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Abstract

We investigate the component sizes of the critical configuration model, as well as
the related problem of critical percolation on a supercritical configuration model.
We show that, at criticality, the finite third moment assumption on the asymptotic
degree distribution is enough to guarantee that the sizes of the largest connected
components are of the order n2/3 and the re-scaled component sizes (ordered in a
decreasing manner) converge to the ordered excursion lengths of an inhomogeneous
Brownian Motion with a parabolic drift. We use percolation to study the evolution
of these component sizes while passing through the critical window and show that
the vector of percolation cluster-sizes, considered as a process in the critical window,
converge to the multiplicative coalescent process in the sense of finite dimensional
distributions. This behavior was first observed for Erdős-Rényi random graphs by
Aldous (1997) and our results provide support for the empirical evidences that the
nature of the phase transition for a wide array of random-graph models are universal
in nature. Further, we show that the re-scaled component sizes and surplus edges
converge jointly under a strong topology, at each fixed location of the scaling window.
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1 Introduction

Random graphs are the main vehicles to study complex networks that go through a
radical change in their connectivity, often called the phase-transition. A large body of
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literature aims at understanding the properties of random graphs that experience this
phase-transition in the sizes of the large connected components for various models. The
behavior is well understood for the Erdős-Rényi random graphs, thanks to a plethora
of results [2, 19, 26, 31]. However, these graphs are often inadequate for modeling
real-world networks [11, 14, 28, 29] since the real-world network data often show a
power-law behavior of the asymptotic degrees whereas the degree distribution of the
Erdős-Rényi random graphs has exponentially decaying tails. Therefore, many alternative
models have been proposed to capture this power-law tail behavior. An interesting fact,
however, is that the behavior, in most of these models, is quite universal in the sense
that there is a critical value where the graphs experience a phase-transition and the
nature of this phase-transition is insensitive to the microscopic descriptions of the model
[4, 8, 12, 20, 26, 27, 32].

In this work, we focus on the configuration model, the canonical model for generating
a random multi-graph with a prescribed degree sequence. This model was introduced by
Bollobás [10] to choose a uniform simple d-regular graph on n vertices, when dn is even.
The idea was later generalized for general degree sequences d by Molloy and Reed [24]
and others. We denote by CMn(d) the multi-graph generated by the configuration model
on the vertex set [n] = {1, 2 . . . , n} with the degree sequence d. The configuration model,
conditioned on simplicity, yields a uniform simple graph with the same degree sequence.
Various features related to the emergence of the giant component phenomenon for this
model have been studied recently [15, 16, 18, 20, 24, 27]. We give a brief overview
of the relevant literature in Section 4.1. Our aim is to obtain precise asymptotics for
the component sizes of CMn(d) in the critical window of phase transition under the
optimal assumptions on the degree sequence involving a finite third-moment condition.
The re-scaled vector of component sizes (ordered in a decreasing manner) is shown to
converge to the ordered excursion lengths of certain reflected inhomogeneous Brownian
motions with a parabolic drift. This shows that the component sizes of CMn(d) in the
critical regime, for a large collection of possible d, lies in the same universality class as
the Erdős-Rényi random graph [2] and the inhomogeneous random graph [8]. We use
percolation on a super-critical configuration model to show the joint convergence of the
scaled vectors of component sizes at multiple locations of the percolation scaling window.
We also obtain the asymptotic distribution of the number of surplus edges in each
component and show that the sequence of vectors consisting of the re-scaled component
sizes and surplus converges to a suitable limit under a strong topology as discussed
in [6]. These results give very strong evidence in favor of the structural similarity of the
component sizes of CMn(d) and Erdős-Rényi random graphs at criticality.

Our contribution

The main contribution of this paper is that we derive the strongest results in the
literature under the finite third-moment assumption on the degrees. This finite third-
moment assumption is also necessary for Erdős-Rényi type scaling limits, since, amongst
other reasons, the third moment appears in the scaling limit. In a recent work [13],
we consider the infinite third-moment case with power-law degrees and show that the
scaling limit of the cluster sizes is quite different. Also, we prove the joint convergence
of the component sizes and the surplus edges under a strong topology, which improves
the previous known results involving the surplus edges [27]. We also study percolation
on the configuration model to gain insight about the evolution of the configuration model
over the critical scaling window. This is achieved by studying a dynamic process that
generates the percolated graphs with different values of the percolation parameter, a
problem that is interesting in its own right.
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Before stating our main results, we need to introduce some notation and concepts.

2 Definitions and notation

We will use the standard notation
P−→,

L−→ to denote convergence in probability and
in distribution or law, respectively. We often use the Bachmann Landau notation O(·),
o(·) for large n asymptotics of real numbers. The topology needed for the distributional
convergence will always be specified unless it is clear from the context. A sequence of
events (En)n≥1 is said to occur with high probability (whp) with respect to probability
measures (Pn)n≥1 if Pn

(
En
)
→ 1. Denote fn = OP(gn) if (|fn|/|gn|)n≥1 is tight; fn =

oP(gn) if (|fn|/|gn|)n≥1 converges in probability to zero; fn = ΘP(gn) if fn = OP(gn)

and gn = OP(fn). For a triangular array of random variables (fk,n)k,n≥1, we write
phrases like fk,n = OP(nα) (respectively oP(nα)), uniformly over k ≤ nβ to mean that
supk≤nα |fk,n| = OP(nα) (respectively oP(nα)). We also write fn = OE(an) (respectively
fn = oE(an)) to denote that supn≥1E

[
a−1
n fn

]
<∞ (respectively limn→∞E

[
a−1
n fn

]
= 0).

Denote by

`2↓ :=
{
x = (x1, x2, x3, ...) : x1 ≥ x2 ≥ x3 ≥ ... and

∞∑
i=1

x2
i <∞

}
, (2.1)

the subspace of non-negative, non-increasing sequences of real numbers with square
norm metric d(x,y) = (

∑∞
i=1(xi − yi)2)1/2 and let (`2↓)

k denote the k-fold product space
of `2↓. With `2↓ ×N∞, we denote the product topology of `2↓ and N∞, where N∞ denotes
the collection of sequences on N, endowed with the product topology. Define also

U↓ :=
{

((xi, yi))
∞
i=1 ∈ `2↓ ×N∞ :

∞∑
i=1

xiyi <∞ and yi = 0 whenever xi = 0, ∀i
}

(2.2)

with the metric

dU((x1,y1), (x2,y2)) :=

( ∞∑
i=1

(x1i − x2i)
2

)1/2

+

∞∑
i=1

∣∣x1iy1i − x2iy2i

∣∣. (2.3)

Further, we introduce U0
↓ ⊂ U↓ as

U0
↓ :=

{
((xi, yi))

∞
i=1 ∈ U↓ : if xk = xm, k ≤ m, then yk ≥ ym

}
. (2.4)

We usually use the boldface notation X for a time-dependent stochastic process (X(s))s≥0,
unless stated otherwise, C[0, t] denotes the set of all continuous functions from [0, t] to R
equipped with the topology induced by sup-norm || · ||t. Similarly, D[0, t] (resp. D[0,∞))
denotes the set of all càdlàg functions from [0, t] (resp. [0,∞)) to R equipped with the
Skorohod J1 topology. Bλ

µ,η denotes an inhomogeneous Brownian motion with a parabolic
drift, given by

Bλµ,η(s) =

√
η

µ
B(s) + λs− ηs2

2µ3
(2.5)

where B = (B(s))s≥0 is a standard Brownian motion, and µ > 0, η > 0 and λ ∈ R are
constants. Define the reflected version of Bλ

µ,η as

Wλ(s) = Bλµ,η(s)− min
0≤t≤s

Bλµ,η(t). (2.6)

For a function f ∈ C[0,∞), an interval γ = (l, r) is called an excursion above past minima
or simply an excursion of f if f(l) = f(r) = minu≤r f(u) and f(x) > f(r) for all l < x < r.
|γ| = r(γ)− l(γ) will denote the length of the excursion γ.
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Also, define the counting process of marks Nλ = (Nλ(s))s≥0 to be a unit-jump process
with intensity βWλ(s) at time s conditional on (Wλ(u))u≤s so that

Nλ(s)−
s∫

0

βWλ(u)du (2.7)

is a martingale (see [2]). For an excursion γ, let N(γ) denote the number of marks in the
interval [l(γ), r(γ)].

Remark 2.1. By [2, Lemma 25], the excursion lengths of Bλ
µ,η can be rearranged in

decreasing order of length and the ordered excursion lengths can be considered as
a vector in `2↓, almost surely. Let γλ = (|γλj |)j≥1 be the ordered excursion lengths of
Bλ
µ,η. Then, (|γλj |, N(γλj ))j≥1 can be ordered as an element of U0

↓ almost surely by [6,
Theorem 3.1 (iii)]. We denote this element of U0

↓ by Z(λ) = ((Y λj , N
λ
j ))j≥1 obtained from

(|γλj
∣∣, N(γλj ))j≥1.

Finally, we define a Markov process X := (X(s))−∞<s<∞ on D((−∞,∞), `2↓), called
the multiplicative coalescent process. Think of X(s) as a collection of masses of some
particles (possibly infinite) in a system at time s. Thus the ith particle has mass Xi(s) at
time s. The evolution of the system takes place according to the following rule at time
s: At rate Xi(s)Xj(s), particles i and j merge into a new particle of mass Xi(s) +Xj(s).
This process has been extensively studied in [2, 3]. In particular, Aldous [2, Proposition
5] showed that this is a Feller process.

3 Main results

Consider n vertices labeled by [n] := {1, 2, ..., n} and a sequence of degrees d =

(di)i∈[n] such that `n =
∑
i∈[n] di is even. For convenience we suppress the dependence

of the degree sequence on n in the notation. The configuration model on n vertices with
degree sequence d is constructed as follows:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an edge once
they are paired. Therefore, initially we have `n =

∑
i∈[n] di half-edges. We pick any

one half-edge and pair it with a uniformly chosen half-edge from the remaining
unpaired half-edges and keep repeating the above procedure until we exhaust all
the unpaired half-edges.

Note that the graph constructed by the above procedure may contain self-loops or
multiple edges. It can be shown [30, Proposition 7.15] that, conditionally on CMn(d)

being simple, the law of such graphs is uniform over all possible simple graphs with
degree sequence d.

In this section, we discuss the main results in this paper. As discussed in the
introduction, our results are twofold and concern (i) general CMn(d) at criticality, and
(ii) critical percolation on a super-critical configuration model, both under a finite third
moment assumption.

3.1 Configuration model results

We consider a sequence of configuration models (CMn(d))n≥1 satisfying the following:

Assumption 3.1. Let Dn denote the degree of a vertex chosen uniformly at random
independently of the graph. Then,

(i) (Weak convergence of Dn)

Dn
L−→ D (3.1)

for some random variable D such that E[D3] <∞.
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(ii) (Uniform integrability of D3
n)

E
[
D3
n

]
=

1

n

∑
i∈[n]

d3
i → E

[
D3
]
. (3.2)

(iii) (Critical window)

νn :=

∑
i∈[n] di(di − 1)∑

i∈[n] di
= 1 + λn−1/3 + o(n−1/3), (3.3)

for some λ ∈ R.

(iv) P (D = 1) > 0.

