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Abstract

Scale-free networks with moderate edge dependence experience a phase transition
between ultrasmall and small world behaviour when the power law exponent passes
the critical value of three. Moreover, there are laws of large numbers for the graph
distance of two randomly chosen vertices in the giant component. When the degree
distribution follows a pure power law these show the same asymptotic distances of

logN
log logN

at the critical value three, but in the ultrasmall regime reveal a difference of
a factor two between the most-studied rank-one and preferential attachment model
classes. In this paper we identify the critical window where this factor emerges.
We look at models from both classes when the asymptotic proportion of vertices
with degree at least k scales like k−2(log k)2α+o(1) and show that for preferential
attachment networks the typical distance is

(
1

1+α
+ o(1)

)
logN

log logN
in probability as the

number N of vertices goes to infinity. By contrast the typical distance in a rank one
model with the same asymptotic degree sequence is

(
1

1+2α
+ o(1)

)
logN

log logN
. As α→ ∞

we see the emergence of a factor two between the length of shortest paths as we
approach the ultrasmall regime.
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1 Background and motivation

Scale-free networks are characterised by the fact that, as the network size goes to
infinity, the asymptotic proportion of nodes with degree at least k behaves like k−τ+o(1)

for some power law exponent τ . There are a number of mathematical models for
scale-free networks, in the class of rank-one models the probability that two vertices
are directly connected is asymptotically equivalent to the product of suitably defined
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Distances in critical random networks

weights wv associated to the vertices v in a network GN with vertex set [N ] := {1, . . . , N}.
Examples of rank-one models are the Chung-Lu model where

P(u↔ v) =
wuwv∑N
i=1 wi

∧ 1, for u, v ∈ [N ],

the Norros-Reittu model in which

P(u↔ v) = 1− e
− wuwv∑N

i=1
wi , for u, v ∈ [N ], (1.1)

where (wi)
N
i=1 is a deterministic or random sequence of weights, and the configuration

model in which each vertex is assigned a degree chosen randomly from a given degree
distribution and the weights are the degrees themselves.

A popular alternative to rank one models are the preferential attachment models
introduced by Barabási and Albert. The original Barabási-Albert model (see Bollobas
et al. [4] for a rigorous definition) is a dynamical network model in which new vertices
connect to a fixed number of existing vertices with a probability proportional to their
degree. In this model the power law exponent is always τ = 3. Recent variants
introduced by van der Hofstad et al. [10] and Dereich and Mörters [8], allow the
connection probability to be proportional to a function of the degree and can therefore
generate networks with variable power law exponent τ > 2. Physicists have predicted
that all these models of scale-free networks with the same power law exponent share
essentially the same global topology, see for example [1].

Indeed, all models listed above have been shown to experience a phase transition at
power law exponent three. If τ > 3 randomly chosen vertices in the largest connected
component have a distance of aymptotic order logarithmic in the network size, whereas
for 2 < τ < 3 the distance behaves like an iterated logarithm of the network size, this
phase is called the ultrasmall regime.

At the critical value τ = 3 a fine analysis has been performed by Bollobás and Riordan
in their seminal paper [3]. They show that two randomly chosen vertices in the original
Barabási-Albert model have a graph distance (1 + o(1)) logN/ log logN . The same result
holds for a variety of other models of scale-free networks when the asymptotic proportion
of vertices with degree at least k scales precisely like k−2. Examples include the rank
one models of Chung and Lu, of Norros and Reittu, inhomogeneous random graphs with
a suitable choice of kernel, and the configuration model.

It was therefore believed that distances in preferential attachment models behave
similar to distances in the configuration model with the same tail of the asymptotic
degree distribution, see for example [14]. It thus came as a surprise when a finer
analysis in [7] showed that in the ultrasmall regime, i.e. when the power law exponent is
in the range 2 < τ < 3, distances in preferential attachment models are twice as long as
in the rank one models above when they have the same tail of the degree distribution.
This is due to the fact that two vertices of high degree in the preferential attachment
model are much more likely to be connected by a path of length two, rather than a single
edge as in the rank one models.

It is the aim of the present paper to study the emergence of this factor two at the
critical value τ = 3. Does the factor occur at a sharp threshold and if so where is this
threshold? Or is there a smooth transition between the factors one and two in a suitably
chosen critical window? To answer these questions we need to consider models that can
be studied with logarithmic corrections in the tails of the aymptotic degree distribution,
which requires us to look at preferential attachment models with nonlinear attachment
rules, an area essentially unexplored in the rigorous literature. We look at preferential
attachment models in the framework of [8, 9]. This allows the attachment probabilities to
be chosen as concave functions of the vertex degree, giving enough flexibility to generate
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Distances in critical random networks

varying asymptotic degree distributions. The critical window for our study emerges when
the asymptotic proportion of nodes with degree at least k scales like k−2(log k)2α+o(1),

for some α > 0. We compare our results on preferential attachment networks with those
on the Norros-Reittu model with i.i.d. weights whose degree sequence has the same tail
behaviour. Our main result shows that typical distances in the preferential attachment
networks are bigger by an asymptotic factor of (1 + 2α)/(1 + α), which converges to two
as α ↑ ∞.

2 Statement of the main results

Our main result concerns the variant of the preferential attachment model introduced
in [8], which has the advantage over other variants of remaining tractable even when
the connection probability is a nonlinear function of the degree of the older vertex. To
define the model precisely, fix a concave function f : N0 → (0,∞), which is called the
attachment rule, and define a sequence of random graphs (GN )N∈N in the following way:

1. The initial graph G1 is a single vertex labelled 1.

2. Given GN , the graph GN+1 is obtained by

• adding a new vertex labelled N + 1;
• independently for any vertex with label m ≤ N insert an edge between this

vertex and the new vertex with probability

f(Z[m,N ])

N
∧ 1,

where Z[m,N ] :=
∑N
i=m+1 1l{m ↔ i} is the number of younger vertices con-

necting to i in GN .

If we orient all edges from the younger to the older vertex we can interpret Z[m,N ]

as the indegree of the vertex labelled i in the oriented graph derived from GN . Note
however that throughout this paper we consider the graphs GN as unoriented and
the notions of connectivity and graph distance dN taken in GN are with reference to
unoriented edges. For any potential edge (v, w) ∈ [N ]2 with v < w we write v ↔ w if
we wish to indicate that (v, w) is contained in GN . When it is convenient to stress the
original orientation we write v ← w or w → v.

The following theorem identifies the class of attachment rules which produces typical
distances of order logN/log logN . It is the main result of this paper.

Theorem 2.1. Let (GN )N∈N be the sublinear preferential attachment model obtained
from a concave attachment rule f satisfying

f(k) =
1

2
k +

α

2

k

log k
+ o
( k

log k

)
, (2.1)

for some α > 0. Consider two vertices U, V chosen independently and uniformly at
random from the largest connected component CN ⊂ GN , then

dN (U, V ) =
( 1

1 + α
+ o(1)

) logN

log logN
with high probability as N →∞.

The lower bound in Theorem 2.1 uses a standard path counting argument and first
moment bounds. The upper bound is much more difficult to obtain and we use a rather
complicated second moment argument for the size of the neighbourhood of a typical
vertex and combine it with a result concerning a dense subgraph among the oldest
vertices using sprinkling-type arguments.
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Distances in critical random networks

It is shown in [8] that the asymptotic degree distribution in the preferential attach-
ment graph GN with the attachment rule given in (2.1) satisfies

1

N

∑
v∈GN

1l{degree(v) ≥ k} = k−2(log k)2α+o(1) in probability. (2.2)

This can be seen as follows. According to [8, Theorem 1.1.], the asymptotic indegree
distribution in GN is explicitly given by

µk =
1

1 + f(k)

k−1∏
j=0

f(j)

1 + f(j)
for k ∈ N ∪ {0}, (2.3)

whereas the outdegree is asymptotically Poisson distributed. Choosing an affine attach-
ment rule f(k) = γk + β, one obtains from (2.3) by use of Stirling’s formula,

µk = O
(
k−1+ 1

γ
)
,

cf. [8, Example 1.3]. This illustrates that the network is a small world for γ < 1/2 and
ultrasmall if γ > 1/2, since for affine f the power law tails of the indegree distribution
dominate the exponential tails of the outdegree distribution. Fixing γ = 1/2 and adding
a logarithmically decaying perturbation into the linear factor, i.e.

f(k) =
(1

2
+

α

2 log k

)
k, for k ≥ 2,

yields, using the Taylor expansion of log(·),

log
( f(j)

1 + f(j)

)
= −2

j
+

2α

j log j
+

2

j2
+O

( 1

j(log j)2

)
,

for large j ∈ N. Note that the latter two terms are summable in j whereas the first two
terms are not. Hence, (2.3) implies that

logµk = −3 log k + 2α log log k +O(1), as k →∞,

since
∑k
j=1 j

−1 ≈ log k and
∑k
j=2 j

−1(log j)−2 ≈ log log k. Noting that the left hand side
of (2.2) converges to

∑∞
j=k µj one obtains the asserted scaling. The same derivation

together with a somewhat tedious but straightforward analysis of the lower order terms
appearing yields (2.2) for the more general shapes of f given in (2.1).

The calculation of the last paragraph also explains our particular choice of attachment
rule. At the critical point τ = 3 (or γ = 1/2), the scale of the typical distances is
rather sensitive to the parameters of the network model under consideration. We limit
ourselves in Theorem 2.1 to those f which change precisely the factor in front of the
logN/ log logN term obtained in [3] to illustrate the emergence of the characteristic
factor 2 that separates distances in preferential attachment models from distances
in rank-1-models in the ultrasmall regime. Note that in [3] the authors rely on the
equivalence of certain instances of the Barabási to another combinatorial model making
it very challenging to adapt their arguments to the regime we are interested in.

In principle, it is possible to obtain distances on a variety of scales between logN and
log logN other than logN/ log logN at τ = 3. One may be able to reverse engineer the
correct attachment function and then give a rigorous proof along the same lines as ours.
We have refrained from doing so, since many of our calculations use explicit estimates
and are not straightforwardly generalisable. A formula relating the typical distance
explicitly to f or to the degree sequence (µk)k≥0, as it can be given for rank-1-models,
see e.g. [5], seems presently out of reach for nonlinear preferential attachment models.
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Distances in critical random networks

We contrast the result of Theorem 2.1 on typical distances in the preferential attach-
ment model with a result on typical distances in the Norros-Reittu model with an i.i.d.
weight sequence parametrised to obtain the same tail behaviour of the empirical degree
distribution. We choose this model for definiteness but the result extends easily to other
rank-one models, such as the Chung-Lu model, and to deterministic weight sequences
with similar asymptotics.

To define the model, given a distribution on the positive reals we generate a sequence
W = (Wi)

∞
i=1 of i.i.d. random variables with this distribution. Let LN =

∑N
n=1Wn denote

the total weight of the vertices in [N ]. For fixed N and given the weights W1, . . . ,WN we
construct the random graph HN = HN (W ) with vertex set [N ] as follows:

• Between any two distinct vertices v, w ∈ [N ] the number of edges is Poisson
distributed with parameter WvWw/LN , independent of all other edges.

• Parallel edges are merged to obtain a simple graph.

Theorem 2.2. Let (HN )N∈N denote the Norros-Reittu model with weight distribution
satisfying

P(W1 ≥ k) = k−2(log k)2α+o(1), (2.4)

for α > 0. Consider two vertices U, V chosen independently and uniformly at random
from the largest connected component CN ⊂ H, then

dN (U, V ) =
( 1

1 + 2α
+ o(1)

) logN

log logN
with high probability as N →∞.

We observe that the characteristic difference in the typical distances between pref-
erential attachment models and rank-one models in the ultrasmall regime does not
occur suddenly at the phase transition, but arises gradually in a critical window. For
networks with empirical degree distributions decaying as in (2.2) there is a factor of
(1 + 2α)/(1 + α) between the typical distances in the two types of networks. This factor
converges to two as we approach the ultrasmall regime by letting α ↑ ∞, and converges
to one as we approach the linear case by letting α ↓ 0. A heuristic explanation for
this transition is that in the preferential attachment model in the critical window the
probabilities that two vertices of high indegree are connected directly or via a young
connector vertex are on the same scale. Hence the asymptotical proportion of the
transistions between vertices on a typical short path that use a connector, is a constant
strictly between zero and one. This constant turns out to be α/(1 + α) and this yields a
factor 1 + α/(1 + α) by which the length of shortest paths in the preferential attachment
model exceed that in the rank-one models.

Qualitatively different behaviour for the preferential attachment and rank-one model
class can also be observed when studying robustness of the giant component under
targeted attack, see Eckhoff and Mörters [11], or in the behaviour of the size of the giant
component near criticality, see forthcoming work of Eckhoff, Mörters and Ortgiese [12].

3 Proof of lower bounds – preferential attachment

Lower bounds for average distances are proved using a first moment method. To set
it up, Section 3.1 provides bounds for expected degrees in the preferential attachment
model, which are used in Section 3.2 to prove the lower bound in Theorem 2.1.

Remark on notation. In all subsequent sections a subscript number on a constant
refers to the place where it is defined, e.g. C1.23 is the constant introduced in Lemma
1.23., C(1.24) the same constant as in equation (1.24), etc.
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Distances in critical random networks

3.1 Degree asymptotics for preferential attachment

It follows immediately from the definition of the preferential attachment graph, that
the network is entirely represented by the collection (Z[1, n])n≥1, (Z[2, n])n≥2, . . . of
independent Markov chains, which we refer to as degree evolutions. In this section,
we derive lower and upper bounds for Ef(Z[m,n]). For conciseness in the formulation
of later results, we allow (Z[m,n])n≥m to start in any integer k ∈ N and denote the
resulting distribution by Pk, its expectation by Ek.

Lemma 3.1. Let k,m ∈ N, Z[m,m] = k be fixed and define, for n ≥ m,

X(n) =
f(Z[m,n])

ξ(m,n)
and Y (n) =

f(Z[m,n])2 + 1
2f(Z[m,n])

n
m

,

where ξ(m,n) is given by

ξ(m,n) =

n−1∏
i=m

(
1 +

1

2i

)
=

Γ(n+ 1
2 )Γ(m)

Γ(m+ 1
2 )Γ(n)

.

