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Abstract

To each sequence (an) of positive real numbers we associate a growing sequence
(Tn) of continuous trees built recursively by gluing at step n a segment of length an

on a uniform point of the pre–existing tree, starting from a segment T1 of length a1.
Previous works [5, 10] on that model focus on the influence of (an) on the compactness
and Hausdorff dimension of the limiting tree. Here we consider the cases where the
sequence (an) is regularly varying with a non–negative index, so that the sequence
(Tn) explodes. We determine the asymptotics of the height of Tn and of the subtrees
of Tn spanned by the root and ` points picked uniformly at random and independently
in Tn, for all ` ∈ N.
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1 Introduction

A well–known construction of the Brownian continuum random tree presented by
Aldous in the first of his series of papers [2, 3, 4] works as follows. Consider a Poisson
point process on R+ with intensity tdt and “break” the half–line R+ at each point of
the process. This gives an ordered sequence of closed segments with random lengths.
Take the first segment and glue on it the second segment at a point chosen uniformly at
random (i.e. according to the normalized length measure). Then consider the continuous
tree formed by these two first segments and glue on it the third segment at a point
chosen uniformly at random. And so on. This gluing procedure, called the line–breaking
construction by Aldous [2], gives in the limit a version of the Brownian CRT.

We are interested in a generalization of this construction, starting from any sequence
of positive terms

(an, n ≥ 1).
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Asymptotics of heights in random trees constructed by aggregation

For each n, we let bn denote a closed segment of length an. The construction process
then holds as above: we start with T1 := b1 and then recursively glue the segment bn
on a point chosen uniformly on Tn−1, for all n ≥ 1. The trees Tn are viewed as metric
spaces, once endowed with their length metrics, which will be noted d in all cases. This
yields in the limit a random real tree obtained as the completion of the increasing union
of the trees Tn,

T := ∪n≥1Tn
that may be infinite. We let d denote its metric as well, and decide to root this tree at
one of the two extremities of b1.

This model has been recently studied by Curien and Haas [10] and Amini et al. [5].
The paper [10] gives necessary conditions and sufficient conditions on the sequence
(an) for T to be compact (equivalently bounded) and studies its Hausdorff dimension.
Typically, if

an ≤ nα+◦(1) and a1 + . . .+ an = n1+α+◦(1) for some α < 0,

then almost surely the tree T is compact and its set of leaves has Hausdorff dimension
1/|α|, which ensures that the tree itself has Hausdorff dimension max(1, 1/|α|). This,
as an example, retrieves the compactness of the Brownian CRT and that its Hausdorff
dimension is 2. On the other hand, the tree T is almost surely unbounded as soon as the
sequence (an) does not converge to 0. The issue of finding an exact condition on (an) for
T to be bounded is still open. However, Amini et al. [5] obtained an exact condition for
T to be bounded, provided that (an) is non–increasing. In that case, almost surely,

T is bounded if and only if
∑
i≥1

i−1ai <∞.

Concerning related works, Ross and Wen [19] have recently shown that when the
an, n ≥ 1 are random lengths obtained by breaking the half–line with a Poisson point
process with intensity t`dt for some positive integer `, the corresponding trees arise
as scaling limits of some growing combinatorial trees constructed inhomogeneously,
thus generalizing the convergence of trees constructed via Rémy’s algorithm towards
the Brownian CRT. There are also related constructions with different gluing rules.
Sénizergues [20] studies a generalization of the above (an)–model where the segments
are replaced by d–dimensional independent random metric measured spaces (d ∈ (0,∞))
and the gluing rules depend both on the diameters and the measures of the metric
spaces. He shows an unexpected and intriguing Hausdorff dimension. In other directions,
Addario–Berry, Broutin and Goldschmidt [1] provide a line–breaking construction of the
continuum limit of critical random graphs, extending Aldous’ line–breaking construction
to random real trees with vertex identifications; while Goldschmidt and Haas [14]
propose a construction of the stable Lévy trees introduced by Duquesne, Le Gall and
Le Jan [13, 15] that generalizes Aldous’ line–breaking construction to this class of
trees (except in the Brownian case, the stable Lévy trees are not binary and the gluing
procedure is then slightly more complex). See also [8], [12] and [18] for other related
models.

The aim of the present paper is to examine the cases where the (an)–model obviously
leads to an unbounded tree and we will almost always assume that

the sequence (an) is regularly varying with index α ≥ 0.

We recall that this means that for all c > 0,

abcnc

an
−→
n→∞

cα,
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Asymptotics of heights in random trees constructed by aggregation

the prototype example being the sequence (nα). We refer to Bingham et al. [7] for
background on that topic. Our goal is to understand how the tree Tn then grows as
n → ∞. To that end, we will study the asymptotic behavior of the height of a typical
point of Tn and of the height of Tn. We will see that in general these heights do not grow
at the same rate. We will also complete the study of the height of a typical point first by
providing a functional convergence, and second by studying the behavior of the subtrees
of Tn spanned by the root and ` points picked uniformly at random and independently in
Tn, for all ` ∈ N.

Height of a typical point and height of Tn. We are interested in the asymptotic
behavior of the following quantities:

• Dn: height of a typical point, i.e. given Tn, we pick Xn ∈ Tn uniformly at random
in Tn and let

Dn = d(Xn, root)

be its distance to the root;

• the height of the tree:
Hn = max

v∈Tn
d(v, root).

In the particular case where all the lengths an are identical, the sequence (Tn) can
be coupled with a growing sequence of uniform recursive trees with i.i.d. uniform (0, 1)

lengths on their edges. This is explained in Section 5. The asymptotic behavior of the
height of a uniform vertex and the height of a random recursive tree without edge
lengths (i.e. endowed with the graph distance) are well–known, [11, 16, 17]. From this
and the strong law of large number, we immediately get the asymptotic of Dn. The
behavior of Hn is less obvious. However, Broutin and Devroye [9] develop the material to
study the height of random recursive trees with i.i.d. edge lengths, using the underlying
branching structure and large deviation techniques. From this, we will deduce that:

Theorem 1.1. If an = 1 for all n ≥ 1,

Dn

ln(n)

P−→
n→∞

1

2
and

Hn

ln(n)

P−→
n→∞

eβ
∗

2β∗
,

where β∗ is the unique solution in (0,∞) to the equation 2(eβ − 1) = βeβ . Approximately,
β∗ ∼ 1.594 and eβ

∗
/2β∗ ∼ 1.544.

This will be carried out in Section 5. Our main contribution concerns the cases where
the index of regular variation α is strictly positive. In that case we introduce a random
variable ξ(α) characterized by its Laplace transform E[exp(λξ(α))] = exp(φ(α)(λ)), λ ∈ R
where

φ(α)(λ) =
α+ 1

α

∫ 1

0

(
exp(λu)− 1

)1− u
u

du =
α+ 1

α

∑
k≥1

λk

(k + 1)!k
. (1.1)

The Lévy–Khintchine formula ensures that ξ(α) is infinitely divisible. Note also that ξ(α)
is stochastically decreasing in α. Our main result is:

Theorem 1.2. Assume that (an) is regularly varying with index α > 0. Then,
(i)

Dn

an

(d)−→
n→∞

ξ(α)

(ii)
Hn · ln(ln(n))

an ln(n)

a.s.−→
n→∞

1.
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Asymptotics of heights in random trees constructed by aggregation

More precisely, in (i), E[exp(λa−1n Dn)] converges to E[exp(λξ(α))] for all λ ∈ R, which in
particular implies the convergence of all positive moments.

The proof of (i) is undertaken in Section 2.2 and relies on the powerful observation
from [10] that Dn can be written as the sum of i.i.d. random variables. The proof of (ii),
and in particular of the lower bound, is more intricate. It relies on the second moment
method and requires to get the joint distribution of the paths from the root to two points
marked independently, uniformly in the tree Tn (established in Section 3.1) as well as
precise deviations bounds for the convergence (i) (established in Section 2.2). The core
of the proof of (ii) is undertaken in Section 4.

The two previous statements on the asymptotic behavior of Dn can actually be
grouped together and slightly generalized as follows:

Proposition 1.3. Assume that (an) is regularly varying with index α ≥ 0. Then,

Dn∑n
i=1 i

−1ai
−→
n→∞


αξ(α) if α > 0 (convergence in distribution)

1

2
if α = 0 and

∑∞
i=1 i

−1ai =∞ (convergence in probability)

D∞ if α = 0 and
∑∞
i=1 i

−1ai <∞ (convergence in distribution)

where D∞ denotes a positive random variable with finite expectation.

This will be explained in the remark around (2.8) in Section 2.2.

