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Abstract

Given a sequence of resistance forms that converges with respect to the Gromov-
Hausdorff-vague topology and satisfies a uniform volume doubling condition, we show
the convergence of corresponding Brownian motions and local times. As a corollary of
this, we obtain the convergence of time-changed processes. Examples of our main
results include scaling limits of Liouville Brownian motion, the Bouchaud trap model
and the random conductance model on trees and self-similar fractals. For the latter
two models, we show that under some assumptions the limiting process is a FIN
diffusion on the relevant space.
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1 Introduction

In recent years, interest in time-changes of stochastic processes according to ir-
regular measures has arisen from various sources. Fundamental examples of such
time-changed processes include the so-called Fontes-Isopi-Newman (FIN) diffusion [21],
the introduction of which was motivated by the study of the localisation and aging
properties of physical spin systems, and the two-dimensional Liouville Brownian motion
[11, 23], which is the diffusion naturally associated with planar Liouville quantum gravity.
More precisely, the FIN diffusion is the time-change of one-dimensional Brownian motion
by the positive continuous additive functional with Revuz measure given by

v(dx) = Zviémi(d:p), (1.1)
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where (v;, 7;)iew is the Poisson point process with intensity av~!~*dvdz, and J,, is the
probability measure placing all its mass at z;. Similarly, the two-dimensional Liouville
Brownian motion is the time-change of two-dimensional Brownian motion by the positive
continuous additive functional with Revuz measure given by

v(dx) = e“V(I)f%QE(V(I)Q)da: (1.2)

for some xk € (0,2), where ~ is the massive Gaussian free field; actually the latter
description is only formal since the Gaussian free field can not be defined as a function
in two dimensions. In both cases, connections have been made with discrete models;
the FIN diffusion is known to be the scaling limit of the one-dimensional Bouchaud
trap model [10, 21] and the constant speed random walk amongst heavy-tailed random
conductances in one-dimension [13], and the two-dimensional Liouville Brownian motion
is conjectured to be the scaling limit of simple random walks on random planar maps
[23], see also [20]. The goal here is to provide a general framework for studying such
processes and their discrete approximations in the case when the underlying stochastic
process is strongly recurrent, in the sense that it can be described by a resistance form,
as introduced by Kigami (see [31] for background). In particular, this includes the case
of Brownian motion on tree-like spaces and low-dimensional self-similar fractals.

To present our main results, let us start by introducing the types of object under
consideration (for further details, see Section 2). Let I be the collection of quadruples of
the form (F, R, i1, p), where: F is a non-empty set; R is a resistance metric on F' such that
closed bounded sets in (F, R) are compact (note this implies (F, R) is complete, separable
and locally compact); p is a locally finite Borel regular measure of full support on (F, R)
(for clarity, note that whenever we refer to the support of a measure, we mean its closed
support); and p is a marked point in F'. Note that the resistance metric is associated
with a resistance form (€, F) (see Definition 2.1 below), and we will further assume that
for elements of IF this form is regular in the sense of Definition 2.2. In particular, this
ensures the existence of a related regular Dirichlet form (£, D) on L?(F, 1), which we
suppose is recurrent, and also a Hunt process ((X;):>0, Py, « € F') that can be checked
to admit jointly measurable local times (L(x))zecr>0. The process X represents our
underlying stochastic process (i.e. it plays the role that Brownian motion does in the
construction of the FIN diffusion and Liouville Brownian motion), and the existence of
local times means that when it comes to defining the time-change additive functional, it
will be possible to do this explicitly.

Towards establishing a scaling limit for discrete processes, we will assume that we
have a sequence (F,,, Ry, fin, pn)n>1 in F that converges with respect to the Gromov-
Hausdorff-vague topology (see Section 2.2) to an element (F, R, i, p) € F. Our initial
aim is to show that it is then the case that the associated Hunt processes X" and their
local times L™ converge to X and L, respectively. To do this we assume some regularity
for the measures in the sequence - this requirement is formalised in Assumption 1.2,
which depends on the following volume growth property. In the statement of the
latter, we denote by B,,(z,r) the open ball in (F,,, R,,) centred at x and of radius r, and
also ro(n) := inf; yer,, o2y Bn(z,y) and r(n) == sup, yep, Ru(z,y). (NB. We allow the
possibility that r¢(n) = 0 and/or r,(n) = c0.) We note that this control on the volume
yields an equicontinuity property for the local times.

Definition 1.1. A sequence (F,, Ry, fin, Pn)n>1 in F is said to satisfy uniform volume
growth with volume doubling (UVD) if there exist constants ci, ¢z, c3 € (0,00) such that

c1v(r) < pn (Bp(z,7)) < cu(r), Vo € Fp, r € [ro(n), reo(n) + 1]

for every n > 1, where v : (0,00) — (0, 00) is non-decreasing function with v(2r) < cgv(r)
foreveryr € R;.
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Assumption 1.2. The sequence (F,,, Ry, tn, pn)n>1 in I satisfies UVD, and also

(anRnu,u/nupn) - (F7 R7 122 p)u (13)

in the Gromov-Hausdorff-vague topology, where (F, R, i1, p) € TF.

It is now possible to state our first main result. We write D(R, M) for the space of
cadlag processes on M, equipped with the usual Skorohod J; topology. The definition of
equicontinuity of the local times L™, n > 1, should be interpreted as the conclusion of
Lemma 2.9.

Theorem 1.3. Suppose Assumption 1.2 holds. It is then possible to isometrically embed
(F,,Ry,), n>1, and (F, R) into a common metric space (M, dys) in such a way that if X"
is started from p,,, X is started from p, then

(th)tZO - (Xt)tzo

in distribution in D(R., M). Moreover, the local times of L™ are equicontinuous, and if
the finite collections (x?)_, in F,,, n > 1, are such that dy;(z?,z;) — 0 for some (x;)%_,

in F, then it simultaneously holds that

(Ly (x?))i:L...,k,tzo — (L¢ ('ri))izl,..‘,k,tzo ) (1.4)
in distribution in C(R., R¥).

From the above result, we further deduce the convergence of time-changed processes.
The following assumption adds the time-change measure to the framework.

Assumption 1.4. Assumption 1.2 holds with (1.3) replaced by
(FI'L7 R7l7 ,ILTL) VTL? pn) % (F’ R7 ‘U/, V? p) k)

in the (extended) Gromov-Hausdorff-vague topology (see Section 2.2), where v,, is a
locally finite Borel regular measure on F),, and v is a locally finite Borel regular measure
on (F, R) with v(F) > 0.

The time-change additive functional that we consider is the following:

Ay ::/FLt(x)u(dz). (1.5)

In particular, let 7(¢) := inf{s > 0: A, > t} be the right-continuous inverse of A, and
define a process X" by setting
Xy =X (1.6)

As described in Section 2.1, this is the trace of X on the support of v (with respect
to the measure v), and its Dirichlet form is given by the corresponding Dirichlet form
trace. We define A", 7", and X"~ similarly. The space L}OC(RJF, M) is the space of
cadlag functions R, — M such that fUT da(p, f(t))dt < oo for all T > 0, equipped with
the topology induced by supposing f,, — f if and only if fOT dy (fn(t), f(t))dt — 0 for any
T >0.

Corollary 1.5. (a) Suppose Assumption 1.4 holds, and that v has full support. Then it is
possible to isometrically embed (F,, R,), n > 1, and (F, R) into a common metric space
(M,dpr) in such a way that

X — XV (1.7)
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in distribution in D(Ry, M), where we assume that X" is started from p,, and X is
started from p.

(b) Suppose Assumption 1.4 holds, and that X is continuous. Then (1.7) holds in
distribution in Lj, (R, M).