Then X = (X(n))n≥m and Y = (Y (n))n≥m are submartingales. If f is affine, then they
are martingales.

Proof. Fix n ≥ m and let ∆Z[m,n] = Z[m,n+ 1]−Z[m,n]. The martingale property of
X for an affine attachment rule f(x) = 1

2x+ β follows immediately from

Ek
[
f(Z[m,n+ 1])

∣∣Z[m,n]
]

= Ek
[
f(Z[m,n]) + 1

21l{n+ 1→ m}
∣∣Z[m,n]

]
= Ek

[
f(Z[m,n])|Z[m,n]

]
+ 1

2E
[ f(Z[m,n])

n

∣∣Z[m,n]
]

=
(
1 + 1

2n

)
f(Z[m,n]).

(3.1)

The corresponding calculation for Y is performed in complete analogy to (3.1), we obtain

E
[
f(Z[m,n+ 1])2

∣∣Z[m,n]
]

=
(
1 + 1

n

)
f(Z[m,n])2 + 1

4nf(Z[m,n]),

and thus

n+1
m E

[
Y (n+ 1)

∣∣Z[m,n]
]

=
(
1 + 1

n

)
f(Z[m,n])2 + 1

4nf(Z[m,n]) + 1
2

(
1 + 1

2n

)
f(Z[m,n])

=
(
1 + 1

n

)
n
mY (n).

Division by (1 + n−1)n/m = (n+ 1)/m now yields the martingale property. For strictly
concave f , we have ∆f(i) = f(i+ 1)− f(i) > 1

2 , for all i ∈ N, and the equalities in the
above calculations turn into inequalities yielding the submartingale property.

By Lemma 3.1, for all n ≥ m ∈ N and k ∈ N,

ξ(m,n) =

n−1∏
i=m

(
1 +

1

2i

)
∈
[√ n

m
, (1 + δ(m))

√
n

m

]
, (3.2)

where δ(m) can be chosen such that limm→∞ δ(m) = 0. In the affine case ξ(m,n) =
1

f(k) E
kf(Z[m,n]), in particular the score ξ(m,N) of a vertex m is asymptotically pro-

portional to its expected degree at time N . For the deviation from the affine case we
introduce the notation

ψk(m,n) :=
Ekf(Z[m,n])

ξ(m,n)
. (3.3)
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Distances in critical random networks

Determining the magnitude of ψk is the first step towards the proof of Theorem 2.1. As
we will see later, it suffices to study the special case

f(k) =
k

2
+
α

2

k

log(k ∨ e)
+ β, for k ≥ 0, (3.4)

with α ≥ 0 and β = f(0) > 0.

Proposition 3.2 (First and second moment upper bound). Let f be an attachment rule
of the form (3.4). Then, for any k ∈ N, there exist constants C = C(k), C ′ = C ′(k) only
dependent on α and β, such that for all pairs m,n ∈ N with n ≥ m,

Ekf(Z[m,n]) ≤ C
√
n

m

(
1 ∨ log n

m

)α
and

Ekf(Z[m,n])2 ≤ C ′ n
m

(
1 ∨ log n

m

)2α
.

Proposition 3.3 (First moment lower bound). Let f be as in (3.4). Then, there exists a
constant c > 0 only dependent on α and β, such that for all pairs m,n ∈ N with n ≥ m

and any k ∈ N ∪ {0}

Ekf(Z[m,n]) ≥ c
√
n

m

(
1 ∨ log n

m

)α
.

We note that the two propositions together imply that there are constants 0 < c′ ≤ C ′
depending only on α and k, such that

c′
(
1 ∨ log n

m

)α ≤ ψk(m,n) ≤ C ′′
(
1 ∨ log n

m

)α
. (3.5)

To prove Proposition 3.2 and Proposition 3.3 we need three auxiliary statements con-
cerning the properties of the attachment rule and the behaviour of the degree evolutions
Z([m,n])n≥m. In particular, in [8] a scaling function Φ is introduced to linearise the
degree evolutions with respect to logarithmic time. As a byproduct of [8, Lemma 2.1],
one obtains useful bounds for the degree evolutions.

Lemma 3.4. Let f be a concave attachment rule and g be given by

g(x) =
x

log(f−1(x))
, for x ∈ {f(k), k ∈ N},

then there is K = K(f) ∈ N, such that g is concave on {f(k), k ≥ K}.

Proof. By interpolation we can assume that f is twice differentiable on (0,∞) with
existing right derivative in 0. Let e denote the inverse of f , which is a well defined convex
function, since f is increasing and concave. The second derivative of g is given by

g′′(x) =
x(e′(x))2(log e(x) + 2)− e(x) log e(x)(xe′′(x) + 2e′(x))

e(x)2(log e(x))3
, (3.6)

for x ∈ [0,∞). To see that g′′(x) ≤ 0 for large x, we note that e′′(x) ≥ 0 and e′(0) ≤
e′(x)(limk→∞∆f(k))−1. As e(x) is bounded below by x − 1, the numerator in (3.6) is
non-positive for sufficiently large x.

Lemma 3.5. Let f satisfy condition (3.4) with α > 0 and set

Φ(x) =

x−1∑
i=0

1

f(i)
, x ∈ N ∪ {0}.
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Distances in critical random networks

Then, for fixed m ∈ N, the process

(
Φ(Z[m,n])−

n−1∑
i=m

1

i

)
n≥m

is a martingale.

Proof. This is the first statement of [8, Lemma 2.1]. Note that in their notation

t− s =

n−1∑
i=m

1

i
, and Z[s, t] = Φ(Z[m,n]).

Lemma 3.6. Let f and Φ be as in Lemma 3.5. Then,

(i) the linear interpolation Φ−1 : [f(0)−1,∞) −→ [0,∞) of the inverse of Φ exists and is
strictly monotone, in particular, for x ≥ 1/f(0) and k ∈ N,

Φ−1(x) ≥ k, if x ≥ Φ(k);

(ii) there are constants c, C > 0, only depending on f , such that, for all x ∈ N,

1

f(0)
∨
(
2 log+ x− 2α log log+ x− c

)
≤ Φ(x) ≤ 2 log+ x− 2α log log+ x+ C,

where log+ y = log(y ∨ 1) and log log+ y = log log(y ∨ e), y ∈ R.

Proof. For (i) note, that the attachment rule f is positive and strictly increasing, which
implies that ∆Φ = 1/f > 0 is strictly decreasing. Thus Φ is concave and strictly
increasing, hence its inverse is well defined, convex, strictly increasing and Φ−1(y) = x,
if y =

∑x−1
i=0 1/f(i). The claimed monotonicity is inherited by the linear interpolation.

To show (ii), we note that Φ(x) ≥ 1/f(0) is true for any x ∈ N and that

1

f(i)
=

2

i
− 2α

i log i
+O

( 1

i(log i)2

)
,

from which the statement follows by summation.

Proof of Proposition 3.2. We begin with the first moment and note that, for n ≥ n,

f(Z[m,n+ 1]) = f(Z[m,n]) + 1l{n+ 1→ m}∆f(Z[m,n]))

and conditioning on Z[m,n] yields

Ek[f(Z[m,n+ 1])|Z[m,n]] = f(Z[m,n]) +
f(Z[m,n])∆f(Z[m,n]))

n
.

Taking expectations we obtain the recursion

Ekf(Z[m,n+ 1]) = Ekf(Z[m,n]) + Ek
f(Z[m,n])∆f(Z[m,n])

n
. (3.7)

Note that for sufficiently large i, log i ≥ log f(i) and hence

∆f(i) =
1

2
+
α

2

( 1

log(i+ 1)
− 1

(log i)(log i+ 1)

)
≤ 1

2
+
α

2

1

log f(i)
. (3.8)
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We may thus fix i0 such that f(i) > e2 and (3.8) hold for all i ≥ i0. For k ≥ i0, it follows
that

Ekf(Z[m,n])∆f(Z[m,n]) ≤ 1

2
Ekf(Z[m,n]) +

α

2
Ek

f(Z[m,n])

log f(Z[m,n])
.

The function x 7→ x/(log x) is concave on (e2,∞), and we apply Jensen’s inequality to the
second term in this sum and obtain

Ekf(Z[m,n])∆f(Z[m,n]) ≤ 1

2
Ekf(Z[m,n]) +

α

2

Ekf(Z[m,n])

logEkf(Z[m,n])
.

Applying this bound to the right hand side of (3.7) yields, after division by Ekf(Z[m,n]),

Ekf(Z[m,n+ 1])

Ekf(Z[m,n])
≤ 1 +

1

2n
+

α

2n logEkf(Z[m,n])
. (3.9)

We can apply the lower bound in (3.2) to bound the denominator of the last term from
below by n

(
1 ∨ log(n/m)

)
to get

Ekf(Z[m,n+ 1])

Ekf(Z[m,n])
≤ 1 +

1

2n
+

α

n(1 ∨ log n
m )

. (3.10)

Iterating both sides of (3.10) in n then yields

Ekf(Z[m,n]) ≤ f(k)

n−1∏
i=m

(
1 +

1

2i
+

α

i(1 ∨ log i
m )

)
,

and using the inequality 1 + x ≤ ex we get

Ekf(Z[m,n]) ≤ f(k) exp
( n−1∑
i=m

1

2i
+

n−1∑
i=m

α

i(1 ∨ log i
m )

)
,

which implies

Ekf(Z[m,n]) ≤ f(k) exp
[1

2

n−1∑
i=m

1

i
+ α

( deme−1∑
i=m

1

i
+

n−1∑
i=deme

1

i log i
m

)]
. (3.11)

We have

e
1
2

∑n−1
i=m

1
i ≤ D

√
n

m
,

for some constant D. To handle the second expression in the exponent we observe that∑deme−1
i=m i−1 ≤ 11/6 and

n−1∑
i=deme

1

i log i
m

≤
∫ n

em

1
m

s
m log s

m

ds+ C ′′ =

∫ n
m

e

1

x log x
dx+ C ′′ = log log n

m + C ′′,

for some absolute constant C ′′. Applying these estimates to (3.11) we arrive at

EkZ[m,n] ≤ f(k)e
11α
6 +C′′D

√
n

m

(
1 ∨ log n

m

)α
,

proving the desired bound for C(k) = f(k)eC
′′+11α/6D.

It remains to deduce the bound for the second moment. We argue as for the first
moment, conditioning as in the derivation of (3.7) yields a similar recursion for the
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function f(·)2 in terms of f(·)2 itself and the differences ∆f(·)2 := ∆(f(·)2). In fact we
obtain

Ekf(Z[m,n])2 = f(k)2 +

n−1∑
s=m

Ek
f(Z[m, s])∆f(Z[m, s])2

s
.

Since f is nondecreasing, we find that ∆f(k)2 ≤ f(k + 1)2∆f(k) and thus

Ekf(Z[m,n])2 ≤ f(k)2 +

n−1∑
s=m

Ek
2f(Z[m, s] + 1)2∆f(Z[m, s])

s
=: E(m,n).

The function E(m,n) can be bounded in the same fashion as the first moment, we obtain,
for n ≥ m,

E(m,n+ 1)

E(m,n)
≤ 1 +

1

n
+

2α

n(1 ∨ log n
m )

,

which implies E(m,n) ≤ C ′(k)
(

log(n/m)
)2α

n/m, and the second moment bound follows.

Proof of Proposition 3.3. By monotonicity, we only need to focus on the lower bound for
k = 0 and begin with the observation that the concavity condition on f implies that

Ef(Z[m,n]) ≥ f(0) + 1
2EZ[m,n]. (3.12)

To obtain a lower bound on Z[m,n], we begin by representing Φ(Z[m,n]) =
∑n−1
i=m i

−1 +

Mn, where (Mn)n≥m is a martingale, using Lemma 3.5. Clearly,

EΦ(Z[m,n]) =
1

f(0)
+

n−1∑
i=m

1

i
,

and using concavity of Φ, Jensen’s inequality implies that

Φ(EZ[m,n]) ≥ 1

f(0)
+

n−1∑
i=m

1

i
,

which yields, together with the upper bound on Φ from Lemma 3.6,

(C + 2 logEZ[m,n]− 2α log logEZ[m,n]) ∨ 0 ≥ log n
m

for some suitably chosen constant C > 0. This yieldsEZ[m,n] ≥ d
√
n/m(logEZ[m,n] ∨ 0)α

for some small constant d > 0 and combining the last inequality with (3.12) we obtain

Ef(Z[m,n]) ≥ f(0) +
d

2

√
n

m
(logEZ[m,n] ∨ 0)α.

The expectation on the right can be bounded below by the expectation in the affine case,
for which a lower bound is implicit in (3.2). For all sufficiently large n > m we get

Ef(Z[m,n]) ≥ f(0) + c′
√
n

m
(1 ∨ log n

m )α

for some c′ > 0 and a further adjustment of the constant, which only depends on the
value f(0), yields the statement of the proposition.

We close this section with two very intuitive stochastic domination results from [9]
which are instrumental in the proof of Theorem 2.1.
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Lemma 3.7 (Stochastic domination I, [9, Lemma 2.9]). Let f be concave and fix integers
m < n1 < · · · < ni. The process (Z[m,n])n≥m conditioned on the event {∆Z[m,nj ] =

0, j = 1, . . . , i} is stochastically dominated by the unconditioned process.

Proof. See [9, p. 18].

Lemma 3.8 (Stochastic domination II, [9, Lemma 2.10]). Let f be concave and fix
i, k ∈ N. For integers ni > · · · > n1 > m > k + i there is a coupling of the process
(Z[m, l])l≥m started in Z[m,m] = k and conditioned on {∆Z[m,nj ] = 1 ∀j ∈ {1, . . . , i}}
and the unconditional process (Z[m, l])l≥m started in Z[m,m] = k + i such that for the
coupled versions (Z̄(c)[m, l], Z̄(u)[m, l])l≥m one has

∆Z̄(c)[m, l] ≤ ∆Z̄(u)[m, l] +

i∑
j=1

1l{l = nj}, for all l ≥ m,

and consequently

Z̄(c)[m, l] ≤ Z̄(u)[m, l], for all l ≥ m.