Height of the n–th leaf and height of a uniform leaf. In the recursive construction
of (Tn), we can label the leaves L1, L2, . . . by order of appearance, so that the leaf Ln
belongs to the segment bn. We then let Ln,? denote a leaf chosen uniformly at random
amongst the n leaves of Tn. Theorem 1.2 (i) implies that when (an) varies regularly with
index α > 0,

d(Ln, root)

an

(d)−→
n→∞

1 + ξ(α) and
d(Ln,?, root)

an

(d)−→
n→∞

(1 + ξ(α))U
α, (1.2)

where U is uniform on (0, 1), independent of ξ(α). The first convergence is simply due to
the fact that the distance d(Ln, root) is distributed as an +Dn−1, since the segment bn is
inserted on a uniform point of Tn−1. The second convergence is explained in Section 2.2.
When an = 1 for all n, d(Ln, root) and d(Ln,?, root) both divided by ln(n) converge to 1/2,
almost surely and in probability respectively (see Section 5).

Functional convergence. The convergence of the height of a typical point can actually
be improved into a functional convergence when the index of regular variation is strictly
positive. As above, let Xn be a point picked uniformly in Tn and for each positive integer
k ≤ n, let Xn(k) denote its projection onto Tk. Let then

Dn(k) := d (Xn(k), root) , 1 ≤ k ≤ n

be the non–decreasing sequence of distances of these branch–points to the root. If a
climber decides to climb from the root to the typical point Xn at speed 1, Dn(k) is the
time he will spend in Tk. The proof of Theorem 1.2 (i) can be adapted to get the behavior
as n→∞ of the sequence (Dn(k), 1 ≤ k ≤ n). To do so, introduce for α > 0 the càdlàg
Markov process with independent, positive increments defined by

ξ(α)(t) :=
∑
ti≤t

vi, t ≥ 0, (1.3)

EJP 22 (2017), paper 21.
Page 4/25

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP31
http://www.imstat.org/ejp/
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where (ti, vi) is a Poisson point process with intensity (α+ 1)t−α−11{v≤tα}dtdv on (0,∞)2.
(We note that ξ(α)(1) is distributed as the r.v. ξ(α) defined via (1.1).) This process is
α–self-similar, in the sense that for all a > 0,(

ξ(α)(at), t ≥ 0
) (d)

=
(
aαξ(α)(t), t ≥ 0

)
.

Proposition 1.4. If (an) is regularly varying with index α > 0,(
Dn (bntc)

an
, 0 ≤ t ≤ 1

)
(d)−→
n→∞

(
ξ(α)(t), 0 ≤ t ≤ 1

)
for the Skorokhod topology on D([0, 1],R+), the set of càdlàg functions from [0, 1] to R+.

This is proved in Section 2.3.

Gromov–Prohorov–type convergence. Last, fix ` a positive integer, and given Tn, let
X

(1)
n , . . . , X

(`)
n be ` points picked independently and uniformly at random in Tn. Our goal

is to describe the asymptotic behavior of Tn(`), the subtree of Tn spanned by these `

marked points and the root. To that end, for all 1 ≤ i, j ≤ `, we denote by B
(i,j)
n the point

in Tn(`) at which the paths from the root to X(i)
n and from the root to X(j)

n separate, with

the convention that B
(i,j)
n = X

(i)
n when X

(i)
n belongs to the path from the root to X(j)

n .
For regularly varying sequences of lengths (an), the tree Tn(`) appropriately rescaled
converges to a “star–tree” with ` branches with random i.i.d. lengths. More precisely:

Proposition 1.5. (i) Assume that (an) is regularly varying with index α > 0. Then,

((
d
(
X

(i)
n , root

)
an

, 1 ≤ i ≤ `

)
,

max1≤i 6=j≤` d
(
B
(i,j)
n , root

)
an

)
(d)−→
n→∞

((
ξ
(i)
(α), 1 ≤ i ≤ `

)
, 0
)

where ξ(1)(α), . . . , ξ
(`)
(α) are i.i.d. with distribution (1.1).

(ii) Assume that (an) is regularly varying with index 0 and that
∑∞
i=1 i

−1ai =∞. Then,

((
d
(
X

(i)
n , root

)∑n
i=1 i

−1ai
, 1 ≤ i ≤ `

)
,

max1≤i6=j≤` d
(
B
(i,j)
n , root

)
an

)
P−→

n→∞

((
1

2
, . . . ,

1

2

)
, 0

)
.

Notation. Throughout the paper, we use the notation

An :=

n∑
i=1

ai, for all n ∈ N.

2 Height of a typical point

Fix n, and given Tn, let Xn be a point picked uniformly on Tn. The goal of this section
is to establish different results on the distribution of the distance of this marked point
to the root, mainly when the sequence (an) is regularly varying with a strictly positive
index. Our approach entirely relies on the fact that this distance can be written as the
sum of independent, non–negative random variables. More precisely, as noticed in [10],
the distances Dn(k) to the root of the projections of Xn onto Tk, k ≤ n can jointly be
written in the following form:

Dn(k) =

k∑
i=1

aiVi1{
Ui≤

ai
Ai

}, ∀k ≤ n, (2.1)
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where Ui, Vi, 1 ≤ i ≤ n are all uniformly distributed on (0, 1) and independent. In
particular, the distance Dn of Xn to the root writes

Dn =

n∑
i=1

aiVi1{Ui≤ ai
Ai

}. (2.2)

To see this, we roughly proceed as follows. Consider the projection Xn(n− 1) of Xn onto
Tn−1. By construction, it is uniformly distributed on Tn−1 given Tn−1, and then:

• either Xn ∈ Tn−1 and Xn(n− 1) = Xn, which occurs with probability An−1/An,

• or Xn ∈ Tn\Tn−1 and d(Xn, Xn(n − 1)) = anVn with Vn uniform on (0, 1) and
independent of Tn−1, which occurs with probability an/An.

Iterating this argument gives (2.1). An obvious consequence is that

E [Dn] =
1

2
·
n∑
i=1

a2i
Ai
. (2.3)

The rest of this section is organized as follows. In Section 2.1 we start by recalling some
classical bounds for regularly varying sequences that will be used throughout the paper.
The first part of Section 2.2 concerns the asymptotic behavior of the height Dn, with the
proofs of Theorem 1.2 (i) and its corollaries (1.2), as well as Proposition 1.3. The second
part of Section 2.2 is devoted to the implementation of bounds (Lemma 2.3) that will be
crucial for the proof of Theorem 1.2 (ii) on the behavior of the height of Tn, proof that
will be undertaken in Section 4. Last, Section 2.3 contains the proof of Proposition 1.4.

2.1 Bounds for regularly varying sequences

Assume that (an) is regularly varying with index α ≥ 0. We recall some classical
bounds that will be useful at different places in the paper.

Fix ε > 0. From [7, Theorem 1.5.6 and Theorem 1.5.11], there exists an integer iε
such that for all n ≥ i ≥ iε,

(1− ε)
(
i

n

)α+ε
≤ ai
an
≤ (1 + ε)

(
i

n

)α−ε
(2.4)

and
(1− ε)(α+ 1)

i
≤ ai
Ai
≤ (1 + ε)(α+ 1)

i
(2.5)

([7, Theorem 1.5.6] and [7, Theorem 1.5.11] are stated for regularly varying functions,
but can be used for regularly varying sequences, using that f(x) := abxc is a varying
regularly function).

Moreover, still by [7, Theorem 1.5.11],

an∑n
i=1 i

−1ai
−→
n→∞

α. (2.6)

2.2 One dimensional convergence and deviations

For α > 0, recall the definition of the random variable ξ(α) defined via its Laplace
transform

E[exp(λξ(α))] = exp(φ(α)(λ)), λ ∈ R

with φ(α) given by (1.1). With the expression (2.2), it is easy to find the asymptotic
behavior of (Dn) by computing its Laplace transform and then get Theorem 1.2 (i). We
more precisely have:
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Lemma 2.1. Assume that (an) is regularly varying with index α > 0. Then,
(i) For all λ ∈ R

E

[
exp

(
λ
Dn

an

)]
−→
n→∞

exp(φ(α)(λ)).

(ii) For all c > 1, there exists nc such that for all n ≥ nc and all λ ≥ 0,

E

[
exp

(
λ
Dn

an

)]
≤ exp

(
c(1 + α−1)λ exp (cλ)

)
.