The above results are proved in Section 3, following the introduction of preliminary
material in Section 2. In the remainder of the article, we demonstrate the application of
Theorem 1.3 and Corollary 1.5 to a number of natural examples. Firstly, we investigate
the Liouville Brownian motion associated with a resistance form, showing in Proposi-
tion 4.3 that Assumption 1.2 implies the convergence of the corresponding Liouville
Brownian motions. This allows us to deduce the convergence of Liouville Brownian
motions on a variety of trees and fractals, which we discuss in Example 4.5. We note
that Liouville Brownian motion associated with a resistance form is a toy model and
we discuss it merely as a simple example of our methods. The more interesting and
challenging problem of analysing this process in two dimensions is not possible within
our framework. Next, in Section 5, we proceed similarly for the Bouchaud trap model,
describing the limiting process as the FIN process associated with a resistance form in
Proposition 5.4, and giving an application in Example 5.5. Related to this, in Section 6,
we study the heavy-tailed random conductance model on trees and a class of self-similar
fractals, discussing a FIN limit for the so-called constant speed random walk in Propo-
sitions 6.4, 6.17 and Examples 6.5, 6.18. Heat kernel estimates for the limiting FIN
processes will be presented in a forthcoming paper [18].

Of the applications outlined in the previous paragraph, one that is particularly
illustrative of the contribution of this article is the random conductance model on the
(pre-)Sierpinski gasket graphs. More precisely, the random conductance model on a
locally finite, connected graph G = (V, E) is obtained by first randomly selecting edge-
indexed conductances (we)ec g, and then, conditional on these, defining a continuous time
Markov chain that jumps along edges with probabilities proportional to the conductances.
For the latter process, there are two time scales commonly considered in the literature:
firstly, for the variable speed random walk (VSRW), the jump rate along edge ¢ is given
by we, so that the holding time at a vertex « has mean (3., .. w.) '; secondly, for the
constant speed random walk (CSRW), holding times are assumed to have unit mean.
From this description, it is clear that the CSRW is a time-change of the VSRW according
to the measure placing mass ) _ . ., w. on vertex x. Here, we will only ever consider
conductances that are uniformly bounded below, but this still gives a rich enough model
for there to exist a difference in the trapping behaviour experienced by the VSRW
and CSRW. Indeed, in the one-dimensional case (i.e. when G is Z equipped with edges
between nearest neighbours) when conductances are i.i.d., it is easily checked that
the VSRW has as its scaling limit Brownian motion (by adapting the argument of [13,
Appendix A] to the VSRW, for example); although the VSRW will cross edges of large
conductance many times before escaping, it does so quickly, so that homogenisation
still occurs. In the case of random conductances also uniformly bounded from above,
the analogous result was proved in [35] for the VSRW on the fractal graphs shown in
Figure 1, with limit being Brownian motion on the Sierpinski gasket. In Section 6.2,
we extend this result significantly to show the same is true whenever the conductance
distribution has at most polynomial decay at infinity. Specifically, writing X" for the
VSRW on the nth level graph and X for Brownian motion on the Sierpinski gasket, we
prove that, under the annealed law (averaging over both process and environment),

(X527 )10 = (Xt)yso (1.8)

the time scaling here is the same as for the VSRW on the unweighted graph. For the
CSRW, on the other hand, the many crossings of edges of large conductance lead to
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Figure 1: The Sierpinski gasket graphs G, G, Gs.

more significant trapping, which remains in the limit. In particular, if the conductance
distribution satisfies P(w, > u) ~ «~“ for some « € (0,1), then, as noted above, in the
one-dimensional case the CSRW has a FIN diffusion limit [13]. Applying our time-change
results, we are able to show that the corresponding result holds for the Sierpinski gasket
graphs. Namely, writing X™“-¥ for the CSRW on the nth level graph, we establish that
there exists a constant ¢ such that, again under the annealed law,

(Xc?;n/’a(5/3)nt)t20 = (X{) >0 (1.9)

where the limit is now o-FIN diffusion on the Sierpinski gasket, which is time-change
of the Brownian motion on the limiting gasket by a Poisson random measure defined
similarly to (1.1), but with Lebesgue measure in the intensity replaced by the appropriate
Hausdorff measure. (Note that, in the case that Ew. < oo, our techniques also yield
convergence of CSRW to the Brownian motion, see Remark 6.19.) Full details for the
preceding discussion are provided in Section 6. At the start of the latter section, we
also give an expanded heuristic explanation for the appearance of the FIN diffusion as
a limit of the CSRW amongst heavy-tailed conductances. We remark that the specific
conclusion of this interpretation is dependent on the point recurrence of the processes
involved; by contrast, for the random conductance model on Z¢ for d > 2, the same
trapping behaviour gives rise in the limit to the so-called fractional kinetics process, for
which the time-change and spatial motion are uncorrelated [6, 13].

Finally, we note there are many other applications to which the notion of time-change
is relevant, so that the techniques of this article might be useful. Although we do not
consider it here, one such example is the diffusion on branching Brownian motion, as
recently constructed in [2]. For many random state spaces, though, the uniform volume
doubling condition is too restrictive. Towards addressing this issue, in a follow-up work
to this paper, a result similar to the first claim of Theorem 1.3 is proved under a weaker,
non-explosion condition [17]. The latter work, however, does not include a statement
on local time convergence. Moreover, whilst the examples of time-changes described
above are based on measures that are constant in time, our main results will also be
convenient for describing time-changes based on space-time measures, i.e. via additive
functionals of the form A; := |, FxR, 1¢s<r,(2)}¥(dzds). In particular, Theorem 1.3 would
be well-suited to extending the study of the scaling limits of randomly trapped random
walks, as introduced in [9], from the one-dimensional setting to trees and fractals.

2 Preliminaries

2.1 Resistance forms and associated processes

In this section, we define precisely the objects of study and outline some of their
relevant properties; primarily this involves a recap of results from [22] and [31]. We
start by recalling the definition of a resistance form and its associated resistance metric.
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Definition 2.1 ([31, Definition 3.1]). Let F' be a non-empty set. A pair (£, F) is called a
resistance form on F' if it satisfies the following five conditions.

RF1 F is a linear subspace of the collection of functions {f : F — R} containing
constants, and £ is a non-negative symmetric quadratic form on F such that
E(f, f) =0 if and only if f is constant on F.

RF2 Let ~ be the equivalence relation on F defined by saying f ~ g ifand only if f — g
is constant on F. Then (F/ ~, &) is a Hilbert space.

RF3 Ifz +# vy, then there exists a f € F such that f(z) # f(y).

RF4 For anyz,y € F,

f(z) - f)?

e o {1

: feF, 5(f,f)>0}<oo‘ (2.1)

RF5 If f:= (f A1)V O, then f € F and £(f, f) < E(f, f) for any f € F.

We note that (2.1) can be rewritten as

R(z,y) = (inf {E(f. f): fEF, flx)=1, fly) =0},

which is the effective resistance between x and y. The function R : FF x FF — R is
actually a metric on F' (see [31, Proposition 3.3]); we call this the resistance metric
associated with (£, F). Henceforth, we will assume that we have a non-empty set F’
equipped with a resistance form (&, F) such that (F, R) is complete, separable and
locally compact. (NB. The property RF4 ensures that functions in F are continuous
with respect to the resistance metric, and so are defined everywhere, rather than up
to almost-everywhere/quasi-everywhere equivalence, as is commonly the case in the
theory of Dirichlet forms.) Defining the open ball centred at x and of radius r with
respect to the resistance metric by Br(x,r) := {y € F: R(z,y) < r}, and denoting its
closure by Bg(z,r), we will also assume that Bg(x,) is compact for any = € F and r > 0.
Furthermore, we will restrict our attention to resistance forms that are regular, as per
the following definition.

Definition 2.2 ([31, Definition 6.2]). Let Cy(F') be the collection of compactly supported,
continuous (with respect to R) functions on F, and | - | be the supremum norm for
functions on F. A resistance form (€, F) on F is called regular if and only if F N Cy(F) is
dense in Cy(F') with respect to || - || .

