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Abstract: To make statistical inference about a group of parameters on
high-dimensional data, we develop the method of estimator augmentation
for the block lasso, which is defined via block norm regularization. By aug-
menting a block lasso estimator β̂ with the subgradient S of the block norm
evaluated at β̂, we derive a closed-form density for the joint distribution
of (β̂, S) under a high-dimensional setting. This allows us to draw from

an estimated sampling distribution of β̂, or more generally any function
of (β̂, S), by Monte Carlo algorithms. We demonstrate the application of
estimator augmentation in group inference with the group lasso and a de-
biased group lasso constructed as a function of (β̂, S). Our numerical results
show that importance sampling via estimator augmentation can be orders
of magnitude more efficient than parametric bootstrap in estimating tail
probabilities for significance tests. This work also brings new insights into
the geometry of the sample space and the solution uniqueness of the block
lasso. To broaden its application, we generalize our method to a scaled
block lasso, which estimates the error variance simultaneously.
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1. Introduction

There has been a fast growth of high-dimensional data in many areas, such as ge-
nomics and the social sciences. Statistical inference for high-dimensional models
becomes a necessary tool for scientific discoveries from such data. For example,
significance tests have been performed to screen millions of genomic loci for
disease markers. These applications have motivated the recent development in
high-dimensional statistical inference. Some methods make use of sample split-
ting and subsampling to quantify estimation errors and significance [10, 11, 25],
while others rely on the bootstrap to approximate the sampling distributions of
lasso-type estimators [3, 29]. For Gaussian linear models, an interesting idea of
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de-biasing the lasso [20] has been developed by a few groups [6, 22, 27]. In ad-
dition, there are various other inferential methods for high-dimensional models
[7, 8, 15, 16, 24], some of which are reviewed in [4].

1.1. Group inference

In this article, we consider a linear model

y = Xβ0 + ε, (1.1)

where β0 ∈ R
p is the unknown parameter of interest, y ∈ R

n is a response
vector, X = [X1 | · · · | Xp] ∈ R

n×p is a design matrix and ε ∈ R
n is an

error vector with mean zero and variance σ2. Define Nk = {1, . . . , k} for an
integer k ≥ 1. We are interested in making inference about a group of the
parameters, β0G = (β0j)j∈G, for G ⊂ Np under a high-dimensional setting that
p > n. To be specific, the goal is to test the null hypothesis H0G : β0G = 0
and construct confidence regions for β0G. These are arguably the most general
inference problems, including individual inference about β0j as a special case
when we choose G to be a singleton.

Group inference arises naturally in applications where predictors have a block
structure. For instance, inference about a group of genomic loci within the same
gene for its association with a disease can identify responsive genes for the dis-
ease. Even if there is no application-driven block structure among the predictors,
group inference may still be useful. By grouping variables, one can detect signals
that are too small to detect individually. High correlation among predictors is a
well-known difficulty for the lasso and related individual inference approaches.
In this situation, grouping highly correlated predictors with the group lasso
[26] will greatly stabilize the inference and increase detection power. Due to
these advantages and practical usage, a few methods have been developed in
recent papers for group inference. A de-biased group lasso is proposed by Mi-
tra and Zhang [12] as a generalization of the de-biased lasso for more efficient
group inference. van de Geer and Stucky [23] define a de-sparsified estimator for
β0G with a surrogate Fisher information matrix constructed by a multivariate
square-root lasso. Meinshausen [9] develops the group-bound method to con-
struct a one-sided confidence interval for ‖β0G‖1 and shows that it is possible
to detect the joint contribution of a group of highly correlated predictors even
when each has no significant individual effect. Zhou and Min [30] establish that
a modified parametric bootstrap is asymptotically valid for the group lasso and
demonstrate the advantages of grouping in finite-sample inference.

A large portion of the above methods perform statistical inference based on
the sampling distribution of an estimator b̂ = b̂(β̂, y,X) constructed as a func-

tion of β̂, which is either the lasso or the group lasso depending on whether
group structure is used. Examples of such an estimator b̂ include the de-biased
lasso, the de-biased group lasso, and the trivial case b̂ = β̂ in those methods
that directly estimate the distribution of β̂. There are two big challenges in these
approaches. First, the finite-sample distribution of b̂ is not well-understood, due
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to the high dimension (p > n) and the sparsity of β̂. Consequently, the boot-
strap has been used to approximate this distribution for inference. Although the
de-biased estimators follow a nice asymptotic normal distribution when n → ∞,
they can be far from normally distributed when n is finite. Indeed, recent pa-
pers have proposed to bootstrap the de-biased lasso as a better alternative
[5, 28]. Then, here comes the second challenge: How to efficiently simulate from

the bootstrap distribution or an estimated sampling distribution of b̂? With-
out an explicit characterization of the finite-sample distribution of the group
lasso (or lasso), it appears that one can only rely on bootstrap, which can be
computationally inefficient, or even impractical, for some calculations, such as
approximating tail probabilities in significance tests and conditional sampling
given a selected model in post-selection inference.

1.2. Contributions of this work

To meet the aforementioned challenges in group inference, we develop the method
of estimator augmentation for the block lasso. Partition the predictors into J dis-
joint groups Gj ⊂ Np for j = 1, . . . , J . For β = (β1, . . . , βp), let β(j) = (βk)k∈Gj

for j ∈ NJ . Given α ∈ [1,∞], the block lasso is defined via minimizing a penal-
ized loss function L(β;α):

β̂ ∈ argmin
β∈Rp

⎧⎨⎩L(β;α) :=
1

2n
‖y −Xβ‖2 + λ

J∑
j=1

wj‖β(j)‖α

⎫⎬⎭ , (1.2)

where ‖ · ‖ denotes the Euclidean norm. The weight wj > 0 usually depends
on the group size pj = |Gj |. The regularizer is the block-(1, α) norm (when
wj = 1) of β, hence the name block lasso. Note that the lasso and the group
lasso can be regarded as the special cases of α = 1 and α = 2, respectively.
In the context of group inference, we can always choose a partition so that
G = Gj for some j, which translates our task into inference about β0(j) using

some function of β̂. Instead of the distribution of β̂, we work with the joint
distribution of a so-called augmented estimator (β̂, S), where S = S(y,X) ∈ R

p

is a vector. Under a particular choice of S, we are able to obtain a closed-form
density for the exact distribution of the augmented estimator for any finite n
and p and for all α ∈ [1,∞]. Given the density, one may use Monte Carlo
methods, such as importance sampling, to draw from the joint distribution and
simultaneously obtain samples of β̂ and any function of β̂, such as the estimator
b̂ used in an inferential method. This method serves as a powerful and efficient
alternative to parametric bootstrap for b̂, and can be applied in any group
inference approach that utilizes some function of the block lasso. Estimator
augmentation is especially useful in determining the significance in a hypothesis
test and approximating [b̂ | β̂ ∈ B] for some event B. In both scenarios, we
need to sample from a rare event, which is known to be difficult and sometimes
impossible for the bootstrap. We will demonstrate such applications with two
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group inference approaches, one using the group lasso and the other a de-biased
group lasso.

Estimator augmentation [29] was first developed for the lasso, which does
not respect any group structure. Generalizing the method to the block lasso for
all block norms (α ∈ (1,∞]) turns out to be very challenging technically. The

sample space of the augmented estimator (β̂, S), which can be represented by a
collection of manifolds with nonzero curvature, becomes more complicated. The
joint distribution is thus defined over a curved space, a significant distinction
from the augmented lasso estimator. Along the development, we also identify
a set of sufficient conditions for solution uniqueness for the block lasso, which
are weaker and more transparent than known results. In fact, the method of
estimator augmentation applies to a large class of regularized estimators. To
illustrate this view and promote its practical use, we further apply our method
to find the joint density of an augmented scaled block lasso (β̂, S, σ̂), which
has a coherent estimator σ̂2 for the error variance. When we were finalizing the
first version of this paper, Tian Harris et al. posted a preprint [19], in which
they generalize the technique of estimator augmentation to derive densities for
selective sampling in a randomized convex learning program. This exemplifies
that estimator augmentation may have much wider applications than what has
been considered in our paper.

In addition to the above theoretical contributions, the significance of this
work is also seen from its application in group inference, especially when the
group size pj is large. Mitra and Zhang [12] prove that de-biasing a scaled group
lasso can achieve an efficiency gain in group inference by a factor of

√
pj over

a de-biased lasso. Zhou and Min [30] show that bootstrap inference with the
group lasso can reach an optimal rate of n−1/2 if log J = O(pj), which never
holds for the lasso (pj = 1) in the high-dimensional setting p 	 n. These results
demonstrate the benefit of group sparsity in making inference about a group
of parameters. Our development of estimator augmentation for the block lasso
enables efficient simulation from the sampling distributions of the group lasso
and the de-biased group lasso, which is an essential component in practical
applications of these inferential approaches.

Notation used in this paper is defined as follows. Let A ⊂ Np be an index
set. For a vector v = (vj)1:p, we define vA = (vj)j∈A. For a matrix M =
(Mij)n×p, write its columns as Mj , j = 1, . . . , p, and define MA = (Mj)j∈A

as a matrix of size n × |A| consisting of columns in A. Similarly, we define
MBA = (Mij)i∈B,j∈A and MB• = (Mij)i∈B for B ⊂ Nn. Given the group
structure G, let GA = ∪j∈AGj ⊂ Np for A ⊂ NJ . Define v(A) = vGA

with the
special case v(j) = vGj and let G(v) = {j ∈ NJ : v(j) �= 0} be the active
groups of v. For an n × p matrix M , M(A) = MGA

, and for a p × p matrix M ,
M(AB) = MGAGB

, where A,B ⊂ NJ . Denote by M+ the Moore-Penrose pseudo-

inverse of a matrix M so M+ = (MTM)+MT when M is not a square matrix.
We use row(M) and null(M) to denote the row space and the null space of M ,
respectively. Let diag(M,M ′) be the block-diagonal matrix with M and M ′ as
the diagonal blocks. Denote by φn(•; c) the density of Nn(0, cIn) for c > 0. Let
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S
m−1
α = {v ∈ R

m : ‖v‖α = 1} be the unit �α-sphere in R
m. We may suppress

(m− 1) and simply write Sα when the dimension does not need to be specified
explicitly.

Throughout the paper, let α∗ be conjugate to α in the sense that 1
α + 1

α∗ = 1.
We will assume that α ∈ (1,∞) unless noted otherwise in next three sections,
and leave to Section 5.1 the special case α = ∞ whose technical details are
slightly more complicated. Although not the focus of this paper, the results for
the lasso can be obtained as another special case (α = 1) after some simple
modifications of the results for α ∈ (1,∞). The block norm reduces to the usual
�1 norm when α = 1, effectively ignoring the block structure, and thus in this
case we always assume pj = 1 for all j ∈ NJ without loss of generality.

2. The basic idea

In this section, we give an overview of the idea of estimator augmentation.
We start with the Karush-Kuhn-Tucker (KKT) conditions for the minimization
problem (1.2). Under uniqueness of the block lasso, we will establish a bijection
between y and the augmented estimator and derive the joint density of its
sampling distribution. We note that solution uniqueness for the block lasso is
an interesting topic in its own right, and the sufficient conditions in this work
are much more transparent than those in the existing literature.

2.1. The KKT conditions

Denote by sgn(·) the sign function with the convention that sgn(0) = 0. For a
scalar function f : R → R and a vector v = (vi) ∈ R

m, we define

f(v) := (f(v1), . . . , f(vm)). (2.1)

Definition 1. For α ∈ (1,∞), let ρ = α∗/α ∈ (0,∞) and define η : [−1, 1] →
[−1, 1] by

η(x) = η(x; ρ) = sgn(x)|x|ρ.
Denote its inverse function by η−1(x) = sgn(x)|x|1/ρ.

Some basic properties about η are given in Lemma A.1 in Appendix A. In
particular, η(v) for v ∈ Sα∗ , interpreted in the sense of (2.1), is a bijection from
Sα∗ onto Sα. This fact is used in (2.2) below.

Let S = (S1, . . . , Sp) ∈ R
p such that S(j) ∈ R

pj is a subgradient of ‖β(j)‖α
evaluated at the solution β̂(j) of (1.2). According to Lemma A.2 on the subdif-
ferential of ‖ · ‖α, we have{

S(j) = η−1(β̂(j)/‖β̂(j)‖α) ∈ S
pj−1
α∗ if β̂(j) �= 0,

‖S(j)‖α∗ ≤ 1 if β̂(j) = 0.
(2.2)

For the case α = α∗ = 2 (group lasso), η(v) = η−1(v) = v and the above sub-
gradient reduces to the familiar result in [26]. Put W = diag(w1Ip1 , . . . , wJIpJ

),
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which is a p× p matrix. The KKT conditions of (1.2), which are both sufficient
and necessary, are

1

n
XTXβ̂ + λWS =

1

n
XTy (2.3)

for a vector S satisfying (2.2).