Proof. (i) For all λ 6= 0, we get from (2.2) that

E

[
exp

(
λ
Dn

an

)]
=

n∏
i=1

E

[
exp

(
λ
ai
an
V 1{

U≤ ai
Ai

})]

=

n∏
i=1

1− ai
Ai

+
ai
Ai

(
exp

(
λ aian

)
− 1
)

λ aian


where U, V are uniform on (0, 1) and independent (if ai = 0 for some i we use the
convention (exp(0) − 1)/0 = 1). Now assume that λ > 0 (the following lines hold
similarly for λ < 0 by adapting the bounds). Using (2.4), (2.5) together with the fact
that ln(1 + x) ∼ x as x → 0 and that x 7→ x−1(exp(x) − 1) is increasing on (0,∞) and
converges to 1 as x→ 0, leads to the existence of an integer jε such that for n ≥ jε

cε(n) + (1− ε)2(α+ 1)

n∑
i=jε

1

i

exp
(
λ(1− ε)

(
i
n

)α+ε)− 1

λ(1− ε)
(
i
n

)α+ε
− 1


≤ ln

(
E

[
exp

(
λ
Dn

an

)])

≤ cε(n) + (1 + ε)2(α+ 1)

n∑
i=jε

1

i

exp
(
λ(1 + ε)

(
i
n

)α−ε)− 1

λ(1 + ε)
(
i
n

)α−ε
− 1

 , (2.7)

where

cε(n) :=

jε−1∑
i=1

ln

1− ai
Ai

+
ai
Ai

(
exp

(
λ aian

)
− 1
)

λ aian

 −→
n→∞

0

since an →∞. Writing 1
i = 1

n ×
n
i , we recognize Riemann sums in the lower and upper

bounds, which, letting first n ↑ ∞ and then ε ↓ 0 gives

ln

(
E

[
exp

(
λ
Dn

an

)])
−→
n→∞

(α+ 1)

∫ 1

0

1

x

((
exp(λxα)− 1

λxα

)
− 1

)
dx =: φ(α)(λ).

It is easy to see with the change of variables y = xα in the integral and then the
power series expansion of the exponential function that this expression of φ(α)(λ) indeed
corresponds to (1.1).

(ii). Fix c > 1. Using the upper bound (2.7) and the fact that

exp(x)− 1

x
− 1 ≤ x exp(x) for all x > 0

we see that for all 0 < η < α and then for all n large enough

ln

(
E

[
exp

(
λ
Dn

an

)])
≤ cη(n) + (1 + η)3(α+ 1)λ exp(λ(1 + η))

n∑
i=jη

1

i

(
i

n

)α−η
.
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Note also, using ln(1 + x) ≤ x, that

cη(n) ≤
jη−1∑
i=1

ai
Ai
λ
ai
an

exp

(
λ
ai
an

)
which, clearly, is smaller than ηλ exp(ηλ) for n large enough and all λ ≥ 0. Gathering
this together, we get that for all n large enough (depending on η) and all λ ≥ 0,

ln

(
E

[
exp

(
λ
Dn

an

)])
≤
(
η + (1 + η)4

) 1 + α

α− η
λ exp (λ(1 + η)) .

Taking η small enough so that
(
η + (1 + η)4

)
α ≤ c(α − η) gives the expected upper

bound.

Remark (height of a uniform leaf). We keep the notation of the introduction and let
Ln,? denote a leaf chosen uniformly at random amongst the n leaves of Tn. Then the
previous result implies that when (an) is regularly varying with index α > 0,

d(Ln,?, root)

an

(d)−→
n→∞

(1 + ξ(α))U
α

with U uniformly distributed on (0, 1) and independent of ξ(α). To see this, one could
use that the distribution of (1 + ξ(α))U

α is characterized by its positive moments (since
it has exponential moments, since ξ(α) has), together with the fact that for each p ≥ 0,
the p–th moment E[(d(Ln,?, root)/an)p] converges to E[((1 + ξ(α))U

α)p]. To prove this last
convergence, note that

E

[(
d(Ln,?, root)

an

)p]
=

1

n

n∑
i=1

E

[(
d(Li, root)

ai

)p](
ai
an

)p
.

Since d(Li, root)− ai is uniformly distributed on Ti−1 (by construction) we know from the
previous lemma that, divided by ai, it converges in distribution to ξ(α), and that more
precisely there is convergence of all positive and exponential moments. Together with
(2.4), this leads to the convergence of E[(d(Ln,?, root)/an)p] to E[(1 + ξ(α))

p]/(αp+ 1), as
expected.

Remark (other sequences (an)). It is easy to adapt Part (i) of the proof to get that for
a general sequence (an) of positive terms such that (

∑n
i=1A

−1
i a2i )

−1 max1≤i≤n ai → 0 as
n→∞,

Dn∑n
i=1A

−1
i a2i

P−→
n→∞

1

2
. (2.8)

It is easy to check that the above condition on (an) holds if (an) is regularly varying with
index 0 and

∑∞
i=1 i

−1ai =∞ (recall (2.5),(2.6)), leading in that case to

Dn∑n
i=1 i

−1ai

P−→
n→∞

1

2
.

In particular this recovers the first part of Theorem 1.1. To illustrate with other 0–
regularly varying sequences, consider an = (ln(n))γ , γ ∈ R. Then:

Dn

(ln(n))γ+1

P−→
n→∞

1

2(γ + 1)
when γ > −1

Dn

ln(ln(n))

P−→
n→∞

1

2
when γ = −1

Dn
a.s.−→
n→∞

D∞ when γ < −1,
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where the last line is due to the fact that (Dn) is stochastically increasing (by (2.2)) and
that limnE[Dn] is finite when γ < −1 (by (2.3),(2.5)), which implies that (Dn) converges
in distribution to a r.v. D∞ with finite expectation. Note that this last argument
actually holds for any sequence (an) such that

∑∞
i=1A

−1
i a2i < ∞ (which is equivalent

to
∑∞
i=1 i

−1ai < ∞ when (an) is regularly varying, necessarily with index 0). All these
remarks lead to Proposition 1.3, using again (2.6) when α > 0.

We come back to the case where α > 0 and note the following behavior of the
maximum of n i.i.d. copies of ξ(α).

Proposition 2.2. Let ξ(α,1), . . . , ξ(α,n) be i.i.d. copies of ξ(α). Then,

max
{
ξ(α,1), . . . , ξ(α,n)

}
× ln(ln(n))

ln(n)

P−→
n→∞

1.

Proof. From (1.1), we know that the random variable ξ(α) is infinitely divisible and the
support of its Lévy measure is [0, 1]. By [7, Theorem 8.2.3], this implies that

exp (λx ln(x))P
(
ξ(α) > x

)
−→
x→∞

0 when λ < 1

and
exp (λx ln(x))P

(
ξ(α) > x

)
−→
x→∞

∞ when λ > 1.

Besides, the independence of the ξ(α,i), 1 ≤ i ≤ n leads to

ln

(
P

(
max

{
ξ(α,1), . . . , ξ(α,n)

}
≤ u ln(n)

ln(ln(n))

))
∼

n→∞
−nP

(
ξ(α) > u

ln(n)

ln(ln(n))

)
,

for all u > 0. With the above estimates, it is straightforward that the right–hand side
converges to 0 when u > 1 and to −∞ when u < 1.

We will not directly use this result later in the paper, but this may be seen as a hint
that the height Hn may be asymptotically proportional to nα ln(n)/ ln(ln(n)). To prove
this rigorously, we will actually use the following estimates.

Lemma 2.3. Assume that (an) is regularly varying with index α > 0 and fix γ > 0.
(i) Then for all γ′ < γ,

nγ
′
P

(
Dn

an
> γ

ln(n)

ln(ln(n))

)
−→
n→∞

0

whereas for all γ′ > γ,

nγ
′
P

(
Dn

an
> γ

ln(n)

ln(ln(n))

)
−→
n→∞

∞.

(ii) Fix c ∈ (0, 1). Then for all γ′ < γ

nγ
′
P

(
Dn −Dn(bncc)

an
> γ

ln(n)

ln(ln(n))

)
−→
n→∞

0

whereas for all γ′ > γ,

nγ
′
P

(
Dn −Dn(bncc)

an
> γ

ln(n)

ln(ln(n))

)
−→
n→∞

∞.
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Asymptotics of heights in random trees constructed by aggregation

Proof. Of course, since Dn −Dn(bncc) ≤ Dn, we only need to prove the convergence to
0 in (i) for γ′ < γ and the convergence to∞ in (ii) for γ′ > γ.