Suppose that C(1), C(2),... are the connected components of CMn(d) in decreasing
order of size. In case of a tie, order the components according to the values of the
minimal indices of vertices in those components. For a connected graph G, let SP(G):=
(number of edges in G)− (|G| − 1) denote the number of surplus edges. Intuitively, this
measures the deviation of G from a tree-like structure. Let σr = E [Dr] and consider the
reflected Brownian motion, the excursions, and the counting process Nλ as defined in
Section 2 with parameters

µ := σ1, η := σ3µ− σ2
2 , β := 1/µ. (3.4)

Let γλ denote the vector of excursion lengths of the process Bλ
µ,η, arranged in non-

increasing order. Our main results are as follows:

Theorem 3.2. Fix any λ ∈ R. Under Assumption 3.1,

n−2/3
(
|C(j)|

)
j≥1

L−→ γλ (3.5)

with respect to the `2↓ topology.

Recall the definition of Z(λ) from Remark 2.1. Order the vector component sizes and
surplus edges

(
n−2/3

∣∣C(j)

∣∣,SP(C(j))
)
j≥1

as an element of U0
↓ and denote it by Zn(λ).

Theorem 3.3. Fix any λ ∈ R. Under Assumption 3.1,

Zn(λ)
L−→ Z(λ) (3.6)

with respect to the U0
↓ topology.

In words, Theorem 3.2 gives the precise asymptotic distribution of the component
sizes re-scaled by n2/3 and Theorem 3.3 gives the asymptotic number of surplus edges
in each component jointly with their sizes.

Remark 3.4. The strength of Theorems 3.2 and 3.3 lies in Assumption 3.1. Clearly,
Assumption 3.1 is satisfied when the distribution of D satisfies an asymptotic power-law
relation with finite third moment, i.e., P(D ≥ x) ∼ x−(τ−1)(1 + o(1)) for some τ > 4. Also,
if one has a random degree-sequence that satisfies Assumption 3.1 with high probability,
then Theorems 3.2 and 3.3 hold conditionally on the degrees. In particular, when the
degree sequence consists of an i.i.d sample from a distribution with E[D3] < ∞ [20],
then Assumption 3.1 is satisfied almost surely. We will later see that degree sequences
in the percolation scaling window also satisfy Assumption 3.1.
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3.2 Percolation results

Bond percolation on a graph G refers to deleting edges of G independently with
equal probability p. In the case G is a random graph, the deletion of edges are also
independent of G. Consider bond percolation on CMn(d) with probability pn, yielding
CMn(d, pn). We assume the following:

Assumption 3.5. (i) Assumption 3.1 (i) and (ii) hold for the degree sequence and the
CMn(d) is super-critical, i.e.

νn =

∑
i∈[n] di(di − 1)∑

i∈[n] di
→ ν =

E [D(D − 1)]

E [D]
> 1. (3.7)

(ii) (Critical window for percolation) For some λ ∈ R,

pn = pn(λ) :=
1

νn

(
1 +

λ

n1/3

)
. (3.8)

Note that pn(λ), as defined in Assumption 3.5 (ii), is always non-negative for n
sufficiently large. Now, suppose d̃i ∼ Bin(di,

√
pn), n+ :=

∑
i∈[n](di − d̃i) and ñ = n+ n+.

Consider the degree sequence d̃ consisting of d̃i for i ∈ [n] and n+ additional vertices of
degree 1, i.e. d̃i = 1 for i ∈ [ñ] \ [n]. We will show later that the degree D̃n of a random
vertex from this degree sequence satisfies Assumption 3.1 (i), (ii) almost surely for some
random variable D̃ with E[D̃3] <∞. Moreover, ñ/n→ 1 + µ(1− ν−1/2) = ζ almost surely.
Now, using the notation in Section 2, define γ̃λj = ζ2/3γ̄λj , where γ̄λj is the jth largest
excursion of the inhomogeneous Brownian motion Bλ

µ,η with the parameters

µ = E[D̃], η = E[D̃3]E[D̃]−E2[D̃2], β = 1/E[D̃]. (3.9)

Define the process Ñ as in (2.7) with the parameter values given by (3.9). Denote the
jth largest cluster of CMn(d, pn(λ)) by C p

(j)(λ). Also, let Zpn(λ) denote the vector in U0
↓

obtained by rearranging critical percolation clusters (re-scaled by n2/3) and their surplus
edges and Z̃(λ) denote the vector in U0

↓ obtained by rearranging ((
√
ν|γ̃λj |, Ñ(γ̃λj )))j≥1.

Theorem 3.6. Under Assumption 3.5,

Zpn(λ)
L−→ Z̃(λ) (3.10)

with respect to the U0
↓ topology.

Next we consider the percolation clusters for multiple values of λ. There is a very
natural way to couple (CMn(d, pn(λ))λ∈R described as follows: Suppose that each edge
(ij) of CMn(d) has an associated i.i.d uniform random variable Uij , and the Uij ’s are
also independent of CMn(d). Now, delete edge (ij) if Uij > pn(λ). The obtained graph is
distributed as CMn(d, pn(λ)). Moreover, if we fix the set of uniform random variables
and change λ, this produces a coupling between the graphs (CMn(d, pn(λ))λ∈R. The
next theorem shows that the convergence of the component sizes holds jointly in finitely
many locations within the critical window, under the above described coupling:

Theorem 3.7. Suppose that Assumption 3.5 holds. Let Cn(λ) = (n−2/3|C p
(j)(λ)|)j≥1. For

any k ≥ 1 and −∞ < λ0 < λ1 < · · · < λk−1 <∞,(
Cn(λ0),Cn(λ1), . . . ,Cn(λk−1)

) L−→ √ν(γ̃λ0 , γ̃λ1 , . . . , γ̃λk−1) (3.11)

with respect to the (`2↓)
k topology.
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Remark 3.8. The coupling for the limiting process in Theorem 3.7 is given by the
multiplicative coalescent process described in Section 2. This will become more clear
when we describe the ideas of the proof. To understand this intuitively, notice that
the component C p

(i)(λ) consists of some paired half-edges which form the edges of the
percolated graph, and some open half-edges which were deleted due to percolation.
Denote by Opi (λ), the total number of open half-edges of C p

(i)(λ). One can think of Opi as
the mass of C p

(i). Now, as we change the value of the percolation parameter from pn(λ)

to pn(λ+ dλ), exactly one edge is added to the graph and the two endpoints are chosen
proportional to the number of open half-edges of the components of CMn(d, pn(λ)). By
the above heuristics, C p

(i) and C p
(j) merge at rate proportional to OpiO

p
j and creates a

component of mass Opi + Opj − 2. Later, we will show that the mass of a component
is approximately proportional to the component size. Therefore, the component sizes
merge approximately like the multiplicative coalescent over the critical scaling window.

Remark 3.9. Janson [16] studied the phase transition of the maximum component
size for percolation on a super-critical configuration model. The critical value was
shown to be p = 1/ν. This is precisely the reason behind taking pn of the form given
by Assumption 3.5 (ii). The width of the scaling window is intimately related to the
asymptotics of the susceptibility function

∑
i |C(i)|2/n. In fact, if

∑
i |C(i)|2 ∼ n1+η, then

the width of the critical window turns out to be nη and the largest component sizes are
of the order n(1+η)/2. This has been universally observed in the random graph literature
[2, 8, 12, 20, 25, 27], even when the scaling limit is not in the same universality class as
Erdős-Rényi random graphs [9, 13] and the same turns out to be the case in this paper.

Remark 3.10. Theorem 3.2 and Theorem 3.3 also hold for configuration models con-
ditioned on simplicity. We do not give a proof here. The arguments in [20, Section 7]
can be followed verbatim to obtain a proof of this fact. As a result, Theorem 3.6 and
Theorem 3.7 also hold, conditioned on simplicity.

The rest of the paper is organized as follows: In Section 4.1, we give a brief overview
of the relevant literature. This will enable the reader to understand better the relation
of this work to the large body of literature already present. Also, it will become clear
why the choices of the parameters in Assumption 3.1 (iii) and Assumption 3.5 (ii) should
correspond to the critical scaling window. We prove Theorems 3.2 and 3.3 in Section 5.
In Section 6 we find the asymptotic degree distribution in each component. This is used
along with Theorem 3.3 to establish Theorem 3.6 in Section 7. In Section 8, we analyze
the evolution of the component sizes over the percolation critical window and prove
Theorem 3.7.

4 Discussion

4.1 Literature overview

Erdős-Rényi type behavior. We first explain what ‘Erdős-Rényi type behavior’ means.
The study of critical window for random graphs started with the seminal paper [2] on
the Erdős-Rényi random graphs with p = n−1(1 + λn−1/3). Aldous showed in this regime
that the largest components are of asymptotic size n2/3 and the ordered component
sizes (scaled by n2/3) asymptotically have the same distribution as the ordered excursion
lengths of a Brownian motion with a negative parabolic drift. Aldous also considered a
natural coupling of the re-scaled vectors of component sizes as λ varies, and viewed it
as a dynamic `2↓-valued stochastic process. It was shown that the dynamic process can
be described by a process called the standard multiplicative coalescent, which has the
Feller property. This implies the convergence of the component sizes jointly for different
λ values. In Theorem 3.7, we show that similar results hold for the configuration model
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under a very general set of assumptions. Of course, for general configuration models,
there is no obvious way to couple the graphs such that the location parameter in the
scaling window varies and percolation seems to be the most natural way to achieve this.
By [15, 16], percolation on a configuration model can be viewed as a configuration model
with a random degree sequence and this is precisely the reason for studying percolation
in this paper.

Universality and optimal assumptions. In [8] it was shown that, inside the critical
scaling window, the ordered component sizes (scaled by n2/3) of an inhomogeneous
random graph with

pij = 1− exp

(
−(1 + λn−1/3)wiwj∑

k∈[n] wk

)
(4.1)

converge to the ordered excursion lengths of an inhomogeneous Brownian motion with
a parabolic drift under only finite third-moment assumption on the weight distribution.
We establish a counterpart of this for the configuration model in Theorem 3.2. Later
Nachmias and Peres [25] studied the case of percolation scaling window on the random
regular graph; for percolation on the configuration model similar results were obtained
by Riordan [27] for bounded maximum degrees. Joseph [20] obtained the same scaling
limits as Theorem 3.2 for the component sizes when the degrees are i.i.d samples from a
distribution having finite third moment. Theorem 3.3 and Theorem 3.6 prove stronger
versions of all these existing results for the configuration model under the optimal
assumptions. Further, in Theorem 3.7, we give a dynamic picture for percolation cluster
sizes in the critical window and show that this dynamics can be approximated by the
multiplicative coalescent.

Comparison to branching processes. In [18, 24] the phase transition for the compo-
nent sizes of CMn(d) was identified in terms of the parameter ν = E[D(D − 1)]/E[D].
Janson and Luczak [18] showed that the local neighborhoods of the configuration model
can be approximated by a branching process X which has ν as its expected progeny
and thus, when ν > 1, CMn(d) has a component Cmax of approximate size ρn, where ρ is
the survival probability of X . Further, the progeny distribution of X has finite variance
when E[D3] <∞. Now, for a branching process with mean ≈ 1 + ε and finite variance σ2,
the survival probability is approximately 2σ−2ε for small ε > 0. This seems to suggest
that the largest component size under Assumption 3.1 should be of the order n2/3 since
ε = Θ(n−1/3). Theorem 3.2 mirrors this intuition and shows that in fact all the largest
component sizes are of the order n2/3.

4.2 Proof ideas

The proof of Theorem 3.2 uses standard functional central limit theorem argument.
Indeed we associate a suitable semi-martingale with the graph obtained from an explo-
ration algorithm used to explore the connected components of CMn(d). The martingale
part is then shown to converge to an inhomogeneous Brownian motion, and the drift part
is shown to converge to a parabola. The fact that the component sizes can be expressed
in terms of the hitting times of the semi-martingale implies the finite-dimensional con-
vergence of the component sizes. The convergence with respect to `2↓ is then concluded
using size-biased point process arguments formulated by Aldous [2]. Theorem 3.3
requires a careful estimate of the tail probability of the distribution of surplus edges
when the component size is small and we obtain this using martingale estimates in
Lemma 5.18. Theorem 3.6 is proved by showing that the percolated degree sequence
satisfies Assumption 3.1 almost surely. Finally, we prove Theorem 3.7 in Section 8. The
key challenges here are that, for each fixed n, the components do not merge according
to their component sizes, and that the components do not merge exactly like a multi-
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plicative coalescent over the scaling window. Thus the main theme of the proof lies in
approximating the evolution of the component sizes over the percolation scaling window
with a suitable dynamic process that is an exact multiplicative coalescent.