Definition 2. Let S be defined by (2.2) and (2.3). We will call (β̂, S) ∈ R
2p

an augmented solution to the block lasso problem (1.2). When we study the

sampling distribution of β̂, the random vector (β̂, S) will be called an augmented
estimator.

If (β̂, S) is unique for each y, then (2.3) defines a bijective mapping from the

space of (β̂, S) onto the space of y, which is the inverse of the minimization

program (1.2) that maps y to (β̂, S). From the density of y or ε, it is hopeful to

derive the joint density of the augmented estimator (β̂, S) via this bijective map-
ping. Then one may apply Monte Carlo methods, such as Markov chain Monte
Carlo (MCMC) and importance sampling, to draw from the joint distribution of
the augmented estimator. As a marginal distribution, the sampling distribution
of β̂ can be readily approximated by Monte Carlo samples, as well as any func-
tion of (β̂, S). This is the basic idea of estimator augmentation. Although the
idea seems intuitive, there are a few technical difficulties in the implementation:

1. To establish the uniqueness of (β̂, S) under fairly general situations.

2. To characterize the sample space for (β̂, S), which appears to be a 2p-
vector but in fact lives in the union of a finite number of n-dimensional
manifolds. This makes the aforementioned bijection conceivable since ε ∈
Rn.

3. To calculate the Jacobian of the mapping and obtain the target density
via a change of variable.

We will establish the solution uniqueness in the remainder of this section, and
take care of the other two major steps in Section 3. Although the basic idea
follows from that in [29], there are substantial new technical issues in each of
the three steps, which will be discussed in the sequel.

2.2. Uniqueness

We briefly present here the most relevant results about solution uniqueness for
the block lasso, while leaving many useful intermediate results and proofs to
Appendix A. Despite that the KKT conditions only require the existence of a
subgradient, it turns out that S is always unique:

Lemma 2.1. For any y, X, λ > 0, and α ∈ [1,∞], every β̂ (1.2) gives the same

fitted value Xβ̂ and the same subgradient S.

This lemma covers the full domain of α, including the boundary cases α = 1
(lasso) and α = ∞. Hereafter, we call S the subgradient vector due to its

uniqueness. Next, we establish the uniqueness of β̂ and thus the uniqueness
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of the augmented solution (β̂, S). The lasso solution is unique if the columns
of X are in general position [21], which says that the affine span of the set
{sjXj : sj ∈ {−1, 1}, j ∈ K ⊂ Np} for every |K| ≤ n ∧ p does not contain any
±Xi for i /∈ K. We generalize this definition to establish the uniqueness of the
block lasso.

Definition 3. We say that the columns of a matrix M ∈ R
n×p is in block-

wise general position with respect to (G, α) if for all s ∈ row(M), the vectors
{M(j)η(s(j)) : j ∈ E} are in general position, where E = {j ∈ NJ : ‖s(j)‖α∗ = 1}.

Let U = 1
nX

Tε ∈ R
p, and denote the Gram matrix by Ψ = 1

nX
TX hereafter.

The KKT conditions (2.3) can be written as

Ψβ̂ + λWS −Ψβ0 = U. (2.4)

Since U ∈ row(X) and Ψ(β̂ − β0) ∈ row(X), we have

WS ∈ row(X) ⇔ S ∈ row(XW−1) := V ⊂ R
p. (2.5)

The following assumptions are sufficient for the main results of this work.

Assumption 1. Every (n ∧ p) columns of X are linearly independent.

Assumption 2. The columns of XW−1 are in blockwise general position with
respect to (G, α).

The two assumptions are quite weak. Assumption 1 simply states that X
does not satisfy any additional linear constraint other than those that must be
satisfied by any n × p matrix. If the entries of X are drawn from a continuous
distribution, then Assumption 1 holds with probability one. To help understand
the intuition behind Assumption 2, choose W = Ip to simplify the exposition.
Then this assumption is imposed on the vectors X(j)v(j), where v(j) = η(s(j)) ∈
Sα (Lemma A.1) and s ∈ V . Under Assumption 1 with n ≤ p, dim(V) = n and
v = η(s) ∈ R

p has only n free coordinates. Thus, we essentially require linear
combinations of disjoint subsets of any n columns of X be in general position,
which is a mild condition in practice. For the special case of the lasso with
pj = 1, Assumption 2 reduces to that the columns of X are in general position.

Theorem 2.2. Suppose that Assumption 2 holds. Then for any λ > 0 and
y ∈ R

n, the solution β̂ to the block lasso problem (1.2) with α ∈ [1,∞) is unique

and |G(β̂)| ≤ n ∧ J .

Since solution uniqueness is a topic of independent interest, we make a brief
comparison to some existing results. Theorem 2.2 unifies a few important special
cases, including the lasso (α = 1) and the group lasso (α = 2). For α = 1, this
theorem is comparable to the result in [21], while the existing results about the
uniqueness of the group lasso involve conditions that are much less transparent
than the one stated here. As an example, Theorem 3 in [17] states that, under

Assumption 1, the group lasso solution β̂ (with α = 2) is unique if (i) |GA| ≤ n,

where A = G(β̂) is the active groups, and (ii) A = {j ∈ NJ : ‖S(j)‖ = 1}.
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Unlike Assumption 2 which is imposed on X explicitly, conditions (i) and (ii)
are implicit in nature and can be verified only after a particular solution is
calculated. According to Theorem 2.2, it is possible to have a unique solution
when |GA| > n as long as |A| ≤ n, i.e., there are no more than n active groups

but the total number of active coefficients of β̂ could be greater than n. Such
cases are not covered by the result in [17]. As will become clear in next section,

the set of β̂ satisfying (i) and (ii) is a proper subset of the full space of unique
solutions and thus, in general, will have a probability mass strictly less than
one.

3. Estimator augmentation

We will go through the main steps in detail to derive the joint density of the
augmented estimator (β̂, S), which is useful for understanding this method.

Section 3.1 characterizes the sample space of (β̂, S), Section 3.2 defines explicitly
the bijective mapping from the KKT conditions, and Section 3.3 derives the
joint density. A few concrete examples will follow in Section 3.4 to illustrate
the method. The joint density of (β̂, S) depends on the true parameter β0 and
the error distribution. We will discuss in Section 4 how to apply estimator
augmentation in high-dimensional inference. By default, we assume p ≥ n. The
results for p < n will be obtained as special cases.

3.1. Sample space

Denote by γ̂ = (γ̂j) ∈ R
J the vector of the norms of β̂(j), i.e. γ̂j = ‖β̂(j)‖α. It

follows from (2.2) that β̂(j) = γ̂jη(S(j)) for all j ∈ NJ . Thus, the augmented

estimator (β̂, S) can be represented by the triplet (γ̂A, S,A), where A = G(β̂)
is a random subset of NJ when considering the sampling distribution. Given
A = A for a fixed subset A ⊂ NJ , it is seen from (2.2) and (2.5) that the sample
space for S is

MA =
{
s ∈ V : ‖s(j)‖α∗ = 1 ∀j ∈ A and ‖s(j)‖α∗ ≤ 1 ∀j /∈ A

}
. (3.1)

Since s(j) ∈ S
pj−1
α∗ for j ∈ A and dim(V) = n under Assumption 1, MA is an

(n−|A|)-manifold in R
p if |A| ≤ n: It is the product of unit �α∗-spheres and balls

intersecting with the linear subspace V . Correspondingly, the space for (γ̂A, S)
given A is ΩA = (R+)|A| × MA, which is an n-manifold. Taking union over
subsets of size ≤ n, we obtain the sample space for the augmented estimator
(γ̂A, S,A):

Ω =
⋃

|A|≤n

ΩA × {A}. (3.2)

Remark 1. We do not have to consider {|A| > n}, since this never happens
under the assumptions of Theorem 2.2. Hereafter, we always regard the essential
range of A as

A := {A ⊂ NJ : |A| ≤ n}. (3.3)
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In summary, the sample space of the augmented estimator, represented by
the triplet (γ̂A, S,A), is the union of a finite number of n-manifolds. Thus, it
is possible to find a bijective mapping from this space to Rn, the space for ε;
see the mapping H̃ to be defined in (3.10). For the lasso, ΩA degenerates to a
union of n-dimensional polyhedra with zero curvature.

Remark 2. Parameterizing the augmented estimator in terms of γ̂ and S is
a critical choice for our derivations. In this way, all the equality constraints
are imposed on S as in (3.1), leading to familiar geometry for the spaces of γ̂
and S, which is helpful for understanding distributions over these spaces. It is
also a nature choice, since the subgradient S is alway unique (Lemma 2.1) and
non-uniqueness comes solely from γ̂ (Lemma A.4).

3.2. A bijective mapping

Putting β̂(j) = γ̂jη(S(j)) for j ∈ A, Equation (2.4) becomes

1

n
XTε =

∑
j∈A

γ̂jΨ(j)η(S(j)) + λWS −Ψβ0 := H(γ̂A, S,A;β0, λ), (3.4)

which defines a mapping H : Ω → row(X) for any β0 ∈ Rp and λ > 0. For
notational brevity, we often suppress its dependence on (β0, λ) and write the
mapping as H(•). In what follows, we show that H is bijective, which is a

consequence of the uniqueness of (β̂, S), or equivalently of (γ̂A, S,A).

Lemma 3.1. Suppose that α ∈ [1,∞) and Assumption 2 holds. Then for any
β0 ∈ R

p and λ > 0, H is a bijection that maps Ω onto row(X).

This lemma applies to α = 1, in which case we define η(x) = xI(|x| = 1) and
η−1(x) = sgn(x) by taking the limit ρ → ∞ in Definition 1.

The mapping H is established at a quite abstract level so far. It will be more
convenient to work with the restriction of H to ΩA for A ∈ A , defined by

HA(rA, s) := H(rA, s, A) for (rA, s) ∈ ΩA, (3.5)

where r = (r1, . . . , rJ) ∈ R
J with rj = 0 for j /∈ A. Then H can be understood

as a collection of one-to-one mappings {HA : A ∈ A } indexed by subsets of NJ .

Write the block lasso solution for the response y as β̂ = β̂(y). Let

EA :=
{
v ∈ R

n : G
(
β̂(Xβ0 + v)

)
= A
}

be the set of noise vectors v for which the active set of the block lasso solution
β̂(Xβ0 + v) is A. Denote the block norms and the subgradient of β̂(Xβ0 + v)
by γ̂(Xβ0 + v) and S(Xβ0 + v), respectively. Then for v ∈ EA, we have

HA(γ̂A(Xβ0 + v), S(Xβ0 + v)) =
1

n
XTv.
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The one-to-one mapping HA allows us to obtain the density for (γ̂A, S) from
the density of the noise vector via a change of variable.

It remains to find the differential of HA so that we can calculate the Jacobian
for the change of variable. A special aspect of this mapping is that HA is defined
on a manifold and thus its differential is determined with respect to local pa-
rameterizations. As an (n−|A|)-manifold in R

p, a neighborhood of s ∈ MA can
be parameterized by sF , where F ⊂ Np may depend on (s,A) and |F | = n−|A|.
Correspondingly, the n-manifold ΩA will be parameterized by (rA, sF ) ∈ R

n in
a neighborhood of (rA, s). Under this parameterization, Lemma 3.2, proven in
Appendix B.1, gives an expression of dHA in terms of a few matrices defined
below. Let η′ : [−1, 1] → [0,∞] be the derivative of η so that η′(x) = ρ|x|ρ−1.
Define

r ◦Ψ := [r1Ψ(1)| . . . |rJΨ(J)] ∈ R
p×p, (3.6)

Ψ ◦ η := [Ψ(1)η(s(1))| . . . |Ψ(J)η(s(J))] ∈ R
p×J , (3.7)

and D = D(s,A) ∈ Rp×p to be a diagonal matrix whose diagonal elements
Dkk = η′(sk) for k ∈ GA and Dkk = 0 otherwise.

Lemma 3.2. Fix p ≥ n, β0 ∈ R
p, λ > 0 and A ∈ A . Suppose that α ∈ (1,∞)

and Assumption 1 holds. Then for any interior point (rA, s) ∈ ΩA, there is a
full rank matrix T = T (s,A) of size p× (n−|A|) such that ds = T (s,A)dsF and

dHA = [(Ψ ◦ η)A | {(r ◦Ψ)D + λW}T (s,A)] dθ := M(rA, s, A;λ)dθ, (3.8)

where θ = (rA, sF ) ∈ R
n and rj = 0 for j /∈ A.

Remark 3. This lemma applies to every interior point of ΩA, irrespective of
whether or not the corresponding solution is unique. The size of the matrix
M = M(rA, s, A;λ) is p× n. Assumption 1 is only needed to fix the dimension
of the manifold MA. With some modifications of the proof, the result can be
generalized to the situation in which Assumption 1 fails to hold. The parame-
terization sF for MA is defined locally for a neighborhood of s. For each j ∈ A,
the unit sphere S

pj−1
α∗ , except a set of measure zero, can be covered by two

parameterizations, one for each open semi-sphere.