(i) Let γ′ < γ and take a, d such that a > γ′/γ, d > 1 and ad < 1. From the upper
bound of Lemma 2.1 (ii), we see that for n large enough

nγ
′
P

(
Dn

an
> γ

ln(n)

ln(ln(n))

)
= nγ

′
P

(
a ln(ln(n))

Dn

an
> aγ ln(n)

)
≤ exp(γ′ ln(n)) · E

[
exp

(
a ln(ln(n))

Dn

an

)]
· exp(−aγ ln(n))

≤
Lemma2.1(ii)

exp
(

ln(n)× (γ′ − aγ) + (1 + α−1)ad ln(ln(n))(ln(n))ad
)

and this converges to 0 since ad < 1 and aγ > γ′.

(ii) Let γ′ > γ. We will (stochastically) compare the random variable a−1n (Dn −
Dn(bncc)) with a binomial Bin(banc, b/n) distribution, with appropriate a, b > 0. A simple
application of Stirling’s formula will then lead to the expected result. Recall from (2.2)
and (2.1) that

Dn −Dn(bncc)
an

=

n∑
i=bncc+1

ai
an
Vi1{Ui≤ ai

Ai

},
with Ui, Vi, i ≥ 1 i.i.d. uniform on (0, 1). Then note from (2.4) and (2.5) that for all
ε, d ∈ (0, 1)

n∑
i=bdnc+1

ai
an
Vi1{Ui≤ ai

Ai

} ≥ (1− ε)dα+ε
n∑

bdnc+1

Vi1{Ui≤α+1
2n }

provided that n is large enough. Now take ε ∈ (0, 1) small enough and d ∈ (c, 1) large
enough so that γ < (1− ε)2dα+εγ′. Setting Nn,ε,d :=

∑n
bdnc+1 1{Vi≥1−ε}, we have,

P

(
Dn −Dn(bncc)

an
> γ

ln(n)

ln(ln(n))

)

≥ P

(1− ε)dα+ε
n∑

bdnc+1

Vi1{Ui≤α+1
2n } > γ

ln(n)

ln(ln(n))


≥

(Ui) indep. (Vi)
P

(1− ε)2dα+ε
bε(1−d)n/2c∑

i=1

1{Ui≤α+1
2n } > γ

ln(n)

ln(ln(n))
, Nn,ε,d ≥

ε(1− d)n

2


≥ P

(
Bin

(⌊
ε(1− d)n

2

⌋
,
α+ 1

2n

)
>

γ

(1− ε)2dα+ε
ln(n)

ln(ln(n))

)
(2.9)

−P
(

Bin (n− bdnc, ε) < ε(1− d)n

2

)
.

One the one hand, the theory of large deviations for the binomial distribution gives

P (Bin (n− bdnc, ε) < ε(1− d)n/2) ≤ exp(−hn),

with h > 0. On the other hand, a simple application of Stirling’s formula implies that

P

(
Bin

(⌊
ε(1− d)n

2

⌋
,
α+ 1

2n

)
>

γ

(1− ε)2dα+ε
ln(n)

ln(ln(n))

)
≥ n−

γ

(1−ε)2dα+ε+◦(1) (2.10)
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Asymptotics of heights in random trees constructed by aggregation

(this is well–known, a proof is given below). Together with the lower bound (2.9), these
two facts indeed lead to

nγ
′
P

(
Dn −Dn(bncc)

an
> γ

ln(n)

ln(ln(n))

)
−→
n→∞

∞

since γ < (1 − ε)2dα+εγ′. We finish with a quick proof of (2.10). More generally, let
a, b, x > 0. Then

P

(
Bin

(
banc, b

n

)
>

x ln(n)

ln(ln(n))

)
≥
( banc⌊

x ln(n)
ln(ln(n))

⌋
+ 1

)(
b

n

)b x ln(n)
ln(ln(n))c+1(

1− b

n

)b x ln(n)
ln(ln(n))c+1

.

Using Stirling’s formula, the binomial term rewrites( banc⌊
x ln(n)

ln(ln(n))

⌋
+ 1

)
= exp

((⌊
x ln(n)

ln(ln(n))

⌋
+ 1

)(
ln(an)− ln

(
x ln(n)

ln(ln(n))

)
+ 1 + ◦(1)

))
.

Hence,

P

(
Bin

(
banc, b

n

)
>

x ln(n)

ln(ln(n))

)
≥ exp

((⌊
x ln(n)

ln(ln(n))

⌋
+ 1

)(
ln(an)− ln

(
x ln(n)

ln(ln(n))

)
+ 1 + ln

(
b

n

)
+ ◦(1)

))
= exp

(
− x ln(n)(1 + ◦(1))

)
.

2.3 Functional convergence

In this section we prove Proposition 1.4. To lighten notation, we let for all n ∈ N

ξn(t) :=
Dn(bntc)

an
=

∑bntc
i=1 aiVi1{Ui≤ai/Ai}

an
, 0 ≤ t ≤ 1,

where Ui, Vi, 1 ≤ i ≤ n are i.i.d. uniform on (0, 1) (recall the construction (2.1)). Our
goal is to prove that the process (ξn) converges to the process ξ(α) defined by (1.3) for
the Skorokhod topology on D([0, 1],R+). We start by proving the finite–dimensional
convergence, relying on manipulations done in Section 2.2. Then we use Aldous’ tight-
ness criterion to conclude that the convergence holds with respect to the topology of
Skorokhod.

Finite–dimensional convergence. The processes ξn, n ≥ 1 and ξ(α) all have indepen-
dent increments, by construction. It remains to prove that

ξn(t)− ξn(s)
(d)−→
n→∞

ξ(α)(t)− ξ(α)(s)

for all 0 ≤ s ≤ t ≤ 1. From the proof of Lemma 2.1 (i), we immediately get that for all
λ ≥ 0

E
[
exp

(
λ
(
ξn(t)− ξn(s)

))]
=

bntc∏
i=bnsc+1

E

[
exp

(
λ
ai
an
V 1{

U≤ ai
Ai

})]

→
n→∞

exp

(
(α+ 1)

∫ t

s

1

x

((
exp(λxα)− 1

λxα

)
− 1

)
dx

)
.

On the other hand, Campbell’s theorem applied to the Poisson point process (ti, vi) on
(0,∞)2 with intensity (α+ 1)t−α−11{v≤tα}dtdv implies that for all λ ≥ 0

E
[
exp

(
λ(ξ(α)(t)− ξα(s)

)]
= exp

(
(α+ 1)

∫ t

s

∫ xα

0

(exp(λv)− 1) dv
dx

x1+α

)
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which indeed coincides with the above limit of E
[
exp

(
λ
(
ξn(t)− ξn(s)

))]
.

Tightness. We use Aldous’ tightness criterion ([6, Theorem 16.10]) that ensures that
(ξn) is tight with respect to the Skorokhod topology on D([0, 1],R+) if:

• limc→∞ lim supn→∞P(supt∈[0,1] ξn(t) > c) = 0

• and for all ε > 0

lim
δ→0

lim sup
n→∞

sup
τ∈Sn

sup
0≤θ≤δ

P
(
|ξn ((τ + θ) ∧ 1)− ξn (τ)| > ε

)
= 0 (2.11)

where Sn is the set of stopping times with respect to the filtration generated by the
process ξn.

The first point is obvious, since the processes ξn are non–decreasing and we already
know that ξn(1) converges in distribution. For the second point, note that if τ ∈ Sn,
then bnτc is a stopping time with respect to the filtration generated by the process
(Dn(k), 0 ≤ k ≤ n). Hence

sup
0≤θ≤δ

P
(
|ξn ((τ + θ) ∧ 1)− ξn (τ)| > ε

)
= P

(
ξn((τ + δ) ∧ 1)− ξn(τ) > ε

)
≤

n∑
k=0

P(bnτc = k)P

k+1+bnδc∑
i=k+1

ai
an
Vi1{Ui≤ ai

Ai
} > ε

 .

We may assume that ε < α. Then, using P(X > ε) ≤ ε−1E[X] for any non–negative r.v.
X, we get

P

k+1+bnδc)∑
i=k+1

ai
an
V i1{Ui≤ ai

Ai
} > ε

 ≤ 1

2ε

k+1+bnδc∑
i=k+1

a2i
anAi

≤
by (2.4),(2.5), for n ≥ nε and all k ≤ n

Cα,ε
nα−ε

k+1+bnδc∑
i=k+1

iα−ε−1

≤
for n ≥ nε and all k ≤ n

Cα,ε max(δα−ε, δ)

where Cα,ε depends only on α, ε. To get the last line we have used that either α−ε−1 ≥ 0

and then (since k + 1 ≤ 2n)

1

nα−ε

k+1+bnδc∑
i=k+1

iα−ε−1 ≤ ((2 + δ)n)α−ε−1nδ

nα−ε
= (2 + δ)α−ε−1δ.