We next introduce related Dirichlet forms and stochastic processes. First, suppose
 is a Borel regular measure on (F, R) such that 0 < u(Bgr(z,7)) < oo for all z € F and
r > 0. Moreover, write D to be the closure of 7 NCy(F') with respect to the inner product
&1 on F N L*(F, 1) given by

Ei(f9) = 5(f,g)+/ngdu- (2.2)

Under the assumption that (£, F) is regular, we then have the following. See [22, Section
1.1] for the definition of a regular Dirichlet form.

Theorem 2.3 ([31, Theorem 9.4]). The quadratic form (£, D) is a regular Dirichlet form
on L2(F, j1).
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Given a regular Dirichlet form, standard theory then gives us the existence of an
associated Hunt process ((X;)¢>0, Pz, z € F) (e.g. [22, Theorem 7.2.1]). Note that such
a process is, in general, only specified uniquely for starting points outside a set of zero
capacity. However, in this setting every point has strictly positive capacity (see [31,
Theorem 9.9]), and so the process is defined uniquely everywhere. Moreover, since we
are assuming closed balls are compact, we have from [31, Theorem 10.4] that X admits
a jointly continuous transition density (p:(2,¥y))s yeF>0. We note that the Dirichlet form
for Brownian motion on R¢ is a resistance form only when d = 1. However, resistance
forms are a rich class that contains various Dirichlet forms for diffusions on fractals, see
[30].

Key to this study will be the existence of local times for X. As a first step to
introducing these, note that the strict positivity of the capacity of points remarked upon
above implies that all points are regular (see [14, Theorems 1.3.14 and 3.1.10, and
Lemma A.2.18], for example). Thus X admits local times everywhere (see [12, (V.3.13)]).
In the following lemma, by studying the potential density of X, we check that these
local times can be defined in a jointly measurable way and satisfy an occupation density
formula.

Lemma 2.4. (a) Define the (one-)potential density (u(z,y))s yer of X by setting

u(:my)z/o e 'pi(z,y)dt. (2.3)

It then holds that u(z,y) < oo for all z,y € F. Furthermore,

- u(z,y)
E,(e7™) = -2 (2.4)
() w(y,y)
where 7, := inf{t > 0: X, = y} is the hitting time of y by X, and also
(e, y) — u(z, ) < u(z,x)R(y. 2) (2.5)

forallz,y,z € F.
(b) The process X admits jointly measurable local times (L.(z)),cr >0 that satisfy, P,-a.s.
for any x,

t
/ 14(X5)ds = / Li(y)p(dy) (2.6)
0 A
for all measurable subsets A C F andt > 0.

Proof. To prove part (a), we essentially follow the proof of [5, Theorem 7.20], and then
apply results from [41]. First, observe that the definition of the resistance metric at (2.1)
readily implies

f(@) = f)* < E(f, )Rz, y) 2.7)
forall f € F, z,y € F. Hence

f@)? <2f(y)* + 21 f () — fW)I* < 2f(y)° +2&(f, f)R(z,y).

Using the local compactness of (F, R), for any point « € F, we can integrate the above
over a compact neighbourhood of z to obtain f(z)? < c¢&(f, f) for any f € D, where
&, was defined at (2.2). We thus have that f — f(x) is a bounded linear operator on
the Hilbert space (D, 511 / 2), and so by the Riesz representation theorem there exists a
function u(z, ) € D such that

Er(u(z, ), ) = f(=) (2.8)
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for all f € D. From (2.8), we immediately obtain that u(z,z) = & (u(x, ), u(z,-)) < cc.
In combination with (2.7), this implies (2.5) and the ﬁniteness of u(z, y) everywhere
Furthermore, if we define an operator on L?(F, i) by setting U f(z = [nu I Yu(dy),
then by arguing exactly as in the proof of [5, Theorem 7.20], one can check El(Uf, g) =
[ fgdp for every f e Co( ) and g € D. It follows that U agrees with the resolvent of
X on Cy(F), ie. Uf(x) :=E, [;" e ' f(X¢)dt for all f € Cy(F), and extending the latter
statement to all f € L2(F 1) is elementary. By the continuity of the transition density
in this setting, this implies that the function u can alternatively be defined via (2.3). To
complete the proof of part (a), we note that (2.4) is proved in [41, Theorem 3.6.5].
From part (a), we know that E,(e~ ") is a jointly continuous function of z,y € F.
Thus, because we also know that all points of F' are regular for X, we can immediately
apply the first part of [26, Theorem 1] to obtain that X admits jointly measurable local
times (L¢(x))zer,t>0. Furthermore, since X has a transition density, it holds that p is a

reference measure for X, i.e. u(A) = 0 if and only if U1 4(x fo e P (X; € A)dt =0
for all x € F (see [12, Definition V.1.1]). Thus we can apply the second part of [26,
Theorem 1] to confirm (2.6) holds. O

We now describe background on time-changes of the Hunt process X from [22,
Section 6.2]. First suppose v is an arbitrary positive Radon measure on (F, R). As at
(1.5), define a continuous additive functional (A;);>o by setting A, := [, L(z)v(dz), and
let (7(t))¢>0 be its right-continuous inverse, i.e. 7(t) :=inf {s > 0: A, > t}. If G C F'is
the closed support of v, then ((X)tzo, P,, x € G) is also a strong Markov process, where
X, = X (1); this is the trace of X on G (with respect to ). We also define a trace of the
Dirichlet form (£, D) on G, which we will denote by (£, D), by setting

E(g.9) =inf{E(f, f): f € De, flc =g}, (2.9)

D= {gELQ(G,V) : £(g,9) <oo}, (2.10)

where D, is the extended Dirichlet space associated with (£,D), i.e. the family of u-
measurable functions f on F such that |f| < co, p-a.e. and there exists an £-Cauchy
sequence (f,)n>0 in D such that f,(z) — f(z), p-a.e. Connecting these two notions is
the following result.

Theorem 2.5 ([22, Theorem 6.2.11). It holds that (£, D) is a regular Dirichlet form on
L?(G,v), and the associated Hunt process is X .

Finally, we note a result that, in the recurrent case, characterises the trace of our
Dirichlet form on a compact set. Note that the Dirichlet form (£, D) is said to be recurrent
if and only if 1 € D, and £(1,1) = 0.

Lemma 2.6. If (£, D) is recurrent and G is compact, then (£, D) is a regular resistance
form on G, with associated resistance metric R|gxa-

Proof. Since (€,D) is recurrent, we have that D. = F (see [28, Proposition 2.13]). Thus

E(g,9) =inf{E(f, f): fEF, fla =g}, (2.11)

and also D = {f|¢ : f € F} N L?*(G,v). By (2.7), we moreover have that {f|¢ : f € F} C
C(G) C L*(G,v), and so )
D={flc: feF}. (2.12)

Finally, we observe that (2.11) and (2.12) give that (5 15) is the trace of the resistance
form (£, F) on G in the sense of [31, Definition 8.3]. Since G is closed, by [31, Theorem
8.4], this implies (£, D) is also a regular resistance form on this set, with associated
resistance metric R|Gxg. O
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2.2 Gromov-Hausdorff-vague topology

In this section we introduce the Gromov-Hausdorff-vague topology and an extension
that we require. For more details regarding such metrics, see [1, 4]. We start by defining
a topology on ., which is the subset of IF containing elements (F, R, y, p) such that
(F, R) is compact. In particular, for two elements (F, R, i, p), (F',R', 1/, p') € F., we set
A((F, R, u, p), (F', R, 1/, p')) to be equal to

Jduf, {dar (W(E), () +diy (o o™ w0 ™) +dur(p )} (2.13)

where the infimum is taken over all metric spaces M = (M,d)s) and isometric em-
beddings ¢ : (F,R) — (M,dy), ¥ : (F',R') — (M,dy), and we define d%; to be the
Hausdorff distance between compact subsets of M, and d%, to be the Prohorov distance
between finite Borel measures on M. It is known that A. defines a metric on the equiva-
lence classes of I, (where we say two elements of IF. are equivalent if there is a measure
and root preserving isometry between them), see [1, Theorem 2.5].