Remark 4. For the special case α = α∗ = 2 (group lasso), we have ρ = 1,
η(x) = x and η′(x) = 1 for x ∈ [−1, 1]. The matrix M (3.8) has a simpler form:

M(rA, s, A;λ) = [(Ψ ◦ s)A | (r ◦Ψ+ λW )T (s,A)] . (3.9)

The only reason that we excluded the case α = 1 in the above lemma is because
η′ is not well-defined. We will cover this case, which reduces to the lasso, in
Example 3.

Geometrically, the columns of T consist of a set of tangent vectors of the
manifold MA while those of M consist of tangent vectors of the mapping HA.
These tangent vectors determine the ratio between the volume element in the
image space row(X) and that in the domain ΩA, and thus the Jacobian of the
mapping.
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3.3. Joint density

Now we make an explicit link from the augmented estimator (γ̂A, S,A) to the
noise vector ε. Under Assumption 1, null(XT) = {0} and thus by (3.4)

ε/
√
n =

√
n(XT)+H(γ̂A, S,A;β0, λ) := H̃(γ̂A, S,A;β0, λ). (3.10)

We note that H̃ ∈ R
n is the coordinates of H with respect to the basis (XT/

√
n)

of row(X). By Lemma 3.1, H̃ is a bijection that maps Ω onto R
n. Define H̃A

similarly as for HA in (3.5). It then follows from Lemma 3.2 that the Jacobian
of H̃A is

JA(rA, s;λ) = det
[√

n(XT)+M(rA, s, A;λ)
]
, (3.11)

of which the matrix on the right side is of size n× n.

Theorem 3.3. Fix p ≥ n, β0 ∈ R
p and λ > 0. Suppose that Assumptions 1

and 2 hold. Then the distribution of the augmented estimator (γ̂A, S,A) for
α ∈ (1,∞) is given by the differential form

dμA := P(drA, ds, {A}) = gn(H̃A(rA, s;β0, λ))|JA(rA, s;λ)|dθ (3.12)

for (rA, s, A) ∈ Ω, where θ = (rA, sF ) ∈ R
n and gn is the density of (ε/

√
n).

See Appendix B.2 for a proof, from which we see that (3.12) is valid as long
as the block lasso program (1.2) has a unique solution for almost all y ∈ R

n. For
each A ∈ A , the n-form dμA defines a measure on ΩA in the following sense.
Let k = n− |A| and

fA(rA, s) = gn(H̃A(rA, s))|JA(rA, s)|. (3.13)

Suppose that Γ ⊂ (R+)|A| and Φ = {Φ(u) : u ∈ Δ} ⊂ MA is a k-surface in R
p

with parameter domain Δ ⊂ Rk. Then by (3.12) we have

P(γ̂A ∈ Γ, S ∈ Φ,A = A) =

∫
Γ×Φ

dμA =

∫
Γ

∫
Δ

fA(rA,Φ(u))

∣∣∣∣∂sF∂u

∣∣∣∣ du drA,
(3.14)

where the Jacobian ∂sF /∂u = 1 if Φ is parameterized by sF . Note that for a par-
ticular k-surface, parameterizations other than by sF may be more convenient.
As shown in (3.14), the distribution of (γ̂A, S,A) is defined by a collection of
measures, {μA : A ∈ A }, due to the discrete nature of A, and fA is the density
of μA parameterized by θ = (rA, sF ). It is possible that fA = ∞ on a set of
measure zero in ΩA. An important special case of the above integral is

P(A = A) = μA(ΩA) =

∫
ΩA

dμA.

Lastly, summing over A in the above equation leads to∑
A∈A

∫
ΩA

dμA =
∑

|A|≤n

P(A = A) = 1.
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Remark 5. Evaluation of the joint density in (3.12) for any (rA, s, A) ∈ Ω can
be done by a simple procedure:

1. Find a local parameterization sF for s and the associated matrix T ;
2. Calculate the Jacobian JA (3.11), evaluate the mapping H̃A(rA, s) (3.10),

and plug them into (3.13) to obtain fA(rA, s).

See Examples 1 and 2 for concrete illustrations.

As a consequence of Theorem 3.3, the density fA under i.i.d. Gaussian errors
can be found in the following corollary. See Appendix B.3 for a proof.

Corollary 3.4. Suppose that the assumptions of Theorem 3.3 hold. If ε ∼
Nn(0, σ

2In), then for (rA, s) ∈ ΩA and A ∈ A ,

fA(rA, s) =

(
2πσ2

n

)−n/2

exp

[
− 1

2σ2
‖X(b+ λΨ+Ws− β0)‖2

]
|JA(rA, s)|,

(3.15)

where b ∈ R
p is such that b(j) = rjη(s(j)) for all j ∈ A and b(j) = 0 otherwise.

As we have seen, the sample space Ω (3.2) for the augmented estimator is
complex due to the many constraints involved in MA (3.1) and the mix of con-
tinuous and discrete components. It is quite surprising that one can find an exact
joint density for the augmented estimator given β0 and the noise distribution,
which is usually simple under an i.i.d. assumption. The density gives a complete
and explicit characterization of the sampling distribution according to (3.14).

In light of the non-linear and sparse nature of β̂ and the high dimension of the
problem, the joint density itself is a significant theoretical result that improves
our understanding of the block lasso estimator. Applications of this result in
group inference will be discussed in Section 4.

Remark 6. We summarize the main differences between the joint density of
the augmented block lasso in Theorem 3.3 and that of the augmented lasso in
[29]. First, the sample space ΩA is an n-manifold with nonzero curvature for
α > 1, and consequently the density is specified in (3.12) by a differential form
of order n. In contrast, the space ΩA has no curvature for the augmented lasso
estimator, whose density can be defined with respect to the Lebesgue measure.
Second, the Jacobian (3.11) depends on rA, s and A for the block lasso, while
it only depends on A for the lasso. See Example 3 for the technical reason
and a geometric interpretation for these differences. Both aspects result in new
challenging computational issues in this work for the development of Monte
Carlo algorithms, which are discussed in Section 4.2.

For the sake of completeness, we also give the density of (γ̂A, S,A) when
p < n, which can be obtained by simple modifications of a few steps in the proof
of the result for p ≥ n. See Appendix B.4 for details. Assume that rank(X) =
p < n, which is sufficient for both Assumptions 1 and 2 to hold. Then row(X)
and V (2.5) are identical to R

p, which implies every s ∈ MA (3.1) can be locally
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parameterized by sF with |F | = p− |A|. In this case, HA maps ΩA into R
p and

M(rA, s, A;λ) ∈ R
p×p.

Corollary 3.5. Fix n > p, β0 ∈ Rp and λ > 0. If rank(X) = p, the distribution
of the augmented estimator (γ̂A, S,A) for α ∈ (1,∞) is given by the p-form

dμA = gn,X(HA(rA, s;β0, λ))| detM(rA, s, A;λ)|dθ (3.16)

for (rA, s, A) ∈ Ω, where θ = (rA, sF ) ∈ R
p and gn,X is the density of U =

n−1XTε.

An interesting observation is that we need the density gn,X of U = n−1XTε
when p < n, which is more difficult to determine than the density of ε needed in
the high-dimensional case (3.12). The underlying reason for this can be found
from the sufficient statistic t = XTy (2.3). When p < n, the dimension of t is
smaller than the sample size n and thus this statistic achieves the goal of data
reduction. Consequently, one needs the distribution of t or U to determine the
sampling distribution of β̂. However, when p ≥ n, y is the coordinates of the
statistic t using the rows of X as the basis and thus the two are equivalent up
to a change of basis, in which case the distribution of y or ε is all we need.

3.4. Examples

We illustrate the distribution of the augmented estimator with a few examples.
Example 1 is a simple concrete example that demonstrates various key concepts,
including the sample space, the density, and probability calculations. The second
example shows that, under an orthonormal design, the joint distribution given
by Theorem 3.3 coincides with the result from block soft-thresholding. The last
example considers the lasso. Technical details involved in these examples are
deferred to Appendix C.

Example 1. Consider a simple but nontrivial example with p = 3, n = 2, and
J = 2. The two groups G1 = {1, 2} and G2 = {3}, and pick α = 2. Suppose that

1√
n
X =

[
1 0 1
0 1 1

]
, β0 = 0, ε ∼ N2(0, σ

2I2), W = I3.

Put r = (r1, r2) and s = (s1, s2, s3).
We first determine the space MA (3.1). Incorporating the constraint that

s ∈ V = row(X) ⇔ s1 + s2 − s3 = 0, (3.17)

the manifold MA can be expressed as

MA = {(s1, s2, s1 + s2) : (s1, s2) ∈ DA}, (3.18)

where DA ⊂ R
2 is the range for s(1) = (s1, s2). Let B

m be the unit �2-ball in
R

m. For A = ∅, the definition of MA shows that D∅ = B
2 ∩ {|s1 + s2| ≤ 1},

whose boundary ∂D∅ consists of two arcs and two line segments connecting at
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Fig 1. Sample space of S(1) shown by the shaded area.

four points: a = (1, 0), b = (0, 1), c = (−1, 0), and d = (0,−1). See Figure 1 for
illustration. Use ∂(q1, q2) to denote the boundary of D∅ from q1 to q2 along the
positive orientation. It is then immediate that

DA =

⎧⎨⎩
∂(b, c) ∪ ∂(d, a) for A = {1},
∂(a, b) ∪ ∂(c, d) for A = {2},
{a, b, c, d} for A = {1, 2}.

(3.19)

Plugging DA back into (3.18), we see that M∅ is a surface, M{1} and M{2}
are curves, and M{1,2} degenerates to four points in R3.

We find fA (3.13) and calculate P(A = A) for A = {1} here. The two arcs
in D{1} can be parameterized by s1 and Ω{1} correspondingly by θ = (r1, s1)
with two domains, R+ × (−1, 0) and R

+ × (0, 1). After a few steps of algebra,
we arrive at the density

f{1}(r1, s1, s2) =
1

πσ2
exp

[
− (r1 + λ)2

σ2

]
r1 + λ

|s2|
. (3.20)

Integrating f{1}dr1ds1 over R
+ × D{1} gives P(A = {1}) = 1

2e
−λ2/σ2

. In Ap-
pendix C.1, we provide the results for A = ∅, {2}, {1, 2}, and verify that
P(A = A) indeed sums up to one.

Example 2 (Orthogonal design). Suppose p = n = mJ , Ψ = Ip, and put
W =

√
mIp. In this example, all the groups are of the same size m. It is known

that under this setting, the group lasso (α = 2) is obtained by block soft-
thresholding the least-squares estimator β̃ = 1

nX
Ty:

β̂(j) = β̃(j)

[
1− λ

√
m/‖β̃(j)‖

]
+
, j = 1, . . . , J. (3.21)

Assume ε ∼ Nn(0, σ
2In). Then β̃(j) ∼ Nm(β0(j), (σ

2/n)Im), j ∈ NJ , are mu-
tually independent. The distribution of (γ̂A, S,A) for α = 2, derived in Ap-
pendix C.2, is given by

dμA =
∏
j∈NJ

fj(rj , s(j))dθ(j), (3.22)
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in which

fj(rj , s(j)) =

(
2πσ2

n

)−m
2

exp
{
− n

2σ2
‖(rj + λ

√
m)s(j) − β0(j)‖2

} ∣∣detM(jj)

∣∣ ,
dθ(j) = drjdsF (j) if j ∈ A and dθ(j) = ds(j) (with rj = 0) otherwise. Here, F (j)
is a chosen set of (m− 1) free coordinates of s(j), and | detM(jj)| has a closed-
form expression (C.10). In what follows, we exemplify that (3.22) is consistent
with block soft-thresholding (3.21).

Since dμA factorizes into a product of J terms, different groups (γ̂j , S(j)) are
mutually independent. The density fj(rj , s(j)) determines the distribution of
(γ̂j , S(j)). If j /∈ A, letting rj = 0 we have

fjds(j) = (2πσ2/n)−
m
2 exp

[
− n

2σ2
‖λ

√
ms(j) − β0(j)‖2

]
(λ
√
m)mds(j). (3.23)

It then follows that

P(β̂(j) = 0) =

∫
Bm

fjds(j) =

∫
‖z‖≤λ

√
m

φm(z;β0(j), σ
2Im/n)dz

= P(‖β̃(j)‖ ≤ λ
√
m),

where the last equality comes from the distribution of β̃(j). This result is clearly
consistent with the soft-thresholding rule (3.21). Next we calculate P(γ̂j > t)
for j ∈ A. To simplify our derivation, assume further that β0(j) = 0. Integrating
fjdθ(j) over the sphere s(j) ∈ S

m−1, the marginal density of γ̂j is

fj(rj) =

(
n/σ2

)m
2

2
m
2 −1 · Γ(m/2)

(rj + λ
√
m)m−1 exp

[
− n

2σ2
(rj + λ

√
m)2
]

(3.24)

for rj > 0. It then follows that, for t ≥ 0,

P(‖β̂(j)‖ > t) =

∫ ∞

t

fj(rj)drj = P

{
‖β̃(j)‖ > t+ λ

√
m
}
, (3.25)

which again coincides with the result from soft-thresholding. See Appendix C.2
for the derivation of (3.24) and (3.25).