Or α− ε− 1 < 0 and then

1

nα−ε

k+1+bnδc∑
i=k+1

iα−ε−1 ≤
min

(
(k + 1 + nδ)α−ε, (k + 1)α−ε−1nδ

)
(α− ε)nα−ε

≤ (2δ)α−ε

α− ε

where the last inequality is obtained by considering the first term in the minimum when
k + 1 ≤ nδ and the second term when k + 1 > nδ.

In conclusion, we have proved that for all n large enough and all stopping times
τ ∈ Sn,

sup
0≤θ≤δ

P
(
|ξn ((τ + θ) ∧ 1)− ξn (τ)| > ε

)
≤ Cα,ε max(δα−ε, δ).

which gives (2.11).
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3 Multiple marking

In order to prove Theorem 1.2 (ii), we need the joint distribution of the paths from
the root to two points marked independently, uniformly in the tree Tn. This is studied in
Section 3.1. Then in Section 3.2, we turn to ` marked points and the proof of Proposition
1.5.

3.1 Marking two points

The result of this section is available for any sequence (an) of positive terms.

Given Tn, let X(1)
n , X

(2)
n denote two points taken independently and uniformly in Tn,

and D
(1)
n , D

(2)
n their respective distances to the root. For all 1 ≤ k ≤ n, let also D(1)

n (k)

(resp. D(2)
n (k)) denote the distance to the root of the projection of X(1)

n (resp. X(2)
n ) onto

Tk ⊂ Tn. Our goal is to describe the joint distribution of the paths
((
D

(1)
n (k), D

(2)
n (k)

)
, 1 ≤

k ≤ n
)

– we recall that the marginals are given by (2.1). To that end, we introduce a
sequence

(
B(i,1), B(i,2)

)
, i ≥ 1 of independent pairs of random variables defined by:
P
(
(B(i,1), B(i,2)) = (1, 1)

)
= 0

P
(
(B(i,1), B(i,2)) = (1, 0)

)
= ai

Ai+ai

P
(
(B(i,1), B(i,2)) = (0, 1)

)
= ai

Ai+ai

P
(
(B(i,1), B(i,2)) = (0, 0)

)
= Ai−1

Ai+ai
.

(3.1)

Note the two following facts (which will be useful later on):
• B(i,1) (resp. B(i,2)) is stochastically smaller than a Bernoulli r.v. with success parameter
ai/Ai
• the distribution of B(i,1) given that B(i,2) = 0 (resp. B(i,2) given that B(i,1) = 0) is a
Bernoulli r.v. with success parameter ai/Ai.

Lemma 3.1. Let Ui, Vi, V
(1)
i , V

(2)
i , i ≥ 1 be independent r.v. uniformly distributed on (0, 1),

all independent of a sequence ((B(i,1), B(i,2)), i ≥ 1) of independent pairs of Bernoulli
r.v. distributed as (3.1). Then for all n ≥ 1 and all bounded continuous functions
f : R2×n → R,

E
[
f
((
D(1)
n (k), D(2)

n (k)
)
, 1 ≤ k ≤ n

)]
(3.2)

=

n∑
κ=1

(
aκ
Aκ

)2
(

n∏
i=κ+1

(
1−

(
ai
Ai

)2))
× E

[
f
((

∆(1)
κ (k),∆(2)

κ (k)
)
, 1 ≤ k ≤ n

)]
where for j = 1, 2,

∆(j)
κ (k) =

(κ−1)∧k∑
i=1

aiVi1{Ui≤ ai
Ai

} + aκV
(j)
κ 1{k≥κ} +

k∑
i=κ+1

aiV
(j)
i B(i,j). (3.3)

This lemma implies in particular that the distribution of the splitting index Sn(2) of

the two paths linking respectively X(1)
n and X(2)

n to the root, i.e.

Sn(2) := inf
{

1 ≤ k ≤ n : pk(X(1)
n ) 6= pk(X(2)

n )
}
,

where pk(X
(i)
n ), i = 1, 2 denotes the projection of X(i)

n onto Tk, is given by

P (Sn(2) = κ) =

(
aκ
Aκ

)2 n∏
i=κ+1

(
1−

(
ai
Ai

)2
)
, 1 ≤ κ ≤ n (3.4)
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(which is indeed a probability distribution!). Moreover, given Sn(2) = κ, the dependence
of the two paths above the index κ + 1 is only driven by pairs of random variables(
B(i,1), B(i,2)

)
, i ≥ κ+ 1, as described in (3.3).

Proof. We proceed by induction on n ≥ 1. For n = 1, the formula of the lemma reduces
to

E
[
f
(
D

(1)
1 , D

(2)
1

)]
= E

[
f
(
a1V

(1)
1 , a1V

(2)
1

)]
which is obviously true since the two marked points are independently and uniformly
distributed on a segment of length a1. Consider now an integer n ≥ 2 and assume
that the formula of the lemma holds for n − 1. When marking X

(1)
n , X

(2)
n , four disjoint

situations may arise:

• with probability (an/An)2, the two marked points are on the branch bn. Condition-

ally on this event, D(1)
n (k) = D

(2)
n (k), 1 ≤ k ≤ n− 1 which corresponds to the path

to the root of a point uniformly distributed on Tn−1, which is distributed as

k∑
i=1

aiVi1{Ui≤ ai
Ai

}, 1 ≤ k ≤ n− 1.

Moreover D(1)
n (n) −D(1)

n (n − 1) and D
(2)
n (n) −D(1)

n (n − 1) are independent, inde-

pendent of the path (D
(1)
n (k), k ≤ n − 1), and uniformly distributed on bn, which

has length an. All this leads to the term κ = n in the sum (3.2).

• with probability An−1an/A
2
n, X(1)

n ∈ Tn−1 and X
(2)
n ∈ bn. Conditionally on this

event, D(1)
n (k), 1 ≤ k ≤ n−1 and D(2)

n (k), 1 ≤ k ≤ n−1 correspond to the respective
paths to the root of two points marked independently, uniformly in Tn−1. Their joint

distribution is therefore given by the induction hypothesis. Moreover D(1)
n (n) =

D
(1)
n (n−1) andD(2)

n (n)−D2
n(n−1) is independent of the paths (D

(1)
n (k), D

(2)
n (k)), 1 ≤

k ≤ n − 1 and is uniformly distributed on bn. To sum up, setting for κ ≤ n − 1

∆
(1)

κ (n) := ∆
(1)
κ (n − 1), ∆

(2)

κ (n) := ∆
(2)
κ (n − 1) + anV

(2)
n and ∆

(1)

κ (k) := ∆
(1)
κ (k),

∆
(2)

κ (k) := ∆
(2)
κ (k) for k ≤ n− 1, we have:

E

[
f
((
D(1)
n (k), D(2)

n (k)
)
, 1 ≤ k ≤ n

)
1{

X
(1)
n ∈Tn−1,X

(2)
n ∈bn

}]
=

An−1an
A2
n

×
n−1∑
κ=1

(
aκ
Aκ

)2
(

n−1∏
i=κ+1

(
1−

(
ai
Ai

)2))
×E

[
f
((

∆
(1)

κ (k),∆
(2)

κ (k)
)
, 1 ≤ k ≤ n

)]
=

n−1∑
κ=1

(
aκ
Aκ

)2
(

n∏
i=κ+1

(
1−

(
ai
Ai

)2))
×E

[
f
((

∆(1)
κ (k),∆(2)

κ (k)
)
, 1 ≤ k ≤ n

)
1{B(n,1)=0,B(n,2)=1}

]
,

where we have used for the second equality that

An−1an
A2
n

=

(
1−

(
an
An

)2
)
× P

(
B(n,1) = 0, B(n,2) = 1

)
.