I.e. the unconditioned process initiated in k + i dominates the process initiated at k and
conditioned to have jumps at times n1, . . . , ni.

Proof. The case i = 1 is the original statement [9, Lemma 2.10] and proven there. The
generalisation to i = 2, 3, . . . is obtained by a straightforward induction argument.

3.2 Lower bounds for distances

The first moment estimates of the previous section now yield lower bounds on
the typical distances in a straightforward manner under the assumption of bounded
correlation for edges along any self-avoiding path.

Lemma 3.9 (First order lower bound on distances). Let GN be a random graph with
vertex set [N ] and assume that there are κN ≥ 0 and ΨN ≥ 0, such that, for any
self-avoiding path P = (v0, . . . , vl), we have

P(P ⊂ GN ) ≤ κlN
l−1∏
j=0

P(vj ↔ vj+1) (3.13)

and

P(v ↔ w) ≤ ΨN√
vw

, for all v, w ∈ [N ], (3.14)

where

lim inf
N→∞

κNΨN logN > 1. (3.15)

Then, for uniformly chosen vertices U, V ∈ GN ,

lim
N→∞

P
(
dN (U, V ) ≥

⌈ logN

log logN + log ΨN + log κN

⌉)
= 1.

Proof. We first observe that for any positive sequence (ai)
∞
i=0 satisfying ai+1/ai ≥ 1 + δ,

for all i ≥ 0 and some fixed δ > 0, we can find a constant C > 0 with

K∑
i=0

ai ≤ CaK , for all K ∈ N. (3.16)
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Let 1 ≤ l ≤ L = L(N) = blogN/(log logN + log(κNΨN ))c and P = (v0, . . . , vl) be self-
avoiding. Assumptions (3.13) and (3.14) imply that

P(P ⊂ GN ) ≤ κlN
l−1∏
j=0

ΨN√
vjvj+1

≤
(
κNΨN

)l
√
v0vl

l−1∏
j=1

1

vj
.

For v, w ∈ [N ] and Pl(v, w) denoting the set of self-avoiding paths of length l from v to w,

P(dN (v, w) ≤ L) ≤
L∑
l=1

∑
(v0,...,vl)∈Pl(v,w)

(
κNΨN

)l
√
vw

l−1∏
j=1

1

vj

≤
L∑
l=1

(
κNΨN

)l
√
vw

( N∑
j=1

1

j

)l−1

≤ 1√
vw

L∑
l=1

κlNΨl
N (logN)l−1.

By (3.15), the terms in the last sum grow at least exponentially in l for all sufficiently
large N , so using (3.16) we infer the existence of an independent constant C > 0 such
that

P(dN (v, w) ≤ L) ≤ C
(
κNΨN logN

)L
√
vw logN

. (3.17)

For any ε ∈ (0, 1), the probability that one of the vertices U, V is smaller than ε/3N is
bounded by 2ε/3 and thus using (3.17) on the complement of this event results in

P(dN (V,W ) ≤ L) ≤
∑

v,w≥ ε3N

P(dN (v, w) ≤ L)P(V = v,W = w) +
2ε

3

≤ 3C

(
κNΨN logN

)L
εN logN

+
2ε

3
=

3C

ε logN
eL[log logN+log(κNΨN )]−logN +

2ε

3

≤ 3C

ε logN
+

2ε

3
,

and the proof is complete.

The lower bounds on the distances in Theorem 2.1 can now be obtained by verifying
the assumptions of Lemma 3.9.

Proposition 3.10 (Lower bounds for PA). The preferential attachment model GN with
attachment rule f of the form (2.1) satisfies

lim
N→∞

P
(
dN (U, V ) ≥

( 1

1 + α
− δ
) logN

log logN

)
= 1,

for every δ > 0 and independently and uniformly chosen vertices U, V ∈ GN .

Proof. Let P = (v0, . . . , vn) be a self-avoiding path along vertices in [N ]. By definition of
the preferential attachment mechanism P(P ⊂ GN ) can be decomposed in the following
way: each edge (u, v) in P corresponds to a jump in the degree evolution of the vertex
u ∧ v and since P is self-avoiding, any given degree evolution can feature at most
twice in the formation of P . Moreover, if a degree evolution is used twice, then it is
used to obtain two consecutive edges of P . By independence of the degree evolutions,
P(P ⊂ GN ) therefore must factorise into terms of the form P(u→ v ← w) and P(u→ v),
corresponding to two jumps and one jump of the repsective degree evolution. To obtain a
bound on P(u→ v ← w) fix v < u < w. By Lemma 3.8, the process (Z ′[v, n])n≥v, started
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at Z ′[v, v] = 1 and evolving according to the law of an unconditioned degree evolution,
stochastically dominates the process (Z[v, n])n≥v conditional on Z[v, u] = 1 and hence

P(∆Z[v, w] = 1|∆Z[v, u] = 1) ≤ P1(∆Z[v, w] = 1).

We obtain

P(u→ v ← w) = P(∆Z[v, w] = ∆Z[v, u] = 1) ≤ P(∆Z[v, u] = 1)P1(∆Z[v, w] = 1),

and in combination with Proposition 3.2 this shows that the edge correlation bound
(3.13) is satisfied with κN = C3.2(1)/C3.2(0). According to Proposition 3.2, we also have

P(w → v) =
Ef(Z[v, w])

w
≤
C3.2(0)(log w

v )α
√
vw

and thus the bound (3.14) holds for ΨN = C3.2(0)(logN)α, in the case where the attach-
ment rule f is of the form (3.4). For such f the distance bound follows therefore for any
choice of δ ∈ (0, 1

1+α ) immediately from Lemma 3.9.
For f of the more general form (2.1), we note that f̄ ≥ f implies that the respective

networks satisfy ḠN ≥ GN stochastically for all N ∈ N, where ≥ is the partial order given
by inclusion on the edge sets of graphs with the same vertex set, so that distances in GN
dominate those in ḠN . By (2.1), for every ε > 0, there is k0 ∈ N such that, for all k ∈ N0,

f(k) ≤ f(k0) +
k

2
+
α+ ε

2

k

1 ∨ log k
=: f̄(k).

Choosing ε suitably in dependence on δ thus allows to deduce the bound for general f
from the special case treated in the previous paragraph.

4 Proof of upper bounds – preferential attachment

To prove the upper bound of Theorem 2.1 we need to find short paths connecting
two uniformly chosen vertices, say U and W . We use the concept of an inner core:
we will show that with high probability U and W have at most distance (1 + o(1))(2 +

2α)−1 logN/ log logN to a small set of vertices that has uniformly bounded diameter, see
for instance [5, 10] for similar ideas.

Starting from a uniform vertex U ∈ GN we perform essentially a breadth-first search,
a precise definition of the exploration algorithm is given below. Roughly speaking, at
each exploration stage k the set of vertices at distance k from U is assessed using
the the score ξ introduced in Lemma 3.1, i.e. for a set V ⊂ [N ] and p ∈ N we call
ξp(V,N) :=

∑
v∈V ξ(v,N)p the total p-score of the set V . The proof is based on the

following three auxiliary results.

• By a local approximation argument we first show that with high probability either
the local exploration around U will quickly lead to a configuration with a high score
or the vertex is in a small component, see Proposition 4.1.

• Using moment estimates we show that starting in a configuration with sufficiently
high score, the score will quickly grow from generation to generation with high
probability, see Proposition 4.12, until we find a configuration with score exceeding√
N/(logN)2α+2.

• Finally, we show that a subset with score exceeding
√
N/N2α+2 is with high proba-

bility connected to a dense subgraph among the oldest vertices. This subgraph is
of bounded diameter, see Proposition 4.14.
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Recall our notations ξ(·, ·) and ψk(·, ·), introduced in Lemma 3.1 and (3.3), respectively,
which are repeatedly used throughout the following sections. If the graph size N is
fixed, we also write ξ(·), ψk(·) for ξ(·, N), ψk(·, N) for ease of notation. Note that, for
m ≤ n ≤ N , (3.2) allows us to appproximate the ratios ξ(m,n)/n as

ξ(m,n)

n
≈ ξ(m)ξ(n)

N
,

we use this approximate factorisation frequently in subsequent proofs. Here and through-
out the article, ‘f1(·) ≈ f2(·)’ means that the ratio of the functions f1, f2 is bounded away
from 0 and∞ uniformly in all arguments.

4.1 Local approximation results – initial phase

A configuration e associates with every vertex a state in the set {veiled, active, dead},
and with every potential edge a state in the set {0, 1, unknown}, the state ‘unknown’
capturing the absence of the information whether an edge is contained in GN or not.
The graph associated with a configuration consists of the vertex set [N ] and all edges in
state 1. The score of a configuration is the cummulative score of all active vertices in the
configuraton.

We now describe the exploration process that we follow in the initial phase as well
as the main phase. Its definition uses a non-increasing sequence (`k)k∈N of truncation
levels, which are set to `k = 1, for all k ∈ N, in the initial phase. The exploration is an
inhomogeneous Markov chain (Ek)k∈N on the space of configurations, which we define
on the probability space associated with the random graph GN . We assume that we start
with an initial configuration E0, and the graph associated with this configuration is a
tree.

In the kth exploration step we go through all active vertices in Ek−1, starting with
the vertex of smallest label and proceeding in increasing order of labels until all active
vertices are treated. For each such vertex v we

1. inspect all potential edges connecting v to veiled vertices in {`k, . . . , N};

2. If the edge does not exist in GN its state becomes 0 and the veiled vertex remains
so;

3. If it does exist in GN its state becomes 1 and the veiled vertex is declared pre-active.

Once all active vertices are explored, they are declared dead, the pre-active vertices are
declared active and the exploration step ends. Note that, if we start with a configuration
associated with a tree, the configuration at the end of an exploration step is again
associated with a tree. We call such configurations proper. The sets of active, veiled and
dead vertices of e are denoted by active(e), veiled(e) and dead(e), respectively.

The following proposition (and nothing else in this paper) relies on a coupling of local
neighbourhoods in GN with the ‘idealised neighbourhood tree’ introduced in [9, Section
1.3]. The probability that this tree is infinite is denoted by p(f). It coincides with the
asymptotic proportion of vertices in the connected component of a uniformly chosen
vertex, and hence with the probability that such a vertex is in the giant component.

Proposition 4.1. Suppose U ∈ GN is uniformly chosen, determining an initial configura-
tion in which U is active, all other vertices are veiled and all edges are in state unknown.
Denote by ξ(V ) :=

∑
v∈V ξ(v) the score associated with a set V ⊂ [N ] of vertices. Given

ε > 0 and s0 > 0 there exists k0 = k0(s0, ε) ∈ N, such that, for sufficiently large N, we
have

P
(
there exists some k ≤ k0 and a set A ⊂ active(Ek) satisfying ξ(A) ≥ s0 ξ(minA)

)
≥ p(f)− ε.
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As the proof of Proposition 4.1 is obtained by application of the results of [9] and is
therefore not self-contained we defer it to Appendix A.

4.2 Score growth – main phase

Our next goal is to fix a sequence (`k)k≥1 which guarantees that the score of en-
countered configurations during an exploration of the giant component grows with high
probability at a certain deterministic rate. We rely on a careful analysis of the exploration
process and the following concentration inequality.

Lemma 4.2 (Lower tail bound for independent sums, [6, Theorem 2.7]). Let I be a finite
set and (Xi)∈I be independent, nonnegative random variables. Then, for any λ > 0,

P
(∑
i∈I

Xi ≤
∑
i∈I
EXi − λ

)
≤ e
− λ2

2
∑
i∈I EX

2
i .

We start the main phase in a proper configuration E0 with the property that the score
of the set A of active vertices in the configuration satisfies ξ(A) ≥ s0ξ(minA) from some
s0 to be specified later. From this initial configuration we restart the exploration process
(Ek : k ∈ N) using a new truncation sequence (`k)k∈N. As before, each Ek is a proper
configuration. While obtaining gradually more information about GN , we need to control
the correlation between discovered edges. This is done in the following two lemmas,
which provide upper and lower bounds on conditional jump probabilities of a degree
evolution Z[m, ·] given disjoint sets I1, I0 of times at which Z[m, ·] is known to jump or to
stay constant, respectively.

Lemma 4.3 (Lower bound for conditional jump probabilities). For every k ∈ N there
exists n0 ∈ N and a constant C(k) > 0 such that for every n0 ≤ m ≤ N , and disjoint sets
I0, I1 ⊂ {m, . . . , N − 1} with #I1 ≤ k − 1 and

ξ(m)ξ(I0) ≤ C(k)
N

2ψk(n0, N)
, (4.1)

the events Ai := {∆Z[m, l] = 1l{i = 1} for all l ∈ Ii}, for i ∈ {0, 1}, satisfy

P(∆Z[m, j] = 1|A0, A1) ≥ 1
2P(∆Z[m, j] = 1|A1) for all j ∈ {m, . . . , N − 1} \ I0.

Proof. Let j ∈ {m, . . . , N − 1} \ I0. We have

P(∆Z[m, j] = 1,∆Z[m, l] = 0 ∀l ∈ I0|A1)

= P(∆Z[m, j] = 1|A1)− P(∆Z[m, j] = 1, ∃l ∈ I0 : ∆Z[m, l] = 1|A1)

≥ P(∆Z[m, j] = 1|A1)−
∑
l∈I0

P(∆Z[n, j] = ∆Z[m, l] = 1|A1).

(4.2)
The last sum can be rewritten∑

l∈I0

P(∆Z[m, j] =∆Z[m, l] = 1|A1)

= P(∆Z[m, j] = 1|A1)
∑
l∈I0

P(∆Z[m, l] = 1|A1,∆Z[m, j] = 1).
(4.3)

The conditioning event in the last sum involves at most k jumps. We may apply Lemma 3.8
to move them to the start of Z[m, ·] and then the estimates (3.5) and (3.2) to obtain a
constant C(k) such that, for all l ∈ I0,

P(∆Z[m, l] = 1|A1,∆Z[m, j] = 1) ≤ Pk(∆Z[m, l] = 1) =
ψk(m, l)ξ(m, l)

l

≤ C(k)
ψk(n0, N)ξ(m)ξ(l)

N
.