4.3 Open problems

(i) Theorem 3.7 proves the joint convergence at finitely many locations in the scaling
window. However, the convergence of (Cn(λ))λ∈R as a process in D((−∞,∞), `2↓)

should also hold provided that one can verify a suitable tightness criterion.

(ii) A reason for studying percolation in this paper is to understand the minimal
spanning tree of the giant component. For a super-critical configuration model
with i.i.d edge weights, it should be the case that the minimal spanning tree can be
described by the critically percolated graph at a very high location of the scaling
window. Such results were obtained in [1] for the minimal spanning tree on a
complete graph. The study of minimal spanning trees is still an open question,
even for random regular graphs.

5 Proofs of Theorems 3.2 and 3.3

5.1 The exploration process

Let us explore the graph sequentially using a natural approach outlined in [27]. At
step k, divide the set of half-edges into three groups; sleeping half-edges Sk, active
half-edges Ak, and dead half-edges Dk. The depth-first exploration process can be
summarized in the following algorithm:

Algorithm 1 (DFS exploration). At k = 0, Sk contains all the half-edges and Ak, Dk are
empty. While (Sk 6= ∅ or Ak 6= ∅) we do the following at stage k + 1:

S1 If Ak 6= ∅, then take the smallest half-edge a from Ak.

S2 Take the half-edge b from Sk that is paired to a. Suppose b is attached to a
vertex w (which is necessarily not discovered yet). Declare w to be discovered,
let r = dw − 1 and bw1, bw2, . . . bwr be the half-edges of w other than b. Declare
bw1, bw2,..., bwr, b to be smaller than all other half-edges in Ak. Also order the
half-edges of w among themselves as bw1 > bw2 > · · · > bwr > b. Now identify
Bk ⊂ Ak ∪ {bw1, bw2, . . . , bwr} as the collection of all half-edges in Ak paired to one
of the bwi’s and the corresponding bwi’s. Similarly identify Ck ⊂ {bw1, bw2, . . . , bwr}
which is the collection of self-loops incident to w. Finally, declare Ak+1 = Ak ∪
{bw1, bw2, . . . , bwr} \

(
Bk ∪ Ck

)
, Dk+1 = Dk ∪ {a, b} ∪ Bk ∪ Ck and Sk+1 = Sk \

(
{b} ∪

{bw1, bw2, ..., bwr}
)
. Go to stage k + 2.

S3 If Ak = ∅ for some k, then take out one half-edge a from Sk uniformly at random
and identify the vertex v incident to it. Declare v to be discovered. Let r = dv − 1

and assume that av1, av2,..., avr are the half-edges of v other than a and identify the
collection of half-edges involved in self-loops Ck as in Step 2. Order the half-edges of
v as av1 > av2 > · · · > avr > a. Set Ak+1 = {a, av1, av2,..., avr} \ Ck, Dk+1 = Dk ∪ Ck,
and Sk+1 = Sk \ {a, av1, av2, ..., avr}. Go to stage k + 2.

In words, we explore a new vertex at each stage and throw away all the half-edges
involved in a loop/multiple edge/cycle with the vertex set already discovered before
proceeding to the next stage. The ordering of the half-edges is such that the connected
components of CMn(d) are explored in the depth-first way. We call the half-edges of
Bk ∪ Ck cycle half-edges because they create loops, cycles or multiple edges in the graph.
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Let

Ak := |Ak|, c(k+1) := (|Bk|+ |Ck|)/2, Uk := |Sk|. (5.1)

Let d(j) be the degree of the jth explored vertex and define the following process:

Sn(0) = 0, Sn(i) =

i∑
j=1

(d(j) − 2− 2c(j)). (5.2)

The process Sn = (Sn(i))i∈[n] “encodes the component sizes as lengths of path
segments above past minima” as discussed in [2]. Suppose Ci is the ith connected
component explored by the above exploration process. Define

τk = inf
{
i : Sn(i) = −2k

}
. (5.3)

Then Ck is discovered between the times τk−1 + 1 and τk and |Ck| = τk − τk−1.

5.2 Size-biased exploration

The vertices are explored in a size-biased manner with sizes proportional to their
degrees, i.e., if we denote by v(i) the ith explored vertex in Algorithm 1 and by d(i) the
degree of v(i), then

P
(
v(i) = j|v(1), v(2), ..., v(i−1)

)
=

dj∑
k/∈Vi−1

dk
=

dj∑
k∈[n] dk −

∑i−1
k=1 d(k)

, ∀j ∈ Vi−1, (5.4)

where Vi denotes the first i vertices to be discovered in the above exploration process.
The following lemma will be used crucially in the proof of Theorem 3.2:

Lemma 5.1. Suppose that Assumption 3.1 holds and denote σr = E[Dr] and µ = E[D].
Then for all t > 0, as n→∞,

sup
u≤t

∣∣∣n−2/3

bn2/3uc∑
i=1

d(i) −
σ2u

µ

∣∣∣ P−→ 0, (5.5)

and

sup
u≤t

∣∣∣n−2/3

bn2/3uc∑
i=1

d2
(i) −

σ3u

µ

∣∣∣ P−→ 0. (5.6)

The proof of this lemma follows from the two lemmas stated below:

Lemma 5.2 ([7, Lemma 8.2]). Consider a weight sequence (wi)i∈[n] and let m = m(n) ≤
n be increasing with n. Let {v(i)}i∈[n] be the size-biased reordering of indices [n], where

the size of index i is di/`n. Define γn =
∑
i∈[n] widi/`n and Y (t) = (mγn)−1

∑bmtc
i=1 wv(i).

Further, let dmax = maxi∈[n] di, and wmax = maxi∈[n] wi. Assume that

lim
n→∞

mdmax/`n = 0, and lim
n→∞

(mγn)−1wmax = 0. (5.7)

Then, for any t > 0, as n→∞, supu≤t |Y (t)− t| P−→ 0.

Lemma 5.3. Assumption 3.1 implies

lim
k→∞

lim
n→∞

1

n

∑
j∈[n]

1{dj>k}d
r
j = 0, r = 1, 2, 3. (5.8)

For r = 3, in particular, this implies d3
max = o(n).
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5.3 Estimate of cycle half-edges

The following lemma gives an estimate of the number of cycle half-edges created up
to time t. This result is proved in [27] for bounded degrees. In our case, it follows from
Lemma 5.1 as we show below:

Lemma 5.4. For Algorithm 1, if Ak =
∣∣Ak∣∣, Bk :=

∣∣Bk∣∣, and Ck :=
∣∣Ck∣∣, then

E
[
Bk|Fk

]
= (1 + oP(1))

2Ak
Uk

+OP(n−2/3) (5.9)

and
E
[
Ck|Fk

]
= OP(n−1) (5.10)

uniformly for k ≤ tn2/3 and any t > 0, where Fk is the sigma-field generated by the
information revealed up to stage k. Further, all the OP and oP terms in (5.9) and (5.10)
can be replaced by OE and oE.

Proof. Suppose Uk :=
∣∣Sk∣∣. First note that by (5.5)

Uk
n

=
1

n

∑
j∈[n]

dj −
1

n

k∑
j=1

d(j) = E[D] + oP(1) (5.11)

uniformly over k ≤ tn2/3. Let a be the half-edge that is being explored at stage k+1. Now,
each of the (Ak − 1) half-edges of Ak \ {a} is equally likely to be paired with a half-edge
of v(k+1), thus creating two elements of Bk. Also, given Fk and v(k+1), the probability that
a half-edge of Ak \ {a} is paired to one of the half-edges of v(k+1) is (d(k+1) − 1)/(Uk − 1).
Therefore,

E
[
Bk|Fk, v(k+1)

]
= 2(Ak − 1)

d(k+1) − 1

Uk − 1
= 2
(
d(k+1) − 1

) Ak
Uk − 1

− 2
d(k+1) − 1

Uk − 1
. (5.12)

Hence,

E
[
Bk|Fk

]
= 2E

[
d(k+1) − 1|Fk

] Ak
Uk − 1

− 2
E
[
d(k+1) − 1|Fk

]
Uk − 1

. (5.13)

Now, using (5.5) and (5.6),

E
[
d(k+1) − 1|Fk

]
=

∑
j /∈Vk

dj(dj − 1)∑
j /∈Vk

dj
=

∑
j∈[n] d

2
j∑

j∈[n] dj
− 1 + oP(1) = 1 + oP(1). (5.14)

uniformly over k ≤ tn2/3, where the last step follows from Assumption 3.1 (iii). Further,
using the fact P(D = 1) > 0, Uk ≥ c0n for some constant c0 > 0 uniformly over k ≤ tn2/3.
Thus, (5.13) gives (5.9). The fact that all the OP, oP can be replaced by OE, oE follows
from

∑
j∈[n] d

r
j − kdrmax ≤

∑
j /∈Vk

drj ≤
∑
j∈[n] d

r
j for r = 1, 2, together with dmax = o(n1/3).

To prove (5.10), note that

E
[
Ck|Fk, v(k+1)

]
= 2(d(k+1) − 2)

d(k+1) − 1

Uk − 1
. (5.15)

By Assumption 3.1 and (5.5)

E[d2
(k+1)|Fk] =

∑
j /∈Vk

d3
j∑

j /∈Vk
dj
≤

∑
j∈[n] d

3
j∑

j∈[n] dj + oP(n2/3)
= OP(1), (5.16)

uniformly for k ≤ tn2/3. Therefore,

E
[
Ck|Fk

]
= OP(n−1) (5.17)

uniformly over k ≤ tn2/3. Again, OP term can be replaced by OE, as argued before.
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5.4 Key ingredients

For any D[0,∞)-valued process Xn define X̄n(u) := n−1/3Xn(bn2/3uc) and X̄n :=

(X̄n(u))u≥0. The following result is the main ingredient for proving Theorem 3.2. Recall
the definition of Bλ

µ,η from (2.5) with parameters given in (3.4).

Theorem 5.5 (Convergence of the exploration process). Under Assumption 3.1, as
n→∞,

S̄n
L−→ Bλ

µ,η (5.18)

with respect to the Skorohod J1 topology.

As in [20], we will prove this by approximating Sn by a simpler process defined as

sn(0) = 0, sn(i) =

i∑
j=1

(d(j) − 2). (5.19)

Note that the difference between the processes Sn and sn is due to the cycles, loops,
and multiple-edges encountered during the exploration. Following the approach of [20],
it will be enough to prove the following:

Proposition 5.6. Under Assumption 3.1, as n→∞,

s̄n
L−→ Bλ

µ,η (5.20)

with respect to the Skorohod J1 topology.

Remark 5.7. It will be shown that the distributions of S̄n and s̄n are very close as n→∞,
and therefore, Proposition 5.6 implies Theorem 5.5. This is achieved by proving that we
will not see too many cycle half-edges up to the time bn2/3uc for any fixed u > 0.