• with probability An−1an/A2
n, X(2)

n ∈ Tn−1 and X(1)
n ∈ bn, which is symmetric to the

previous case.
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• with probability (An−1/An)2 the two marked points are in Tn−1. Conditionally on

this event, D(1)
n (n) = D

(1)
n (n− 1), D(2)

n (n) = D
(2)
n (n− 1) and D

(1)
n (k), 1 ≤ k ≤ n− 1

and D
(2)
n (k), 1 ≤ k ≤ n − 1 correspond to the paths to the root of two points

marked independently, uniformly in Tn−1. Their joint distribution is therefore given

by the induction hypothesis, and setting for κ ≤ n − 1, ∆
(1)

κ (n) := ∆
(1)
κ (n − 1),

∆
(2)

κ (n) := ∆
(2)
κ (n− 1) and ∆

(1)

κ (k) := ∆
(1)
κ (k), ∆

(2)

κ (k) := ∆
(2)
κ (k) for k ≤ n− 1, we

have:

E

[
f
((
D(1)
n (k), D(2)

n (k)
)
, 1 ≤ k ≤ n

)
1{

X
(1)
n ∈Tn−1,X

(2)
n ∈Tn−1

}]
=

A2
n−1
A2
n

×
n−1∑
κ=1

(
aκ
Aκ

)2
(

n−1∏
i=κ+1

(
1−

(
ai
Ai

)2))
×E

[
f
((

∆
(1)

κ (k),∆
(2)

κ (k)
)
, 1 ≤ k ≤ n

)]
=

n−1∑
κ=1

(
aκ
Aκ

)2
(

n∏
i=κ+1

(
1−

(
ai
Ai

)2))
×E

[
f
((

∆(1)
κ (k),∆(2)

κ (k)
)
, 1 ≤ k ≤ n

)
1{B(n,1)=0,B(n,2)=0}

]
,

where we have used for the second equality that

A2
n−1
A2
n

=

(
1−

(
an
An

)2
)
× P

(
B(n,1) = 0, B(n,2) = 0

)
.

Gathering these four situations finally leads to the formula of the lemma for n.

3.2 Marking ` points and behavior of Tn(`)

The goal of this section is to prove Proposition 1.5. We start with a few notation.
For each n, given Tn, let X(1)

n , . . . , X
(`)
n be ` points picked independently and uniformly

in Tn. Let then D
(1)
n , . . . , D

(`)
n be their respective distances to the root, and for all

1 ≤ k ≤ n, D(1)
n (k), . . . , D

(`)
n (k) be the respective distances to the root of the projections

of X(1)
n , . . . , X

(`)
n onto Tk ⊂ Tn.

In the tree Tn(`), the subtree of Tn spanned from the root and X(1)
n , . . . , X

(`)
n , we let,

using the notation of the introduction,

Bn(`) := B(i0,j0)
n if d(B(i0,j0)

n , root) = max
1≤i6=j≤`

(d(B(i,j)
n , root))

be the point amongst the B
(i,j)
n , 1 ≤ i 6= j ≤ ` the farthest from the root (note that it is

well–defined a.s.). We may and will also see Bn(`) as a point of Tn.

We will need the following random variables. For all i ≥ 1, let
(
B(i,1), . . . , B(i,`)

)
be

an exchangeable `–uplet with distribution
P
(
(B(i,1), . . . , B(i,`)) = (u1, . . . , u`)

)
= 0 for all (ui) ∈ {0, 1}` with at least two 1

P
(
(B(i,1), . . . , B(i,`)) = (1, 0, . . . , 0)

)
= ai

Ai−1+`ai

P
(
(B(i,1), . . . , B(i,`)) = (0, 0 . . . , 0)

)
= Ai−1

Ai−1+`ai
.

(3.5)

In order to study the asymptotic behavior of (Tn(`)), we set up the following lemma,
which is similar to Lemma 3.1, although less explicit.
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Lemma 3.2. For all k ∈ N and all n ∈ N, n > k, the distribution of(
D(1)
n −D

(1)
k+1, . . . , D

(`)
n −D

(`)
k+1

)
given that Bn(`) ∈ Tk

is the same as that of (
n∑

i=k+2

aiV
(1)
i B(i,1), . . . ,

n∑
i=k+2

aiV
(`)
i B(i,`)

)
,

where the random variables V (j)
i , i ≥ 1, 1 ≤ j ≤ ` are i.i.d. uniform on (0, 1), the `–uplets(

B(i,1), . . . , B(i,`)
)

are distributed via (3.5), ∀i ≥ 1, independently of each other and

independently of (V
(j)
i , i ≥ 1, 1 ≤ j ≤ `).

Proof. The proof is similar to that of Lemma 3.1 and holds by induction on n > k. We
sketch it briefly. For n = k + 1 the statement is obvious since both `−uplets are then
equal to (0, . . . , 0). Assume now that the statement holds for some n > k. Then observe
what happens for n+ 1: given that Bn+1(`) ∈ Tk, two situations may occur:

• either none of the marked points belongs to the segment bn+1. This occurs with a
probability proportional to (An)` and then(

D
(1)
n+1 −D

(1)
k+1, . . . , D

(`)
n+1 −D

(`)
k+1

)
given that Bn+1(`) ∈ Tk

is distributed as(
D(1)
n −D

(1)
k+1, . . . , D

(`)
n −D

(`)
k+1

)
given that Bn(`) ∈ Tk.

• or a unique marked point belongs to the segment bn+1. The probability that

X
(1)
n+1 belongs to bn+1 (and not the other ` − 1 marked points) is proportional to

an+1(An)`−1 and in that case,(
D

(1)
n+1 −D

(1)
k+1, . . . , D

(`)
n+1 −D

(`)
k+1

)
given that Bn+1(`) ∈ Tk

is distributed as(
D(1)
n + an+1V −D(1)

k+1, . . . , D
(`)
n −D

(`)
k+1

)
given that Bn(`) ∈ Tk,

where V is uniform on (0, 1) and independent of D(i)
n −D(i)

k+1, 1 ≤ i ≤ `,Bn(`).

This leads to the statement for n+ 1.

Proof of Proposition 1.5. Throughout this proof it is assumed that (an) is regularly vary-
ing with index α > 0 (the proof is identical under the assumptions (ii) of Proposition 1.5).
With the notation of this section, our goal is to prove that(

D
(i)
n

an
, 1 ≤ i ≤ `, d(Bn(`), root)

an

)
(d)−→
n→∞

((
ξ
(i)
(α), 1 ≤ i ≤ `

)
, 0
)

where ξ(1)(α), . . . , ξ
(`)
(α) are i.i.d. with distribution (1.1). We first claim that

d(Bn(`), root)

an

P−→
n→∞

0,
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Asymptotics of heights in random trees constructed by aggregation

since an → ∞ and d(Bn(`), root) ≤
∑

1≤i 6=j≤` d(B
(i,j)
n , root), which is stochastically

bounded since the splitting index Sn(2) of the paths of two marked points converges in
distribution, by (3.4). By Slutsky’s Theorem, it remains to prove that(

D
(i)
n

an
, 1 ≤ i ≤ `

)
(d)−→
n→∞

(
ξ
(i)
(α), 1 ≤ i ≤ `

)
.

We start by observing that for all k ≥ 1,(
D

(i)
n −D(i)

k+1

an
, 1 ≤ i ≤ `

)
given that Bn(`) ∈ Tk

(d)−→
n→∞

(
ξ
(i)
(α), 1 ≤ i ≤ `

)
,

which obviously leads to (since an →∞)(
D

(i)
n

an
, 1 ≤ i ≤ `

)
given that Bn(`) ∈ Tk

(d)−→
n→∞

(
ξ
(i)
(α), 1 ≤ i ≤ `

)
.

The above observation relies on the following consequence of Lemma 3.2: for all
(λi)1≤i≤` ∈ R` and all n > k,

ln

(
E

[
exp

(∑̀
i=1

λi
D

(i)
n −D(i)

k+1

an

)]
|Bn(`) ∈ Tk

)

=

n∑
j=k+2

ln

(
1 +

aj
Aj−1 + `aj

∑̀
i=1

(
exp(λi

aj
an

)− 1

λi
aj
an

− 1

))

(with the usual convention x−1(exp(x)− 1) = 1 when x = 0). A slight modification of the
proof of Lemma 2.1 implies that this logarithm converges to

∑`
i=1 φ(α)(λi), which then

leads to the expected convergences in distribution. The end of the proof is then easy. Let
Vn = (a−1n D

(i)
n , 1 ≤ i ≤ `) and f : R` → R be a continuous, bounded function. Fix ε > 0.

There exists kε ∈ N such that P(Bn(`) /∈ Tkε) ≤ ε for all n, since, as already mentioned,
the splitting index of the paths of two marked points converges in distribution, by (3.4).
Then, writing

E [f(Vn)] = E [f(Vn)|Bn(`) ∈ Tkε ]P(Bn(`) ∈ Tkε) + E
[
f(Vn)1{Bn(`)/∈Tkε}

]
we get that

E
[
f
(
ξ
(i)
(α), 1 ≤ i ≤ `

)]
(1− ε)− sup

x∈R`
|f(x)|ε

≤ lim inf
n→∞

E [f(Vn)]

≤ lim sup
n→∞

E [f(Vn)] ≤ E
[
f
(
ξ
(i)
(α), 1 ≤ i ≤ `

)]
+ sup
x∈R`

|f(x)|ε.

Letting ε→ 0 gives the result.