(4.4)
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Inserting (4.4) into (4.3) in combination with (4.2) yields

P(∆Z[m, j] = 1,∆Z[m, l] = 0 ∀l ∈ I0|A1)

≥ P(∆Z[m, j] = 1|A1)
(

1− C(k)
ψk(n0, N)ξ(m)ξ(I0)

N

)
,

and using (4.1) yields the statement.

Lemma 4.4 (Upper bound for conditional jump probabilities). For every k ∈ N there
exists n0 ∈ N and C > 0, such that for n0 ≤ m ≤ N and I0, I1 ⊂ {m, . . . , N} disjoint
satisfying (4.1) and #I1 ≤ k,

P(∆Z[m, j] = 1|A1, A0) ≤ C P(∆Z[m, j] = 1|A1), for all j ∈ {m, . . . , N − 1}.

Proof. This is a modification of [9, Lemma 2.12]. We have

P(∆Z[m, j] = 1|A0, A1) ≤ P(∆Z[m, j] = 1|A1)

P(A0|A1)
,

so it suffices to bound P(A0|A1) uniformly from below. Since #I1 ≤ k, we get by
Lemma 3.8,

P(∆Z[m, j] = 0 ∀j ∈ I0|∆Z[m, j] = 1 ∀j ∈ I1) ≥ Pk(∆Z[m, j] = 0 ∀j ∈ I0). (4.5)

Denoting i = min I0, we obtain

Pk(∆Z[m, j] = 0 ∀j ∈ I0) =Pk(∆Z[m, j] = 0 ∀j ∈ I0 \ {i}|∆Z[m, i] = 0)

× Pk(∆Z[m, i] = 0)

≥Pk(∆Z[m, j] = 0 ∀j ∈ I0 \ {i})Pk(∆Z[m, i] = 0),

using Lemma 3.7. Iteration yields

Pk(∆Z[m, j] = 0 ∀j ∈ I0) ≥
∏
j∈I0

Pk(∆Z[m, j] = 0) =
∏
j∈I0

(
1− 1

jE
kf(Z[m, j])

)
, (4.6)

and inserting (4.6) into (4.5) yields

P(∆Z[m, j] = 0 ∀j ∈ I0|∆Z[m, j] = 1 ∀j ∈ I1) ≥
∏
j∈I0

(
1− 1

jE
kf(Z[m, j])

)
. (4.7)

Choose n0 large enough such that n0 ≤ m ≤ j implies j−1Ekf(Z[m, j]) < 1. It is now
possible to find c > 1 such that − log(1− j−1Ekf(Z[m, j])) ≤ cj−1Ekf(Z[m, j]). Thus,
taking the logarithm in (4.7), we bound, using (3.2), for some constant C > 0,

− logP(A0|A1) ≤
∑
j∈I0

c
jE

kf(Z[m, j]) = c
∑
j∈I0

ψk(m, j)ξ(m, j)

j
≤ C ξ(m)ψk(m,N)ξ(I0)

N
,

and the last expression is uniformly bounded by (4.1).

To choose (`k)k≥1 suitably, we need to understand how the choice of cutoff points
influences the growth of the score. To this end let E denote a configuration obtained
after some stage of the exploration process, V ⊂ veiled(E) and consider the random
variable

S(V ) = ξ({v ∈ V : v ↔ active(E)}) = ξ({v ∈ V : ∃a ∈ active(E) : v ↔ a}).
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Distances in critical random networks

The inclusion-exclusion principle yields the lower bound

S(V ) ≥
∑
v∈V

ξ(v)
∑

a∈active(E)

1l{a↔ v} −
∑
v∈V

ξ(v)
∑
a<b

a,b∈active(E)

1l{a↔ v ↔ b}. (4.8)

To derive bounds on the probability that the term after the minus sign is positive, we
define the events

A1(V, E) := {∃v ∈ V ; a < b; a, b ∈ active(E) : ∆Z[v, a− 1] = ∆Z[v, b− 1] = 1},
A2(V, E) := {∃v ∈ V ; a < b; a, b ∈ active(E) : ∆Z[a, v − 1] = ∆Z[b, v − 1] = 1},
A3(V, E) := {∃v ∈ V ; a < b; a, b ∈ active(E) : ∆Z[a, v − 1] = ∆Z[v, b− 1] = 1}.

Recalling that ξ2(A) =
∑
v∈A ξ(v)2 for A ⊂ [N ], we obtain the following bounds:

Proposition 4.5 (Collision probability). Let e be a proper configuration and V ⊂
veiled(e) such that, for some fixed k ∈ N and n0 = n0(k) as in Lemma 4.4,

ξ(minV )ξ(active(e) ∪ dead(e)) ≤ C(k)
N

2ψk(n0, N)
. (4.9)

Then there is a constant C > 0, depending only on f and k, such that

P
( 3⋃
i=1

Ai(V, E)
∣∣∣E = e

)
≤ C

(
1 ∨ log N

minV ∧min(active(e))

)2α+1 ξ(active(e))2 − ξ2(active(e))

N
,

Proof. Repeated use of the union bound yields

P(A1(V, E)|E = e) ≤
∑
v∈V

∑
a,b∈active(e)

a<b

P(∆Z[v, a− 1] = Z[v, b− 1] = 1|E = e)

To drop the conditioning, we first use Lemma 4.4 to remove all dependencies on non-
existing connections given by e and then Lemma 3.8 to move the jump of Z[v, ·] to the
start. Note that we are allowed to do this as condition (4.9) and the monotinicity of
ξ ensure that (4.1) is satisfied, since certainly active(e) ∪ dead(e) contains the set of
continuity points I0 appearing in the conditioning of Z[v, ·].

P( ∆Z[v, a− 1] = ∆Z[v, b− 1] = 1|E = e)

= P(∆Z[v, b− 1] = 1|E = e,∆Z[v, a− 1] = 1)P(∆Z[v, a− 1] = 1|E = e)

≤ C2
4.4P

1(∆Z[v, b− 1] = 1)P(∆Z[v, a− 1] = 1)

Using Proposition 3.2 yields a constant C, such that

P( ∆Z[v, a− 1]

≤ C2
4.4C

(log b
v ∨ 1)α(log a

v ∨ 1)α

v
√
ab

≤ Bξ(a)ξ(b)

vN
(log b

v ∨ 1)α(log a
v ∨ 1)α,

where the last inequality follows by using (3.2) and combining all occurring constants
into B > 0. Hence, with v0 = minV , we get

P(A1(V, E)|E = e) ≤ B

N
(log N

v0
∨ 1)2α

∑
v∈V

1

v

∑
a,b∈active(e)

a<b

ξ(a)ξ(b).
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For A2(V, E) we need to take into account that, for a ∈ active(e), Z[a, ·] may only be
conditioned to have at most one jump. This holds since e is proper, i.e. the active and
dead vertices of e together with the explored edges form a tree implying that exactly one
edge incident to a has been explored. Using this fact to derive an upper bound on the
number of jumps appearing in the conditioning of Z[a, ·], a similar calculation as above
yields

P(A2(V, E)|E = e) ≤ B′

N
(log N

a0
∨ 1)2α

∑
v∈V

1

v

∑
a,b∈active(e)

a<b

ξ(a)ξ(b),

for some B′ > 0 and a0 = min(active(e)). Analogously, we obtain

P(A3(V, E)|E = e) ≤ B′′

N
(log N

a0∧v0 ∨ 1)2α
∑
v∈V

1

v

∑
a,b∈active(e)

a<b

ξ(a)ξ(b),

for some B′′ > 0. Setting B′′′ = max(B,B′, B′′) these three estimates together with the
union bound yield

P
( 3⋃
i=1

Ai(V, E)
∣∣∣E = e

)
≤ B′′′

N
(log N

a0∧v0 ∨ 1)2α
(
ξ(active(e))2 − ξ2(active(e))

)∑
v∈V

1

v
,

which implies the claimed upper bound.

Remark 4.6. Note that we only use the that e is proper to make sure that an active
vertex has at most one explored adjacent edge. Our proofs still work, if we drop the
requirement that the explored subgraph is a tree and replace it with the requirement
that its indegree is bounded in N .

Proposition 4.5 allows us to ignore the second sum of (4.8) outside a set of small
probability. Decomposing the first sum of (4.8) according to the orientation of the
occuring edges yields∑
v∈V

ξ(v)
∑

a∈active(E)

1l{a↔ v} =
∑
v∈V

∑
a∈active(E)

ξ(v)1l{v ← a}+
∑

a∈active(E)

∑
v∈V

ξ(v)1l{a← v}

=: S<(V ) + S>(V ).

Setting

Xv :=
∑

a∈active(E)

ξ(v)1l{v ← a}, v ∈ V and Ya :=
∑
v∈V

ξ(v)1l{a← v}, a ∈ active(E),

we note that due to the independence of indegree evolutions S<(V ) =
∑
v∈V Xv and

S>(V ) =
∑
a∈active(E) Ya are independent and both are sums of elements of the collection

{Xv, Ya : v ∈ V, a ∈ a ∈ active(E)} of mutually independent random variables. In order to
apply Lemma 4.2 we determine moment bounds for Xv, v ∈ V , Ya, a ∈ active(E).

Proposition 4.7 (First and second moments of vertex scores). Let e be a proper config-
uration and V ⊂ veiled(e) such that (4.9) is satisfied for some k ∈ N.

(i) There are constants 0 < c,C <∞ depending only on f and k, such that for all v ∈ V

E[Xv|E = e] ≥ c
ξ(v)2

N

∑
a∈active(e):

a>v

ξ(a)(log a
v ∨ 1)α (4.10)

and

E[X2
v |E = e] ≤ Cξ(v)2

( ∑
a,b∈active(e):
a,b>v, a 6=b

(log a
v∨1)α(log b

v∨1)α

v
√
ab

+
∑

a∈active(e):
a>v

(log a
v∨1)α√
va

)
.

(4.11)
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(ii) There are constants 0 < c,C < ∞ depending only on f and k, such that for all
a ∈ active(e)

E[Ya|E = e] ≥ c
ξ(a)

N

∑
v∈V :
v>a

ξ(v)2(log v
a ∨ 1)α (4.12)

and

E[Y 2
a |E = e] ≤ C

( ∑
v,w∈V :

v,w>a, v 6=w

ξ(v)ξ(w)
(log v

a∨1)α(log w
a ∨1)α

a
√
vw

+
∑
v∈V :
v>a

ξ(v)2 (log v
a∨1)α√
va

)
.

(4.13)

Proof. As Xv is a constant multiple of a sum of indicators, its first conditional moment is

ξ(v)
∑

a∈active(e)

P(∆Z[v, a− 1] = 1|E = e) ≥ 1

2
ξ(v)

∑
a∈active(e)

P(∆Z[v, a− 1] = 1)

≥ c3.3
2
ξ(v)

∑
a∈active(e):

a>v

(log a
v ∨ 1)α
√
va

≥ cξ(v)2

N

∑
a∈active(e):

a>v

ξ(a)(log a
v ∨ 1)α,

where we have used Lemmas 4.3 and 3.7, Proposition 3.3, (3.2) and chosen some
appropiate constant c > 0. A similar calculation for the second moment relies on
Lemmas 4.4, 3.7 and 3.8 and Proposition 3.2 and reads

ξ(v)2
∑

a,b∈active(e)

P(∆Z[v, a− 1] = ∆Z[v, b− 1] = 1|E = e)

= ξ(v)2
∑

a,b∈active(E)

(
P(∆Z[v, a ∨ b− 1] = 1|E = e,∆Z[v, a ∧ b− 1] = 1)

× P(∆Z[v, a ∧ b− 1] = 1|E = e)
)

≤ C2
4.4ξ(v)2

∑
a,b∈active(e)

P1(∆Z[v, a ∨ b− 1] = 1)1l{a6=b}P(∆Z[v, a ∧ b− 1] = 1)

≤ C2
4.4C

2
3.2ξ(v)2

( ∑
a,b∈active(e):
a,b>v, a 6=b

(log a
v ∨ 1)α(log b

v ∨ 1)α

v
√
ab

+
∑

a∈active(e):
a>v

(log a
v ∨ 1)α
√
va

)
,

This establishes (i). Turning to (ii) we obtain firstly, for some appropriately chosen c > 0,

E[Ya|E = e] =
∑
v∈V

ξ(v)P(∆Z[a, v − 1] = 1|E = e)

≥ 1
2

∑
v∈V

ξ(v)P(∆Z[a, v − 1] = 1) ≥ c ξ(a)
∑

v∈V :v>a

1

v
(log v

a ∨ 1)α,

where we have used Lemmas 4.3 and 3.7 for the first inequality and Proposition 3.3 and
(3.2) for the second. Secondly, analogous to the second moment calculation for (i) we get

E[Y 2
a |E = e]

=
∑
v,w∈V

ξ(v)ξ(w)P(∆Z[a, v − 1] = ∆Z[a,w − 1] = 1|E = e)

=
∑
v,w∈V

ξ(v)ξ(w)
(
P(∆Z[a, v ∨ w − 1] = 1|E = e,∆Z[a, v ∧ w − 1] = 1)

× P(∆Z[a, v ∧ w − 1] = 1|E = e)
)

≤ C2
4.4

∑
v,w∈V

ξ(v)ξ(w)P2(∆Z[a, v ∨ w − 1] = 1)1l{v 6=w}P1(∆Z[a, v ∧ w − 1] = 1)

≤ C2
4.4C

2
3.2

( ∑
v,w∈V :

v,w>a, v 6=w

ξ(v)ξ(w)
(log v

a∨1)α(log w
a ∨1)α

a
√
vw

+
∑
v∈V
v>a

ξ(v)2 (log v
a∨1)α√
va

)
,
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and the claim follows.