From here onwards we will look at the continuous versions of the processes S̄n and
s̄n by linearly interpolating between the values at the jump points and write it using
the same notation. It is easy to see that these continuous versions differ from their
càdlàg versions by at most n−1/3dmax = o(1) uniformly on [0, T ], for any T > 0. Therefore,
the convergence in law of the continuous versions implies the convergence in law of
the càdlàg versions and vice versa. Before proceeding to show that Theorem 5.5 is
a consequences of Proposition 5.6, we will need to bound the difference of these two
processes in a suitable way. We need the following lemma. Recall the definition of
c(k+1) := (Bk + Ck)/2 from (5.1).

Lemma 5.8. Fix t > 0 and M > 0 (large). Define En(t,M) :=
{

maxs≤t{s̄n(s) −
minu≤s s̄n(u)} < M

}
. Then

lim sup
n→∞

∑
k≤tn2/3

E
[
c(k)1En(t,M)

]
<∞. (5.21)

Proof. Lemma 5.8 is similar to [20, Lemma 6.1]. We add a brief proof here. Note that,
for all large n, Ak ≤Mn1/3 on En(t,M), because

Ak = Sn(k)−min
j≤k

Sn(j) = sn(k)− 2

k∑
j=1

c(j) −min
j≤k

Sn(j) ≤ sn(k)−min
j≤k

sn(j), (5.22)

where the last step follows by noting that minj≤k sn(j) ≤ minj≤k Sn(j) + 2
∑k
j=1 c(j). By

Lemma 5.4,

E
[
c(k)1En(t,M)

]
≤ Mn1/3

µn
+ o(n−2/3) =

M

µ
n−2/3 + o(n−2/3) (5.23)

uniformly for k ≤ tn2/3. Summing over 1 ≤ k ≤ tn2/3 and taking the lim sup completes
the proof.
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The proof of the fact that Theorem 5.5 follows from Proposition 5.6 and Lemma 5.8
is standard (see [20, Section 6.2]) and we skip the proof for the sake of brevity. From
here onward the main focus of this section will be to prove Proposition 5.6. We use the
martingale functional central limit theorem in a similar manner as [2].

Proof of Proposition 5.6. Let {Fi}i≥1 be the natural filtration defined in Lemma 5.4.
Recall the definition of sn(i) from (5.19). By the Doob-Meyer decomposition [21, Theorem
4.10] we can write

sn(i) = Mn(i) +An(i), s2
n(i) = Hn(i) +Bn(i), (5.24)

where

Mn(i) =

i∑
j=1

(
d(j) −E

[
d(j)|Fj−1

])
, (5.25a)

An(i) =

i∑
j=1

E
[
d(j) − 2|Fj−1

]
, (5.25b)

Bn(i) =

i∑
j=1

(
E
[
d2

(j)|Fj−1

]
−E2

[
d(j)|Fj−1

])
. (5.25c)

Recall that for a discrete time stochastic process (Xn(i))i≥1, we denote X̄n(t) =

n−1/3Xn(btn2/3c). Our result follows from the martingale functional central limit theorem
[33, Theorem 2.1] if we can prove the following four conditions: For any u > 0,

sup
s≤u

∣∣Ān(s)− λs+
ηs2

2µ3

∣∣ P−→ 0, (5.26a)

n−1/3B̄n(u)
P−→ η

µ2
u, (5.26b)

E
[

sup
s≤u

∣∣M̄n(s)− M̄n(s−)
∣∣2]→ 0, (5.26c)

and
n−1/3

E
[

sup
s≤u
|B̄n(s)− B̄n(s−)|

]
→ 0. (5.26d)

Indeed (5.26a) gives rise to the quadratic drift term of the limiting distribution.
Conditions (5.26b), (5.26c), (5.26d) are the same as [33, Theorem 2.1, Condition (ii)].
The facts that the jumps of both the martingale and the quadratic-variation process go to
zero and that the quadratic variation process is converging to the quadratic variation of
an inhomogeneous Brownian Motion, together imply the convergence of the martingale
term. The validation of these conditions are given separately in the subsequent part of
this section.

Lemma 5.9. The conditions (5.26b), (5.26c), and (5.26d) hold.

Proof. Denote by σr(n) = 1
n

∑
i∈[n] d

r
i , r = 2, 3 and µ(n) = 1

n

∑
i∈[n] di. To prove (5.26b),

it is enough to prove that

n−2/3Bn(bun2/3c) P−→ σ3µ− σ2
2

µ2
u. (5.27)

Recall that E[d2
(i)|Fi−1] =

∑
j /∈Vi−1

d3
j/
∑
j /∈Vi−1

dj . Further, uniformly over i ≤ un2/3,∑
j /∈Vi−1

dj =
∑
j∈[n]

dj +OP(dmaxi) = `n + oP(n). (5.28)
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Assume that, without loss of generality, j 7→ dj is non-increasing. Then, uniformly over
i ≤ un2/3, ∣∣∣∣ ∑

j /∈Vi−1

d3
j − nσ3(n)

∣∣∣∣ ≤ un2/3∑
j=1

d3
j . (5.29)

For each fixed k,

1

n

un2/3∑
j=1

d3
j ≤

1

n

un2/3∑
j=1

1{dj≤k}d
3
j +

1

n

∑
j∈[n]

1{dj>k}d
3
j ≤ k3un−1/3 +

1

n

∑
j∈[n]

1{dj>k}d
3
j = o(1),

(5.30)
where we first let n→∞ and then k →∞ and use Lemma 5.3. Therefore, the right-hand
side of (5.29) is o(n) and we conclude that, uniformly over i ≤ un2/3,

E
[
d2

(i)|Fi−1

]
=
σ3

µ
+ oP(1). (5.31)

A similar argument gives

E
[
d(i)|Fi−1

]
=
σ2

µ
+ oP(1), (5.32)

and (5.26b) follows by noting that the error term is oP(1), uniformly over i ≤ un2/3. The
proofs of (5.26c) and (5.26d) are rather short and we present them below. For (5.26c),
we bound

E

[
sup
s≤u
|M̄n(s)− M̄n(s−)|2

]
= n−2/3

E

[
sup

k≤un2/3

|Mn(k)−Mn(k − 1)|2
]

= n−2/3
E

[
sup

k≤un2/3

∣∣d(k) −E[d(k)|Fk−1]
∣∣2]

≤ n−2/3
E

[
sup

k≤un2/3

d2
(k)

]
+ n−2/3

E

[
sup

k≤un2/3

E
2
[
d(k)|Fk−1

]]
≤ 2n−2/3d2

max. (5.33)

Similarly, (5.26d) gives

n−1/3
E
[

sup
s≤u
|B̄n(s)− B̄n(s−)|2

]
= n−2/3

E
[

sup
k≤un2/3

|Bn(k)−Bn(k − 1)|
]

= n−2/3
E
[

sup
k≤un2/3

var
(
d(k)|Fk−1

)]
(5.34)

≤ 2n−2/3d2
max,

and Conditions (5.26c) and (5.26d) follow from Lemma 5.3 using dmax = o(n1/3).

Next, we prove Condition (5.26a) which requires some more work. Note that

E
[
d(i) − 2|Fi−1

]
=

∑
j /∈Vi−1

dj(dj − 2)∑
j /∈Vi−1

dj

=

∑
j∈[n] dj(dj − 2)∑

j∈[n] dj
−
∑
j∈Vi−1

dj(dj − 2)∑
j∈[n] dj

+

∑
j /∈Vi−1

dj(dj − 2)
∑
j∈Vi−1

dj∑
j /∈Vi−1

dj
∑
j∈[n] dj

=
λ

n1/3
−
∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

∑
j /∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j /∈Vi−1

dj
∑
j∈[n] dj

+ o(n−1/3), (5.35)
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where the last step follows from Assumption 3.1 (iii). Therefore,

An(k) =

k∑
i=1

E
[
d(i) − 2|Fi−1

]
=

kλ

n1/3
−

k∑
i=1

∑
j∈Vi−1

d2
j∑

j∈[n] dj
+

k∑
i=1

∑
j /∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j /∈Vi−1

dj
∑
j∈[n] dj

+ o(kn−1/3).

(5.36)

The following lemma estimates the sums on the right-hand side of (5.36):

Lemma 5.10. For all u > 0, as n→∞,

sup
s≤u

∣∣∣∣n−1/3

bsn2/3c∑
i=1

i−1∑
j=1

d2
(j)

`n
− σ3s

2

2µ2

∣∣∣∣ P−→ 0 (5.37)

and

sup
s≤u

∣∣∣∣n−1/3

bsn2/3c∑
i=1

i−1∑
j=1

d(j)

`n
− σ2s

2

2µ2

∣∣∣∣ P−→ 0. (5.38)

Consequently,

sup
s≤u

∣∣∣∣n−1/3

bsn2/3c∑
i=1

∑
j /∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j /∈Vi−1

dj
∑
j∈[n] dj

− σ2
2s

2

2µ3

∣∣∣∣ P−→ 0. (5.39)

Proof. Notice that

sup
s≤u

∣∣∣n−1/3

bsn2/3c∑
i=1

i−1∑
j=1

d2
(j)

`n
− σ3s

2

2µ2

∣∣∣ = sup
k≤un2/3

∣∣∣n−1/3
k∑
i=1

i−1∑
j=1

d2
(j)

`n
− σ3k

2

2µ2n4/3

∣∣∣
≤ 1

`n
sup

k≤un2/3

∣∣∣n−1/3
k∑
i=1

( i−1∑
j=1

d2
(j) −

σ3(i− 1)

µ

)∣∣∣
+ sup
k≤un2/3

∣∣∣ kσ3

2µ`nn1/3

∣∣∣+ sup
k≤un2/3

∣∣∣ k2σ3

2µ`nn1/3
− k2σ3

2µ2n4/3

∣∣∣
≤ 1

`n
n−1/3un2/3 sup

i≤un2/3

∣∣∣ i∑
j=1

d2
(j) −

σ3i

µ

∣∣∣+ o(1) +
σ3n

−1/3

2µ

∣∣∣ 1

`n
− 1

nµ

∣∣∣u2n4/3

≤ u

µ+ o(1)
sup
s≤u

∣∣∣(n−2/3

bsn2/3c∑
j=1

d2
(j) −

σ3s

µ

)∣∣∣+ o(1).

(5.40)

and (5.37) follows from (5.6) in Lemma 5.1. The proof of (5.38) is similar and it follows
from (5.5). We now show (5.39). Recall that σ2(n) = 1

n

∑
i∈[n] d

2
i and observe

1

n

∑
j /∈Vi−1

d2
j = σ2(n)− 1

n

∑
j∈Vi−1

d2
j = σ2(n) + oP(1) (5.41)

uniformly over i ≤ un2/3 where we use Lemma 5.1 to conclude the uniformity. Similarly,
(5.28) implies that

∑
j /∈Vi−1

dj = `n + oP(n) uniformly over i ≤ un2/3. Therefore,

n−1/3
k∑
i=1

∑
j /∈Vi−1

d2
j

∑
j∈Vi−1

dj∑
j /∈Vi−1

dj
∑
j∈[n] dj

=
nσ2(n) + oP(n)

`n + oP(n)
n−1/3

k∑
i=1

∑
j∈Vi−1

dj

`n
(5.42)

and Assumption 3.1, combined with (5.38), complete the proof.

Lemma 5.11. Condition (5.26a) holds.