4 Height of Tn when α > 0

Throughout this section we assume that (an) is regularly varying with index α > 0.
Our goal is to prove that

Hn · ln(ln(n))

an ln(n)

a.s.−→
n→∞

1
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(Theorem 1.2 (ii)). We split the proof into two parts, starting with the fact that

lim sup
n→∞

Hn · ln(ln(n))

an ln(n)
≤ 1 a.s., (4.1)

which is an easy consequence of Borel–Cantelli’s lemma and Lemma 2.3 (i). We will then
show that

lim inf
n→∞

Hn · ln(ln(n))

an ln(n)
≥ 1 a.s., (4.2)

using the second moment method and, again, Borel–Cantelli’s lemma. To carry this out,
we will use Lemma 3.1 on the two marked points, as well as the estimates of Lemma 2.3
(ii).

4.1 Proof of the limsup (4.1)

In the infinite tree ∪n≥1Tn, label the leaves by order of appearance: for each i ≥ 1,
the leaf Li is the one that belongs to the branch bi. Then consider for i ≥ 2 the projection
of Li onto Ti−1 and denote by Di−1 the distance of this projection to the root, which is
distributed as Di−1. Let D0 = 0 and note that

Hn = max
1≤i≤n

{d(Li, root)} = max
1≤i≤n

{Di−1 + ai}.

Now, let c1 > c2 > 1. By Lemma 2.3 (i),∑
i≥1

P

(
Di−1 ≥ c2

ai−1 ln(i− 1)

ln(ln(i− 1))

)
<∞.

Hence by Borel–Cantelli’s lemma, almost surely

Di−1 < c2
ai−1 ln(i− 1)

ln(ln(i− 1))

for all i large enough. This leads, together with the fact that (ai) is regularly varying –
see in particular (2.4) – to the almost sure existence of a (random) i0 such that

Di−1 + ai < c1
an ln(n)

ln(ln(n))

for all n ≥ i ≥ i0. Hence,

lim sup
n→∞

Hn · ln(ln(n))

an ln(n)
≤ c1 a.s.

This holds for all c1 > 1, hence (4.1).

4.2 Proof of the liminf (4.2)

Let X(i)
n , 1 ≤ i ≤ n be n points marked independently and uniformly in Tn. Then

let D(i)
n , 1 ≤ i ≤ n denote their respective distances to the root, and for all k < n,

D
(i)
n (k), 1 ≤ i ≤ n denote the distances to the root of their respective projections onto Tk.

Of course, Hn ≥ max1≤i≤nD
(i)
n and it is sufficient to prove the liminf for this maximum of

dependent random variables. To that end, we first establish the following lemma, using
the second moment method.
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Lemma 4.1. For all c ∈ (0, 1) and all γ < 1,

P

(
max1≤i≤n

(
D

(i)
n −D(i)

n (bncc)
)

an
≤ γ ln(n)

ln(ln(n))

)
≤ nγ−1+◦(1). (4.3)

Since Hn is larger than the maximum involved in this probability, this immediately
implies that

P

(
Hn · ln(ln(n))

an ln(n)
≤ γ

)
−→
n→∞

0 for all γ < 1.

This is however not sufficient since we want an almost sure bound for the liminf (4.2).
We will turn to this conclusion later on. We first prove the lemma.

Proof of Lemma 4.1. We start with standard arguments, in order to use the second
moment method. Fix γ ∈ (0, 1) and introduce

A(i)
n :=

{
D

(i)
n −D(i)

n (bncc)
an

> γ
ln(n)

ln(ln(n))

}
, 1 ≤ i ≤ n,

and

Sn :=

n∑
i=1

1
A

(i)
n
.

Since the sequence (D
(i)
n −D(i)

n (bncc), 1 ≤ i ≤ n) is exchangeable, we have:

E [Sn] = nP
(
A(1)
n

)
and

Var (Sn) = nP
(
A(1)
n

)
+ n(n− 1)P

(
A(1)
n ∩A(2)

n

)
−
(
nP
(
A(1)
n

))2
.

Note that with this notation, (4.3) rewrites P (Sn = 0) ≤ nγ−1+◦(1). To prove this upper
bound, we use the second moment method:

P (Sn = 0) ≤ Var (Sn)

(E[Sn])
2

≤ 1

nP
(
A

(1)
n

) +
P
(
A

(1)
n ∩A(2)

n

)(
P
(
A

(1)
n

))2 − 1.

By Lemma 2.3 (ii), we know that nP
(
A

(1)
n

)
= n1−γ+◦(1). It remains to show that

P
(
A

(1)
n ∩A(2)

n

)(
P
(
A

(1)
n

))2 ≤ 1 + nγ−1+◦(1).

To that end, recall the notation and statement of Lemma 3.1:

P
(
A(1)
n ∩A(2)

n

)
=

n∑
κ=1

pκP

(
∆

(j)
κ (n)−∆

(j)
κ (bncc)

an
> γ

ln(n)

ln(ln(n))
, j = 1, 2

)

where pκ :=
(
aκ
Aκ

)2(∏n
i=κ+1

(
1−

(
ai
Ai

)2))
for 1 ≤ κ ≤ n. We split this sum into two parts:
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(i) First, using the notation of Section 3.1 and the remarks just before Lemma 3.1, we
see that

bncc∑
κ=1

pκP

(
∆

(j)
κ (n)−∆

(j)
κ (bncc)

an
> γ

ln(n)

ln(ln(n))
, j = 1, 2

)

=

bncc∑
κ=1

pκE

[
1{

∆
(1)
κ (n)−∆

(1)
κ (bncc)

an
>γ

ln(n)
ln(ln(n))

}

× P

(∑n
i=bncc+1 aiV

(2)
i B(i,2)

an
> γ

ln(n)

ln(ln(n))

∣∣ B(i,1), V
(1)
i , 1 ≤ i ≤ n

)]

≤ P
(
A(1)
n

) bncc∑
κ=1

pκP

(
∆

(1)
κ (n)−∆

(1)
κ (bncc)

an
> γ

ln(n)

ln(ln(n))

)
≤ P

(
A(1)
n

)2
.

The first inequality is due to the fact that the sum
∑n
i=bncc+1 aiV

(2)
i B(i,2) given B(i,1), V

(1)
i ,

1 ≤ i ≤ n is stochastically smaller than D(1)
n −D(1)

n (bncc) since the distribution of B(i,2)

conditional on B(i,1) = 0 is a Bernoulli r.v. with success parameter ai/Ai, and moreover
B(i,2) = 0 a.s. when B(i,1) = 1. The second inequality follows immediately from Lemma
3.1.

(ii) Second,

n∑
κ=bncc+1

pκP

(
∆

(j)
κ (n)−∆

(j)
κ (bncc)

an
> γ

ln(n)

ln(ln(n))
, j = 1, 2

)

≤
n∑

κ=bncc+1

pκP

∑n
i=κ+1 aiV

(1)
i B(i,1) + aκV

(1)
κ +

∑κ−1
i=bncc+1 aiVi1{Ui≤ ai

Ai
}

an
> γ

ln(n)

ln(ln(n))


≤ n−γ+◦(1)

n∑
κ=bncc+1

pκ = n−γ−1+◦(1).

Indeed, note that

n∑
i=κ+1

aiV
(1)
i B(i,1) + aκV

(1)
κ +

κ−1∑
i=bncc+1

aiVi1{Ui≤ai/Ai}

is stochastically dominated by aκ + D
(1)
n − D

(1)
n (bncc) since B(i,1) is dominated by a

Bernoulli r.v. with success parameter ai/Ai, for all i. So by Lemma 2.3 (ii) and the fact
that aκ ≤ 2an uniformly in κ ∈ {bncc, . . . , n} for n large enough (see (2.4)), we get that

P

(∑n
i=κ+1 aiV

(1)
i B(i,1) + aκV

(1)
κ +

∑κ
i=bncc+1 aiVi1{Ui≤ai/Ai}

an
> γ

ln(n)

ln(ln(n))

)
≤ n−γ+◦(1)

with a ◦(1) independent of κ ∈ {bncc, . . . , n}. Moreover, by (2.5),

n∑
κ=bncc+1

pκ ≤
n∑

κ=bncc+1

( aκ
Aκ

)2
= n−1+◦(1).

Finally, gathering the two upper bounds established in (i) and (ii) and using again
that P(A

(1)
n ) = n−γ+◦(1), we have proved that

P
(
A

(1)
n ∩A(2)

n

)(
P
(
A

(1)
n

))2 ≤ 1 +
n−γ−1+◦(1)

n−2γ+◦(1)
= 1 + nγ−1+◦(1)
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as wanted.