Example 3 (lasso). When α = 1 in (1.2), the block lasso reduces to the lasso
with no group structure. Thus, the result for α = 1 can be deduced by letting
pj = 1 for all j and α = 2 (or any α > 1) in Theorem 3.3. In this case, for j ∈ A
the subgradient Sj = sgn(β̂j) ∈ {1,−1} is a function of β̂j . This leads to two
special properties of the matrix T = T (s,A) defined in Lemma 3.2, which do
not hold in the general case pj ≥ 2: (i) T = T (A) depends only on A, (ii) the
submatrix TA• is a zero matrix; see Appendix C.3. Bearing these facts in mind,
one can apply Theorem 3.3 to find the joint distribution of the augmented lasso,
given by the density

fA(rA, s)drAdsF = gn(H̃A(rA, s))
∣∣det{√n(XT)+[ΨA | λWBTB•]

}∣∣ drAdsF
(3.26)
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for (rA, s) ∈ ΩA, where B = Np \ A and F ⊂ B. Owing to property (i), the
Jacobian and the set F here do not depend on s, which is fundamentally different
from the block lasso. A geometrical interpretation for (i) is that the space MA

(3.1) for the lasso is a union of polyhedra and the set of tangent vectors that
forms the columns of T is invariant at each s ∈ MA, while in the block lasso case
MA is curved with a different tangent space at different points. This gives one
of the aspects in which this work represents a highly nontrivial generalization
to the result for the lasso.

As adopted in [29], the augmented lasso estimator can also be represented

by (β̂A, SB,A), where B = Np \ A is the set of zero components of β̂. With

the change of variable, β̂j = γ̂jSj for j ∈ A, one can easily obtain the density
under this alternative parameterization from (3.26), which is identical to the
joint density in Theorem 2 of [29] with the choice of (XT/

√
n) as a basis for

row(X). See Appendix C.3 for the technical details.

4. Applications in statistical inference

In this section, we develop Monte Carlo methods to make inference about β0 by
utilizing the joint density of the augmented block lasso estimator. Recall that
we want to test the hypothesis H0,G : β0G = 0 or to construct confidence regions
for β0G. Without loss of generality, assume G = Gj for some j so that our goal
is to infer β0(j). Denote the null hypotheses by H0,j : β0(j) = 0 for j ∈ NJ .

4.1. Parametric bootstrap

Consider inference with an estimator in the form of b̂ = b̂(β̂, S) ∈ Rp, a mapping

of the augmented estimator (β̂, S). One such approach that has drawn recent
attention is the de-biased lasso and its generalization to the de-biased group
lasso. Given a p × p matrix Θ̂ = Θ̂(X), a form of the de-biased estimator may
be expressed as

b̂ = β̂ + Θ̂XT(y −Xβ̂)/n = β̂ + λΘ̂WS, (4.1)

where (β̂, S) is either the augmented lasso or the augmented group lasso. Differ-
ent de-biased estimators have been constructed with different Θ̂, which is often
some version of a relaxed inverse of the Gram matrix Ψ. It is usually impossible
to obtain the exact distribution of (b̂− β0) for a finite sample. Thus, bootstrap
methods have been developed [5, 28] with improved performance compared to
asymptotic approximation for the de-biased methods.

Assuming the error distribution is Nn(0, σ
2In) with a known σ2 for now, a

parametric bootstrap for the augmented estimator (β̂, S) contains two steps:

Algorithm 1 (PB(β̃, σ2, λ)). Given σ2 > 0, λ > 0 and a point estimate β̃ ∈ R
p,

(1) draw ε∗ ∼ Nn(0, σ
2In) and set y∗ = Xβ̃ + ε∗;

(2) solve (1.2) with y∗ in place of y to obtain β̂∗ and calculate S∗ via (2.3).
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Let b̂∗ = b̂(β̂∗, S∗). Choosing a function hj : Rpj → [0,∞), we estimate its
(1− δ)-quantile hj,(1−δ) from a large bootstrap sample such that

P

{
hj(b̂

∗
(j) − β̃(j)) > hj,(1−δ)

∣∣∣ β̃} = δ.

Then, a (1− δ) confidence region for β0(j) can be constructed in the form of

Rj(δ) =
{
θ ∈ R

pj : hj(b̂(j) − θ) ≤ hj,(1−δ)

}
. (4.2)

By duality the p-value for testing H0,j is approximated by the tail probability

P

{
hj(b̂

∗
(j) − β̃(j)) ≥ hj(b̂(j))

∣∣∣ β̃} . (4.3)

Common choices of hj include, for example, various norms and hj(θ) = ‖X(j)θ‖.
Although out of the scope of this paper, the asymptotic validity of (4.2) and

(4.3) comes from the fact that (b̂(j)−β0(j)) is an asymptotic pivot with a careful

choice of Θ̂ [12, 22].

An interesting and key observation is that the joint density of [β̂∗, S∗ | β̃]
is explicitly given by (3.12) in Theorem 3.3, with β̃ in place of β0, through
its equivalent representation. Denote this density (3.13) by fA(rA, s; β̃, σ

2, λ) to
emphasize its dependence on (β̃, σ2, λ). In principle, we can use Monte Carlo

methods, such as importance sampling and MCMC, to draw (β̂∗, S∗) and obtain

a sample of b̂∗ = b̂(β̂∗, S∗), which serve as alternatives to the above bootstrap
sampling. Monte Carlo methods may bring computational efficiency and flexi-
bility compared to parametric bootstrap. In the following, we will demonstrate
the efficiency of importance sampling in calculating tail probabilities as in (4.3),
which is a prominent difficulty for the bootstrap. Monte Carlo methods for other
applications, including those with an estimated error distribution, are discussed
in Section 4.5.

4.2. Importance sampling

The following simple fact about the parameterization of MA (3.1), proved in
Appendix B.5, is useful for designing proposal distributions in importance sam-
pling.

Lemma 4.1. Let α ∈ (1,∞). For each A ∈ A , the manifold MA, except
for a set of measure zero, can be parameterized by sF such that the index set
F = F (A) only depends on A.

A consequence of Lemma 4.1 is that we may use the same volume element
dθ = drAdsF almost everywhere in the subspace ΩA, which eases our devel-
opment of a Monte Carlo algorithm. Suppose that qA(rA, s) is the density of
a distribution over Ω with respect to dθ such that

∑
A

∫
ΩA

qA(rA, s)dθ = 1.
As long as the support of qA is ΩA for all A ∈ A , it can be used as a pro-
posal distribution in importance sampling. With a little abuse of notation, put
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θ = (rA, s) ∈ ΩA so that (θ,A) represents a point in the sample space Ω at
which the volume element is dθ. Suppose we want to estimate the expectation of
a function h(β̂, S) = h(γ̂A, S,A) with respect to fA, using (β̂, S) and (γ̂A, S,A)
interchangeably. Importance sampling can be readily implemented given the
densities fA and qA. Draw (At, θt) from the proposal qA(θ) for t = 1, . . . , N and
calculate importance weights wt = fAt(θt)/qAt(θt). Then by the law of large
numbers, the weighted sample mean

ĥ =

∑N
t=1 wth(θt, At)∑N

t=1 wt

a.s.−→E[h(γ̂A, S,A)]

provides the desired estimate. To estimate the probability in (4.3), h is taken
to be the indicator function of the event of interest. When the true β0(j) �= 0,
the p-value (4.3) can be tiny, and bootstrap (Algorithm 1) may fail to provide
a meaningful estimate of the significance level. In such cases, it is much more
efficient to use importance sampling with a proposal distribution that has a
higher chance to reach the tail of the bootstrap distribution fA(rA, s; β̃, σ

2, λ).
We design two types of proposal distributions. The first type of proposals

draw (β̂∗, S∗) by the bootstrap algorithm PB(β†,Mσ2, λ†) with a proper choice
of (β†,M, λ†), where M > 0 is a constant. The proposal distribution has density
fA(rA, s;β

†,Mσ2, λ†), again by Theorem 3.3. By increasing the error variance
with M > 1, choosing β† �= β̃, and possibly with a different λ†, we can pro-
pose samples in the region of interest in (4.3) which has a small probability
with respect to the target distribution. The Jacobian term JA(rA, s;λ) (3.11) is
the time-consuming part in evaluating the densities for calculating importance
weights. If we choose λ† = λ, however, this term will cancel out and the im-
portance weight is simply the ratio of two normal densities, whose calculation
is almost costless. Our empirical study shows that this choice gives comparable
estimation accuracy and thus we always let λ† = λ. Denote by IS(β†,M) the
importance sampling with the first type of proposals. Our second design uses a
mixture of two proposal distributions with different β† and M , which has more
flexibility in shifting samples to multiple regions of interest. Again the Jacobian
term cancels out in the importance weight (4.4). Our importance sampling with
a mixture proposal is detailed in the following algorithm. For brevity, write

H̃(β̂, S;β0) =
√
n(XT)+(Ψβ̂ + λWS −Ψβ0),

which is identical to the H̃ in (3.10).

Algorithm 2 (IS(a1, β
†
1,M1; a2, β

†
2,M2)). Given a1 + a2 = 1, β†

1, β
†
2 ∈ R

p and
M1,M2 > 0,

(1) draw Z from {1, 2} with probabilities {a1, a2}, and given Z, draw (β̂∗, S∗)

from PB(β†
Z ,MZσ

2, λ);
(2) calculate importance weight

w∗ =
φn

(
H̃(β̂∗, S∗; β̃);σ2/n

)
∑2

k=1 ak φn

(
H̃(β̂∗, S∗;β†

k);Mkσ2/n
) . (4.4)
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Remark 7. The first algorithm IS(β†,M) can be regarded as a special case

of Algorithm 2 with a1 = 1, β†
1 = β† and M1 = M . One can easily generalize

Algorithm 2 to a mixture proposal with K ≥ 3 component distributions. For
other error distributions, we simply replace φn in (4.4) by gn, the density of
ε/
√
n.

In our numerical results, the efficiency of an importance sampling estimate
is measured by its coefficient of variation (cv) across multiple independent runs
and compared with direct bootstrap outlined in Algorithm 1.

4.3. Group lasso

We begin with a simpler application to test the complete null hypothesis H0 :
β0 = 0 using the statistic T = h(β̂) =

∑
j ‖β̂(j)‖, where β̂ is the group lasso for a

particular λ. In this case, our target density fA(rA, s;β0 = 0, σ2, λ) determines
the exact distribution of T under H0.

We set the group size pj = 10 for all groups and fixed σ2 = 1. Each row of X
was drawn from Np(0,Σ), where the diagonal elements of Σ are all 1. The off-
diagonal elements Σij = ρ1 if i, j are in the same group and Σij = ρ2 otherwise.
We simulated 30 datasets with parameters (n, p, ρ1, ρ2) reported in Table 1. Put
v = (1, 1, 1, 1,−1,−1,−1,−1, 0, 0). For the first 10 datasets, we chose β0 = 0
so that H0 is true. For the other 20 datasets, the first two groups of β0 were
active, with β0(1) = β0(2) = v/2 for datasets 11 to 20 and β0(1) = β0(2) = v for
datasets 21 to 30. For each dataset, λ was chosen to be the smallest value such
that the group lasso solution had two active groups. The range of λ and that of
the statistic T across the simulated datasets are reported in Table 1 as well.

Table 1

Simulated datasets for testing complete null hypothesis

Dataset (n, p) (ρ1, ρ2) λ T
1-10 (30, 100) (0, 0) (0.396, 0.796) (0.017, 0.337)
11-20 (30, 100) (0, 0) (0.554, 1.613) (0.460, 1.964)
21-30 (30, 100) (0.5, 0) (0.956, 2.650) (0.045, 2.186)

We applied the algorithm IS(0, 5) to generate N = 100, 000 samples. Denote

the samples by β̂∗
t , with importance weight wt, for t = 1, . . . , N . The p-value

for the observed statistic T was then estimated by

q̂(IS) =

∑N
t=1 wtI(h(β̂

∗
t ) ≥ T )∑N

t=1 wt

. (4.5)

This procedure was repeated 20 times independently for each dataset to calcu-
late the mean q̄ and the standard deviation of q̂(IS), from which we calculated
cv(q̂(IS)). If we had used the bootstrap algorithm PB(0, σ2, λ) for the same
N to estimate the p-value, denoted by q̂(PB), its cv would have been close to√

(1− q̄)/(Nq̄). Figure 2 plots log10(q̄), cv(q̂
(IS)) and log10{cv(q̂(PB))/cv(q̂(IS))}

for the 30 datasets. We observe from the ratios of cv’s in panel (c) that, for
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Fig 2. Estimation of p-values for testing H0 with the group lasso. (a) log10 q̄, (b) cv(q̂(IS))
and (c) log10{cv(q̂(PB))/cv(q̂(IS))}. The result for a dataset is reported by a vertical bar in
each plot.

datasets 11 to 30, the importance sampling estimates are much more accurate,
while the estimated p-values, as shown in panel (a), are very small. For many of
these 20 datasets, the improvement of importance sampling over bootstrap can
be five or more orders of magnitude. The p-values are insignificant for the first
10 datasets, in which the null hypothesis is true. In a majority of these cases,
the importance sampling estimates are slightly less accurate than the bootstrap
estimates, which is fully expected.