To extend A. to a metric on the equivalence classes of I, we consider bounded restric-
tions of elements of F. More precisely, for (F, R, 1, p) € I, define (F") R, u(") p(")
by setting: F(") to be the closed ball in (F, R) of radius r centred at p, i.e. Br(p,r); R(")
and 1(") to be the restriction of R and y respectively to F("), and p(") to be equal to p.
By assumption, (F("), R(")) is compact, and so to check that (F(), R u() p(")) € F, it
will suffice to note that: R(") is a resistance metric on F("), the associated resistance
form (£, F(") is regular, and (£(", F(")) is moreover a recurrent regular Dirichlet
form. (These claims follow from Theorem 2.5 and Lemma 2.6.)

As in [1, Lemma 2.8], we can check the regularity of the restriction operation with
respect to the metric A, to show that, for any two elements of the space IF, the map
r = AJ(FT R M) p)y (F/T) R /) /(1)) is cadlag. (NB. In [1, Lemma 2.8],
the metric spaces are assumed to be length spaces, but it is not difficult to remove this
assumption.) This allows us to define a function A on F?2 by setting

A((F,R,p, p), (F', R, 1, p))
0
= / e " (1 A Ac((F('r‘)’R(y-)7u(r)7p(7-))7 (F/('r-)’R/('r‘)"u//(r)’p/('r)))) d’f’, (2.14)
0

and one can check that this is a metric on (the equivalence classes of) I, cf. [1, Theorem
2.9], and also [4, Proof of Proposition 5.12]. The associated topology is the Gromov-
Hausdorff-vague topology, as defined at [4, Definition 5.8]. From [4, Proposition 5.9], we
have the following important consequence of convergence in this topology.

Lemma 2.7. Suppose (Fy,, Ry, lin, pn), n > 1, and (F, R, u, p) are elements of I such that
(Fy, Ry, tiny pn) — (F, R, u, p) in the Gromov-Hausdorff-vague topology. It is then possible
to embed (F,,,R,), n > 1, and (F, R) isometrically into the same (complete, separable,
locally compact) metric space (M, dys) in such a way that, for Lebesgue-almost-every
r >0,

n

afy (0, FO) =0, dfy (1) 6) 50, du(p),p7) =0, (2.15)

where we have identified the various objects with their embeddings.

We next note that the measure bounds of UVD transfer to limits under the Gromov-
Hausdorff-vague topology. The proof, which is an elementary consequence of the previous
result, is omitted.
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Lemma 2.8. Suppose (F, R, 1, p) € I is the limit with respect to the Gromov-Hausdorff-
vague topology of a sequence (F,,, R, ltn, pn)n>1 in I that satisfies UVD. It is then the
case that

cv(r) < p(Br(z,7)) < cou(r), Ve e F, r € [ro, 700 + 1], (2.16)

where 1 := inf, yep o2y R(7,y) and ro := sup,, ,cp R(7,y).

Finally, we define an extended version of the Gromov-Hausdorff-vague topology for
elements of the form (F, R, u,v, p), where (F, R, u,p) € ¥, and v is another locally finite
Borel regular measure on (F, R) (not necessarily of full support). We do this in the
obvious way: for elements (F, R, u,v, p) and (F’, R', i/, v, p’) such that (F, R) and (F’, R’)
are compact, we include the term d%; (v o4 ~1,1/ 0 ¢/~1) in the definition of A, at (2.13);
in the general case, we use this version of A. to define A((F, R, u,v,p), (F', R, i/, v, p"))
as at (2.14); the induced topology is then the extended Gromov-Hausdorff-vague topology.
It is straightforward to check that the natural adaptation of Lemma 2.7 that includes the
convergence d (v, v(")) also holds, where v, (") is the restriction of v,, v to F\"”,

F(), respectively.

2.3 Local time continuity

Key to our arguments is the following equicontinuity result for the local times of a
sequence satisfying the UVD property. Since the proof is similar to the discrete time
version proved for graphs in [16, Theorem 1.4], we only provide a sketch.

Lemma 2.9. If (F,,, Ry, tin, Pn)n>1 is @ sequence in I, satisfying sup,, ro(n) < oo and
also UVD, then, foreache > 0andT > 0,

lim sup sup P}’ sup  sup |Li(y)— Ly(z)|>¢e| =0.
020 p>1zeF, y,2€F,: 0<t<T
Ry (y,2)<6

Proof. We start by checking the commute time identity for a resistance form. In particu-
lar, if (F, R, p, p) € F,, then we claim that

E, (1)) + Ey (1;) = R(z,y)u(F)  Va,y € F, (2.17)

where 7, is the hitting time of z by X. Indeed, fix z,y € F. As in the proof of [33,
Proposition 4.2], there exists a function g¢,}(y, ) € F such that: &(g(1(y,-), f) = f(y)
for every f € F such that f(z) = 0; g(o1(v,¥) = £(9{21 (¥, ), 942} (¥, ) = R(x,y); and also
9¢z}(y, ) = 0. (NB. The set B in the proof of [33, Proposition 4.2] is replaced here by
F\{z}.) By symmetry, we deduce that

& (g{m}(ya ) + g{y}(xv ')’ f) =& (Q{x}(:% ')’ f - f(I)) +& (g{y}(xv ')7 f - f(y)) =0

for every f € F. It follows that g¢,1(y,-) + gy} (,-) is constant, and so satisfies

9y (W) + 9193 (2, 1) = 9123 (5 ) + gy (2, 2) = R(w,y).

Moreover, as at [33, (4.7)], we have that g{w}(y, -) is the occupation density for X, started
at y and killed at z, and so E,(7,) = [ 942} (¥, 2)1(dz). Combining the latter two results,
the identity at (2.17) follows.

We now suppose (Fy,, Ry, fin, Pn)n>1 iS @ sequence in F. as in the statement of the
lemma, and consider the associated local time processes. From [12, (V.3.28)], we have
that

P ( sup |L{(y) — Ly (2)] > s) < 2¢Tee/20n (@), (2.18)
0<t<T
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where
bulw,y)? = 1= B2 (70 By (7)) < B2 (7)) + By (72) = Rl y)an (Fr),
and the final equality is a consequence of (2.17). Hence we obtain that

Lr(y) — Ly
sup P sup ILY (y) — L (2)] S o) < 2eTeel2,
.y, 2€F, 0<t<T /R (Y, 2) pin (Frn)

Sup0<t<T|L (y) — L7 (2)]
// R ) )un(dy)un(dZ),

Thus if we set

then it follows that
lim sup sup Py (I'), > )\un(Fn)Q) =0. (2.19)

A—=00 p>1zeF,
The result now follows from a standard argument involving Garsia’s lemma, as originally
proved in [24], see also [25]; applications to local times appear in [8, 16], for example.
We simply highlight the differences. Choose y,z € F,, and ¢ € [0,7]. Then let (K;)2,
be a sequence of balls K; = B, (y 21*2’Rn(y, z)), so that K contains both y and z, and
Ni>o; = {y}. Write fk, 1= pn(K;) fK L (w)pn (dw), and then we deduce that

el ki =1 1/163/ 272 Ry (y,2) pin (Fn)
K Ml / / |L} (w) =Ly (w')]/4y/ Rn (w,w’ ) pn (Fr) /
el t n W ) (dw) o, (dw
n i—1 i1 ( ) ( )

fin(
cv(2'7% R, (y,2)) T,

IN

where the first inequality is an application of Jensen’s inequality, and the second is
obtained from UVD and the definition of I';,. Summing over ¢ and repeating for a
sequence decreasing to z yields

I'n
L2 (y) — LY (2)] < 16W22 ’log< ° ))2>. (2.20)

21 QZR (

Now, suppose I',, < A\, (F,,)?. The UVD property then gives I';, < cAv(ro(n)). Together
with the doubling property of v and the assumption that M = sup,, 7« (n) < co we thus
find that

cAv(roo(n))?
L) - L} < 16y/Fnne 22 o (2

< eV Ry, 2)v(M) rnax{l7 log \Y¢M, log Ry, (y, 2) "'},
uniformly over y, z € F,, and ¢ € [0,T]. Combining this estimate with (2.19) completes
the proof. O
Note that we also have continuity of the limiting local times.