Proof. The proof follows by using Lemma 5.10 in (5.36).
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5.5 Finite dimensional convergence of the ordered component sizes

Note that the convergence of the exploration process in Theorem 5.5 implies that, for
any large T > 0, the k-largest components explored up to time Tn2/3 converge to the
k-largest excursions above past minima of Bλ

µ,η up to time T . Therefore, we can conclude
the finite dimensional convergence of the ordered components sizes in the whole graph
if we can show that the large components are explored early by the exploration process.
The following lemma formalizes the above statement:

Lemma 5.12. Let C ≥Tmax denote the largest component which is started exploring after
time Tn2/3 in Algorithm 1. Then, for any δ > 0,

lim
T→∞

lim sup
n→∞

P

(
|C ≥Tmax| > δn2/3

)
= 0. (5.43)

Let us first state the two main ingredients to complete the proof of Lemma 5.12:

Lemma 5.13 ([17, Lemma 5.2]). Consider CMn(d) with νn < 1 and let C (Vn) denote the
component containing the vertex Vn, where Vn is a vertex chosen uniformly at random
independently of the graph CMn(d). Then,

E [|C (Vn)|] ≤ 1 +
E [Dn]

1− νn
. (5.44)

Lemma 5.14. Define, νn,i =
∑
j /∈Vi−1

dj(dj − 1)/
∑
j /∈Vi−1

dj . There exists some constant
C0 > 0 such that for any T > 0,

νn,Tn2/3 = νn − C0Tn
−1/3 + oP(n−1/3). (5.45)

Proof. Using a similar split up as in (5.35), we have

νn,i = νn +

∑
j∈Vi−1

dj(dj − 1)

`n
−
∑
j /∈Vi−1

dj(dj − 1)
∑
j∈Vi−1

dj

`n
∑
j /∈Vi−1

dj
. (5.46)

Now, (5.5) and (5.6) give that, uniformly over i ≤ Tn2/3,∑
j /∈Vi−1

dj(dj − 1)∑
j /∈Vi−1

dj
=

∑
j∈[n] dj(dj − 1) + oP(n2/3)∑

j∈[n] dj + oP(n2/3)
= 1 + oP(n−1/3), (5.47a)

∑
j∈Vi−1

dj(dj − 2) =
(σ3

µ
− 2
)

(i− 1) + oP(n2/3). (5.47b)

Further, note that σ3−2µ = E[D(D−1)(D−2)]+E[D(D−2)] > 0, by Assumption 3.1 (iii),
and (iv). Therefore, (5.46) gives (5.45).

Proof of Lemma 5.12. Let iT := inf{i ≥ Tn2/3 : Sn(i) = infj≤i Sn(j)}. Thus, iT denotes
the first time we finish exploring a component after time Tn2/3. Note that, conditional
on the explored vertices up to time iT , the remaining graph Ḡ is still a configuration
model. Let ν̄n =

∑
i∈Ḡ di(di − 1)/

∑
i∈Ḡ di be the criticality parameter of Ḡ. Then, using

(5.45), we can conclude that

ν̄n ≤ νn − C0Tn
−1/3 + oP(n−1/3). (5.48)

Take T > 0 such that λ − C0T < 0. Thus, with high probability, ν̄n < 1. Denote the
component corresponding to a randomly chosen vertex from Ḡ by C ≥T (Vn), and the ith
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largest component of Ḡ by C ≥T(i) . Also, let P̄ denote the probability measure conditioned
on FiT , and let Ē denote the corresponding expectation. Now, for any δ > 0,

P̄

(∑
i≥1

|C ≥T(i) |2 > δ2n4/3

)
≤ 1

δ2n4/3

∑
i≥1

Ē
(
|C ≥T(i) |2

)
≤ 1

δ2n1/3
Ē
(
|C ≥T (Vn)|

)
≤ 1

δ2(−λ+ C0T + oP(1))
,

(5.49)

where the second step follows from the Markov inequality and the last step follows by
combining Lemma 5.13 and (5.48). Noting that ν̄n < 1 with high probability, we get

lim sup
n→∞

P

(
|C ≥Tmax| > δn2/3

)
≤ C

δ2T
, (5.50)

for some constant C > 0 and large T > 0 and the proof follows.

Theorem 5.15. The convergence in Theorem 3.2 holds with respect to the product
topology.

Proof. The proof follows from Theorem 5.5 and Lemma 5.12.

5.6 Proof of Theorem 3.2

The proof of Theorem 3.2 follows using similar argument as [2, Section 3.3]. However,
the proof is a bit tricky since the components are explored in a size-biased manner
with sizes being the total degree in the components (not the component sizes as in
[2]). For a sequence of random variables Y = (Yi)i≥1 satisfying

∑
i≥1 Y

2
i < ∞ almost

surely, define ξ := (ξi)i≥1 such that ξi|Y ∼ Exp(Yi) and the coordinates of ξ are in-
dependent conditional on Y. For a ≥ 0, let S (a) :=

∑
ξi≤a Yi. Then the size biased

point process is defined to be the random collection of points Ξ := {(S (ξi), Yi)}i≥1 (see
[2, Section 3.3]). We will use Lemma 8, Lemma 14 and Proposition 15 from [2]. Let
C := {C : C is a component of CMn(d)}. Consider the collection ξ := (ξ(C ))C∈C such
that conditional on (

∑
k∈C dk, |C |)C∈C, ξ(C ) has an exponential distribution with rate

n−2/3
∑
k∈C dk independently over C . Then the order in which Algorithm 1 explores the

components can be obtained by ordering the components according to their ξ-value.
Recall that Ci denotes the ith explored component by Algorithm 1 and let Di :=

∑
k∈Ci

dk.
Define the size biased point process

Ξn :=
(
n−2/3

i∑
j=1

Di, n−2/3Di

)
i≥1

. (5.51)

Also define the point processes

Ξ
′

n :=
(
n−2/3

i∑
j=1

∣∣Cj∣∣, n−2/3
∣∣Ci∣∣)

i≥1
, Ξ∞ :=

{(
l(γ), |γ|

)
: γ an excursion of Bλ

µ,η

}
,

(5.52)
where we recall that l(γ) are the left endpoints of the excursions of Bλ

µ,η and |γ| is the
length of the excursion γ (see (2.6)). Note that Ξ′n is not a size biased point process.
However, applying [2, Lemma 8] and Theorem 5.5, we get Ξ

′

n
L−→ Ξ∞. We claim that

Ξn
L−→ 2Ξ∞. (5.53)

To verify the claim, note that (5.5) and Assumption 3.1 (iii) together imply, for any t > 0,

sup
u≤t

∣∣n−2/3

bun2/3c∑
i=1

d(i) −
σ2

µ
u
∣∣ = sup

u≤t

∣∣n−2/3

bun2/3c∑
i=1

d(i) − 2u
∣∣ P−→ 0, (5.54)
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since σ2/µ = E[D2]/E[D] = 2. Thus, (5.53) follows using (5.54). Now, the point process
2Ξ∞ satisfies all the conditions of [2, Proposition 15] as shown by Aldous. Thus, [2,
Lemma 14] gives {

D(i)

}
i≥1

is tight in `2↓. (5.55)

This implies that
(
n−2/3

∣∣C(i)

∣∣)
i≥1

is tight in `2↓ by simply observing that |Ci| ≤
∑
k∈Ci

dk+1.
Therefore, the proof of Theorem 3.2 is complete using Theorem 5.15.

5.7 Proof of Theorem 3.3

The proof of Theorem 3.3 is completed in two separate lemmas. In Lemma 5.16 we
first show that the convergence in Theorem 3.3 holds with respect to the `2↓×N∞ topology.
The tightness of (Zn)n≥1 with respect to the U0

↓ topology is ensured in Lemma 5.17.

Lemma 5.16. Let Nλ
n (k) be the number of surplus edges discovered up to time k and

N̄λ
n (u) = Nλ

n (bun2/3c). Then, as n→∞,

N̄λ
n
L−→ Nλ, (5.56)

where Nλ is defined in (2.7).

Proof. Recall the definitions of a, b, Ak, Bk, Ck, Sk from Section 5.1. Recall also that
Ak :=

∣∣Ak∣∣, Bk :=
∣∣Bk∣∣, Ck :=

∣∣Ck∣∣, Uk :=
∣∣Sk∣∣, c(k+1) := (

∣∣Bk∣∣+
∣∣Ck∣∣)/2 from Section 5.1.

Notice that Ak = Sn(k)−minj≤k Sn(j). From Lemma 5.4, we can conclude that, uniformly
over k ≤ un2/3,

E
[
c(k+1)|Fk

]
=
Ak
µn

+OP(n−1). (5.57)

The counting process Nλ
n has conditional intensity (conditioned on Fk−1) given by (5.57).

Writing the conditional intensity in (5.57) in terms of S̄n, we get that the conditional
intensity of the re-scaled process N̄λ

n is given by

1

µ
[S̄n(u)−min

ũ≤u
S̄n(ũ)] + oP(1). (5.58)

Denote by W̄n(u) := S̄n(u) −minũ≤u S̄n(ũ) which is the reflected version S̄n. By Theo-
rem 3.2,

W̄n
L−→Wλ, (5.59)

where Wλ is defined in (2.6). Therefore, we can assume that there exists a probability
space such that W̄n →Wλ almost surely. Using [22, Theorem 1; Chapter 5.3], and the
continuity of the sample paths of Wλ, we conclude the proof.

Lemma 5.17. The vector (Zn)n≥1 is tight with respect to the U0
↓ topology.

The proof of Lemma 5.17 makes use of the following crucial estimate of the probability
that a component with small size has very large number of surplus edges:

Lemma 5.18. Assume that λ < 0. Let Vn denote a vertex chosen uniformly at random,
independent of the graph CMn(d) and let C (Vn) denote the component containing Vn.
Let δk = δk−0.12. Then, for δ > 0 (small),

P

(
SP(C (Vn)) ≥ K, |C (Vn)| ∈ (δKn

2/3, 2δKn
2/3)

)
≤ C

√
δ

n1/3K1.1
, (5.60)

where C is a fixed constant independent of n, δ,K.
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Proof of Lemma 5.17. To simplify the notation, we write Y ni = n−2/3|C(i)| and Nn
i =#

{surplus edges in C(i)}. Let Yi, Ni denote the distributional limits of Y ni and Nn
i respec-

tively. Recall from Remark 2.1 that Z(λ) is almost surely U0
↓-valued. Using Lemma 5.16

and the definition of dU from (2.3), the proof of Lemma 5.17 is complete if we can show
that, for any η > 0

lim
ε→0

lim sup
n→∞

P

( ∑
Y ni ≤ε

Y ni N
n
i > η

)
= 0. (5.61)

First, consider the case λ < 0. For every η, ε > 0 sufficiently small

P

( ∑
Y ni ≤ε

Y ni N
n
i > η

)
≤ 1

η
E

[ ∞∑
i=1

Y ni N
n
i 1{Y ni ≤ε}

]
=
n−2/3

η
E

[ ∞∑
i=1

|C(i)|Nn
i 1{|C(i)|≤εn2/3}

]

=
n1/3

η
E
[
SP(C (Vn))1{|C (Vn)|≤εn2/3}

]
=
n1/3

η

∞∑
k=1

∑
i≥log2(1/(k0.12ε))

P

(
SP(C (Vn)) ≥ k, |C (Vn)| ∈

(
n2/3

2i+1k0.12
,
n2/3

2ik0.12

])

≤ C

η

∞∑
k=1

1

k1.1

∑
i≥log2(1/(k0.12ε))

2−(1/2)i ≤ C

η

∞∑
k=1

√
ε

k1.04
= O(

√
ε), (5.62)

where we have used Lemma 5.18. Therefore, (5.61) holds when λ < 0. Now consider the
case λ > 0. For T > 0 (large), let

Kn := {i : Y ni ≤ ε,C(i) is explored before Tn2/3}. (5.63)

Then, by applying the Cauchy-Schwarz inequality,

∑
i∈Kn

Y ni N
n
i ≤

( ∑
i∈Kn

(Y ni )2
)1/2

×
( ∑
i∈Kn

(Nn
i )2
)1/2

≤
( ∑
i∈Kn

(Y ni )2
)1/2

× (# surplus edges explored before Tn2/3)

(5.64)

For the case λ > 0, we can use similar ideas as the proof of Lemma 5.12, i.e., we can
run the exploration process till Tn2/3 and the unexplored graph becomes a configuration
model with negative criticality parameter for large T > 0, by (5.45). Thus, the proof
can be completed using (5.64), the `2↓ convergence of the component sizes given by
Theorem 3.2 and Lemma 5.16, and the proof for the case λ < 0.