4.4. A de-biased approach

The second application concerns a de-biased group lasso in the form of (4.1).
Since our method applies to any choice of Θ̂, to simplify the discussion we set
Θ̂ = Σ−1 instead of using a particular estimate, where Σ is the population
covariance of X. The test statistic is chosen as hj(b̂(j)) = ‖X(j)b̂(j)‖ := Tj in
(4.3).

We simulated 20 datasets independently under the same settings as those
for datasets 11 to 30 in Table 1. The tuning parameter λ was chosen by the
same method as in Section 4.3 to calculate the group lasso β̂ and the de-biased
estimate b̂ (4.1) for each dataset. Figure 3 plots these two estimates for one
dataset, in which β0(1) = β0(2) = v and β0(j) = 0 for j > 2. We see that

the de-biased group lasso b̂ is not sparse, b̂(j) �= 0 for all j, and its first two
groups are closer to the active groups of β0 than the group lasso. This largely
removed the shrinkage in the active coefficients of the group lasso solution and
substantially reduced its bias. Our goal here is to test H0,1 : β0(1) = 0 by

estimating the probability (4.3) for T1 = ‖X(1)b̂(1)‖ with a plug-in point estimate

β̃. The observed value of the test statistic T1 ranges from 4.4 to 21.2 across the
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Fig 3. The group lasso and de-biased group lasso solutions for one dataset with p = 100,
where the size of each group is 10.

20 datasets. Due to the asymptotic normality of b̂(j), the bootstrap distribution

[b̂∗(j) − β̃(j) | β̃] is not sensitive to the choice of β̃ as long as it is sparse. Thus,

we choose β̃ = β̂, the group lasso estimate. See [5] for related discussions.
We designed the following mixture proposal for Algorithm 2 to approximate

the p-value (4.3) by importance sampling:

a1 = a2 = 1/2;M1 = 2,M2 = 4;β†
1 = β̂, β†

2(1) = β̂(1)/2, β
†
2(−1) = β̂(−1).

Note that β†
2(1) is the middle point between β̂(1) and 0, serving as a bridge be-

tween the target distribution and the null hypothesis H0,1. To achieve a wider
coverage of the sample space, the error variances of both component distribu-
tions were chosen to be greater than σ2. We applied Algorithm 2 to generate
N = 100, 000 weighted samples (β̂∗

t , S
∗
t ), with weights wt, for each dataset.

Similar to (4.5), the p-value for T1 was estimated as

q̂(IS) =

∑N
t=1 wtI(‖X(1)(b̂

∗
t(1) − β̂(1))‖ ≥ T1)∑N

t=1 wt

, (4.6)

where b̂∗t = b̂(β̂∗
t , S

∗
t ) as in (4.1). We replicated this procedure 20 times indepen-

dently to calculate the cv of q̂(IS) as we did in the previous example. The same
comparisons were conducted and the results are reported in Figure 4. Strong
majority of the p-values were estimated to be significant, since β0(1) �= 0 for
all 20 datasets. The cv’s of the importance sampling estimates are seen to be
quite small, which is especially satisfactory for those tiny tail probabilities on
the order of 10−10 or smaller. As shown in Figure 4(c), our importance sampling
estimation is more efficient than parametric bootstrap for at least 13 out of the
20 datasets, many showing orders of magnitude of improvement. For most of
the other datasets, the importance sampling results are very comparable to the
results from bootstrap.
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Fig 4. Estimation of p-values for testing H0,1 with a de-biased group lasso. Plots are in the
same format as those in Figure 2.

Compared to the parametric bootstrap in Algorithm 1, the only additional
step in our importance sampling algorithms is to evaluate importance weights,
such as (4.4), of which the computing time is negligible relative to computing
group lasso solutions. As a result, the total running time of the importance
sampling is almost identical to that of the bootstrap sampling. The above two
applications thus exemplify the huge gain in estimation accuracy by importance
sampling via estimator augmentation at almost identical computing cost. It
is worth mentioning that accurate estimation of small p-values is crucial for
ranking the importance of predictors and controlling false discoveries in large-
scale screening.

4.5. Other applications

Given the joint density fA(rA, s; β̃, σ
2, λ), one may design MCMC algorithms

to draw samples (β̂∗, S∗) from this distribution, which is identical to the dis-
tribution of a bootstrap sample generated by PB(β̃, σ2, λ) in Algorithm 1. The
advantage of an MCMC algorithm is that it does not need to solve a convex
optimization program in any of its steps. But evaluating the Jacobian term in
fA could be time-consuming. Another potential application is conditional sam-
pling from [β̂∗, S∗ | β̂∗ ∈ B], which will be useful in post-selection inference. For

example, conditioning on the model selected by β̂, i.e. G(β̂∗) = G(β̂), we may

wish to sample from an estimator b̂∗ with a nice asymptotic distribution for
inference. For this problem, bootstrap may be impractical since the condition-
ing event is often a rare event. However, from the joint density one can easily
obtain the conditional density ∝ fG(rG, s), where G = G(β̂), and implement
an MCMC algorithm to draw from this conditional distribution. In the case of
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the lasso, Zhou [29] implemented an Metropolis-Hastings sampler for such con-
ditional sampling. The more general case for a block lasso will be considered in
the future.

Under a Gaussian error assumption, it is a common practice to plug an es-
timated variance σ̂2 in the bootstrap PB(β̃, σ̂2, λ). As long as σ̂2 is consistent
with a certain rate, inference will be valid asymptotically [5, 30]. Therefore, we
can use our importance sampling algorithms with fA(rA, s; β̃, σ̂

2, λ) as the tar-
get density. Note that the density fA (3.13) depends on the error distribution
only through the density gn of ε/

√
n. Under a general i.i.d. error assumption,

estimating gn reduces to estimating the density of an univariate distribution,
which can be done quite accurately even when n is moderate by either a para-
metric or a nonparametric method. Given an estimate ĝn, our target density is
readily obtained with gn replaced by ĝn. An appealing alternative is to de-bias
a scaled block lasso, which estimates σ2 in a coherent way, for inference as in
[12]. Estimator augmentation can be applied to derive the joint density of an
augmented scaled block lasso, including its variance estimator σ̂2, as outlined
in Section 5.2. Given the density, one can follow the same importance sampling
algorithms for tail probability approximation.

5. Generalizations

We generalize estimator augmentation to the block lasso with α = ∞ and to a
scaled block lasso. In both cases, the subgradient has more structure.

5.1. Block-(1,∞) norm

In this subsection, we consider the case α = ∞ (α∗ = 1). The difference between
this case and the case α < ∞ comes from the subgradient vector S. Let Bj =

argmaxk∈Gj
|β̂k| ⊂ Gj , which may contain multiple elements when a tie occurs,

and Bc
j = Gj \ Bj for j ∈ NJ . It follows from Lemma A.3 that (i) for β̂(j) �= 0,

‖S(j)‖1 = 1 and

Sk =

{
tk sgn(β̂k) k ∈ Bj

0 k ∈ Bc
j

, (5.1)

where
∑

Bj
tk = 1 and tk ≥ 0; (ii) ‖S(j)‖1 ≤ 1 for β̂(j) = 0.

Compared to (2.2), the discreteness of {Sk = 0} for some k as in (5.1) distin-
guishes the (1,∞) norm from other cases of α < ∞. Accordingly, the augmented

estimator (β̂, S) will have more structure. Recall that the active blocks of β̂ are

denoted by A = G(β̂). For j ∈ A, define

Kj = {k ∈ Gj : Sk �= 0} and Kc
j = Gj \ Kj . (5.2)

Put K = ∪{Kj : j ∈ A} and Kc = ∪{Kc
j : j ∈ A}. It follows from (5.1) that

β̂Kj = γ̂j sgn(SKj ) for j ∈ A, where γ̂j = ‖β̂(j)‖∞. We can then represent (β̂, S)
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by
(γ̂A, β̂Kc , S,A,K) with SKc = 0, (5.3)

subject to the constraints that ‖β̂Kc
j
‖∞ ≤ γ̂j for j ∈ A. For A = A ∈ A (3.3),

Proposition A.6 implies that assuming solution uniqueness the range of K is

K (A) = {K ⊂ GA : K ∩ Gj �= ∅ ∀j ∈ A and |GA \K| ≤ n− |A|}.

Let Kj = K ∩Gj and Kc
j = Kc ∩Gj for j ∈ A, where Kc = GA \K. The sample

space for S given A = A and K = K is

MA,K = {s ∈ MA : sk �= 0 ∀k ∈ K, sKc = 0} ,

where MA is as in (3.1) with α∗ = 1. The sample space for (γ̂j , β̂Kc
j
) is the cone

Cj =
{
(r, v) ∈ R

+ × R
|Kc

j | : ‖v‖∞ ≤ r
}
.

Then the sample space for (γ̂A, β̂Kc , S) is the product ΩA,K = (
∏

j∈A Cj) ×
MA,K . Taking union over the range of the sets A ∈ A and K ∈ K (A)
determines the space Ω for the augmented estimator (5.3). Compared to the
case α < ∞, the subgradient S has lost |Kc| free dimensions due to the con-
straints that Sk = 0 for all k ∈ Kc. Consequently, for every interior point
s ∈ MA,K , there is a neighborhood that may be parameterized by sF with
|F | = n− |A| − |Kc| := q. Note that dsk = 0 for each k ∈ Kc. Let I = Np \Kc.
Similar to Lemma 3.2, we can then find a matrix T ∈ R

(p−|Kc|)×q such that
dsI = TdsF .

For notational brevity we will use (β̂, S) and its equivalent representation
(5.3) interchangeably. Write the mappings H (3.4) and H̃ (3.10) as H(b, s) and

H̃(b, s), respectively, where (b, s) denotes the value of (β̂, S). For (rA, bKc , s) ∈
ΩA,K , let H̃A,K(rA, bKc , s) = H̃(b, s) with (rA, bKc , s, A,K) being the equivalent
representation of (b, s). Define two matrices

Ψ ◦ sgn(s) = [Ψ(1) sgn(s(1))| . . . |Ψ(J) sgn(s(J))] ∈ R
p×J ,

M(s,A,K;λ) = [{Ψ ◦ sgn(s)}A | ΨKc | λWIT ] ∈ R
p×n,

and a related Jacobian

JA,K(s;λ) = det
[√

n(XT)+M(s,A,K;λ)
]
. (5.4)

Parallel to Theorem 3.3, we have the following explicit density for the augmented
estimator under block-(1,∞) sparsity, which is proved in Appendix B.6.

Theorem 5.1. Fix p ≥ n, β0 ∈ R
p and λ > 0. Suppose Assumption 1 holds and

that the program (1.2) for α = ∞ has a unique solution for almost all y ∈ Rn. Let
gn be the density of (ε/

√
n). Then the distribution of the augmented estimator

(β̂, S) is given by the n-form

dμA,K := P(drA, dbKc , ds, {A,K})
= gn(H̃A,K(rA, bKc , s;β0, λ))|JA,K(s;λ)|dθ := fA,K(rA, bKc , s)dθ (5.5)

for (rA, bKc , s, A,K) ∈ Ω, where θ = (rA, bKc , sF ) ∈ R
n.
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The sufficient condition for solution uniqueness in this case is discussed in
Appendix A.4. The density fA,K is defined in terms of the parameterization
θ. Suppose that Γ ⊂ R|A|+|Kc| is a subset of the product cone

∏
j∈A Cj and

Φ = {Φ(sF ) : sF ∈ Δ} ⊂ MA,K is a q-surface in R
p with parameter domain

Δ ⊂ R
q. Then we have

P

{
(γ̂A, β̂Kc) ∈ Γ, S ∈ Φ,A = A,K = K

}
=

∫
Γ×Δ

fA,K(rA, bKc ,Φ(sF ))dθ,

which interprets the differential form (5.5). The density here differs from that
in (3.12) only in the Jacobian term. Clearly, the same importance sampling
method (Algorithm 2) can be used here due to the cancellation of the Jacobian.