The lower bounds (4.10) and (4.12) now imply, that for e, V chosen as before

E[S<(V ) + S>(V )|E = e]

≥ c(4.10)∧c(4.12)

N

∑
a∈active(e)

v∈V

1l{v < a}ξ(v)2ξ(a)
(

log a
v ∨ 1

)α
+ 1l{v > a}ξ(v)2ξ(a)

(
log v

a ∨ 1
)α

≥ c
∑

a∈active(e)

ξ(a)
∑
v∈V

1

v

(
log a∨v

a∧v ∨ 1
)α
, (4.14)

for some small c > 0. The factor
∑
v∈V v

−1
(

log((a ∨ v)/(a ∧ v)) ∨ 1
)α

in the last sum is
large as long as the set V is sufficiently dense in [N ]. In fact, the following instance of
the pigeonhole principle applies, which is proved as Lemma A.2 in Appendix A.

Lemma 4.8. There are η ∈ (0, 1) and c > 0 only depending on α such that for any choice
of A ⊂ {d2e2e, . . . , N} and v0 <

minA
e2 ∧ ηN satisfying(

log N
minA ∨ 1

)α
ξ2(A) ≤ c

2
N
(

log N
v0

)α+1
, (4.15)

we have, for V = {v0, . . . , N} \A and any a ∈ A,∑
v∈V

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ c

2

(
log N

v0

)α+1
, (4.16)

if N is suffciently large.

We summarise our observations in the following lemma.

Lemma 4.9 (Concentration of score). Let e be a proper configuration with a0 =

min(active(e)) and let v0 < (a0/e
2) ∧ η4.8N such that V = {v0, . . . , N} ∩ veiled(e) sat-

isfies both (4.9) for k = 2 and (4.15) for A = active(e). Then there exists a constant c > 0

such that, for all β ∈ (0, 1),

P
(
S(V ) ≤ (1− β) c(4.14)c4.8

2

(
log N

v0

)α+1
ξ(active(e))

∣∣E = e
)

≤ exp
(
− β2cmin

{
ξ(active(e))2

ξ2(active(e)) ,
ξ(active(e))(log(N/v0))α+2

ξ(v0) , v0

(
log N

v0

)2})
+ C4.5

(
log N

v0
∨ 1
)2α+1 ξ(active(e))2 − ξ2(active(e))

N
.

Proof. On the complement of the event A := A1(V, E) ∪A2(V, E) ∪A3(V, E) we choose

λ = β c(4.14)c4.8
2

(
log N

v0

)α+1
ξ(active(e)),

set d = c(4.14)c4.8/2, and note that by (4.14),

P
(
{S(V ) ≤ (1− β)d

(
log N

v0

)α+1
ξ(active(e))} ∩ A

∣∣E = e
)

≤ P
(
{S(V ) ≤ E[S(V )|E = e]− βd

(
log N

v0

)α+1
ξ(active(e))} ∩ A

∣∣E = e
)
.

Applying Lemma 4.2, we obtain

P
(
{S(V ) ≤ (1− β)d

(
log N

v0

)α+1
ξ(active(e))} ∩ A

∣∣E = e
)

≤ exp
(
− β2d2

2

(log N
v0

)2α+2ξ(active(e))2∑
v∈V E[Xv|E = e] +

∑
a∈active(e)E[Ya|E = e]

) (4.17)
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and by (4.11) and (4.13), the sum in the denominator can be bounded∑
v∈V

E[Xv|E = e] +
∑

a∈active(e)

E[Ya|E = e]

≤ C(4.11)

∑
v∈V

ξ(v)2
( ∑
a,b∈active(e):
a,b>v, a 6=b

(log a
v∨1)α(log b

v∨1)α

v
√
ab

+
∑

a∈active(e):
a>v

(log a
v∨1)α√
va

)
+ C(4.13)

∑
a∈active(e)

( ∑
v,w∈V :

v,w>a, v 6=w

ξ(v)ξ(w)
(log v

a∨1)α(log w
a ∨1)α

a
√
vw

+
∑
v∈V :
v>a

ξ(v)2 (log v
a∨1)α√
va

)
.

(4.18)

We now calculate bounds for all the terms appearing on the right hand side of (4.18).
Observe that, for some appropiately chosen constant D1 > 0, by (3.2)

ρ1(v) :=
∑

a,b∈active(e):
a,b>v, a 6=b

(log a
v∨1)α(log b

v∨1)α

v
√
ab

≤
(

log N
v0

)2αD1

v

∑
a,b∈active(e):
a,b>v, a 6=b

ξ(a)ξ(b)

N

and similarly, for some D2 > 0,

ρ2(v) :=
∑

a∈active(e):
a>v

(log a
v∨1)α√
va

≤ D2

(
log N

v0

)α ξ(v)ξ(active(e))

N
.

Combining the two estimates just obtained repeated use of (3.2) yields∑
v∈V

ξ(v)2ρ1(v)+
∑
v∈V

ξ(v)2ρ2(v)

≤ Dmax
{ 1

v0

(
log N

v0

)2α
ξ(active(e))2,

(
log N

v0

)α
ξ(v0)ξ(active(e))

} (4.19)

for some D > 0, using
∑
v∈V ξ(v)2/v = O(N

∑N
v=v0

v−2) = O(N/v0) for the first sum,∑
v∈V ξ(v)3 = O(N3/2

∑N
v=v0

v−3/2) = O(N3/2/v0
1/2) for the second sum, and finally

x+ y ≤ 2(x ∨ y). Next, we obtain in a similar way, for some D3 > 0,

ρ3(a) :=
∑
v,w∈V :

v,w>a, v 6=w

ξ(v)ξ(w)
(log v

a∨1)α(log w
a ∨1)α

a
√
vw

≤ D3

(
log N

v0

)2αN
a

∑
v,w∈V :

v,w>a, v 6=w

1

vw

and for some D4 > 0

ρ4(a) :=
∑
v∈V :
v>a

ξ(v)2 (log v
a∨1)α√
va

≤ D4

(
log N

v0

)α N√
a

∑
v∈V :
v>a

v−
3
2 .

Consequently, mirroring the derivation of (4.19), we obtain∑
a∈active(e)

ρ3(a)+
∑

a∈active(e)

ρ4(a)

≤ D′max
{(

log N
v0

)2α+2
ξ2(active(e)),

(
log N

v0

)α
ξ(v0)ξ(active(e))

}
,

(4.20)

for some D′ > 0. Applying (4.19) and (4.20) in (4.18) yields a bound on the denominator
in (4.17) from which the exponential term in the conclusion of the lemma is obtained.
To conclude the proof it remains to note that the second term in the conclusion of the
lemma is the bound on the probability of the occurence of A1(V, E) ∪A2(V, E) ∪A3(V, E)

obtained in Proposition 4.5.
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As a consequence of Lemma 4.9 we are able to bound the growth of the score from
below as long as the total score of the explored vertices is not too large. To this end
define, for given s0 > 0 and δ0 ∈ (0, 1

2 ),

`k := max

{
n ∈ [N ] :

√
N

n
≥ s0δ0

1 ∨ log k

k−1∏
i=1

c(4.14)c4.8
4

(
log N

`i

)α+1

}
for all k ≥ 1. (4.21)

If the maximum in the above definition is taken over the empty set, we let `k = 1.

Remark 4.10. Note that `k is defined in such a way that, up to a factor of order log k,
(ξ(`k))k≥1 mimics the superexponential growth of (Sk)k≥1 described in Lemma 4.9. It is
precisely this property of (`k)k≥1 which makes them the correct truncation points for
our exploration.

Denoting by K∗ := K∗(N) the first index k for which `k+1 = `k, we check that (`k)k≥1

satisfies the following decay condition.

Lemma 4.11. For any α ≥ 0, δ ∈ (0, 2α+ 2) let

k0(δ, α) = min
{
k ≥ 3 : δ log k ≥ (2α+ 2− δ)k log

(
1 + 1

k

)
+ 1
}

then
`k ≤ Ne−(2α+2−δ)(k−k0) log k for all k0 ≤ k < K∗(N).

Also, there is a constant c > 0 depending only on s0 such that

`k ≥ cNe−(4α+5)k(1∨log k), for all k.

A verification of Lemma 4.11 is provided in Appendix A, see Lemma A.3. We conclude
this section with the central result on the growth of the score in the truncated exploration.
While Lemma 4.9 states that with high probability the total score of the active vertices
grows by a factor close to (logN)α+1 in every exploration step, the next proposition
states that with high probability we may iterate the estimate of Lemma 4.9 and indeed
reach a large score after O(logN/ log logN) stages.

Proposition 4.12 (Score growth). Let ε, η > 0 and set

K =
⌈( 1

2α+ 2
+ η
) logN

log logN

⌉
.

Then there are s0(ε) > 0, δ0(ε) ∈ (0, 1
2 ) and N0(ε, η) such that

P
(
ξ(active(EK) ∪ dead(EK)) ≤

√
N

(logN)α+1

)
≤ ε, for all N ≥ N0,

where (Ek)k≥0 is the exploration in GN with truncation (`k)k≥1 as in (4.21) that is started
in a proper configuration E0 satisfying ξ(active(E0))/ξ(min(active(E0))) ≥ s0.

Proof. We first note that, for fixed η > 0, K∗ < K for all sufficiently large N by the first
statement in Lemma 4.11. We wish to iteratively apply Lemma 4.9 until k ≤ K∗(N) is so
large that the second conclusion of Lemma 4.11 allows us to establish the lower bound
for ξ(active(EK) ∪ dead(EK)). To this end let, for k ≥ 0,

Sk := ξ(active(Ek)), Hk := ξ(active(Ek) ∪ dead(Ek)), ak := min(active(Ek)),

and furthermore

K0 := K0(N) := min
{
k : Hk >

√
N

(logN)α+1

}
.

To accomplish this, we need to bound the total probability of error which arises by
repeatedly applying Lemma 4.9. The proof is complete once we have verified the
following three claims:

EJP 22 (2017), paper 77.
Page 22/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP92
http://www.imstat.org/ejp/


Distances in critical random networks

(i) For given ε, δ0 we may choose s0 > 0 such that, for all sufficiently large N , the con-
figuration E0 and `1 satisfy the conditions of Lemma 4.9 unless K0 = 0. Additionally,
with probability exceeding 1 − γ1, for γ1 := 6ε/(2π2) we have, for all sufficiently
large N ,

S1 >
c(4.14)c4.8

4

(
log N

`1

)α+1
S0.

(ii) Conditional on k < K0 ∧K∗ and Ej , 1 ≤ j ≤ k, satisfying

Sj >
c(4.14)c4.8

4

(
log N

`j

)α+1
Sj−1,

the configuration Ek and `k+1 satisfy the conditions of Lemma 4.9. Consequently,
we can find γk > 0, such that with conditional probability exceeding 1− γk we have

Sk+1 >
c(4.14)c4.8

4

(
log N

`k+1

)α+1
Sk,

and thus K∗ ≥ K0 ≥ k + 1.

(iii) δ0 = δ0(ε) may be fixed in such a way that (γk)k≥1 from (i) and (ii) satisfies∑L
k=1 γk < ε as N →∞ for any L = O(logN(log logN)−1).

Note that (γk)k≥1 serves as a proxy for the probability that in exploration step k + 1 the
exploration process violates the conditions of Lemma 4.9.

Proof of (i): If K0 = 0, then there is nothing to show. Let K0 > 0. Given δ0, the
condition `1 < a0/e

2 is satisfied by choosing s0 sufficiently large. The conditions `1 <
η4.8N , (4.9) and (4.15) are now implicit in the assumption K0 > 0, for all sufficiently
large N . Application of Lemma 4.9 with β = 1

2 yields

P
(
S1 ≤ c(4.14)c4.8

4

(
log N

`1

)α+1
ξ(active(E0))

)
≤ e−

c4.9
4 s0 + o(1),

as N →∞, thus, after possibly increasing s0 again, (i) holds.
Proof of (ii): Assume that K∗ > K0 > k and note that this implies ξ(`k+1) ≤

√
N .

By definition of the exploration we have ak ≥ `k. By Lemma 4.11 and the definition
of (`k)k≥1, the network size N can be chosen so large that (`k)k≥1 decays faster than
(e−2k)k≥1 for all k < K∗(N). In particular `k+1 < ak/e

2 holds. As in the proof of (i),
K0 > k implies that (4.15) is satisfied and also, using ξ(`k+1) ≤

√
N, (4.9) must hold.

Hence we may again apply Lemma 4.9 with β = 1
2 to obtain that, conditionally on Ek,

P
(
Sk+1 ≤ c(4.14)c4.8

4

(
log N

`k+1

)α+1
Sk

)
≤ exp

(
− c4.9

4 min
{ S2

k

ξ2(active(Ek)) ,
Sk(log(N`−1

k+1))α+2

ξ(`k+1) , `k+1(log(N`−1
k+1))2

})
+ C4.5

(
log N

`k+1
∨ 1
)2α+1S2

k

N

=: ∆k + Γk. (4.22)

The conclusion K∗ ≥ K0 ≥ k + 1 holds if

Sk+1 >
c(4.14)c4.8

4

(
log N

`k+1

)α+1
Sk,

as Sk+1/Sk ≥ ξ(`k+1)/ξ(`k), by choice of the defining recursion (4.21) for the truncation
(`k)k≥1.

Proof of (iii): It remains to bound the random terms ∆k + Γk, k ≤ K0, appearing in
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(4.22) by some deterministic sequence γk with the desired summability property. We
start with Γk. Since Sk < HK0

, we get

Γk ≤ C4.5(logN)2α+1S
2
k

N
≤ C4.5

logN
,

thus
∑L
k=1 Γk = O((log logN)−1) for L = O(logN(log logN)−1). To bound ∆k, we analyse

the three terms under minimisation separately. Since x 7→ x(log(N/x))2 is strictly
increasing on [1, N/e2], the deterministic rightmost term satisfies

`k+1

(
log(N/`k+1)

)2 ≥ (logN)2.

By definition of (`k)k≥1 and (3.2) there is some constant c, independent of k,N and ε,
such that ξ(`k+1) ≤ c(log(N/`k))α+1ξ(`k) and thus

Sk(log N
`k+1

)α+2

ξ(`k+1)
≥

Sk(log N
`k+1

)α+2

c
(

log N
`k

)α+1
ξ(`k)

≥ Sk
cξ(`k)

.