Lemma 2.10. If (F, R, i, p) € F. satisfies (2.16), then the local times (L;(x))yecr >0 Of
the associated process are continuous in x, uniformly over compact intervals of't, P,-a.s.
foranyy € F.

Proof. Arguing as for (2.19), we have that

T /F /F esPozer L)~ LAV FGE gy ()

is a finite random variable, Py-a.s., for any 7' < co. Hence, by applying the estimate
(2.20), we obtain the result. O
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3 Convergence of processes

3.1 Compact case

In this section, we prove the first part of Theorem 1.3 in the case that the met-
ric spaces (F,,R,), n > 1, and (F,R) are all compact (see Proposition 3.6 below).
Throughout, we assume that Assumption 1.2 holds. Note that, by Lemma 2.7, under
this Gromov-Hausdorff-vague convergence assumption, it is possible to suppose that
(Fn,Ry), n > 1, and (F, R) are isometrically embedded into a common metric space
(M, dys) such that

di (F,,F) =0, d%; (pin, 1) — 0, dar(pn, p) — 0, (3.1)

where we have identified the various objects with their embeddings. Throughout this
section, we fix one such collection of embeddings.

Our argument will depend on approximating the processes X, n > 1, and X by
processes on finite state spaces. We start by describing such a procedure in the limiting
case. Let (x;);>1 be a dense sequence of points in F with 21 = p. For each £, it is possible
to choose ¢, such that

F C U Buy(zi,ep), (3.2)

(where By (x,r) represents a ball in (M, dys),) and moreover one can do this in such a
way that e, — 0 as k — oo. Choose ¥, &5, ... eF € [e4, 2¢x] such that (B (z;,eF))k_, are
continuity sets for  (i.e. u(Bas (24, %)\ Bar (i, €¥)) = 0); such a choice is possible because,
for any x € M, the map r — pu(Bp(z,7)) has a countable number of discontinuities.

Define sets K¢, K%,..., K} by setting K = By (z1,5) and
szﬂ = Bu(wit1, 5i'c+1)\ Uj’:l Bar(;, 5?) (3.3)

In particular, the elements of the collection (K¥)¥_, are measurable, disjoint continuity
sets, and cover . We introduce a corresponding measurable mapping ¢(*) : FF —
{x1,..., 2} by setting ¢(¥)(2) = z; if z € K, and a related measure u*) = ji0 (¢(*))~1,
Of course, the image of ¢(*) might not be the whole of {z1,...,z1} since some of the Kik
might be empty. So, to better describe it, we introduce the notation I, := {i : K} # 0}
and Vi := {z; : i € I;}. (We will often implicitly use the fact that the points (z;);cs, are
distinct, which follows from the definition.) The following simple lemma establishes that
the measure ;) charges all the points of V.

Lemma 3.1. The support of the measure ;%) is equal to V.
Proof. Suppose i € {1,...,k} and u® ({z;}) = 0. Then by definition
0= u(KY) = p (Br(i i)\ UjZy Br(z,€5)) = p (Br(wi, i)\ UjZ1 Br(zj,e5))

where we use that Bg(z;,cF) is a continuity set for y. Now, Br(z;,f)\ UZ] Bg(z;,e¥)
is an open set. Thus, because p has full support, the fact that the latter set has zero
measure implies that it is empty. Hence Bg(z;,e¥) C U;;lléR(xj, e¥). Since the right-
hand side is closed, it follows that Bg(z;,ef) € U/Z} Br(x;,c¥), and therefore K = {.
Thus i ¢ Ij,. In particular, we have established that the support of (*) contains Vj,. Since
the reverse inclusion is trivial, this completes the proof. O

Next observe that sup, . R(z, ¢ (2)) < 2¢;, — 0, and hence p*) — n weakly as
measures on F'. This will allow us to check that a family of associated time-changed
processes X (%) converge to X. Indeed, set

AP = / Li(z)p™® (dz).
F
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The continuity of the local times L (see Lemma 2.10) then implies that, P,-a.s., for each t,

AP /F Li(z)u(dz) = t.

Since the processes are increasing, this convergence actually holds uniformly on compact
intervals (cf. the proof of Dini’s theorem). Setting 7 (¢) := inf{s > 0: A™ > s}, it
follows that, P,-a.s., 7(*)(t) — t uniformly on compact intervals. Composing with the
process X to define Xt(k) = er(t)' we thus obtain that Xt(k) — X; for all ¢t > 0 such
that X is continuous at ¢, P,-a.s. In particular, denoting by T’y the set of times ¢ such that
P,(X is continuous at t) = 1, this implies the following finite dimensional convergence
result.

Lemma 3.2. Ifty,...,t,, € Tx, then dM(Xéf)7Xti) — 0 foreachi=1,...,m, as k — oo,
P,-a.s.

We next adapt the approximation argument to the processes X™, n > 1. By (3.1), it is
possible to choose z?* € F,, such that dy; (27, z;) — 0, with the particular choice =} = py,.
Moreover, by (3.2), it is possible to suppose that for each k there exists an integer ny
such that, forn > ny, F,, C UleBM(xi, er). Thus, for each k and n > nj we can define a
map ¢"* : F,, — {a7,..., 27} by setting ¢"*(z) = 27 if 2 € K. Note that

lim limsup sup R, (z,¢™"*(z)) < lim limsup <2sk + sup dM(:v?,xZ-)) =0. (3.4)

k—oco n—soco zeF, k—oo n—oo i=1,....k

We define u%k) = i, 0 (¢™*)7!, and set

At = [ L ).

n

Moreover, let 7*(t) = inf{s > 0 : A" > s}, and define X"* := X7 k(- Itis then
straightforward to deduce the following lemma.

Lemma 3.3. The law of X"* under P} converges weakly to the law of X*) under P,
as probability measures on the space D(R., M). In particular, the finite-dimensional
distributions converge for any collection of times t,...,t,, > 0, m € IN.

Proof. Fix k, and define V}, as above Lemma 3.1. Our first step is to characterise the
Dirichlet form (£*), D(¥)) of the Markov chain X (*), which by Theorem 2.5 is given by
(2.9), (2.10) with G = V}, and v = u(¥). Since F is compact, we have that (£, D) = (£, F)
(see [31, p. 35]), and so (&£,D) is recurrent. Hence we have from Lemma 2.6 that
(%) D" is also a resistance form with associated resistance metric R**) := R|y, xv, .
In particular, we obtain that

EW(f N =5 3 D) - f@),

z,yEVy

where the conductances (c¢(® (z, Y))zyev, are uniquely determined by the resistance R®)
[30, Theorem 2.1.12].
We similarly have that the Dirichlet form (€™ D™F) of the Markov chain X™* is
given by
n 1 n
EVM(f f) = 3 > ) (fly) - fl2)?

z,YEVn k
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where V,, ;, := {27 : i € I}, and we note that for large n we have that the cardinality of
Vi and Vj, are both equal. We will now check that

(™ (@' a)), ey, — (Cu«)(g;i, g;j))ijelk . (3.5)

Observe that, from the definition of the resistance metric, we have c¢™*(z , 7)<
Ry (7, x%)~". Hence we find that

limsup max ¢™*(z?,z2") < max R(z;, ;)" < oo.
Rl Ead)
n—oo 5JE€EI: i,jEI:
i#] i#]

In particular, for any subsequence (c"*(z'™, x;“”))i jer,» we have a convergent subsub-

))ijer, with limit (é(x;,x;)); jer,. Define an associated form

Nm;, My

sequence (c"mk(z; ™ .
(€,D) by setting

N 1

Ef.H) =5 Y ewn)(fly) - f()?

z,y€Vi

and D := {f : Vi, = R}, and let R be the associated resistance (which may a priori
be infinite between pairs of vertices). It is then an elementary exercise to check that
¢"m* — ¢ implies (R, (z;", 2" ijer, = (R(xi,75))ijer,. Indeed, if we define
Tk © Vak — Vi by i — x; (which is a bijection for large n), then, using the fact that we
are dealing with finite dimensional spaces (and so can exchange limits and infima), we

have for i # j that

Jan R, 7)™
= lim inf {é‘"mw’“(f, i f Vo = Ry fla;™) =1, f(@;™) = 0}
= Jim it {ER(f o m o f oM, )t £ €D, fla) =1, flay) =0}
= inf{ 1_1>m Enmi (fomml,mfoﬂnml,k) L fED, f(a) =1, f(z;) = 0}
= mf{é(f, f): fFED, flw) =1, fla;) = 0}
= ]N%(xi,xj)_l.