5.2. A scaled block lasso

As another generalization, we consider estimator augmentation for a scaled block
lasso, which is scale invariant and provides an estimate of σ2 simultaneously.
Mitra and Zhang [12] have developed inference methods via de-biasing a scaled
group lasso, which is related to the square-root group lasso [2]. Following their
formulation, we define a scaled block lasso

(β̂, σ̂) ∈ argmin
β∈Rp,σ>0

⎧⎨⎩L(β, σ) :=
1

2nσ
‖y −Xβ‖2 + σ

2
+ λ

J∑
j=1

wj‖β(j)‖α

⎫⎬⎭ . (5.6)

Since the loss function in (5.6) is convex, (β̂, σ̂) is given by the KKT conditions

1

n
XT(y −Xβ̂) = λσ̂WS, (5.7)

σ̂ = ‖y −Xβ̂‖/
√
n. (5.8)

Under Assumption 1, (5.7) is equivalent to y −Xβ̂ = λnσ̂(XT)+WS, plugging
which into (5.8), we arrive at

λ
√
n‖(XT)+WS‖ = 1. (5.9)

It is easy to see that (5.7) and (5.9) imply (5.8), and thus are sufficient and

necessary for (β̂, σ̂) to be a scaled block lasso solution. This shows that the
subgradient S here satisfies an additional equality constraint. Therefore, for
A = G(β̂) = A, its sample space

M̃A = {s ∈ MA : λ
√
n‖(XT)+Ws‖ = 1} (5.10)

is an (n−|A|−1)-manifold, where MA is defined in (3.1). Note that
√
n(XT)+z

is the coordinates of z ∈ row(X) with respect to the basis (XT/
√
n). Thus, the

vector λWS for a scaled block lasso is normalized with respect to this basis. Let
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(γ̂A, S,A) be the equivalent representation of (β̂, S). Given A = A, the space
for (γ̂A, S, σ̂) is

Ω̃A = (R+)|A| × M̃A × R
+,

which is still a manifold of dimension n.
Suppose the program (5.6) has a unique minimizer for almost all y ∈ R

n.
Substituting y by Xβ0 + ε, (5.7) defines a bijective mapping F : (rA, s, σ̂, A) �→
v = ε/

√
n, for (rA, s, σ̂) ∈ Ω̃A. Recall that (5.7) with S ∈ M̃A is equivalent

to the KKT conditions, and thus this mapping is sufficient for determining the
distribution of (β̂, S, σ̂). The restriction of F to a fixed A defines a one-to-one

mapping FA : Ω̃A → R
n, given by

FA(rA, s, σ̂;β0, λ) := H̃(rA, s, A;β0, λσ̂),

where H̃ is defined in (3.10). As in Lemma 3.2, we parameterize a neighborhood

of s ∈ M̃A by sF , with |F | = n − |A| − 1, so that ds = T (s,A)dsF , where
T = T (s,A) is a p × |F | matrix. Following a similar derivation as in the proof
of Lemma 3.2 in Appendix B.1, we find the Jacobian of FA,

JA(rA, s, σ̂;λ) = det
[√

n(XT)+M(rA, s, σ̂, A;λ)
]
, (5.11)

with respect to the parameterization θ = (rA, sF , σ̂) ∈ R
n, where the matrix

M(rA, s, σ̂, A;λ) = [(Ψ ◦ η)A | {(r ◦Ψ)D + λσ̂W}T | λWs] ∈ R
p×n.

The joint distribution of (β̂, S, σ̂) is then given by the n-form,

fA(rA, s, σ̂)dθ = gn(FA(rA, s, σ̂;β0, λ))|JA(rA, s, σ̂;λ)|dθ, (5.12)

where gn is the density of (ε/
√
n). This result applies to all α ∈ [1,∞), under

the convention that pj = 1 for all j when α = 1, in which case (5.6) reduces to
a scaled lasso [1, 18].

An assumption for the above result is the uniqueness of (β̂, σ̂). Given σ > 0,

denote by β̂(σλ) the restricted minimizer of (5.6), which is the same as the block
lasso (1.2) with tuning parameter σλ. Therefore, under Assumptions 1 and 2,

β̂(σλ) is unique for any σ > 0. As established in Lemma 2 of [12], the profile

loss function L(β̂(σλ), σ) is convex and continuously differentiable in σ. Thus,
σ̂ is given by any solution to the equation

dL(β̂(σλ), σ)

dσ
=

1

2
− ‖y −Xβ̂(σλ)‖2

2nσ2
= 0. (5.13)

If this equation has a unique solution in (0,∞), then (β̂, σ̂) is unique. We sum-
marize this result into the following theorem.

Theorem 5.2. Fix p ≥ n, β0 ∈ R
p, λ > 0, and α ∈ [1,∞). Suppose that

Assumptions 1 and 2 hold, and that Equation (5.13) has a unique solution in
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(0,∞) for almost all y ∈ R
n. Then the distribution of the augmented scaled block

lasso (β̂, S, σ̂) defined by (5.6) is given by the n-form,

P(drA, ds, dσ̂, {A}) = fA(rA, s, σ̂)dθ

as in (5.12), for (rA, s, σ̂) ∈ Ω̃A and |A| ≤ n− 1.

We believe (5.13) indeed has a unique solution for almost all y ∈ R
n under

fairly weak but perhaps technical assumptions. See Appendix A.5 for a detailed
discussion. To avoid this technical issue in practice, one may include another
additive term aσ2 in the loss function in (5.6), where a is a small positive
constant. The uniqueness of σ̂ is then an immediate consequence of the strong
convexity of the modified profile loss, L(β̂(σλ), σ) + aσ2.

6. Concluding remarks

By augmenting the sample space to that of (β̂, S), we have derived a closed-form
density for the sampling distribution of the augmented block lasso estimator.
Given the density, we have demonstrated the use of importance sampling in
group inference, which can be orders of magnitude more efficient than the cor-
responding parametric bootstrap. For high-dimensional data, sparsity seems an
essential assumption for inference, and consequently, an inference method is of-
ten built upon a non-regular penalized estimator. It is unlikely to work out an
exact pivot in this setting, and thus, simulation-based approaches have been
widely used. Our work of estimator augmentation opens the door to a large
class of Monte Carlo methods for such simulations, which in our view is the
main intellectual contribution. Due to the complexity of the sample space of
an augmented estimator, development of efficient Monte Carlo algorithms is a
highly demanding job and an interesting future direction.

Appendix A: Uniqueness of the block lasso

A.1. Auxiliary lemmas

Lemma A.1. If α ∈ (1,∞), then η is a bijection that maps Sα∗ onto Sα and
〈η(v), v〉 = 1 for any v ∈ Sα∗ .

Proof. For any v = (vi) ∈ Sα∗ ,

‖η(v)‖αα = ‖(vρi )‖αα =
∑
i

|vi|α
∗
= 1.

Similarly, we can show that η−1(u) ∈ Sα∗ for any u ∈ Sα. By definition, ρ+1 =
α∗. Then, straightforward calculation leads to

〈η(v), v〉 = 〈sgn(v)|v|ρ, sgn(v)|v|〉 =
∑
i

|vi|ρ+1 =
∑
i

|vi|α
∗
= 1.

Here, | · | and sgn(·) are applied on v in the sense of (2.1).
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Lemma A.2. Let h(v) = ‖v‖α for α ∈ (1,∞) and v ∈ R
m. If v �= 0, then

∇h(v) = η−1(ṽ) ∈ S
m−1
α∗ (A.1)

with ṽ = v/‖v‖α ∈ S
m−1
α . If v = 0, the subdifferential of h

∂h(0) = {u ∈ R
m : ‖u‖α∗ ≤ 1}. (A.2)

Proof. For v �= 0,

∂h

∂vi
=

sgn(vi)|vi|α−1

‖v‖α−1
α

= sgn(ṽi)|ṽi|1/ρ = η−1(ṽi),

using the simple fact that α− 1 = 1/ρ. Since by definition ṽ ∈ Sα, Lemma A.1
implies that η−1(ṽ) ∈ Sα∗ . This proves (A.1). By Hölder’s inequality,

〈u, v〉 ≤ ‖u‖α∗‖v‖α ≤ h(v), ∀v ∈ R
m,

if and only if ‖u‖α∗ ≤ 1, which implies (A.2).

Lemma A.3 (Lemma 1 in [14]). Let h(v) = ‖v‖∞ for v ∈ R
m and K =

argmaxi |vi| ⊂ Nm. For v �= 0, u ∈ ∂h(v) if and only if

ui =

{
ti sgn(vi) i ∈ K

0 otherwise

for some (ti)i∈K so that
∑

i ti = 1 and ti ≥ 0. For v = 0,

∂h(0) = {u ∈ R
m : ‖u‖1 ≤ 1}. (A.3)

A.2. Characterization of solutions

Proof of Lemma 2.1. Suppose that β̂(1) and β̂(2) are two minimizers of L(β;α)

such that Xβ̂(1) �= Xβ̂(2). The convexity of L implies that

L(β̂(1);α) = L(β̂(2);α) = L∗.

Since ‖x‖2 is strictly convex in x, for any c ∈ (0, 1),

‖y −X[cβ̂(1) + (1− c)β̂(2)]‖2 < c‖y −Xβ̂(1)‖2 + (1− c)‖y −Xβ̂(2)‖2

by the hypothesis that Xβ̂(1) �= Xβ̂(2). Therefore,

L(cβ̂(1) + (1− c)β̂(2);α) < cL(β̂(1);α) + (1− c)L(β̂(2);α) = L∗,

which is contradictory to the assumption that the minimum of L is L∗. The
uniqueness of S is an immediate consequence of the uniqueness of Xβ̂ and that

S = (nλW )−1XT(y −Xβ̂) (A.4)

by the KKT conditions (2.3).
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We will first establish sufficient conditions for solution uniqueness for α < ∞,
while deferring the case α = ∞ to Appendix A.4. We start with more explicit
expressions for Xβ̂ and β̂. Write the KKT conditions for each block in (2.3),

1

n
XT

(j)Xβ̂ + λwjS(j) =
1

n
XT

(j)y, j = 1, . . . , J. (A.5)

Define

E =

{
j ∈ NJ :

1

wjn

∥∥∥XT
(j)(y −Xβ̂)

∥∥∥
α∗

= λ‖S(j)‖α∗ = λ

}
. (A.6)

By (A.5) and (2.2), β̂(−E) = 0. Now the E block of (A.5) with β̂(−E) = 0 reads

1

n
XT

(E)(y −X(E)β̂(E)) = λW(EE)S(E), (A.7)

which shows that W(EE)S(E) ∈ row(X(E)). Thus, we have

W(EE)S(E) = XT
(E)(X

T
(E))

+W(EE)S(E), (A.8)

since the right side is the projection of W(EE)S(E) onto row(X(E)). Plugging the
above identity into (A.7), we arrive at

XT
(E)X(E)β̂(E) = XT

(E)

[
y − nλ(XT

(E))
+W(EE)S(E)

]
. (A.9)

A solution to the above equation is

β̂(E) = (XT
(E)X(E))

+XT
(E)

[
y − nλ(XT

(E))
+W(EE)S(E)

]
= (X(E))

+
[
y − nλ(XT

(E))
+W(EE)S(E)

]
.

Then by the uniqueness of the fit Xβ̂ (Lemma 2.1), for all solutions β̂ we have

Xβ̂ = X(E)β̂(E) = X(E)(X(E))
+
[
y − nλ(XT

(E))
+W(EE)S(E)

]
:= ŷ. (A.10)

To make the relation between β̂(E) and S(E) more explicit, write

β̂(j) = ‖β̂(j)‖αη(S(j)) = γ̂jη(S(j)) for j ∈ E , (A.11)

which follows from (2.2). For B ⊂ Np, let R
B be |B|-dimensional Euclidean

space with coordinates index by B so that a vector v ∈ R
B has components vj ,

j ∈ B. Similarly, Rm×B denotes the space of matrices with columns indexed by
B. Put

Zj = X(j)η(S(j)) ∈ R
n, Z = (Zj)j∈E ∈ R

n×E . (A.12)

Then (A.10) can be rewritten∑
j∈E

γ̂jX(j)η(S(j)) = Zγ̂E = ŷ.

Now we have the following characterization of the block lasso solutions:
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Lemma A.4. If β̂ is a block lasso solution (1.2) for α ∈ (1,∞), then

Zγ̂E = ŷ and β̂(−E) = 0. (A.13)

Moreover, E, ŷ and Z are unique for any y, X and λ > 0.

The uniqueness of (ŷ, E , Z) is an immediate consequence of Lemma 2.1. So
non-uniqueness can only come from γ̂E when the linear system Zx = ŷ has
multiple solutions for x, which happens only if null(Z) �= {0}. Therefore, every
block lasso solution β̂ satisfies:

β̂(−E) = 0 and γ̂E = Z+ŷ + γ, (A.14)

provided that

γ ∈ null(Z) ⊂ R
E and (Z+ŷ + γ)j ≥ 0 for j ∈ E . (A.15)

A.3. Proof of sufficiency

If null(Z) = {0}, then β̂ is uniquely given by (A.14) with γ = 0. In this case
γ̂j = (Z+ŷ)j is necessarily nonnegative as there always exists a solution to
the block lasso problem. Furthermore, |E| ≤ n and thus this solution has at
most (n ∧ J) nonzero blocks. This leads to our first sufficient condition for the

uniqueness of β̂.

Proposition A.5. Suppose λ > 0 and null(Z) = {0}. Then the block lasso

solution β̂ for α ∈ (1,∞) is uniquely given by

β̂(−E) = 0, γ̂E = (ZTZ)−1ZTŷ, and β̂(j) = γ̂jη(S(j)) for j ∈ E . (A.16)

Furthermore, |G(β̂)| ≤ n ∧ J .