Proof of Lemma 5.18. To complete the proof of Lemma 5.18, we will use martingale
techniques coupled with Lemma 5.13. Fix δ > 0 (small). First we describe another way
of exploring C (Vn) which turns out to be convenient to work with.

Algorithm 2 (Exploring C (Vn)). Consider the following exploration of C (Vn):

(S0) Initialize all half-edges to be alive. Choose a vertex from [n] uniformly at random
and declare all its half-edges active.

(S1) In the next step, take any active half-edge and pair it uniformly with another alive
half-edge. Kill these paired half-edges. Declare all the half-edges corresponding to
the new vertex (if any) active. Keep repeating (S1) until the set of active half-edges
is empty.
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Unlike Algorithm 1, we need not see a new vertex at each stage and we explore
only two half-edges at each stage. In this proof, Fl denotes the sigma-field containing
information revealed up to stage l by Algorithm 2 and Vl denotes the vertex set discovered
up to time l. Recall that we denote by Dn the degree of Vn. Define the exploration
process s′n by,

s′n(0) = Dn, s
′
n(l) =

∑
i∈[n]

diIni (l)− 2l, (5.65)

where Ini (l) = 1{i∈Vl}. Therefore, s′n(l) counts the number of active half-edges at time l,
until C (Vn) is explored. Note that C (Vn) is explored when s′n hits zero and the hitting
time to zero gives the number of edges in C (Vn), since exactly one edge is being explored
at each time step. We will use a generic constant C to denote a positive constant that
can be different in different equations. For H > 0, let

γ := inf{l ≥ 1 : s′n(l) ≥ H or s′n(l) = 0} ∧ 2δn2/3. (5.66)

Note that

E [s′n(l + 1)− s′n(l)|Fl] =
∑
i∈[n]

diP (i ∈ Vl+1|Fl, Ini (l) = 0)− 2

=

∑
i/∈Vl

d2
i

`n − 2l − 1
− 2 ≤

∑
i∈[n] d

2
i

`n − 2l − 1
− 2

=
λ

n1/3
+ o(n−1/3) +

2l + 1

`n − 2l − 1
×
∑
i∈[n] d

2
i

`n
≤ 0

(5.67)

uniformly over l ≤ 2δn2/3 for all small δ > 0 and large n, where the last step follows from
the fact that λ < 0. Therefore, {s′n(l)}2δn2/3

l=1 is a super-martingale. The optional stopping
theorem now implies

E [Dn] ≥ E [s′n(γ)] ≥ HP (s′n(γ) ≥ H) . (5.68)

Thus,

P (s′n(γ) ≥ H) ≤ E [Dn]

H
. (5.69)

We put H = n1/3K1.1/
√
δ. To simplify the notation, we write s′n[0, t] ∈ A to denote that

s′n(l) ∈ A, for all l ∈ [0, t]. Notice that, for K ≥ 1,

P

(
SP(C (Vn)) ≥ K, |C (Vn)| ∈ (δKn

2/3, 2δKn
2/3)

)
≤ P (s′n(γ) ≥ H) +P

(
SP(C (Vn)) ≥ K, s′n[0, 2δKn

2/3] < H, s′n[0, δKn
2/3] > 0

)
.

(5.70)

Here we have used the fact that if there is at least one surplus edge in C (Vn), the number
of edges in C (Vn) is at least C (Vn). Therefore, |C (Vn)| > δKn

2/3 implies s′n[0, δKn
2/3] > 0.

Let us denote the event that surplus edges appear at times l1, . . . , lK , s′n[0, 2δKn
2/3] < H,

and s′n[0, δKn
2/3] > 0 by SPB(l1, . . . , lK). Now,

P

(
SP(C (Vn)) ≥ K, s′n[0, 2δKn

2/3] < H, s′n[0, δKn
2/3] > 0

)
≤

∑
1≤l1<···<lK≤2δKn2/3

P (SPB(l1, . . . , lK))

=
∑

1≤l1<···<lK≤2δKn2/3

E
[
1{0<s′n[0,lK−1]<H,SP(lK−1)=K−1}Y

]
,

(5.71)
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where

Y = P

(
Kth surplus occurs at time lK , s

′
n[lK , 2δKn

2/3] < H, s′n[lK , γ] > 0 | FlK−1

)
≤ CK1.1n1/3

`n
√
δ

≤ CK1.1

n2/3
√
δ
. (5.72)

Therefore, using induction,

P

(
SP(C (Vn)) ≥ K, s′n[0, 2δKn

2/3] < H, s′n[0, δKn
2/3] > 0

)
≤ C

(
K1.1

√
δn2/3

)K
(2δn2/3)K−1

K0.12(K−1)(K − 1)!

2δKn
2/3∑

l1=1

P (|C (Vn)| ≥ l1)

≤ C δK/2

K1.1n2/3
E [|C (Vn)|] ,

(5.73)

where we have used the fact that #{1 ≤ l2 < · · · < lk ≤ 2δn2/3} ≤ (2δn2/3)K−1/(K − 1)!

and have used the Stirling approximation for (K − 1)! in the last step. Since λ < 0, we
can use Lemma 5.13 to conclude that for all sufficiently large n

E [|C (Vn)|] ≤ Cn1/3, (5.74)

for some constant C > 0 and we get the desired bound for (5.70). The proof of
Lemma 5.18 is now complete by applying (5.69) and (5.73) in (5.70).

6 Vertices of degree k

In this section, we compute the number of vertices of degree k in each connected com-
ponent at criticality. This will be useful in Section 7 and 8. Such an estimate was proved
in [18, Theorem 2.4] for supercritical graphs under stronger moment assumptions.

Lemma 6.1. Denote by Nk(t) the number of vertices of degree k discovered up to time
t. For any t > 0, uniformly over k,

sup
u≤t

∣∣n−2/3Nk(un2/3)− knk
`n

u
∣∣ = OP((kn1/3)−1). (6.1)

Proof. By setting wi = 1{di=k} in Lemma 5.2 we can directly conclude that

sup
u≤t

∣∣n−2/3Nk(un2/3)− knk
`n

u
∣∣ P−→ 0. (6.2)

However, one can repeat the same arguments leading to the proof of Lemma 5.2 and
obtain that

P

(
sup
u≤t

∣∣∣n−2/3Nk(un2/3)− knk
`n

u
∣∣∣ > A

kn1/3

)
≤

3
(
k3s2 rk

(E[D])2 +
√
s k

3rk
E[D]

)
A

+ o(1). (6.3)

Now, we can use the finite third-moment assumption to conclude that the numerator in
the right hand side can be taken to be uniform over k. Thus, the proof follows.

Define vk(G) := the number of vertices of degree k in the connected graph G. As a
corollary to Lemma 6.1 and (5.43), we can deduce that

vk
(
C(j)

)
=

krk
E[D]

∣∣C(j)

∣∣+OP
(
(k−1n1/3)

)
. (6.4)

Moreover, the following also holds: Let ord(x) denote the vector with elements of x
ordered in a non-increasing manner.

EJP 22 (2017), paper 16.
Page 21/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP29
http://www.imstat.org/ejp/


Critical window for the configuration model: finite third moment degrees

Lemma 6.2. For each k ≥ 1 denote by Vn
k := (n−2/3vk(Cj))j≥1. Then, {ord(Vn

k )}n≥1 is
tight in `2↓.

Proof. Note that for any j ≥ 1, vk(C(j)) ≤ |C(j)| uniformly over k. The proof now follows
from (6.4) and `2↓ tightness of the component sizes given in Theorem 3.2.

Remark 6.3. Define Vn := (n−2/3vk(Cj))k,j≥1. Then {ord(Vn)}n≥1 is also tight in `2↓.

7 Critical percolation

7.1 Percolation on configuration model

Let p = pn ∈ (0, 1) be the percolation parameter. Recall the notation CMn(d, p)

for the random graph obtained after deleting edges of CMn(d) independently with
probability 1− p. Suppose, d′ is the random degree sequence obtained after percolation.
Fountoulakis [15] showed that, given d′, the law of CMn(d, p) is same as the law of
CMn(d′). We will use the following construction of CMn(d, p) due to Janson [16]:

Algorithm 3. (S1) For each half-edge e, let ve be the vertex to which e is attached. With
probability 1−√p, one detaches e from ve and associates e to a new vertex v′. Color
the new vertex red. This is done independently for every existing half-edge. Let
n+ be the number of red vertices created and ñ = n+ n+. Suppose, d̃ = (d̃i)i∈[ñ] is

the new degree sequence obtained by the above procedure, i.e. d̃i ∼ Bin(di,
√
p)

for i ∈ [n] and d̃i = 1 for i ∈ [ñ] \ [n].

(S2) Construct CMñ(d̃), independently of (S1).

(S3) Delete all the red vertices.

Remark 7.1. It was argued in [16] that the obtained multigraph also has the same
distribution as CMn(d, p) if we replace (S3) by

(S3′) Instead of deleting red vertices, choose any n+ degree one vertices uniformly at
random, independently of (S1) and (S2), and delete them.

Remark 7.2. The construction of CMñ(d̃) in Algorithm 3 consists of two stages of
randomization, the first one is described by (S1), and the second one by (S2). We will
consider the following probability space to describe the randomization arising from
Algorithm 3 (S1): Suppose we have a sequence of degree sequences (d)n≥1. Let Pnp
denote the probability measure induced on N∞ by Algorithm 3 (S1). Denote the product
measure of (Pnp )n≥1 by Pp. Thus (S1) is performed independently on d = d(n) as n varies.
All the almost sure statements in this section will be with respect to the probability
measure Pp.

Remark 7.3. The idea of the proof of Theorem 3.6 is as follows. We show that d̃, under
Assumption 3.5, satisfies Assumption 3.1 Pp almost surely and then estimate the number
of vertices to be deleted from each component using Lemma 6.1. Since deleting a
degree one vertex does not break up any component, we can just subtract this from
the component sizes of CMñ(d̃) to get the component sizes of CMn(d, pn(λ)). Since the
degree one vertices do not get involved in surplus edges, deleting degree one vertices
does not change the number of surplus edges.