’I’Lm’ nml

However, we also know (R, (z;"™,z;™"))ijer, = (R® (24, 2;))i jer,, and so it must be
the case that R = R™*). In turn, this implies ¢ = ¢(*) (see [30, Theorem 2.1.12]), and the
conclusion at (3.5) follows as desired.

Next, note that for each i € I}

® ({2}) = pn (KF) = p (KF) = p® ({2:}) >0, (3.6)

where we have applied that u,, — u weakly, and that KF is a continuity set for the
limiting measure. The fact that the limit is strictly positive was proved in Lemma 3.1.
These observations will allow us to check convergence of the generators. Specifically,
the generator of X(¥) is given by

1

e & ) () = f@)

JE€Ik

Similarly, if we define m,, i, as above, then the generator of 7, . (X™¥) is given by

An’kf@cz) - (k) {x”} Z ™ k Z; 7 ] (xj) - f(xl))

]Efk
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Hence, (3.5) and (3.6) imply that

max |A® f(z;) — A™F f(z)| — 0

i€ly

for any f : Vi, — R. Since the starting points of the processes satisfy wnvk(X{f’k) = X(()k) =
p (as local time accumulates immediately), this generator convergence is enough to
establish the distributional convergence Wn’k(X””f) — X*) (see [29, Theorem 19.25]).
To complete the proof of the first claim, it is thus enough to recall that dp; (27, mp 1 (2F)) =
dp (2, z;) — 0 for each 1.

For the claim regarding finite-dimensional distributions, one notes that convergence
in the space D(R,, M) implies convergence of finite-dimensional distributions at times
t1,...,tm that are continuity times for the process X*), i.e. times at which X®*) is
continuous, P,-a.s. Furthermore, it is elementary to check that every ¢ > 0 is a continuity
time for the finite state space continuous time Markov chain X (*). O

Remark 3.4. In this article, we have defined resistance metrics in terms of an underlying
resistance form. In fact, from [30, Theorems 2.3.4 and 2.3.6], we have that the metrics
and forms are in one-to-one correspondence, and an alternative characterisation of
resistance metrics is given in [30, Definition 2.3.2] as follows: for a given set F, a
function R : F x ' — R is a resistance metric if, for every finite V C F’, one can find a
weighted (i.e. equipped with conductances) graph with vertex set V for which R|y .y is
the associated effective resistance. Note that this latter definition in conjunction with an
argument similar to that used to establish (3.5) readily allows it to be deduced that the
collection of resistance metric spaces is closed with respect to the Gromov-Hausdorff
topology.

The remaining ingredient we need to establish the result of interest is the following
lemma.

Lemma 3.5. The laws of X" under P, n > 1, form a tight sequence in D(R, M).
Moreover, for anye > 0andt > 0,

lim Timsup Py (R (X7, X7) > ) =o0. (3.7)

Pn
00 n—oo

Proof. To verify tightness, it will suffice to check Aldous’ tightness criteria (see, for
example, [29, Theorem 16.11]): for any bounded sequence of X" stopping times o, and
any sequence 4, — 0, it holds that, fore > 0, P! (R.(X; , X[ ,; ) >¢) — 0. Applying
the strong Markov property, to establish this it will be enough to show that

sup P} (Rn(z, X5 ) >¢) — 0. (3.8)
z€F,

To do this, we note that the UVD condition implies the following exit time estimate

28
sup Py ( sup R, (z,X{") > €> <cie v/, (3.9)
z€F, 0<t<s

uniformly in n, where v is the function appearing in the definition of UVD (see [33,
Proposition 4.2 and Lemma 4.2]). Moreover, the doubling property of v implies that
v(r) > c3r® forr < 1, and so v~ 1(§/¢) < ¢5(5/e)° for § suitable small. The result at (3.8)
follows.
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To prove (3.7), first note that

i = | meuan - [ L@
F, Ey
< / |LH(¢™F (@) — L ()| pn (dix)
< Un(Fn sup ’Ln (bnk( )) _L?(m)| ’

’EEn

Now, by (3.1), pn(F,) — u(F), and the compactness of the space (F, R) implies that the
latter is a finite limit. Hence, also applying (3.4) and the local time equicontinuity result
of Lemma 2.9, it follows that

lim limsup P, < sup ’Af’k —t‘ > 5) =0.
k—oo nooo 0<t<T

Taking inverses, we thus find that

lim limsup P ( sup |T"’k(t) - t’ > 5) = 0.

k=00 nosoo U™ \o<t<T

From this, we see that, for any ¢,¢,d > 0,

lim lim sup P, (Rn (Xt”,Xt"’k) > 5)

=0 n—oo

< lim limsup P}, ( sup Ry (X7, X)) > 5)

§—0 nooo SE[t—8,t+3]NR4

< limlimsup sup P, | sup R, (z,X])>c¢
=0 nooo z€F, 5€[0,24]

= O7

where to deduce the second inequality, we apply the Markov property at time max{0,t—¢},
and (3.9) to deduce the equality. O

Piecing together Lemmas 3.2 and 3.3, and (3.7), we obtain that the finite-dimensional
distributions of X" converge to those of X for any collection of times ¢4,...,t, € Tk,
where we recall that T'x is the set of continuity times of X (see [29, Theorem 4.28]).
Together with the tightness of X", as established in Lemma 3.5, we arrive at the desired
conclusion by applying [29, Theorem 16.10].

Proposition 3.6. The law of X" under P converges weakly to the law of X under P,
as probability measures on the space D(IR+, M).

3.2 Locally compact case

In this section, we explain how to extend from the compact case to the locally compact
case. The proof will involve considering the trace of the relevant processes on bounded
subsets (cf. the proof of [7, Theorem 1.4]). Key to this approach is the following lemma,
which is an immediate consequence of Lemma 2.6. (Recall that we are assuming (€, D)
is recurrent for (F, R, u,p) € F.)

Lemma 3.7. Let (F, R, 1, p) € F. Forr > 0, let (£("), D)) be the trace of (£,D) on F")
with respect to the measure ;). Then (£, D) is a resistance form on F(") with
associated resistance metric R(").

A second key ingredient for our argument is the following uniform exit time estimate
for sequences of resistance forms satisfying UVD.
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Lemma 3.8. Suppose (F),, Ry, tin, pn)n>1 is a sequence in F satisfying UVD, then, for
any T < oo,

lim sup P}’ ( sup Ry (pn,X7') > r) =0.

700 > 0<t<T

Proof. Similarly to (3.9), we have by [33, Proposition 4.2 and Lemma 4.2] that

epr
sup P, ( sup R, (z, X}) > r) < cie v T/,
n>1 0<t<T

Letting » — oo establishes the result. O

We are now ready to prove the main result of this section, which establishes the first
claim of Theorem 1.3.

Proposition 3.9. Suppose (F,,, Ry, lin, pn), n > 1, and (F, R, u, p) satisfy Assumption 1.2.
It is then possible to embed (F,,, R,), n > 1, and (F, R) isometrically into the same metric
space (M, dy) in such a way that the law of X™ under P! converges weakly to the law
of X under P, as probability measures on the space D(R, M).