In the following, we prove Theorem 2.2 for α ∈ (1,∞). Note that the case
α = 1 is equivalent to the case α = 2 with pj = 1 for all j. Thus, this part
covers the range of α ∈ [1,∞) as in Theorem 2.2. The result for α = ∞ will be
established in next subsection.

Proof of Theorem 2.2. Suppose that null(Z) �= {0}. Then for some i ∈ E , there
is a set A ⊂ E \ {i} and |A| ≤ n such that

Zi/wi =
∑
j∈A

cj(Zj/wj),

where we may assume that Zj , j ∈ A, are linearly independent and cj �= 0

without loss of generality. Let r = y −Xβ̂ denote the block lasso residual. By
(A.5), for every j ∈ E ,

〈Zj , r〉 = 〈X(j)η(S(j)), r〉 = nλwj〈η(S(j)), S(j)〉 = nλwj ,
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where the last equality follows from Lemma A.1 since S(j) ∈ Sα∗ . Therefore, for
λ > 0 we have

1 =
∑
j∈A

cj .

Note that Zj = X(j)η(S(j)), S ∈ row(XW−1) and ‖S(j)‖α∗ = 1 for j ∈ E .
The above equality is thus contradictory to the assumption that the columns of
XW−1 are in blockwise general position (Assumption 2).

A.4. The case of α = ∞

Recall the KKT conditions in (A.5). Let α∗ = 1 in (A.6) to define E . By defini-

tion β̂(j) = 0 for j /∈ E . For j ∈ E define Kj and Kc
j as in (5.2). Note that both

E and Kj are unique due to the uniqueness of S and ŷ = Xβ̂ for any y, X and

λ > 0 (Lemma 2.1). It follows from (5.1) and (5.2) that β̂Kj = γ̂j sgn(SKj ) for
each j ∈ E . Then the fitted value ŷ can be expressed as

ŷ = X(E)β̂(E) =
∑
j∈E

{
γ̂jXKj sgn(SKj ) +XKc

j
β̂Kc

j

}
= Zζ̂,

where we define

Z =
[
XKj sgn(SKj ) | XKc

j

]
j∈E

and ζ̂ = (γ̂j , β̂Kc
j
)j∈E . (A.17)

If null(Z) = {0}, then ζ̂ and hence β̂ will be unique and Z has at most n columns.
Now we generalize Proposition A.5 to the block-(1,∞) norm regularization.

Proposition A.6. Suppose λ > 0 and null(Z) = {0}. Then the solution β̂ to
the block lasso problem (1.2) with α = ∞ is uniquely given by

β̂(−E) = 0, ζ̂ = (ZTZ)−1ZTŷ, and β̂Kj = γ̂j sgn(SKj ) for j ∈ E .

Furthermore, |G(β̂)| ≤ |E| ≤ n ∧ J and |E|+
∑

j∈E |Kc
j | ≤ n ∧ p.

A.5. Solution uniqueness of Equation (5.13)

Without loss of generality, let λ = 1. Due to the convexity of L(β̂(σ), σ) in σ,
the solution set of (5.13) can always be written as an interval [σ1, σ2], which
reduces to a single point when σ1 = σ2. Denote by [σ1(y), σ2(y)] the solution
set for y.

Suppose the solution to (5.13) is not unique for some y∗ ∈ Rn, so that
σ2(y

∗) > σ1(y
∗) > 0. Let us assume that the mapping y �→ (σ1(y), σ2(y)) ∈ R

2

is continuous at y∗. Then, choosing a sufficiently small ball B(δ) centered at y∗

with radius δ > 0, we can find a

σ∗ ∈
⋂

y∈B(δ)

[σ1(y), σ2(y)]
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such that G(β̂(σ∗)) = A ⊂ NJ for all y ∈ B(δ). Recall that β̂(σ∗) = β̂(y, σ∗) is
the block lasso (1.2) with tuning parameter λ = σ∗. It follows from the KKT
conditions (2.3) and Assumption 1 that

y −Xβ̂(σ∗) = nσ∗(XT)+WS,

which with (5.13) implies that
√
n‖(XT)+WS‖ = 1 for all y ∈ B(δ). Clearly,

the set
Φ =

{
s ∈ MA :

√
n‖(XT)+Ws‖ = 1

}
has measure zero in MA (3.1). Thus, by Theorem 3.3, P(S ∈ Φ,A = A) = 0.
Regarding y = Xβ0 + ε as a random vector, we have

P(y ∈ B(δ)) ≤ P(S ∈ Φ,A = A) = 0.

This apparently will lead to a contradiction, as long as the density of y is positive
over B(δ). This argument leads to the following result:

Proposition A.7. Suppose that λ > 0, ε has a positive density on R
n, and

Assumptions 1 and 2 hold. If the mapping y �→ (σ1(y), σ2(y)) is continuous at
y∗, then the solution to (5.13) is unique for y = y∗.

The continuity of σ1(y) and σ2(y) needs further verification, which may be
technical and is left as future work. If (σ1(y), σ2(y)) is continuous on Rn, then
(5.13) has a unique solution for all y.

Appendix B: Remaining proofs

B.1. Proof of Lemma 3.2

Consider the equality constraints on s that are involved in the definition of MA

(3.1). Let Q = Q(X) ∈ R
p×(p−n) be a matrix whose columns form a basis for

V⊥ = null(XW−1). By Assumption 1, rank(Q) = p−n. The equality constraints
on s are

QTs = 0, (B.1)

‖s(j)‖α∗ = 1 ∀j ∈ A, (B.2)

where (B.1) is equivalent to s ∈ V . These (p − n + |A|) independent equality
constraints define the interior of MA as a differentiable manifold of dimension
(n− |A|). Consequently, every interior point s ∈ MA has a neighborhood that
can be parameterized by sF for some F = F (s,A) ⊂ Np with |F | = n − |A|.
Then there exists a matrix T = T (s,A) ∈ R

p×(n−|A|) of rank n− |A| such that
ds = T (s,A)dsF in this neighborhood.

Fixing A = A in (3.4) leads to the differentiation of HA:

dHA =
∑
j∈A

[
(drj)Ψ(j)η(s(j)) + rjΨ(j)dη(s(j))

]
+ λWds.
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Since dη(s(j)) = D(jj)ds(j) for j ∈ A, we arrive at

dHA = (Ψ ◦ η)AdrA + {(r ◦Ψ)D + λW}ds. (B.3)

Plugging ds = TdsF into the above and letting θ = (rA, sF ) ∈ R
n complete the

proof.
From (B.1) and (B.2), we have the following constraints on ds:

QTds = 0, (B.4)

〈η(s(j)), ds(j)〉 = 0 ∀j ∈ A. (B.5)

These linear equations can be used to find the matrix T (s,A) explicilty.

B.2. Proof of Theorem 3.3

Put v = H̃A(rA, s) for A ∈ A and (rA, s) ∈ ΩA. The differential of H̃A leads to

dv =
√
n(XT)+M(rA, s, A;λ)dθ, (B.6)

where M and θ = (rA, sF ) are as in (3.8). Let Φ ⊂ MA be a neighborhood of s
with parameter domain Δ, i.e. Φ = {Φ(sF ) : sF ∈ Δ ⊂ R

k}, where k = n− |A|.
Suppose that Γ ⊂ (R+)|A| is open and contains rA. Denote by V ⊂ R

n the
image of Γ × Φ under H̃A. To establish the n-form in (3.12), it is sufficient to
show (3.14) for u = sF . The bijective nature of H̃ (3.10) under Assumption 2
implies that

P(γ̂A ∈ Γ, S ∈ Φ,A = A) = P(ε/
√
n ∈ V ) =

∫
V

gn(v)dv.

Applying a change of variable in differential forms, we arrive at∫
V

gn(v)dv =

∫
Γ×Δ

gn

(
H̃A(rA,Φ(sF ))

) ∣∣∣∣∂v∂θ
∣∣∣∣ dθ

=

∫
Γ×Δ

fA(rA,Φ(sF ))dθ,

where the Jacobian is determined by (B.6) and fA is defined in (3.13). This
completes the proof.

B.3. Proof of Corollary 3.4

If ε ∼ Nn(0, σ
2In), then gn(v) = φn(v;σ

2/n). It follows from (3.4) and (3.10)
that

H̃A(rA, s) =
√
n(XT)+(Ψb+ λWs−Ψβ0).

Since Ψ+ = nX+(XXT)−1X by Assumption 1, we have

ΨΨ+ = XT(XXT)−1X = PXT ,
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which is the projection onto row(X). Thus Ws = ΨΨ+Ws, since Ws ∈ row(X).
Putting this together with the identity (XT)+Ψ = X/n, we have

H̃A(rA, s) =
1√
n
X(b+ λΨ+Ws− β0),

and thus

gn(H̃A(rA, s)) =

(
2πσ2

n

)−n/2

exp

[
− 1

2σ2
‖X(b+ λΨ+Ws− β0)‖2

]
. (B.7)

Then (3.15) follows immediately.

B.4. Proof of Corollary 3.5

It is easy to see that Assumptions 1 and 2 hold trivially if rank(X) = p < n.
Thus, by Lemma 3.1 the mapping H is bijective. In this case, row(X) = R

p and
V⊥ = {0}, which imply that the constraint (B.4) no longer exists. Therefore,
|F | = p − |A|, T (s,A) is p × (p − |A|), and M(rA, s, A;λ) is p × p. Now, the
desired result is established by the same arguments as in Appendix B.2 with
U = XTε/n in place of (ε/

√
n) and HA in place of H̃A.

B.5. Proof of Lemma 4.1

First, the matrix Q that defines the constraint (B.1) does not depend on s.

Second, the sphere S
pj−1
α∗ , j ∈ A, can be parameterized by s(j)\k for almost

every point on the sphere, where k ∈ Gj is chosen as the last component in the

group. More specifically, we may parameterize the positive half of S
pj−1
α∗ as

S
pj−1
α∗ ∩ {sk > 0} =

{(
s(j)\k,

[
1− ‖s(j)\k‖α

∗

α∗

]1/α∗)
: s(j)\k ∈ B

pj−1
α∗

}
,

and the negative half in a similar way, both using the variables indexed by Gj \k.
Therefore, we can always choose F (s,A) = F (A) to parameterize almost every
point in MA.

B.6. Proof of Theorem 5.1

Put R = QT with the matrix Q as in (B.1) and let I = K ∪ GAc ⊂ Np. Any
s ∈ MA,K must satisfy the following equality constraints:

sKc = 0, RIsI = 0, and ‖sKj‖1 = 1 ∀j ∈ A,

which in turn impose constraints on dsI :

RIdsI = 0 and 〈sgn(sKj ), dsKj 〉 = 0 ∀j ∈ A.
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Under Assumption 1, there are p− n+ |A| independent equality constraints on
sI in the above. Thus, dsI has q = n− |A| − |Kc| free coordinates and there is
a matrix T = T (sI , A,K) so that

dsI = T (sI , A,K)dsF , (B.8)

where T ∈ R
(p−|Kc|)×q is a rank q matrix and F = F (sI , A,K) ⊂ Np with

|F | = q.
Starting from (2.4), we have

H(β̂, S;β0, λ) = Ψβ̂ + λWS −Ψβ0

=
∑
j∈A

[
γ̂jΨKj sgn(SKj ) + ΨKc

j
β̂Kc

j

]
+ λWISI −Ψβ0,

where the index set I = K∪GAc . Recalling the definition of the matrix Ψ◦sgn(s),
we arrive at

H(β̂, S) = [Ψ ◦ sgn(S)]Aγ̂A +ΨKc β̂Kc + λWISI −Ψβ0,

where we have used the fact that sgn(SKc
j
) = 0 for j ∈ A. Denote the value

of β̂ by b ∈ R
p. Fixing A = A and K = K, the differentiation of HA,K at

(rA, bKc , s) ∈ ΩA,K is

dHA,K = [Ψ ◦ sgn(s)]AdrA +ΨKcdbKc + λWIdsI

= [Ψ ◦ sgn(s)]AdrA +ΨKcdbKc + λWITdsF = M(s,A,K;λ)dθ,

by plugging in (B.8) for dsI and putting θ = (rA, bKc , sF ) ∈ Rn. Then the
Jacobian of the mapping H̃A,K =

√
n(XT)+HA,K is given by (5.4). Similar to

Lemma 3.1, H and hence H̃ are bijections. Now following the proof of Theo-
rem 3.3 leads to the desired joint density.