Since ∑
u∈active(Ek)

ξ2(u) ≤ ξ(ak)Sk ≤ ξ(`k)Sk,

we also have
S2
k

ξ2(active(Ek))
≥ Sk
ξ(`k)

.

On the conditioning event of (ii), we have

Sk ≥ s0

k∏
i=1

c(4.14)c4.8
4

(
log N

`i

)α+1
(4.23)

and thus
Sk
ξ(`k)

≥ (1 ∨ log k)
c′

δ0
,

for some constant c′ > 0. Combining all estimates we obtain, for some c′′ > 0,

∆k ≤ e
−c′′
( (1∨log k)

δ0
∧(logN)2

)
.

This implies that by choosing δ0 small enough we may obtain ∆k ≤
(
6ε/(2π2k2)

)
∨

N−c
′′ logN and the last claim is proved.

4.3 Connectivity of high degree vertices

We now provide a connectivity result for those vertices in GN which have a very high
degree. This sprinkling-type argument is close in spirit to the proof of a diameter result
for the ‘inner core’ of a different preferential attachment model in [10].

Fix a sequence (MN )N∈N of positive integers satisfying logMN = o(logN). We will
now define a random subset CN ⊂ [N ] of size at most MN which has small diameter in
GN . To this end, fix ε ∈ (0, 1) and associate N ∈ N with Nε = d(1 + ε)−1Ne. Assuming
that N is sufficiently large such that MN ≤ Nε we call the elements of the random set

CN = {v = 1, . . . ,MN : f(Z[v,Nε]) ≥ 1
2Ef(Z[MN , Nε])} (4.24)

core vertices of GN . The subgraph of GN induced by CN is denoted by coreN . We show
below that the diameter of coreN is bounded with high probability, but first we provide
an estimate for the number of vertices in CN .
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Lemma 4.13 (Size of coreN ). There exists a constant c = c(ε) > 0 such that

#CN ≥ cMN , with high probability as N →∞,

where CN is as in (4.24).

Proof. Note that by the Paley-Zygmund inequality one has for v ∈ [MN ]

P
(
f(Z[v,Nε]) ≥ 1

2Ef(Z[v,Nε])
)
≥ (Ef(Z[v,Nε]))

2

4Ef(Z[v,Nε])2
=: p(v,N).

By Propositions 3.2 and 3.3 there exists p∗ > 0 such that for large N ∈ N, p(v,N) > p∗ for
all v ≤MN . Since further the degree evolutions (Z[v, ·] : v = 1, . . . ,MN ) are independent
and Ef(Z[v,Nε]) ≥ Ef(Z[MN , Nε]), for all v ∈ [MN ], we conclude that

#CN
MN

≥ p∗/2, with high probability.

Proposition 4.14 (Diameter of coreN ). Let coreN be the subgraph of GN induced by
CN given in (4.24) and MN = b(logN)Rc for some R > 0. Then, with high probability as
N →∞ we have

diam(coreN ) = max
u,v∈CN

dN (u, v) ≤ max
(

6,
⌊R
α

⌋
+ 2
)
.

For the proof of Proposition 4.14 we use multinomial random graphs. This random
graph model depends on three parameters: a finite set of vertices V, an iteration number
t and a success probability r ≥ 0 with

r
#V(#V − 1)

2
≤ 1.

The corresponding multinomial random graph is an undirected multigraph that is con-
structed as follows. We denote by A(v, w) the random number of edges that connect two
distinct vertices v and w of V. AnM(V, t, r)-graph (V,A) is obtained by choosing

(A(v, w) : v < w distinct vertices of V)

multinomially distributed with t draws and identical success probabilities r. Note that
we do not assume that r#V(#V−1)

2 = 1 which means that formally the random vector has
to be extended by a dummy variable which gets the remaining mass.

Recall that the sum of two independent multinomial random variables with iden-
tical success probabilities is again multinomial. Hence the sum of two independent
multinomial random graphs with identical sets of vertices and success probabilities is a
multinomial random graph with the same success probability with the number of draws
being the sum of the two draw parameters. We will make use of this fact in the proof of
Proposition 4.14 below.

Lemma 4.15. Let (V,A) ∼M(V, t, r) with rt ≥ #Vρ−1 for some ρ > 0. Then, with high
probability as t→∞, the diameter of (V,A) is bounded by max(3, b1/ρc+ 1).

Proof. The detailed argument is given in Lemma A.2 and Proposition 3.2 of [10]. We
give a brief outline here: First one shows that the diameter of (V,A) is bounded by the
diameter of the uniform random graph Gu(#V,m) with #V vertices and m = m(t) edges,
where

m(t) =
⌈#V(#V − 1)

4

(
1− (1− r)t

)⌉
.
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The graph Gu(#V,m) is in turn asymptotically equivalent to the classical Erdős-Rényi
graph G(#V, p) on #V vertices with edge probability p = p(t) given by

p(t) =
1

2

(
1− (1− r)t

)
. (4.25)

The well known diameter result for dense G(n, p), see e.g. [2, Corollary 10.12], states
that G(n, p) has with high probability diameter d ≥ 3 if

lim
n→∞

log n

d
− 3 log log n =∞, (4.26)

lim
n→∞

pdnd−1 − 2 log n =∞, (4.27)

and
lim
n→∞

pd−1nd−2 − 2 log n = −∞. (4.28)

Finally, by assumption, for n = #V, we have rt ≥ nρ−1 and therefore by (4.25)

p = c(1 + o(1))nρ−1,

for some constant c. We may assume ρ ≤ 1/2, since clearly decreasing ρ only increases
the diameter. Setting d = b1/ρc+ 1 it is obvious, that (4.26) holds and furthermore

pdnd−1 ≈ ndρ−1 = nb1/ρcρ−1+ρ and pd−1nd−2 ≈ n(d−1)ρ−1 = nb1/ρcρ−1,

implying that (4.27) and (4.28) are satisfied as well.

Proof of Proposition 4.14. We use a coupling of coreN and a multinomial random graph
to show that the diameter of the former is small. Recall that the preferential attachment
model is uniquely specified by the degree evolutions which can be constructed as follows.
Take a family of independent Uniform[0, 1] random variables (U(v, n) : v, n ∈ N with v <
n) and define iteratively

Z[v, n] = 0 and Z[v, n] = Z[v, n− 1] + 1l
{
U(v, n) ≤ f(Z[v, n− 1])

n− 1

}
, for n = v + 1, . . .

(4.29)
Let N ∈ N and cN ⊂ [Nε] such that

#cN →∞ and log(#cN ) = o(logN) (4.30)

and construct for each n ∈ [N ]\[Nε] a multinomial random graph (cN ,An) with iteration
number one by the rule that for distinct vertices v, v′ ∈ cN the edge (v, v′) is present if
and only if

{v, v′} = {w ∈ cN : U(w, n) ≤ Ef(Z[MN , Nε])/(2N)}, (4.31)

thus the success probability equals

r(N) :=
(Ef(Z[MN , Nε])

2N

)2(
1− Ef(Z[MN , Nε])

2N

)#cN−2

. (4.32)

Clearly, r(N) ∈ (0, 1) if N is sufficiently large by (4.30). Note that the random graphs
(cN ,A[Nε]+1), . . . , (cN ,A[N ]) are independent and the sum of the latter graphs, say
(cN ,AN ), is a multinomial random graph with iteration number N − Nε and success
probability r(N). Furthermore, by (4.31) and (4.29), for any v, w ∈ cN with f(Z[v,Nε]) ≥
Ef(Z[MN , Nε]) and f(Z[w,Nε]) ≥ Ef(Z[MN , Nε]) the existence of the edge (v, w) in the
multinomial graph (cN ,An) (n = [Nε] + 1, . . . , [N ]) implies the existence of edges (v, n)
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and (w, n) in the graph GN . Thus the diameter of cN in GN is less than twice the diameter
of the multinomial random graph (cN ,AN ).

Next we show that for a sequence of sets cN ⊂ [Nε] satisfying δMN ≤ #cN ≤ MN ,
for some δ > 0, the random graphs (cN ,AN ) satisfy the assumptions of Lemma 4.15. By
Proposition 3.2, for some C > 0,(

1− Ef(Z[MN , Nε])

2N

)#cN−2

≥
(

1− C(logN)α√
N

)#cN

= 1− C#cN (logN)α√
N

+O
(
(#c2N (logN)2αN−1)

)
,

which converges to one as log(#cN ) = o(logN). Hence we obtain, using again Proposi-
tion 3.2, that

r(N) ≥ d
(log Nε

MN
)2α Nε

MN

N2
≥ dε

(logN)2α

N#cN
,

for some suitably chosen constants d, dε > 0. It now follows from N −Nε ≥ Nε/2, that

r(N)(N −Nε) ≥
ε

2
dε

(logN)2α

#cN
=
ε

2
dε(#cN )

2α log logN/ log #cN−1
.

Using that log #cN = R log logN + O(1), by choice of MN and cN , we thus may apply
Lemma 4.15 for any ρ < 2α/R, which yields a diameter bound of max(3, bR/(2α)c + 1)

on (cN ,AN ) with high probability as N →∞.
Finally, note that {CN = cN} and the random variables {U(v, n) : v ∈ cN , n ∈ [N ]\[Nε]}

are independent. Hence the event {CN = cN} is independent of the realisation of
(cN ,AN ). By Lemma 4.13, the conclusion of the last paragraph may thus be applied
to (CN ,AN ) outside a set of vanishing probability. Recalling that one edge in (CN ,A)

corresponds to two edges in GN now yields the diameter bound for coreN claimed in the
proposition with high probability as N →∞.

4.4 Proof of Theorem 2.1

It remains to prove the upper bound by combining the results about the first two
phases of the explorations of two independently chosen vertices, and join the connected
components uncovered during these explorations to CN .

Proof of Theorem 2.1. We start local explorations in the uniformly chosen vertices U, V
from the largest connected component CN ⊂ GN . Let ε ∈ (0, 1/3) be fixed. Since
#(CN \ CNε) ≤ εN for Nε = d(1 + ε)−1Ne we have U, V ∈ GNε with probability exceeding
1− 2ε. We consider two exploration processes around U and V , respectively, in GNε .

By Proposition 4.1 there exists k0(ε) such that with probability exceeding 1− ε/4, in
both explorations we reach after at most k ≤ k0(ε) exploration steps active sets A ⊂ Ek
satisfying ξ(A) ≥ s0ξ(minA) with s0 = s0(ε/8), as defined in Proposition 4.12. Now
we start the main phase of the two explorations with initial configurations in which
the sets A represent the active vertices, and possible other active vertices are veiled
and connecting edges removed. Observe that this modification can only increase the
observed distance between U and V .

We denote the explored parts of the network at this stage by E (1)

0 , E (2)

0 and henceforth
only look at the scores of the two explorations. To keep the explorations sufficiently
independent, we slightly modify the algorithm: The exploration process around U

inspects for any active vertex v only connections to w > v, if w ∈ [N ] is odd. Similarly,
the exploration around V only checks an active vertex v for connections to w > v if
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w ∈ [N ]} is an even vertex. It is easily seen that this only changes the constant in the
lower bound of Lemma 4.8.

We know by Proposition 4.12 that if Nε is sufficiently large, then for each exploration
viewed on its own, with probability exceeding 1− ε/4, after

K(i)

0 ≤
( 1

2α+ 2
+
η

2

) logN

log logN

steps and any choice of η > 0, the conclusion of Proposition 4.12 is applicable. We call
such an exploration successful. In the step when the score bound in Proposition 4.12 is
reached we have

H(i)

K ≥
√
Nε

(logNε)1+α
, (4.33)

where
H(i)

K := ξ
(

active
(
E (i)

K
(i)
0

)
∪ dead

(
E (i)

K
(i)
0

)
, Nε

)
.

Also note for later reference that by the definition (4.21) of (`k)k≥1 and the recursion for
(Sk), cf. (4.23),

H(i)

K ≥ d
logN

log logN
ξ(`K0

, Nε), (4.34)

for some small d > 0.

We may assume without loss of generality that K(1)

0 < K(2)

0 . After stage K(1)

0 , we
cannot apply exactly the same reasoning for the second exploration as in Proposition 4.12,
since the total score of both configurations combined is too high. However, the lower
bound given in Lemma 4.3 can still be applied in each exploration step, since the set I0
of non-jump times featured in this lemma consists only of odd vertices and is therefore
disjoint of the sets of non-jump times used in the other exploration which may have
exceeded the score bounds. The restriction on the set of jump-times I1 clearly plays no
role – if we encounter an additional jump due to a connection to the first exploration,
then the procedure can be stopped and a shortest path connecting U and V is found.

As a consequence, we deduce that with high probability, U and V are either found to
be connected before stage K(2)

0 or their respective explorations have reached a score of
at least

√
Nε(logNε)

−(α+1). Note that for a successful exploration, by definition of K0,√
Nε

(logNε)α+2
≥ SK0−1

and furthermore (4.21) and (4.23) imply that

SK0−1 ≥

√
Nε
`K0

.

Combining these estimates it follows that `K0
> (logNε)

2α+2 and the exploration has
thus collected no information about the degree evolutions of vertices in [MN ] during its
main phase, where MN = bcε(logN)2α+2c, and cε > 0 is some suitably chosen constant.
Therefore we can apply Lemma 4.13 and Proposition 4.14 to deduce that, for sufficiently
large N , with probability exceeding 1 − ε/4, the subgraph induced by CN ⊂ GN is of
bounded diameter D and contains at least rMN vertices, for some r = r(ε) > 0.

Denoting the sets of active and dead vertices of E (i)

K
(i)
0

by V (i), and using the shorthand

{V (i)
ε↔ CN} := {∃ n ∈ [N ] \ [Nε], v ∈ V (i), w ∈ CN : n→ v, n→ w}, i = 1, 2,
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it remains to show that

P(V (1)
ε↔ CN , V (2)

ε↔ CN ) ≥ 1− ε/4,

if N is sufficiently large. Conditional on GNε , let

L = {j ∈ {Nε + 1, . . . , N} : ∃ v ∈ CN with j → v}.