Proof. Under the assumption of the proposition, it is possible to suppose all the objects
of the discussion have been isometrically embedded into a common metric space (M, dy;)
in the way described in Lemma 2.7. Define (£("), D(")) as in the statement of Lemma 3.7.
By Theorem 2.5, we have that this is a regular Dirichlet form on L?(F("), (")), and the
associated process X () is given by a time-change according to the additive functional

Al ::/ Li(x)p") (dz).
F

By monotonicity and the fact that the various additive functionals are increasing, we
have that A§T) — [ Li(z)pn(dz) = t uniformly on compact time intervals, P,-a.s. Similarly
to the proof of Lemma 3.2, it follows that if ¢4, ...,t,, € Tx for any m € IN (where again
we denote by T'x the continuity times of X), then P,-a.s., dM(Xt(:), X:,) — 0 for each
i=1,...,m. Moreover, writing 7(") for the right-continuous inverse of A("), we have that
for any bounded sequence of X (") stopping times o, and any sequence §, — 0, it holds
that, for any ¢, > 0,

Py (R(X0, X005 ) €)= By (R(Xrir(0,) Xrto 0, 48) > )

< supF, (supR(x,Xs) > 5> +o(1),
rEF s<d

as r — oo. (We note that 7(")(c,) is a stopping time for X.) Since by (2.16) we know
that the limiting space (F, R, i, p) satisfies uniform volume doubling, we can again apply
[33, Proposition 4.2 and Lemma 4.2] as at (3.9) to deduce that the probability above is
bounded by ¢;e~%2</v" ' (6/2)_ Letting § — 0, we obtain that Aldous’ tightness criteria holds
(cf. the proof of Lemma 3.5), and so the laws of X under P, are tight in D(R4, M).
Combining this with the above convergence of finite dimensional distributions, we obtain
that, under P,, X(") converges to X in distribution in the space D(R., M).

Next, let X™" be the trace of X" on F,(Zr) with respect to ugf). By Lemma 3.7, the
Dirichlet form of this process, (&gf), Dﬁf)) say, is actually a resistance form with associated
resistance metric Rgf), cf. the corresponding result in the limiting case. Hence, recalling
we have embedded all the relevant objects into M in the way described by Lemma 2.7,
Proposition 3.6 yields that, for Lebesgue-almost-every » > 0, we have that the law of
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X™" under P’ converges weakly to the law of X (") under P, as probability measures
on the space D(Ry, M).

Finally, we observe that if supy<;<7 1 Ry (pn, X{') < 7, then the time-change functional
describing X™" satisfies o

4= [ peudan = [ L@ =t

n n

fort < T + 1. It follows that X;"" = X" for ¢t < T. Thus we find that, for any £ > 0,

P ( sup R, (X}, X["") > 5) <Py ( sup  Ry(pn, X7') > r) :

0<t<T 0<t<T+1
By Lemma 3.8, this converges to 0 as r — oo, uniformly in n > 1. Combining this with
the conclusions of the previous two paragraphs completes the result. O

3.3 Convergence of local times

Again we suppose that the spaces (F,,R,), n > 1, and (F,R) are isometrically
embedded into a common metric space (M, dys) in such a way that the conclusion of
Lemma 2.7 holds. Given the convergence result of Proposition 3.9 (and [29, Theorem
4.30], for example), it is further possible to suppose that X" started from p, and X
started from p are coupled so that X" — X in D(R, M), almost-surely. We will suppose
that this is the case throughout this section, and write the joint probability measure as
P. To prove the finite dimensional convergence of local times as at (1.4), we will follow
an approximation argument, based on averaging over small balls. To this end, it is useful
to introduce the following functions: forx € M, § > 0,

f5,:(y) :=max {0, — dpn(z,y)}.

An immediate consequence of the continuity of local times of X is the following lemma.

Lemma 3.10. P-a.s., foranyx € F andT >0,as§ — 0,

t
sup M _ Lt((E) — 0.

te[0,T] fF fé,w (y)u(dy)

Proof. For the case when F'is compact, the result follows easily from Lemma 2.10 (and
the occupation density formula of (2.6)). In the case when F' is only locally compact, we
note that on the event sup,c(y ) (p, X;) < 7 it is the case that the local times of X are
identical to the local times of X (") up to time 7. Since the latter are continuous functions
for each ¢ > 0, almost-surely, then so are the local times of X for ¢ € [0, 7], almost-surely
on sup,¢o. 77 12(p; X¢) < r. Taking r — oo, and then 7" — oo, we deduce that the local
times of X are continuous functions for each ¢ > 0, almost-surely, and the result follows
in this case as well. O

Lemma 3.11. P-a.s., foranyxz € F, T >0andd >0, asn — oo,

sup f(f fﬁ,m(X;L)dS fg f5,:v(Xs)d5

SO0 | T Foe iin(@9) T Fowdatdy|

Proof. Fix z € F. It is then possible to choose r such that By, (x,5) N F C F") for every
4 < 1. Moreover, since our choice of embeddings satisfies the conclusions of Lemma 2.7,
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we may further suppose that ugf) — (") weakly as probability measures on M. It follows

that
_ (r) ) (7o) —
/F ; f5,2(y) n (dy) /N ) fs (W) (dy) — /N ) fs2(y)p'™ (dy) /F fs.a(y)u(dy) >0,

where the strict positivity of the limit is a simple consequence of the fact that x4 has full
support. Thus it remains to show that, for any 7" > 0,

sup
t€[0,T7]

— 0. (3.10)

t t
/ f(;’m(X;L)dS — / f(;’m(Xs)dS
0 0

To begin with, suppose that X is continuous at time ¢. It is then the case that, for each n,
there exists a homeomorphism )\, : [0,¢] — [0,¢] with A, (0) = 0 such that

sup |s — An(s)] = 0, (3.11)
s€0,t]
and also
sup dus (X;fj (S),Xs> — 0. (3.12)
s€[0,t] "
Now,

M, (s)

< /0 Foa(XE ) = fou(X5)

t
/
0

The first term in the upper bound here converges to zero by (3.12). As for the second
term, we have from (3.11) that d,, (X/\:Ll(s), X;) — 0 whenever X is continuous at s. Since
the times at which X is not continuous is at most countable, the dominated convergence
theorem yields that the second term also converges to zero, thereby establishing the
limit (3.10) pointwise at times at which X is continuous. To extend to the full result is
straightforward, using again that the times at which X is not continuous is countable, as
well as the monotonicity and continuity of the limit. O

/0 ra(X)ds /0 ' fra(X0)ds

ds.

f§,w (X)\gl(s)) - f6,w(Xs)

Lemma 3.12. Foranyz € F'and T > 0, ifz,, € F, is such that dy/(z,,z) — 0, then

Bt ) o

— L (zn)
an fs.0(y) i (dy) !
Proof. For large n, we have that by the occupation density formula (2.6)

f(;: fé,r(X?)dg e
an fﬁ,x(y),un(dy) Lt ( n)

Thus if the sequence (F,,, Ry, ftn, prn)n>1 satisfies sup,, ro(n) < 0o, then the result follows
from the local time equicontinuity result of Lemma 2.9. In the general case, it is possible
to obtain the result by considering the restriction to bounded subsets as in the last part
of the proof of Proposition 3.9. O

lim lim sup P ( sup

§—0 n—o00 tE[(LT]

< sup |LY(y) — LY (2)].
Y,2€ By (21,,26)

From Lemmas 3.10, 3.11 and 3.12, we deduce that for any x € F and T > 0, if
T, € I, is such that dy(7,,x) — 0, then (L (2,,))iecjo,7) = (Lt(2))tejo,r) in P-probability
in C(]0,T],R). This result immediately extends to finite collections of points, which is
enough to establish (1.4).
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3.4 Time-changed processes

In this section, we prove Corollary 1.5, starting by showing convergence of the
time-change additive functionals.