Appendix C: Technical details in the examples

C.1. Results and derivations in Example 1

We present the complete results for Example 1 in this appendix. The densities
are given by the following differential forms:

f∅ds1ds2 =
λ2

πσ2
exp

[
−λ2(s21 + s22)

σ2

]
ds1ds2, (C.1)

f{1}dr1ds1 =
1

πσ2
exp

[
− (r1 + λ)2

σ2

]
r1 + λ

|s2|
dr1ds1, (C.2)

f{2}dr2ds1 =
2λ

πσ2
exp

[
−2r2(r2 + λ)

σ2

]
exp

[
−λ2(s21 + s22)

σ2

]
dr2ds1, (C.3)

f{1,2}dr1dr2 =
1

πσ2
exp

[
− (r1 + r2 + λ)2 + r22

σ2

]
dr1dr2, (C.4)
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where rj > 0 for j ∈ A and s(1) = (s1, s2) ∈ DA for A = ∅, {1}, {2}, {1, 2}.
Special care must be taken when integrating over the parameter domains of
these densities. For example,

(r1, r2, s(1)) ∈ (R+)2 × {a, b, c, d} := Θ for A = {1, 2},

and therefore

P(A = {1, 2}) =
∫
Θ

dμ{1,2} = 4

∫ ∞

0

∫ ∞

0

f{1,2}(r1, r2)dr1dr2.

Next, we derive these results and find P(A = A). A few pre-calculations are
in order:

√
n(XT)+ =

1

3

[
2 −1 1
−1 2 1

]
, Ψ =

⎡⎣ 1 0 1
0 1 1
1 1 2

⎤⎦ ,
which lead to

r ◦Ψ =

⎡⎣ r1 0 r2
0 r1 r2
r1 r1 2r2

⎤⎦ , Ψ ◦ s =

⎡⎣ s1 s3
s2 s3
s3 2s3

⎤⎦ .
The density function gn(v) = φ2(v;σ

2/2) and, with (3.17),

H̃A(rA, s) =
√
n(XT)+

⎡⎣∑
j∈A

rj(Ψ ◦ s)j + λs

⎤⎦ = (r1 + λ)s(1) + r2s31,

where 1 = (1, 1) is a (column) vector of ones and rj = 0 if j /∈ A. Constraint
(3.17) implies that

ds3 = ds1 + ds2. (C.5)

We will first go through the calculations for A = {1} and then move to the other
three cases. In what follows, let τ =

√
2λ/σ and Z = (Z1, Z2) ∼ N2(0, I2).

Case 1: A = {1}, r1 > 0 and r2 = 0. Combining constraints (C.5) and
‖s(1)‖2 = 1 leads to

ds =

⎡⎣ 1
−s1/s2

1− (s1/s2)

⎤⎦ ds1 ⇒ T (s, {1}) =

⎡⎣ 1
−s1/s2

1− (s1/s2)

⎤⎦ .
Plugging in r2 = 0 and s3 = s1 + s2, it is then easy to verify that

M(r1, s, {1}) = [s | (r1 + λ)T ],

J{1}(r1, s) = −(r1 + λ)/s2,

H̃{1}(r1, s) = (r1 + λ)s(1).



Estimator augmentation 3075

Consequently, we obtain the density as in (C.2). The two arcs in D{1} (its
interior) are parameterized as

∂(b, c) =
{(

s1, (1− s21)
1/2
)
: −1 < s1 < 0

}
,

∂(d, a) =
{(

s1,−(1− s21)
1/2
)
: 0 < s1 < 1

}
.

It then follows that

P(A = {1}) =
∫ 0

−1

∫ ∞

0

f{1}

(
r1, s1, (1− s21)

1/2
)
dr1ds1

+

∫ 1

0

∫ ∞

0

f{1}

(
r1, s1,−(1− s21)

1/2
)
dr1ds1

=
1

πσ2

{∫ ∞

0

exp

[
− (r1 + λ)2

σ2

]
(r1 + λ)dr1

}{
2

∫ 1

0

1√
1− s21

ds1

}

=
1

2
e−λ2/σ2

=
1

2
P(‖Z‖ ≥ τ). (C.6)

Case 2: A = ∅, r1 = r2 = 0 and s(1) ∈ D∅. By (C.5), we have

T (s,∅) =

⎡⎣ 1 0
0 1
1 1

⎤⎦ ,
which in combination with r1 = r2 = 0 leads to the following intermediate
results:

M(s,∅) = λT (s,∅), J∅(s) = λ2, H̃∅(s) = λs(1).

Then the density f∅ is obtained immediately as in (C.1) and

P(A = ∅) =

∫
D∅

f∅(s(1))ds1ds2 = P(Z ∈ τD∅). (C.7)

Case 3: A = {2}, r1 = 0 and r2 > 0. The interior of D{2} is parameterized as

∂(a, b) = {(s1, 1− s1) : 0 < s1 < 1} ,
∂(c, d) = {(s1,−(1 + s1)) : −1 < s1 < 0} .

Since s3 = s1 + s2 ∈ {1,−1} in this case, we have ds3 = ds2 + ds1 = 0 and thus

T (s, {2}) =

⎡⎣ 1
−1
0

⎤⎦ and M(s, {2}) =

⎡⎣ s3 λ
s3 −λ
2s3 0

⎤⎦ ,
using the fact that r1 = 0. Now straightforward calculations give

J{2}(s) = −2λs3, H̃{2}(r2, s) = λs(1) + r2s31.
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Substituting s3 by s1 + s2 with the fact that |s3| = 1 leads to the density in
(C.3). Consequently,

P(A = {2}) =
2λ

πσ2

{∫ ∞

0

exp

[
−2r2(r2 + λ)

σ2

]
dr2

}{
2

∫ 1

0

exp

[
−λ2(s21 + (1− s1)

2)

σ2

]
ds1

}
,

utilizing the symmetry of (s21 + s22) between ∂(a, b) and ∂(c, d). The second
integral∫ 1

0

exp

[
−λ2(s21 + (1− s1)

2)

σ2

]
ds1 =

√
2πσ2

2λ
exp

(
− λ2

2σ2

)
P(|Z2| ≤ λ/σ).

After completing the first integral, we have

P(A = {2}) = 2 · P(Z1 ≥ λ/σ and |Z2| ≤ λ/σ)

= 2 · P(Z1 + Z2 ≥ τ and |Z1 − Z2| ≤ τ). (C.8)

Case 4: A = {1, 2}, r1, r2 > 0 and D{1,2} = {a, b, c, d}. Since |A| = n = 2,

M(r, s, {1, 2}) = Ψ ◦ s and J{1,2}(r, s) = s21 − s22.

It is easy to see that |J{1,2}| = 1 for all s(1) ∈ {a, b, c, d} and

H̃{1,2}(r, s) = (r1 + λ)s(1) + r2s31.

Then we obtain the density f{1,2} in (C.4) immediately, which leads to

P(A = {1, 2}) = 4

∫ ∞

0

∫ ∞

0

1

πσ2
exp

[
− (r1 + r2 + λ)2 + r22

σ2

]
dr1dr2

= 4 · P(Z1 ≥ 0 and Z2 − Z1 ≥ τ). (C.9)

Finally, by (C.6), (C.7), (C.8), and (C.9) one can easily verify that∑
A

P(A = A) = P(Z ∈ R
2) = 1.

C.2. Derivations in Example 2

This section is divided into three parts:

Part 1: Derivation of (3.22). For v ∈ R
p and j ∈ NJ , define u = v〈j〉 ∈ R

p so
that uk = vk for k ∈ Gj and uk = 0 otherwise. Let b ∈ R

p denote the value for

β̂, i.e. b(j) = rjs(j) for j ∈ NJ . Straightforward algebra leads to:

HA(rA, s) = b+ λ
√
ms− β0,

Ψ ◦ s =
[
s〈1〉| . . . |s〈J〉

]
∈ R

p×J ,

r ◦Ψ+ λW = diag
{
(rj + λ

√
m)Im : j ∈ NJ

}
∈ R

p×p.
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Since row(X) = R
p, the constraint (B.4) disappears. For j ∈ A, choose k(j) ∈ Gj

such that sk(j) �= 0 and put F (j) = Gj \ k(j). Then constraint (B.5) can be
written as

dsk(j) = − 1

sk(j)
〈sF (j), dsF (j)〉 for j ∈ A.

Without loss of generality, assume that k(j) = m · j is chosen to be the last
component in the group. The matrix T = T (s,A) has a block-diagonal structure
and its jth block

T (j) =

[
Im−1

−sTF (j)/sk(j)

]
for j ∈ A and T (j) = Im for j /∈ A.

It follows immediately that

(r ◦Ψ+ λW )T (s,A) = diag
{
(rj + λ

√
m)T (j) : j ∈ NJ

}
.

Permuting the columns of M (3.8) to put s〈j〉, j ∈ A, to the right of the jth

block of the above matrix, M is also seen to be block-diagonal with each block
M(jj) of size m×m. For j ∈ A, the jth block

M(jj) =
[
(rj + λ

√
m)T (j) | s(j)

]
,

and for j /∈ A, since rj = 0,

M(jj) = (λ
√
m)Im.

Simple calculation with ‖s(j)‖2 = 1 for j ∈ A shows that

| detM(jj)| =
{

(rj + λ
√
m)m−1/|sk(j)| j ∈ A,

(λ
√
m)m j /∈ A.

(C.10)

Under the hypotheses,
√
n(XT)+ = X/

√
n is an orthogonal matrix whose de-

terminant is ±1. Consequently, the Jacobian (3.11) is

|JA| =
J∏

j=1

| detM(jj)|. (C.11)

Plugging (C.11) into (3.15) with Ψ = Ip, we obtain the differential form in
(3.22).

Part 2: Derivation of the marginal density of γ̂j (3.24) for j ∈ A, assuming
β0(j) = 0. Let dμj = fj(rj , s(j))dθ(j), which specifies the joint distribution of γ̂j
and S(j). We start from the integral

fj(rj)drj =

∫
Sm−1

dμj

= C(m)(2πσ2/n)−
m
2 (rj + λ

√
m)m−1 exp

[
− n

2σ2
(rj + λ

√
m)2
]
drj ,
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where C(m) > 0 is a constant:

C(m) =

∫
Sm−1

1

|sk(j)|
dsF (j) = 2

∫
Bm−1

(
1− ‖v‖2

)−1/2
dv.

With a change of variable, v = x/
√
1 + ‖x‖2,

C(m) = 2

∫
Rm−1

(
1 + ‖x‖2

)−m/2
dx =

2 · πm/2

Γ(m/2)
,

by the normalizing constant of the multivariate t-distribution with one degree
of freedom.

Part 3: Proof of (3.25). The distribution of β̃(j) implies (n/σ2)‖β̃(j)‖2
d
=χ2

m

follows a χ2-distribution with m degrees of freedom. Letting z = (rj + λ
√
m)2,

we have∫ ∞

t

fj(rj)drj =

∫ ∞

(t+λ
√
m)2

(
n/σ2

)m
2

2m/2 · Γ(m/2)
zm/2−1 exp

(
− n

2σ2
z
)
dz

= P
{
(σ2/n)χ2

m > (t+ λ
√
m)2
}

= P

{
‖β̃(j)‖2 > (t+ λ

√
m)2
}
,

which completes the proof.

C.3. Derivations in Example 3

We note that the constraint (B.5) reduces to dsj = 0 for j ∈ A, which implies
that TA• = 0 as in property (ii). Recall that B = Np\A. The constraint imposed
on dsB comes from (B.4) and is thus independent of s, hence property (i). As a
consequence, the set of free coordinates of s is always a subset of B, i.e. F ⊂ B,
and |F | = n − |A|. Since rB = 0 by definition, (r ◦ Ψ)j = 0 for all j ∈ B. It
follows that (r ◦Ψ)T = 0 and thus, as defined in (3.9),

M(rA, s, A) = [(Ψ ◦ s)A | λWT ] = [(Ψ ◦ s)A | λWBTB•] .

Since |sj | = 1 for j ∈ A and pj = 1,

|JA(rA, s)| =
∣∣det{√n(XT)+[(Ψ ◦ s)A | λWBTB•]

}∣∣
=
∣∣det{√n(XT)+[ΨA | λWBTB•]

}∣∣ .
Substituting this into (3.12) gives the density in (3.26).

To compare (3.26) with Theorem 2 in [29], we apply the following change of

variable: Let bj = sjrj denote the value for β̂j for j ∈ A. Plugging into (3.26)
that rj = |bj |, sj = sgn(bj) and drj = sjdbj for j ∈ A, we obtain the density for

(β̂A, SB,A) parameterized by (bA, sF ):

gn(H̃A(|bA|, s))
∣∣det{√n(XT)+[ΨA | λWBTB•]

}∣∣ dbAdsF , (C.12)

where we have again used |sj | = 1 for j ∈ A in the change of the volume
elements.
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[5] Dezeure, R., Bühlmann, P., and Zhang, C. (2016). High-dimensional
simultaneous inference with the bootstrap. Preprint, arXiv:1606.03940.

[6] Javanmard, A. and Montanari, A. (2014). Confidence intervals and
hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15,
2869–2909. MR3277152

[7] Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016). Exact
post-selection inference, with application to the lasso. Ann. Statist. 44, 3,
907–927. MR3485948

[8] Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R.

(2014). A significance test for the lasso. Ann. Statist. 42, 2, 413–468.
MR3210970

[9] Meinshausen, N. (2015). Group bound: confidence intervals for groups of
variables in sparse high dimensional regression without assumptions on the
design. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77, 5, 923–945. MR3414134
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