We have already established that, with high probability, CN contains at least rMN

vertices. It is now straightforward to deduce via an appropriate coupling to Bernoulli
random variables that

#L ≥ qMNψ(MN , Nε)ξ(MN , Nε) (4.35)

with probability at least 1 − ε/12, where q = q(ε) > 0 is some small constant. Each
j ∈ L has an independent probability of at least f(Z[v,Nε])/N to connect to v ∈ V (i),
thus the probability that it does not connect to any v ∈ V (i) is bounded above by
exp

(
−N−1

∑
v∈V (i) f(Z[v,Nε])

)
. Since this holds independently for all j ∈ L, we obtain

by (4.33) and (4.35), recalling that ψ(MN , Nε)ξ(MN , Nε) ≈ log(N/MN )α
√
N/MN ,

1l{#L ≥ qMNψ(MN , Nε)ξ(MN ,Mε)}

× 1l
{∑

v∈V (i) f(Z[v,Nε]) ≥ νξ(V (i), Nε)
}
P
(
{V (i)

ε↔ CN}c
∣∣GNε)

≤ exp
(
−

#L
∑
v∈V (i) f(Z[v,Nε])

N

)
≤ exp

(
− #Lν

N
H(i)

K

)
≤ exp

(
− ν(qMNψ(MN , Nε)ξ(MN , Nε)− 1)

√
Nε

N logNα+1

)
≤ ε

24
,

(4.36)

for all sufficiently large N and some small ν ∈ (0, 1) to be fixed below. Note that the term
in the last exponential is bounded below by a constant (depending only on ε) multiple of
(log(N/MN ))α.

It remains to fix ν > 0 and bound

P
( ∑
v∈V (i)

f(Z[v,Nε]) < νξ(V (i), Nε)
)

= P
( ∑
v∈V (i)

f(Z[v,Nε]) < νH (i)

K

)
.

The proof of Proposition 4.12 shows that (Sk)K0

k=1 grows superexponentially, thus for
every µ > 0, there is ν > 0 such that∑

v∈active(EK0
)

f(Z[v,Nε]) ≥ µSK0
⇒

∑
v∈V (i)

f(Z[v,Nε]) ≥ νHK0
,

i.e. HK0 can differ from SK0 by at most a constant factor. Therefore it is sufficient to
find a lower bound on SK0 . Note that, for v ∈ active(EK0), replacing the attachment
rule f by the linearised attachment rule f̄(k) = f(0) + k/2 does not change the values
ξ(v,Nε) and only diminishes the sum on the left. For the rest of the argument we may
therefore assume that f = f̄ in the evolutions {Z[v, ·], v ∈ active(EK0)}. During the final
exploration stage K0, the evolution Z[v, i]Nεi=1 of an active vertex v is only conditioned on
a set I0 of non-jumps which still fullfills the conditions of Lemma 4.3. This implies that,
for some small s > 0, we have E[f(Z[v,Nε])|EK0 ] ≥ sξ(v,Nε), and thus

E
[ ∑
v∈active(EK0

)

f(Z[v,Nε])
∣∣∣EK0

]
≥ sSK0 .

The random variables under summation on the left are independent. Choosing µ = µ(s)

small enough we thus find, by Lemma 4.2,

P
( ∑
v∈active(EK0

)

f(Z[v,Nε]) < µSK0

∣∣∣ EK0

)
≤ exp

(
−δ

S2
K0∑

v∈active(EK0
)E[f(Z[v,Nε])2|EK0 ]

)
,
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for some δ = δ(µ) > 0. Taking into account the linearisation of f , and Proposition 3.2, we
obtain E[f(Z[v,Nε])

2|EK0
] ≤ C3.2Ef(Z[v,Nε])

2 ≤ Cξ(v,Nε)
2, for some constant C > 0.

Hence ∑
v∈active(EK0

)

E
[
f(Z[v,Nε])

2
∣∣ EK0

]
≤ Cξ(`K0

, Nε)SK0
,

using
∑
i x

2
i ≤ max |xi|

∑
i xi and that the maximum is attained at `K0 due to the restric-

tion of the exploration. Therefore

P
( ∑
v∈active(EK0

)

f(Z[v,Nε]) < µSK0

∣∣∣EK0

)
= O

(
e−logN/log logN

)
,

by (4.34) and the fact that HK0 is a bounded multiple of SK0 . Taking expectations and
using the already established lower bound on the probability of a successful exploration
yields the desired bound of P(

∑
v∈V (i) f(Z[v,Nε]) < νξ(V (i), Nε)) ≤ ε/24, for sufficiently

large N .

Combining the distance bounds from all exploration phases and summing up all error
probabilities we thus have shown that for any ε ∈ (0, 1/3) with probability exceeding
1− 3ε,

dN (U, V ) ≤ D + 2 +
( 1

1 + α
+ η
) logN

log logN
+ 2k0(ε),

for all sufficiently large N . This concludes the proof as η > 0 was arbitrary.

5 Proof of Theorem 2.2

In this section we use a similar method as in the previous sections to describe the
average distances in the Norros-Reittu model with i.i.d. random weights, and thus
prove Theorem 2.2. The technical details are considerably easier in this case, and some
parts of the proof which proceed in direct analogy to the preferential attachment case
will only be sketched.

We first state some well known facts about heavy tailed i.i.d. weight sequences.

Proposition 5.1 (Asymptotics of weights). Let (Wi)i≥1 be an i.i.d. sequence satisfying

P(W1 ≥ k) = k−2(log k)2α+o(1), (5.1)

and denote by Fn the distribution function of the n-th power Wn
1 of the weights. For

every ε ∈ (0, 1) there is a subset Ωε of the space of all infinite weight sequences with
P(Ωε) > 1 − ε and positive constants C1, C2, C3 and c2 such that on Ωε the following
conditions are satisfied

max
1≤i≤N

Wi ≤ C1

(
1

1−F1

)−1
(N), (5.2)

c2 ≤
∑N
i=1W

2
i − J(N)(

1
1−F2

)−1
(N)

≤ C2, (5.3)

N∑
i=1

W 3
i ≤ C3

(
1

1−F3

)−1
(N), (5.4)

where the generalised inverse of a monotone function is chosen to be left-continuous
and

J(N) := NE[W 2
1 1l{W 2

1 ≤
(

1
1−F2

)−1
(N)}].

Proof. Inequality (5.2) is a direct consequence of the weak convergence of the rescaled
maximum weight to the Fréchet distribution (see e.g. [17, Chapter I]). The relations
(5.3) and (5.4) follow from weak convergence of rescaled partial sums to stable random
variables with positive support (see e.g. [18, Corollary 7.1] for a stronger functional
version).
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5.1 Proof of the lower bound

It is now straightforward to deduce a first moment upper bound on the probability of
existence of short paths in HN .

Proposition 5.2 (Lower bounds on distances in NR). Let HN denote a Norros-Reittu
network with weight distribution satisfying (2.4), then for every δ ∈ (0, (1 + 2α)−1) and
independently and uniformly chosen vertices U, V ∈ HN ,

dN (U, V ) ≥
( 1

1 + 2α
− δ
) logN

log logN
with high probability as N →∞.

Proof. We use Lemma 3.9 conditionally on the sequence W1,W2, . . . of weights, and
given N we relabel the vertices of HN in decreasing order of weight and denote by
W (1) ≥ · · · ≥W (N) the order statistic of the first N weights. It is sufficient to verify the
conditions of the lemma, for any ε ∈ (0, 1), on a subset Ωε of the space of all weight
sequences with P(Ωε) ≥ 1− ε. Conditional independence of edges immediately yields
(3.13) with κN = 1. Let F be the distribution function of W1. By (5.1) we may fix a
sequence (Ψ̄N )N∈N satisfying Ψ̄N = (logN)2α+o(1) such that, for any δ ∈> 0 we have

p(v) := 1− F
(√

N
v Ψ̄N

)
≤ δ v

N
, for all v ∈ [N ],

if N is sufficiently large. Denoting LN :=
∑N
n=1Wn ∼ N EW1, the conditional connection

probabilities satisfy

P(v ↔ w) ≤ W (v)W (w)

LN
. (5.5)

Therefore we may show that (3.14) is satisfied for ΨN = C(ε)2Ψ̄N , where C(ε) is some
constant such that

W (v) ≤ C(ε)

√
N

v
Ψ̄N , for all 1 ≤ v ≤ N, (5.6)

with probability exceeding 1 − ε. To demonstrate this, let S(v)

N the number of weights
W1, . . . ,WN exceeding

√
(N/v)Ψ̄N . The random variable S(v)

N is dominated by a binomial
random variable with parameters N and p(v), hence Bernstein’s inequality gives, for
fixed δ < 1,

P(S(v)

N > 2v) ≤ exp
(
− v2

2VarS(v)

N + 2
3v

)
≤ e−

3
8 v.

Let M such that
∑∞
v=M e−3v/8 < ε/2. Then with probability exceeding 1− ε/2, there is

no v ≥M such that W (2v) >
√

(N/v)Ψ̄N which is equivalent to

W (v) ≤
√

2

√
N

v
Ψ̄N for all even v ≥ 2M. (5.7)

Now if (5.6) were not true for any odd index v + 1 > 2M and C(ε) > 2, this would mean
in particular that

W (v) > C(ε)

√
N

v + 1
Ψ̄N = C(ε)

√
v

v + 1

√
N

v
Ψ̄N ≥

C(ε)√
2

√
N

v
Ψ̄N ,

contradicting (5.7). We conclude that (5.6) holds with C(ε) > 2 for all v ≥ 2M with
probability exceeding 1− ε/2. Turning our attention to the weights W (v), . . . ,W (2M), we
note that by a standard Poisson approximation result, see e.g. [17, Proposition 3.21],
for any 1 ≤ v ≤ 2M , we have that S(v)

N converges weakly to a Poisson distribution
with parameter λ := limN→∞Np(v) ≤ 2δM. Hence by choosing δ small enough we
can ensure that, for large N , we have

∑2M
i=1P{S

(i)

N > i} ≤ ε/2, which completes the
proof of (5.6). Application of Lemma 3.9 now concludes the proof of Proposition 5.2 as
log ΨN =

(
2α+ o(1)

)
log logN and κN = 1.
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5.2 Proof of the upper bound

We now prove the upper bound in Theorem 2.

Proposition 5.3 (Upper bound on distances in NR). Let HN be a Norros-Reittu network
with weight distribution satisfying (2.4). Consider vertices U, V chosen independently
and uniformly at random from the largest component CN ⊂ HN . Then, for any δ > 0,

dN (U, V ) ≤
( 1

1 + 2α
+ δ
) logN

log logN
with high probability as N →∞.

This result can be obtained by a straightforward adaptation of the proof of [13,
Theorem 3.22], which uses the second moment method in combination with path counting
techniques. For the closely related Chung-Lu model with deterministic weights, a related
result is [6, Theorem 7.9], the proof of which also works in our setting. We provide a
sketch of a proof relying on similar arguments as given in Section 4 for the preferential
attachment network.

For H ⊂ [N ] we denote by W (H) =
∑
v∈HWv the total weight of H. Just like in the

preferential model, the neighborhood of a uniformly chosen vertex V ∈ HN converges
in distribution to a random tree S. This tree can be obtained by a mixed Poisson
branching process, see [16]. Denoting by p(W ) the probability of {|S| = ∞}, we get
limN→∞#CN/N = p(W ) in probability, see [13, Section 3.1.].

The following facts are instrumental for our argument.

Lemma 5.4. Choose V ∈ [N ] uniformly. For every ε ∈ (0, p(W )), s0 > 0 there exists
k0 > 0, such that P(W ({v ∈ [N ] : dN (V, v) = k0}) ≥ s0) ≥ p(W ) − ε, for sufficiently
large N .

Proof. This follows from local weak convergence to S and the fact that the offspring
distribution of the branching process generating S has infinite mean in every genera-
tion k ≥ 2, hence is supercritical.

Lemma 5.5. Fix M = dlogNRe for some fixed R > 0 and let CN denote the M vertices
with the largest weights. Then the diameter of the subgraph induced by CN ⊂ HN is
bounded with high probability, as N →∞.

Proof. Given N we relabel the vertices of HN in decreasing order of weight and denote
by W (1) ≥ · · · ≥W (N) the order statistics of the first N weights. Fix ε > 0 and δ ∈ (0, α).
Then LN :=

∑N
i=1Wi ∼ N EW1, and

W (v) ≥
√
N

M

(
log N

M

)α−δ
, for all v ∈ [M ],

on a subset Ωε with probability exceeding 1− ε, by a standard extreme value calculation,
using e.g. [15, Theorem 2.5.2]. Given the weights, each pair of vertices (v, w) ∈ CN
independently is connected with probability at least

1− e−(W (M))2/LN ≥
(

log N
M

)2α−2δ

3MEW1
=: p(M,N).

Now coupling to an Erdős-Rényi graph G(M,p(N,M)) and [2, Corollary 10.12] yield the
boundedness of the diameter.

Lemma 5.6. If V1, V2 ⊂ [N ] are disjoint sets with total weights satisfying

lim
N→∞

1

N
W (V1)W (V2) =∞ in probability,

then they are connected with high probability in HN .
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Proof. By conditional independence, P(V1 6↔ V2) = e−W (V1)W (V2)/LN , from which the
result follows since W (V1)W (V2)/LN diverges to infinity, in probability.

Proof of Proposition 5.3. In view of Lemmas 5.4 to 5.6 it is sufficient to show that a
truncated exploration in HN started in a configuration E0 of large initial weight S0 with
high probability, as N →∞, reaches a configuration Ek satisfying

Sk = W (active(Ek)) ≥
√
N

(logN)R

in less than K stages, where R, δ > 0 are fixed and

K =
( 1

2 + 4α
+ δ
) logN

log logN
.