7.2 Proof of Theorem 3.6

We now consider the critical window corresponding to percolation. The goal is to
prove Theorem 3.6. Let nj and ñj be the number of vertices of degree j before and after
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performing Algorithm 3 (S1) respectively. Further let

ν̃n =

∑
i∈[ñ] d̃i

(
d̃i − 1

)∑
i∈[ñ] d̃i

. (7.1)

For convenience we write rj = P(D = j). Denote by ñjl, the number of vertices that
had degree l before and have degree j after performing Algorithm 3 (S1). Therefore,
ñjl ∼ Bin

(
nl, blj(

√
pn)
)
, where blj(

√
pn) =

(
l
j

)
(
√
pn)j(1−√pn)l−j . Using the strong law of

large numbers for triangular arrays, note thatPp almost surely, ñjl = nlblj(
√
pn)+o(nl) =

nrlblj(
√
pn) + o(nl). Now,

∑
l≥1 |nl/n − rl| → 0 and therefore, for all j ≥ 2, Pp almost

surely

ñj
n

=

∑∞
l=j ñjl

n
=

∞∑
l=j

rlblj(
√
pn) + o(1). (7.2)

Also, n+ =
∑
i∈[n]

(
di − d̃i

)
∼ Bin(`n, 1−

√
pn). Therefore, using the similar arguments

as (7.2) again, Pp almost surely,

n+

n
= E(D)

(
1−√pn

)
+ o(1), (7.3)

ñ1

n
=

∑∞
l=1 ñ1l + n+

n
=

∑∞
l=1 ñ1l

n
+E(D)

(
1−√pn

)
+ o(1), (7.4)

and
ñ

n
= 1 +

n+

n
= 1 +E(D)

(
1−√pn

)
+ o(1). (7.5)

Denote r̃l = P(D̃ = l) = limn→∞ ñl/ñ. Let D̃n denote the degree of a uniformly chosen
vertex from [ñ], independently of the graph CMñ(d̃). Thus, (7.2) and (7.5) imply that
D̃n

L−→ D̃. The following lemma verifies the rest of the conditions for d̃ in Assumption 3.1:

Lemma 7.4. The statements below are true Pp almost surely:

(1) Under Assumption 3.5 (i) and for r = 1, 2, 3,

1

ñ

∑
i∈[n]

d̃ri =
1

ñ

∑
j∈[n]

jrñj
n→∞−−−−→ E[D̃r]. (7.6)

(2) Under Assumption 3.5,

ν̃n = 1 + λn−1/3 + o(n−1/3). (7.7)

Proof. We will make use of [19, Corollary 2.27]. Suppose Z1, Z2, ..., ZN are independent
random variables with Zi taking values in Λi and f :

∏N
i=1 Λi → R satisfies the following:

If two vectors z, z′ ∈
∏N
i=1 Λi differ only in the ith coordinate, then |f(z) − f(z′)| ≤ ci

for some constant ci. Then, for any t > 0, the random variable X = f(Z1, Z2, . . . , ZN )

satisfies

P

(∣∣X −E[X]
∣∣ > t

)
≤ 2 exp

(
− t2

2
∑N
i=1 c

2
i

)
. (7.8)

Now let Iij denote the indicator of the jth half-edge corresponding to vertex i to be kept
after Algorithm 3 (S1). Then Iij ∼ Ber(

√
pn) independently for j ∈ [di], i ∈ [n]. Let

I := (Iij)j∈[di],i∈[n] and f1(I) :=
∑
i∈[n]

d̃i(d̃i − 1). (7.9)
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Note that f1(I) =
∑
i∈[ñ] d̃i(d̃i − 1) since the degree one vertices do not contribute to

the sum. One can check that, by changing the status of one half-edge corresponding to
vertex k, we can change f1(·) by at most 2(dk + 1). Therefore, (7.8) yields

Pp

(∣∣∣ ∑
i∈[n]

d̃i(d̃i − 1)− pn
∑
i∈[n]

di(di − 1)
∣∣∣ > t

)
≤ 2 exp

(
− t2

8
∑
i∈[n] di(di + 1)2

)
. (7.10)

By setting t = n1/2+ε for some suitably small ε > 0, using the finite third moment
conditions and the Borel-Cantelli lemma we conclude that Pp almost surely,∑

i∈[n]

d̃i(d̃i − 1) = pn
∑
i∈[n]

di(di − 1) +O(n1/2+ε), (7.11)

and in particular,∑
i∈[ñ]

d̃i(d̃i − 1) =
∑
i∈[n]

d̃i(d̃i − 1) = pn
∑
i∈[n]

di(di − 1) + o(n2/3). (7.12)

Similarly, take f2(I) =
∑
i∈[n] d̃i(d̃i − 1)(d̃i − 2) and note that changing the status of one

bond changes f2(·) by at most [2(dk + 1)]2. Thus, (7.8) gives

Pp

(∣∣∣f2(I)− p3/2
n

∑
i∈[n]

di(di − 1)(di − 2)
∣∣∣ > t

)
≤ 2 exp

(
− t2

32
∑
i∈[n] di(di + 1)4

)
≤ exp

(
− t2

32dmax(dmax + 1)
∑
i∈[n](di + 1)3

)
,

(7.13)

which implies that, Pp almost surely,∑
i∈[ñ]

d̃i(d̃i − 1)(d̃i − 2) =
∑
i∈[n]

d̃i(d̃i − 1)(d̃i − 2) = p3/2
n

∑
i∈[n]

di(di − 1)(di − 2) + o(n), (7.14)

since d2
max

∑
i∈[n](di + 1)3 = o(n5/3). Now, to prove Lemma 7.4 (1), note that the case

r = 1 follows by simply observing that
∑
i∈ñ d̃i =

∑
i∈[n] di. The cases r = 2, 3 follow from

(7.12) and (7.14). Finally, to see Lemma 7.4 (2), note that

ν̃n =

∑
i∈[ñ] d̃i(d̃i − 1)∑

i∈[ñ] d̃i
=
pn
∑
i∈[n] di

(
di − 1

)
+ o
(
n2/3

)∑
i∈[n] di

=
pn
∑
i∈[n] di(di − 1)∑

i∈[n] di
+ o(n−1/3) = 1 +

λ

n1/3
+ o(n−1/3),

(7.15)

by (7.12) and this completes the proof of Lemma 7.4.

We will denote by C̃(j), the jth largest component of CMñ(d̃). To conclude Theorem 3.6
we also need to estimate the number of deleted vertices from each component. Recall
from Remark 7.1 that CMn(d, pn(λ)) can be obtained from CMñ(d̃) by deleting relevant
number of degree one vertices uniformly at random. Let vd1(C̃(j)) be the number of
degree one vertices of C̃(j) that are deleted while creating CMn(d, pn(λ)) from CMñ(d̃).
Since the vertices are to be chosen uniformly from all degree one vertices, the number of
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vertices to be deleted from C̃(j) is asymptotically the total number of degree one vertices
in C̃(j) times the proportion of degree one vertices to be deleted. Therefore,

vd1(C̃(j)) =
n+

ñ1
v1(C̃(j)) + oP(n2/3) =

n+

ñ1

ñ1∑∞
k=0 kñk

∣∣C̃(j)

∣∣+ oP(n2/3)

=
n+

`n

∣∣C̃(j)

∣∣+ oP(n2/3) =
E[D]

(
1−√p

n

)
E[D]

∣∣C̃(j)

∣∣+ oP(n2/3)

=
(
1−√pn

)∣∣C̃(j)

∣∣+ oP(n2/3),

(7.16)

where the third equality follows from (6.4). The proof of Theorem 3.6 is now complete
by using the `2↓ convergence in Lemma 6.2, (7.16) and Remark 7.3.

8 Joint convergence at multiple locations in the critical window

We will prove Theorem 3.7 in this section. In Section 8.1, we give a construction
of the joint distribution of the percolated graphs for different percolation parameters
that are coupled in a way described in Theorem 3.7. In Section 8.2, we compare the
process of percolated graphs with a different graph process that turns out to be easier
to work with. As discussed in Remark 3.8, let the mass of a component be the number
of open half-edges (re-scaled by n2/3). The alternatively constructed graph process
can be modified in such a way that the vector of masses evolves according to an exact
multiplicative coalescent as discussed in Section 8.3. Thus the joint convergence result
at multiple locations of the scaling window can be deduced for the modified process
using the Feller property of the multiplicative coalescent. Further, the modified process
remains close to the dynamic construction. In Section 8.4, the vector of masses are
shown to be asymptotically proportional to the component sizes and we combine all the
above observations in Section 8.5 to complete the proof of Theorem 3.7.

8.1 Construction of the percolated graph process

We start by explaining a way to construct the graph process (CMn(d, pn(λ)))λ∈[λ?,λ?],
for any −∞ < λ? < λ? < ∞. Fix any p1 < p2 < · · · < pm and consider (CMn(d, pi))i∈[m].
Recall that each edge e of CMn(d) has an independent uniform [0, 1] random variable Ue
associated to it and CMn(d, pi) is obtained from CMn(d) by keeping only those edges e
with Ue ≤ pi. This couples the graphs (CMn(d, pi))i∈[m]. Moreover, under this coupling,
CMn(d, pi) is distributed as the graph obtained from edge percolation on CMn(d, pi+1)

with probability pi/pi+1 for all i < m. The following two lemmas are modifications of [15,
Lemmas 3.1, 3.2] that lead to the construction Algorithm 4 below. For a graph G, let
E(G) denote the set of edges of G. For a sub-graph G of CMn(d), let H(G) denote the
set of half-edges that are part of some edge in G and H = H(CMn(d)).

Lemma 8.1. For k1 ≤ · · · ≤ km, conditionally on {|E(CMn(d, pi))| = ki : i ≤ m},
the half-edges in CMn(d, pi) can be generated sequentially as follows: Let k0 = 0,
H(CMn(d, p0)) = ∅. For each i ≤ m, declare H(CMn(d, pi)) = H(CMn(d, pi−1)) ∪ Hi,
where Hi is uniformly chosen among all the subsets of size 2ki − 2ki−1 of H \ ∪j<iHi.
Lemma 8.2. Let dk(i, i + 1) be the number of half-edges attached to vertex k in the
graph CMn(d, pi+1) that are not in CMn(d, pi). For any i ≥ 1, conditionally on the
event {d(j, j + 1) = d0(j, j + 1) : j ≤ m} and H(CMn(d, pi−1)), the perfect matching of
H(CMn(d, pi)) \ H(CMn(d, pi−1)) constituting the edges E(CMn(d, pi) \ CMn(d, pi−1)) is
a uniform perfect matching, where we have assumed that p0 = 0.

Algorithm 4. Let (Ui)i≥1 be a finite collection of i.i.d uniform [0, 1] random variables.
Construct a collection of graphs (Gn(λ))λ∈R using the following two steps:

(S0) Construct the process En = (En(λ))λ∈R, where En(λ) = #{i : Ui ≤ pn(λ)}.
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(S1) Initially, Gn(−∞) is a graph only consisting of isolated vertices with no paired
half-edges. At each time point λ where En(λ) has a jump, choose two unpaired
half-edges uniformly at random and pair them. The graph Gn(λ) is obtained by
adding this edge to Gn(λ−).

Algorithm 4 (S0) can be regarded as the birth of edges and Algorithm 4 (S1) ensures
that the edges of the graph Gn(λ) are obtained from a uniform perfect matching of the
corresponding half-edges. Using Lemmas 8.1 and 8.2, the graph processes (Gn(λ))λ∈R
and (CMn(d, pn(λ)))λ∈R have the same finite-dimensional distributions. Therefore, for
each fixed n, it follows that (Gn(λ))λ∈R and (CMn(d, pn(λ)))λ∈R have the exact same
distribution. We complete this section by adding proofs of Lemmas 8.1, and 8.2 which
are in the same spirit as the arguments of [15, Lemmas 3.1, 3.2].

Proof of Lemma 8.1. Assume that k = 2 for the sake of simplicity. Observe that the total
number of perfect matchings of 2k objects is given by 2k!/(k!2k) = (2k − 1)!!. Let H1, H2

be two disjoint subsets of H with |H1| = 2k1, |H2| = 2k2 − 2k1. Let E1 denote the event
that a uniform perfect matching of all the half-edges contains also perfect matchings of
the half-edges in H1 and H2. Then,

P (E1) =
(2k1 − 1)!!(2k2 − 2k1 − 1)!!(`n − 2k2 − 1)!!

