinet-getitem?mr=2546386
http://www.ams.org/mathscinet-getitem?mr=2082153
http://www.ams.org/mathscinet-getitem?mr=3367262
http://www.ams.org/mathscinet-getitem?mr=2752615
http://www.ams.org/mathscinet-getitem?mr=2420243
http://www.ams.org/mathscinet-getitem?mr=2423726
http://www.ams.org/mathscinet-getitem?mr=3147981
http://www.ams.org/mathscinet-getitem?mr=3624879


A variational Bayes approach to variable selection 3593

ical Bayes estimation of a sparse normal mean vector. Electronic Journal
of Statistics 8 2188–2206. MR3273623

[46] Maruyama, Y. and George, E. I. (2011). Fully Bayes factors with a
generalized g-prior. The Annals of Statistics 39 2740–2765. MR2906885

[47] Müller, S. and Welsh, A. H. (2010). On model selection curves. Inter-
national Statistical Review 78 240–256.

[48] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.
The MIT Press, London.

[49] Narisetty, N. N. and He, X. (2014). Bayesian variable selection with
shrinking and diffusing priors. The Annals of Statistics 42 789–817.
MR3210987

[50] Nathoo, F. S., Babul, A., Moiseev, A., Virji-Babul, N. and
Beg, M. F. (2014). A variational Bayes spatiotemporal model for elec-
tromagnetic brain mapping. Biometrics 70 132–143. MR3251674

[51] Nott, D. J. and Kohn, R. (2005). Adaptive sampling for Bayesian vari-
able selection. Biometrika 92 747–763. MR2234183
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