Proposition 3.13. If Assumption 1.4 holds, then (A});>0 — (A¢)t>0 in distribution in
the space C(R4,R), simultaneously with the convergence of processes X" — X in
DR+, R), where we assume that X" is started from p,, and X is started from p.

Proof. We first prove the result in the case that the underlying spaces are compact,
i.e. when (F,, Ry, tin, pn) € Fe, n > 1, and (F, R, u, p) € F.. Suppose all the objects are
isometrically embedded into a common space in the way described at (3.1), and let
(z;)i>1 be as in Section 3.1. Moreover, for each k, define (K¥)¥_, as in (3.3), but with

each set chosen to be a continuity set for the measure v, rather than for p. Then, for any
T > 0, we have from the continuity of local times (Lemma 2.10) that, P,-a.s.,

k

Ay = Ly(wi)v(KF)

i=1

<v(F) sup sup  |Li(y) — Li(2)] — 0.
tel0,T] y,z€F:
R(y,z)<4ej

sup
t€[0,T]

Next, from (1.4), we deduce that

k k
(Zwmvwf)) +<2Lt<xi>u<@>>

in distribution in C(R4,R), where z7 are also chosen as in Section 3.1. Furthermore,
for large n, we have that

t>0 t>0

S vn(Fn) sup  sup  [Li(y) — L (2)].
te[0,T] y,zEFn:
Rn(yvz)§45k

sup
te[0,T]

k
AP =Y L) (KT
i=1

Under P}, this converges to zero in probability as n — oo and then k — oo by Lemma
2.9. Noting that, from Theorem 1.3, the convergence of local times at (1.4) occurs
simultaneously with the convergence of processes, the desired result follows.

For the general case, one again proceeds by considering the restriction to bounded
subsets similarly to the proof of Proposition 3.9. For this, it is useful to note that it is
enough to consider radii r that are continuity sets for both i and v, since the collections
of points of discontinuity of the maps » — u(Bg(p,r)) and r — v(Bg(p,r)) are both
countable. O

We next check the divergence of the additive functional (A4;);>¢, as defined at (1.5).

Lemma 3.14. For (F,R,u,p) € I, and v a locally finite Borel regular measure on (F, R)
with v(F) > 0, we have A; — co ast — oo, Py-a.s. forany z € F.

Proof. First note that, by [14, Theorem 5.2.16], we have that (£, D) is an irreducible
Dirichlet form (see [14, Section 2.1] for a definition). Since (£, D) is recurrent, we can
apply [14, Theorem 3.5.6(ii)] to deduce that P, (1, < c0) =1, for all z,y € F. Moreover,
by [41, Theorem 3.6.5], we have that E,( [, e ‘dL¢(z)) = u(x,x) > 0, forall z € F,
where (u(z,y))s,yer is the potential density of X, as defined at (2.3). Combining these
two observations, following the proof of [15, Lemma 2.3] allows us to deduce that
im0 inf ¢ ) Ly (x) = oo for any r > 0, Py-a.s. for any y € F. This readily yields the
result. O
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Note that the previous lemma implies that 7(¢) := inf{s > 0 : As > ¢} remains finite
for all ¢ > 0, and so confirms that X, ;) has an infinite lifetime. We are now in a position
to complete the proof of Corollary 1.5.

Proof of Corollary 1.5. First, suppose we are in case (a); in particular, v(F') has full
support. Moreover, suppose that we have embedded all the objects of the discussion into
a common metric space (M, dys) in the way described by Lemma 2.7, and that the various
processes are coupled so that X" — X in D(Ry, M), and A” — A in D(R4, R, ), almost-
surely. As in Section 3.3, denote the probability measure corresponding to the coupling
by P. Now, note that, P-a.s., for any ¢,0 > 0 we have that [}.(L¢ys(z) — Li(x))p(dz) =
6 > 0, and so, applying the continuity of local times, we can find an € > 0 such that
Liis(x) — Li(x) > € on a non-empty open set. Since v(F) has full support, it readily
follows that (A;):>o is strictly increasing, P-a.s. Thus we can apply [44, Theorem 7.2],
to deduce that 7" — 7 in D(R4, R, ), where the limiting function is strictly increasing
and continuous, P-a.s. (Recall that 7" is the right-continuous inverse of A", and 7 is the
right-continuous inverse of A.) Together with the convergence X" — X, this implies
(see [44, Theorem 3.1]) that X™*» — X" in D(R,, M), P-a.s., which confirms the result.

The proof of part (b) is essentially the same, but involves different topologies. In
particular, from A” — A in D(R4, Ry ), it is only possible in general to suppose 7" — 7
with respect to the Skorohod M; topology [44, Theorem 7.1]. Given this convergence
holds simultaneously with X™ — X in D(R, M), where X is assumed to be continuous,
we can apply the straightforward generalisation of [19, Lemma A.6] to deduce the
result. O

4 Liouville Brownian motion

Given an element in (F, R, i, p) € I, the associated Liouville Brownian motion is the
process XV, defined as at (1.6), where v is the Liouville measure. To define this, let
us first introduce the Gaussian free field on F, (y(z)).cr say, which we will suppose is
pinned at p, and built on a probability space with probability measure P and expectation
E. In particular, we define (v(z)),cr to be a centred Gaussian field (i.e. Ey(z) = 0 for all
x € F), with covariances given by

Cov(v(2),v(y)) = g9(z,y), Y,y €F,

where g(z,y) is the Green’s function of X killed on hitting p (cf. the notation gy, in the
proof of Lemma 2.9). Note that these assumptions imply that v(p) = 0, P-a.s., and yield
that an alternative way to characterise the covariances is via the formula

E((/(x) = 7W)*) = R(x,y),  VayeF

(To deduce the latter identity, it is useful to observe that 2g(x,y) = R(p,z) + R(p,y) —
R(z,y), see [31, Theorem 4.3].) Thus we have from standard estimates for Gaussian
random variables that

P (|y(z) —y(y)| > &) < 2~ 2RGw 4.1)

and substituting this for the estimate (2.18), one can follow the proof of Lemma 2.9
to deduce that, if (F, R, i, p) satisfies the volume doubling estimates of (2.16), then
(v(x))zer is a continuous function, P-a.s. (To check this continuity property, one might
alternatively note that (2.16) yields an estimate for the size of a e-cover of F(") of the
form c1e7¢2, and from this the result is an application of [40, Theorem 8.6], for example.)
In this case, for x > 0 fixed, setting (similarly to (1.2))

v(dz) = em(w)—TE(v(w)z)u(de
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yields a locally finite, Borel regular measure on (F, R) of full support, P-a.s. (Note also
that this choice of normalisation yields Ev(dz) = u(dz).) Thus, for P-a.e. realisation of
v, we can define X* by the procedure at (1.6). Since under P, the starting point of X”
is x, the corresponding quenched law of X" started from z € F' is well-defined; we will
denote this by P;. Moreover, we can define the annealed law of the Liouville Brownian
motion X” by integrating out the Liouville measure, i.e.

PLEM (1) .= /P; () P(dv). (4.2)

The principal aim of this section is to show that if we have (F,, Ry, tin, pn) —
(F,R, i1, p) in F and the UVD property holds (i.e. Assumption 1.2 is satisfied), then
the associated Liouville measures and Liouville Brownian motions converge. To this
end, we start by noting the equicontinuity of the Gaussian free fields in the sequence,
which we will denote by (v, (z))zcr,, n > 1. As for the continuity of +, the proof of this
result is identical to that of the local time equicontinuity result of Lemma 2.9, with (2.18)
replaced by (4.1), and so is omitted.

Lemma 4.1. If (F),, Ry, tin, pn)n>1 is a sequence in I satisfying UVD, then, for eache > 0
andr >0,

limsupP | sup  |y,(y) —m(2)| > | =0.
0-0p>1 y,zEF,,(LT');

Rp(y,2)<é

We can now deduce convergence of Liouville measures under Assumption 1.2; the
following result can be interpreted as a distributional version of Assumption 1.4. We
write v, for the Liouville measure associated with (F