It remains to deduce (4.2) from Lemma 4.1. To that end, fix γ ∈ (0, 1). A first
consequence of Lemma 4.1 is that

P

(
Hn

an
≤ γ ln(n)

ln(ln(n))

)
≤ nγ−1+◦(1). (4.4)

Now let c ∈ (0, 1) and note that

Hn ≥ max
(
Hbncc, max

1≤i≤n

(
D(i)
n −D(i)

n (bncc)
))

with Hbncc and max1≤i≤n
(
D

(i)
n −D(i)

n (bncc)
)

independent. Hence,

P

(
Hn

an
≤ γ ln(n)

ln(ln(n))

)
≤ P

(
Hbncc

an
≤ γ ln(n)

ln(ln(n))

)
× P

(
max1≤i≤n

(
D

(i)
n −D(i)

n (bncc)
)

an
≤ γ ln(n)

ln(ln(n))

)
≤ nγc

−α−1+◦(1) · nγ−1+◦(1)

by (4.4) applied to bncc instead of n (together with the regular variation assumption on
(an)) and Lemma 4.1. Next, fix an integer k such that (1− γ)k > 1. Iterating the previous
argument, we get that

P

(
Hn

an
≤ γ ln(n)

ln(ln(n))

)
≤ nγ

∑k−1
j=0 c

−αj−k+◦(1).

We now choose c ∈ (0, 1) sufficiently close to 1 so that γ
∑k−1
j=0 c

−αj−k < −1 and conclude
with Borel–Cantelli lemma that almost surely

Hn · ln(ln(n))

an ln(n)
> γ for all n large enough.

This holds for all γ < 1. Hence (4.2).

5 The case an = 1

The goal of this section is to prove Theorem 1.1. To that end we start by associating
to a sequence (Tn) built recursively from a sequence (an) of positive lengths (with no
constraints on the ans for the moment) a sequence of graph–theoretic trees (Rn) that
codes its genealogy as follows:

• R1 is the tree composed by a unique vertex, labeled 1

• if in Tn the branch bn is glued on the branch bi, i < n, then Rn is obtained from
Rn−1 by grafting a new vertex, labeled n , to the vertex i .

The vertex 1 is considered as the root of Rn,∀n ≥ 1. This sequence of genealogical
trees has been used by [5] to study the boundedness of ∪n≥1Tn.

From now on it is assumed that an = 1 for all n ≥ 1. In that case, for all n, Rn
is obtained by grafting the new vertex n to one vertex chosen uniformly at random
amongst the n− 1 vertices of Rn−1. Hence Rn is a uniform recursive tree with n leaves.
Let dRn denote the graph distance on Rn. It is well–known that

dRn( n , 1 )

ln(n)

a.s.−→
n→∞

1 and max
1≤i≤n

dRn( i , 1 )

ln(n)

a.s.−→ e, (5.1)
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Figure 1: On the left, a version of the tree T8. On the right, the associated genealogical
tree with edge–lengths R8. The discrete (graph–theoretic) tree R8 is obtained from R8

by forgetting the uniform lengths Ui, 2 ≤ i ≤ 8.

see [11, 16, 17]. Next we add lengths to the edges of the trees Rn, n ≥ 2. By construction,
there exists a sequence of i.i.d. uniform r.v. Ui, i ≥ 1 such that in ∪n≥1Tn,

d(Li, root) =

k∑
j=1

Uij + Ui + 1 if b1 → bi1 → . . .→ bik → bi

where the sequence b1 → bi1 → . . .→ bik → bi represents the segments involved in the
path from the root to Li (recall from the introduction that the leaves are labelled by
order of insertion). For all n and all 2 ≤ i ≤ n, we decide to allocate the length Ui to the
edge in Rn between the vertex i and its parent. We denote by Rn this new tree with
edge–lengths and by dRn the corresponding metric, so that finally,

d(Li, root) = dRn( i , 1 ) + 1, for all leaves Li ∈ Tn. (5.2)

See Figure 1 for an illustration.

Height of a typical vertex in Tn, height of leaf Ln, height of a uniform leaf of Tn.
The strong law of large numbers and the convergence on the left of (5.1) then clearly yield
that dRn( n , 1 )/ ln(n) converges a.s. to 1/2. This in turn yields that d(Ln, root)/ ln(n)

converges a.s. to 1/2 and that
Dn

ln(n)

P−→
n→∞

1

2

since bn+1 is inserted on a uniform point of Tn. (More precisely, if we note, for each n,
Dn the distance to the root of the insertion point of bn+1 on Tn, we obtain versions of
the Dns that converge almost surely: Dn/ ln(n)→ 1/2 a.s.).

Moreover, from the (a.s.) convergence of d(Ln, root)/ ln(n) to 1/2, it is easy to get the
convergence in probability of d(Ln,?, root)/ ln(n) to 1/2, where Ln,? is a uniform leaf of
Tn. We let the reader adapt the proof seen in Section 2.2 for regularly varying sequences
(an) with a strictly positive index.

Height of Tn. From (5.2) it is clear that the height Hn of Tn has the same asymptotic
behavior as the height of Rn. Using results by Broutin and Devroye [9] on the asymptotic
behavior of heights of certain trees with edge–lengths, we obtain:
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Proposition 5.1. As n→∞,

max
1≤i≤n

dRn( i , 1 )

ln(n)

P−→ eβ
∗

2β∗
,

where β∗ is the unique solution in (0,∞) to the equation 2(eβ − 1) = βeβ .

Proof. We use several remarks or techniques of [9] and invite the reader to refer to
this paper for details. First, according to the paragraph following Theorem 3 in [9], the
random recursive trees (Rn) can be coupled with random binary trees with edge–lengths
so as to fit the framework of [9, Theorem 1] on the asymptotic of heights of binary trees
with edge–lengths. From this theorem, we then know that

max
1≤i≤n

dRn( i , 1 )

ln(n)

P−→
n→∞

c

where c is defined a few lines below. Let us first introduce some notation.
Let E denote an exponential r.v. with parameter 1 and Z a real–valued r.v. with

distribution (δ0(dx) + 1[0,1](x)dx)/2, where δ0 denotes the Dirac measure at 0 and dx the
Lebesgue measure on R. Note that E[E] = 1 and E[Z] = 1/4. Moreover,

ΛZ(t) := ln
(
E
[
etZ
])

= ln

(
1 +

et − 1

t

)
− ln(2), for t 6= 0

and ΛZ(0) = 0. The corresponding Fenchel–Legendre transform Λ∗Z(t) :=

supλ∈R {λt− ΛZ(λ)} is then given by

Λ∗Z(t) = tλ(t)− ln(h(λ(t))) + ln(2) for 0 < t < 1,

and Λ∗Z(t) = +∞ for t /∈ (0, 1), where h(u) = 1 + (eu − 1)/u, for u ∈ R (h(0) = 2), and for
t ∈ (0, 1), λ(t) is defined by

t =
h′(λ(t))

h(λ(t))

(the function u ∈ R 7→ h′(u)/h(u) ∈ (0, 1) – with the convention h′(0)/h(0) = 1/4 – is
bijective, increasing). For the r.v. E, we more simply have

Λ∗E(t) = t− 1− ln(t) for 0 < t < 1

and Λ∗E(t) = +∞ for t /∈ (0, 1). According to [9, Theorem 1], the limit c introduced above
is defined as the unique maximum of α/ρ along the curve{

(α, ρ) : Λ∗Z(α) + Λ∗E(ρ) = ln(2), 0 < ρ < 1,
1

4
≤ α < 1

}
(5.3)

=

{
(α, ρ) : αλ(α)− ln(h(λ(α))) + ρ− 1− ln(ρ) = 0), 0 < ρ < 1,

1

4
≤ α < 1

}
(according to [9, Lemma 1], this curve is increasing and concave).

It remains to determine this maximum. We reason like Broutin and Devroye at the
end of their proof of [9, Theorem 3]. The slope of the curve is

dρ

dα
=

λ(α)
1
ρ − 1

and on the other hand, at the maximum

dρ

dα
=
ρ

α
.
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Hence, at the maximum
αmaxλ(αmax) = 1− ρmax.

Plugging this in (5.3) gives ρmax = 1/h(λ(αmax)), which gives in turn

αmaxλ(αmax) = 1− 1

h(λ(αmax))
.

Setting βmax = λ(αmax)⇔ αmax = h′(βmax)/h(βmax), this is equivalent to

h′(βmax)

h(βmax)
βmax = 1− 1

h(βmax)
.

Simple manipulations then give

2(eβmax − 1) = βmaxe
βmax ,

which then leads to

c =
αmax

ρmax
=

1

2

eβmax

βmax
.
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