We truncate the exploration in the following way: at stage k, we only investigate
connections between active vertices and vertices of weight at most wk+1, where (wk)k≥1

is a superexponentially growing sequence specified below. Since we would like to
condition on the weights, we start by demonstrating that almost all weight sequences
have certain properties. Let (Ak)Kk=0 denote a partition of the set [1,

√
N(logN)2α) into

K nonoverlapping intervals Ak = [ak, ak+1) of equal length. Applying Lemma 4.2, and a
brief calculation we may assume that W1, . . . ,WN satisfy,

N∑
i=1

W 2
i 1l{Wi ≤ wk} ≥

1

2
E
[ N∑
i=1

W 2
i 1l{Wi ≤ wk}

]
, for 1 ≤ k ≤ K, (5.8)

as well as

N∑
i=1

W 3
i 1l{Wi ≤ wk} ≤

3

2
E
[ N∑
i=1

W 3
i 1l{Wi ≤ wk}

]
, for 1 ≤ k ≤ K. (5.9)

Fix ε > 0. Let E be a configuration obtained from an exploration of HN , S =

W (active(E)), H = active(E) ∪ dead(E), w > 0 and V = V (w) = {v ∈ veiled(E) : Wv ≤ w}.
It is easy to see, using an appropriate coupling to a sum of independent weighted
Bernoulli random variables and Lemma 4.2 that, as long as wS = o(LN ),

W ({v ∈ V : v ↔ active(E)}) ≥
∑
v∈V W

2
v

4LN
S =: ν(w,N)S, (5.10)

conditional on E and the weight sequence, with probability at least

1− e
− (

∑
v∈V W2

v )2

4LN
∑
v∈V W3

v
S
. (5.11)

Note that, by (5.3) and our choice of weight distribution,∑
v∈V

W 2
v ≥

∑
v∈[N ]

W 2
v 1l{Wv ≤ w} −

(
max
a∈H

Wa

)
W (H).

Hence choosing w0 sufficiently large, setting wk = c(δ, ε) logN1+2α−η(δ)wk−1, 1 ≤ k ≤ K,
for some appropriately chosen small values of c(δ, ε), η(δ) and letting Vk = V (wk) in
(5.10), we obtain that the weight Sk of the active vertices increases in each stage k of
the exploration by a factor of at least ν(wk, N) ≥ c log(wk)2α+1−η(δ), for some constant c
which depends on δ and ε but not on N . A straightforward calculation now shows that
the exploration satisfies

Sk = W (active(Ek)) ≥
√
N

(logN)R
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after at most K stages. Summing the error terms in (5.11) for the different stages using
(5.8) and (5.9), we obtain for some constants c1, c2, which are independent of N ,

K∑
k=1

e
−

(
∑
v∈Vk

W2
v )2

4LN
∑
v∈Vk

W3
v
Sk−1

≤
K∑
k=1

e
−c1

(logwk)4α+2−2η(δ)N2

N2wk(logwk)2α+η(δ)
Sk−1 ≤

K∑
k=1

e−c2(logwk)1−η(δ) < ε,

as N →∞. This concludes the proof, since ε and δ where chosen arbitrarily.

A Further calculations for preferential attachment networks

The following lemma is used to prove Proposition 4.1. The proof relies on a coupling
of local neighbourhoods in GN with the ‘idealised neighbourhood tree’ T introduced in
[9, Section 1.3], in which vertices of the tree have positions on the negative real line. We
denote by Tk the k-th generation of T, and by p(f) be the probability that T is infinite.

Lemma A.1. Let χ : [0,∞)→ [1,∞) be a an increasing function satisfying

c ≤ χ(x)e−
1
2x ≤ C, for some 0 < c ≤ C <∞.

Denote by χ̄ : T → [1,∞) the function defined on the vertices of T by χ̄(v) = χ(−xv),
where xv is the position of v ∈ T on the negative real line. Then, for any s > 0, almost
surely conditional on #T =∞ there exists K ∈ N and AK ⊂ TK such that∑

v∈AK

χ̄(v) ≥ s max
v∈AK

χ̄(v).

Proof. On the event #T = ∞ there exists, almost surely, a sequence (wi) of vertices
in T with positions drifting to −∞, see [9, Lemma 3.3]. We choose such a sequence
adapted to the natural filtration of the branching process. For any η > 1, the events
that wi has a child positioned in [−2η,−η] are stochastically bounded from below by i.i.d.
events of positive probability. Hence we find a vertex v(1) of type ` in T with position
xv(1) ∈ [−2η,−η]. Continuing inductively we construct an adapted sequence of vertices
v(i) of type ` in T such that xv(i) ∈ [xv(i−1) − 2η, xv(i−1) − η]. Denote by A(i) the set of
offspring generated by v(i) in [xv(i), 0] and let Y (i) =

∑
v∈A(i) χ̄(v). By definition of the

underlying branching random walk, denoting by (Zt)t≥0 the idealised degree evolution
process, we have

E[Yi |xv(i) = x] =

∫ −x
0

χ(−u− x)Ef(Zu) du ≥ ce 1
2x

∫ −x
−xv(i−1)

e
1
2uEf(Zu) du.

Using the estimate c′uαeu/2 ≤ Ef(Zu) ≤ C ′(uα ∨ 1)eu/2, for all u ≥ 0, which is a continu-
ous analogue of Propositions 3.2 and 3.3 and may be shown in a similar fashion for our
choice of attachment rule, we get a lower bound of

E[Yi |xv(i) = x] ≥ cc′ e 1
2x

∫ −x
−xv(i−1)

e
1
2uuαe

1
2u du ≥ c′′ (−xv(i−1))

αe−
1
2x, (A.1)

for some constant c′′ > 0 not depending on η. From (A.1) we get i0(s) ∈ N such that

E[Yi |xv(i) = x] ≥ 2sχ̄(v(i)), for all i ≥ i0. (A.2)

Calculating E[Y 2
i |xv(i) = x] is slightly more subtle. We have

E
[ ∑
v∈A(i)

χ̄2(v)
∣∣∣xv(i) = x

]
≤ C ′ (−x)αe−

1
2x,
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for some constant C ′ > 0, by a calculation similar to (A.1). Note that, by [9, Lemma
2.5], for any u ≥ 0, we have E[f(Zt)|∆Zu = 1] ≤ E[f(Zt)|Z0 = 1] ≤ f(1)f(0)−1Ef(Zt), for
all t ≥ u. The offspring intensity of v(i) on [xu, 0] conditional on producing offspring in
position xu is thus bounded by a constant multiple of the unconditional intensity. This
implies that

E
[ ∑
u,v∈A(i)
u<v

χ̄(u)χ̄(v)
∣∣∣xv(i) = x

]
≤ C ′′E

[ ∑
v∈A(i)

χ̄(v)
∣∣∣xv(i) = x

]2
≤ C ′′′ (−x)2αe−x,

by a similar calculation as above. Combining the previous two displays gives a bound on
E[Y 2

i |xv(i) = x]. Using (A.2) and the Paley-Zygmund inequality, we infer

P
(
Yi ≥ sχ̄(v(i))

∣∣xv(i) = x
)
≥ P

(
Yi ≥ 1

2E[Yi|xv(i) = x]
∣∣xv(i) = x

)
≥
E[Yi|xv(i) = x]2

4E[Y 2
i |xv(i) = x]

.

The moment estimates and assumptions on v(i) imply that, for some small constants
c, q > 0,

P(Yi ≥ sχ̄(v(i))|xv(i) = x) ≥ c
(xv(i−1)

x

)2α

≥ q > 0,

as soon as i ≥ i0. Clearly, maxu∈A(i) χ̄(i) is at most χ̄(v(i)), since χ̄ is decreasing. So each
of the sets A(i) has probability at least q of being a set with the desired property, and
the assertion follows by conditional independence of the A(i), i ≥ i0.

Proof of Proposition 4.1. Denote the tree associated with the configuration Ek by Tk.

The arguments of [9] imply that, with high probability, for any fixed k, the configuration
Tk can be coupled to Tk and the scores ξ defined on Tk can be associated to a function χ
satisfying the conditions of Lemma A.1 such that ξ = χ̄ on corresponding vertices. The
claim hence follows from Lemma A.1.

Lemma A.2 (Lemma 4.8). There are η ∈ (0, 1) and c > 0 only depending on α such that
for any choice of A ⊂ {d2e2e, . . . , N} and v0 <

minA
e2 ∧ ηN satisfying(

log N
minA ∨ 1

)α
ξ2(A) ≤ c

2
N
(

log N
v0

)α+1
, (A.3)

we have, for V = {v0, . . . , N} \A and any a ∈ A,∑
v∈V

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ c

2

(
log N

v0

)α+1
, (A.4)

if N is suffciently large.

Proof. We set

ε0 = e−(2+2(log(eα+e−2/2)))
1

1+α
,

η = ε−2
0 and first assume that, for all A ⊂ {d2e2e, . . . , N} and v0 < (minA/e2) ∧ ηN ,

N∑
v=v0

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ 1

2α+1(α+ 1)

(
log N

v0

)α+1
for all a ∈ A. (A.5)

Then (A.3) implies that∑
v∈V

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ N∑

v=v0

1

v

(
log a∨v

a∧v ∨ 1
)α −∑

v∈A

1

v

(
log a∨v

a∧v ∨ 1
)α

≥ 1
2α+1(α+1)

(
log N

v0

)α+1 −
(

log N
minA ∨ 1

)α∑
v∈A

1

v

≥ 1
2α+1(α+1)

(
log N

v0

)α+1 − c(3.2)

(
log N

minA ∨ 1
)α ξ2(A)

N

≥
(

1
2α+1(α+1) − c(3.2)

c
2

)(
log N

v0

)α+1
= c

2

(
log N

v0

)α+1
,
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setting c :=
(
2α(1 + α)(1 + c(3.2))

)−1
. The conclusion of the lemma holds subject to (A.5).

Let a ≤ bε0N + 1c. Observe that

N∑
v=v0

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ b ae c∑

v=v0

1

v

(
log a

v

)α
+

N∑
v=daee

1

v

(
log v

a

)α
=: Σ1 + Σ2.

As x 7→ x−1
(

log a
x

)α
is decreasing, we find, using v0 < a/e2 in the last step, that

Σ1 ≥
∫ b ae c+1

v0

1

x

(
log a

x

)α
dx = 1

1+α

((
log a

v0

)α+1 −
(

log a
b ae c+1

)α+1
)

≥ 1
1+α

((
log a

v0

)α+1 − 1
)
≥ 1

2(1+α)

(
log a

v0

)α+1
.

The map x 7→ x−1
(

log(x/a)
)α

has a unique maximum at x = eαa, thus

N∑
v=beαc+1

1
v

(
log v

a

)α ≥ ∫ N+1

beαc+1

1
x

(
log x

a

)α
dx ≥ 1

α+1

((
log N+1

a

)α+1 −
(

log be
αc+1
a

)α+1)
≥ 1

α+1

((
log N+1

a

)α+1 −
(

log(eα + 1
a )
)α+1)

(A.6)

and
beαac∑
v=daee

1

v

(
log v

a

)α ≥ 1l{daee ≤ beαac}
∫ beαac
daee−1

1

x

(
log x

a

)α
dx

≥ 1l{daee≤beαac}
α+1

((
log(eα − 1

a )
)α+1 − 1

) (A.7)

Combining (A.6) and (A.7), we get

Σ2 ≥ 1
α+1

((
log N+1

a

)α+1 −
(

log(eα + 1
a )
)α+1

+ 1l{daee ≤ beαac}
((

log(eα − 1
a )
)α+1 − 1

))
≥ 1

α+1

((
log N+1

a

)α+1 −
(

log(eα + 1
2e2 )

)α+1 − 1
)
≥ 1

2(α+1)

(
log N+1

a

)α+1
,

where we used the condition

a ≤ (N + 1) exp(−(2 + 2(log(eα +
1

2e2
)))

1
1+α )

in the last step. Combining the estimates for Σ1 and Σ2 yields

N∑
v=v0

1

v

(
log a∨v

a∧v ∨ 1
)α ≥ 1

2(α+1)

((
log a

v0

)α+1
+
(

log N+1
a

)α+1) ≥ 1
2α+1(α+1)

(
log N

v0

)α+1

by convexity of x 7→ xα+1. Now consider a ≥ dε0Ne. We have

N∑
v=v0

1

v

(
1 ∨ log a∨v

a∧v
)α ≥ ∫ dε0Ne

v0

1

x

(
1 ∨ log a

x

)α
dx ≥

∫ ε0N

v0

1

x

(
log ε0N

x

)α
dx

= 1
α+1

(
log ε0N

x

)α+1
.

Since (
log

ε0N

x

)α+1

≥ 1
K (log N

v0
)α+1

if and only if

v0 ≤ Nε
(1−( 1

K )
1

1+α )−1

0 ,

we choose K = 2α+1 and the desired bound (A.5) follows.
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Lemma A.3 (Lemma 4.11). For any α ≥ 0, δ ∈ (0, 2α+ 2) let

k0(δ, α) = min{k ≥ 3 : δ log k ≥ (2α+ 2− δ)k log(1 + 1
k ) + 1} (A.8)

then
`k ≤ Ne−(2α+2−δ)(k−k0) log k for all k0 ≤ k < K∗(N).

Furthermore, there is a constant c > 0 depending only on s0 such that

`k ≥ CNe−(4α+5)k(1∨log k), for all k.

Proof. We first show the upper bound by induction in k. For k = k0 the assertion is
trivially true as soon as N is large enough. Now assume that `k ≤ Ne−(2α+2−δ)(k−k0) log k

for some k < K∗(N) − 1 then we have, by definition of (`k)k≥1, that log `k+1 ≤ log `k −
(2α+ 2) log(logN − log `k) + 1 and applying the induction hypothesis yields

log `k+1

N ≤ −(2α+ 2− δ)(k − k0) log(k + 1) +
(
(2α+ 2− δ)(k − k0) log k+1

k + 1
)

− (2α+ 2) log
(
(k + 1) k

k+1 (2α+ 2) log k
)
.

By (A.8) we have k
k+1 (2α+ 2) log k ≥ 1, hence

log `k+1

N ≤− (2α+ 2− δ)(k + 1− k0) log(k + 1)

+
(
(2α+ 2− δ)(k − k0) log k+1

k + 1− δ log(k + 1)
)
.

The second term of the sum is negative by (A.8) and the induction is complete. The lower
bound follows by a similar argument.
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