(`n − 1)!!
. (8.1)

Also, for percolation on any (random) graph, conditional on the set of edges of the graph
and the fact that k edges have been retained by percolation, the choice of the retained
edges is uniformly distributed among all subsets of size k of the set of edges. Let E2
denote the event that |H(CMn(d, p1))| = 2k1, and |H(CMn(d, p2))| = 2k2. It follows that

P (H(CMn(d, p2)) = H1 ∪H2 | E1, E2) =
1(

`n/2
k2

) , (8.2)

and

P (H(CMn(d, p1)) = H1 | E1, E2,H(CMn(d, p2)) = H1 ∪H2) =
1(
k2
k1

) . (8.3)

Thus, conditional on E2, the probability that H(CMn(d, p1)) = H1 and H(CMn(d, p2)) \
H(CMn(d, p1)) = H2 is given by

(2k1 − 1)!!(2k2 − 2k1 − 1)!!(`n − 2k2 − 1)!!

(`n − 1)!!

1(
`n/2
k2

)(
k2
k1

) =
1(

`n
2k1

)(
`n−2k1
2k2−2k1

) , (8.4)

which does not depend on H1 or H2, and the proof follows.

Proof of Lemma 8.2. Fix two disjoint subsets H1, H2 of H such that |H1| = 2k1, |H2| =
2k2−2k1. As in the proof of Lemma 8.1, let E2 denote the event that |H(CMn(d, p1))| = 2k1,
and |H(CMn(d, p2))| = 2k2. An identical argument as the proof of (8.4) now gives, condi-
tionally on E2, the probability thatH(CMn(d, p1)) = H1,H(CMn(d, p2))\H(CMn(d, p1)) =

H2, and given perfect matchings on H(CMn(d, p1)), H(CMn(d, p2)) \H(CMn(d, p1)) have
been observed, is given by

1(
`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!

(`n − 1)!!
. (8.5)

Let D(H) denote the degree sequence induced by the set of half-edges H, and S denote
the collection of disjoint pairs (H1, H2) such that |H1| = 2k1, |H2| = 2k2 − 2k1, D(H1) =

d0(0, 1), and D(H2) = d0(1, 2). Then, conditionally on E2, the probability that d(0, 1) =
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d0(0, 1), d(1, 2) = d0(1, 2), and given particular perfect matchings have been observed
on H(CMn(d, p1)) and H(CMn(d, p2)) \ H(CMn(d, p1)), is∑

(H1,H2)∈S

1(
`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!

(`n − 1)!!
=

|S|(
`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!

(`n − 1)!!
. (8.6)

Moreover, by Lemma 8.1, the probability that d(0, 1) = d0(0, 1), d(1, 2) = d0(1, 2), condi-
tionally on E2, is given by

|S|(
`n
2k1

)(
`n−2k1
2k2−2k1

) . (8.7)

Now, (8.6) and (8.7) together yield that the probability that two particular perfect match-
ings are observed on H(CMn(d, p1)) and H(CMn(d, p2)) \ H(CMn(d, p1)), conditional on
d(0, 1) = d0(0, 1), d(1, 2) = d0(1, 2) is given by

1(
`n/2
k2

)(
k2
k1

) (`n − 2k2 − 1)!!

(`n − 1)!!

(
`n
2k1

)(
`n − 2k1

2k2 − 2k1

)
=

1

(2k1 − 1)!!(2k2 − 2k1 − 1)!!
, (8.8)

and the proof is complete.

8.2 The dynamic construction

Let us now describe a dynamic construction of CMn(d) that turns out to be easier to
work with. This dynamic construction was introduced in [5] to study the metric-space
limits of the large components of the percolated configuration model. It will be shown
that the graphs generated by this dynamic construction at a suitable range of time
approximates the process (CMn(d, pn(λ)))λ∈R.

Algorithm 5. At time t = 0, assume that there are di open half-edges associated with
vertex i, for all i ∈ [n]. Associate i.i.d unit rate exponential clocks to each of the open
half-edges. Each time an exponential clock rings, the corresponding half-edge selects
another open half-edge uniformly at random and gets paired to it. The two paired
half-edges are declared to be closed and the associated exponential clocks are removed.
The process continues until the open half-edges are exhausted.

Let Gn(t) denote the graph generated upto time t. Notice that Gn(∞) is distributed
as CMn(d) since each half-edge chooses to pair with another uniformly chosen open half-
edge. Denote the total number of open-half-edges remaining at time t while implementing
Algorithm 5 by s1(t). The graph process, given by Algorithm 5, can also be constructed
as follows:

Algorithm 6. Let Ξn be an inhomogeneous Poisson process with rate s1(t) at time t. Let
e1 < e2 < . . . be the event times of Ξn.

(S1) At each event time, choose two unpaired half-edges uniformly at random and pair
them. The graph Gn(t) is obtained by adding this edge to Gn(t−).

Notice the similarity between Algorithm 4 (S1) and Algorithm 6 (S1). Now, the idea
is to compare the number of half-edges that have been paired by Algorithms 4 and 6.
For that, we need the following lemma that describes the evolution of the count of the
total number of open half-edges in Algorithm 6:

Lemma 8.3 ([5, Lemma 8.2]). Let s1(t) denote the total number of open half-edges at
time t. Suppose that Assumption 3.5 holds. Then, for any T > 0 and some 1/3 < γ < 1/2,

sup
t≤T

∣∣∣ 1

`n
s1(t)− e−2t

∣∣∣ = oP(n−γ). (8.9)

EJP 22 (2017), paper 16.
Page 27/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP29
http://www.imstat.org/ejp/


Critical window for the configuration model: finite third moment degrees

Notice that the proof of [5, Lemma 8.2] is stated only under some more stringent
assumptions, however the identical argument can be carried out under Assumption 3.5.
The next proposition ensures that the graphs generated by percolation in Algorithm 4
and the dynamic construction in Algorithm 5 are uniformly close in the critical window.
Define

tn(λ) =
1

2
log

(
νn

νn − 1

)
+

1

2(νn − 1)

λ

n1/3
. (8.10)

Proposition 8.4. Fix −∞ < λ? < λ? <∞. There exists a coupling such that with high
probability

Gn(tn(λ)− εn) ⊂ CMn(d, pn(λ)) ⊂ Gn(tn(λ) + εn), ∀λ ∈ [λ?, λ
?] (8.11)

where εn = cn−γ0 , for some 1/3 < γ0 < 1/2 and the constant c does not depend on λ.

Proof. Notice the similarity between Algorithm 4 (S1) and Algorithm 6 (S1). Let #E(G)

denote the number of edges in a graph G. Suppose that we can show, as n→∞,

P
(
#E(Gn(tn(λ)− εn)) ≤ #E(CMn(d, pn(λ))) ≤ #E(Gn(tn(λ) + εn)),∀λ ∈ [λ?, λ

?]
)
→ 1.

(8.12)
On the event {#E(CMn(d, pn(λ))) ≤ #E(Gn(tn(λ) + εn)),∀λ ∈ [λ?, λ

?]}, the choice of
the uniform pair of half-edges at the kth pairing in Algorithm 4 (S1) can be taken to
be exactly same as the kth pairing in Algorithm 6 (S1). Under the above coupling
CMn(d, pn(λ?)) ⊂ Gn(tn(λ?) + εn). Moreover, since #E(CMn(d, pn(λ))) is dominated
by #E(Gn(tn(λ) + εn)), uniformly over λ ∈ [λ?, λ

?], the above coupling also yields that
CMn(d, pn(λ)) ⊂ Gn(tn(λ) + εn) for all λ ∈ [λ?, λ

?]. Further, on the event {#E(Gn(tn(λ)−
εn)) ≤ #E(CMn(d, pn(λ))),∀λ ∈ [λ?, λ

?]}, under the same coupling, Gn(tn(λ) − εn) ⊂
CMn(d, pn(λ)) for all λ ∈ [λ?, λ

?]. Thus, it remains to show (8.12). An application of
Lemma 8.3 along with (8.10) yields, for some 1/3 < γ0 < γ < 1/2, with high probability,∣∣∣∣#E(Gn(tn(λ)))−

(
`n

2νn
+

λ`n
2νnn1/3

+
nεn(νn − 1)

νn

)∣∣∣∣ ≤ n1−γ , λ ∈ [λ?, λ
?]. (8.13)

Notice that the total number of half-edges in CMn(d, pn(λ)) follows a binomial distribu-
tion with parameters `n/2 and pn(λ). Thus, with high probability,∣∣∣∣#E(CMn(d, pn(λ)))−

(
`n

2νn
+

λ`n
2νnn1/3

)∣∣∣∣ ≤ n1−γ , λ ∈ [λ?, λ
?]. (8.14)

The fact that the error can be chosen to be uniform over λ ∈ [λ?, λ
?] follows from the

DKW inequality [23]. Thus, (8.13) and (8.14) together show that, with high probability,

#E(CMn(d, pn(λ))) ≤ #E(Gn(tn(λ) + εn)), ∀λ ∈ [λ?, λ
?]. (8.15)

The other part follow similarly and the proof is now complete.

Remark 8.5. Notice that the proof of Proposition 8.4 can be directly modified to show
that there exists a coupling such that, with high probability,

CMn(d, pn(λ)− εn) ⊂ Gn(tn(λ)) ⊂ CMn(d, pn(λ) + εn), ∀λ ∈ [λ?, λ
?] (8.16)

where εn = cn−γ0 , for some 1/3 < γ0 < 1/2 and the constant c does not depend on λ.
Therefore, the scaling limits of different functionals like re-scaled component-sizes,
surplus edges for Gn(tn(λ)) and CMn(d, pn(λ)) are the same.
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8.3 The modified process

From here onward, we often augment λ to a predefined notation to emphasize the
dependence on λ. We write C(i)(λ) for the ith largest component of Gn(tn(λ)) and define

Oi(λ) = # open half-edges in C(i)(λ). (8.17)

Think of Oi(λ) as the mass of the component C(i)(λ). Let Cn(λ) = (n−2/3|C(i)(λ)|)i≥1,
and On(λ) = (n−2/3Oi(λ))i≥1. Let `on(λ) =

∑
i≥1Oi(λ). By Lemma 8.3 and (8.10),

`on(λ) ≈ nµ(ν − 1)/ν. Now, observe that, during the evolution of the graph process
generated by Algorithm 5, between time [tn(λ), tn(λ+ dλ)], the ith and jth (i > j) largest
components, merge at rate

2Oi(λ)Oj(λ)× 1

`on(λ)− 1
× 1

2(νn − 1)n1/3
≈ ν

µ(ν − 1)2

(
n−2/3Oi(λ)

)(
n−2/3Oj(λ)

)
, (8.18)

and creates a component with open half-edges Oi(λ) +Oj(λ)− 2. Thus (On(λ))λ∈R does
not evolve as a multiplicative coalescent, but it is close. The fact that two half-edges are
killed after pairing, makes the masses (the number of open half-edges) of the components
and the system to deplete. If there were no such depletion of mass, then the vector of
open half-edges would in fact merge as multiplicative coalescent. Let us formalize this
idea below:

Algorithm 7. Initialize Ḡn(tn(λ?)) = Gn(tn(λ?)). Let O denote the set of open half-edges
in the graph Gn(tn(λ?)), s̄1 = |O| and Ξ̄n denote a Poisson process with rate s̄1. At each
event time of the Poisson process Ξ̄n, select two half-edges from O and create an edge
between the corresponding vertices. However, the selected half-edges are kept alive, so
that they can be selected again.

Remark 8.6. The only difference between Algorithm 6 and Algorithm 7, is that the paired
half-edges are not discarded and thus more edges are created by Algorithm 7. Thus,
there is a natural coupling between the graphs generated by Algorithms 6 and 7 such
that Gn(tn(λ)) ⊂ Ḡn(tn(λ)) for all λ ∈ [λ?, λ

?], with probability one. In the subsequent
part of this section, we always work under this coupling. The extra edges that are
created by Algorithm 7 will be called bad edges.

Remark 8.7. In the subsequent part of this paper, we shall augment a predefined
notation with a bar to denote the corresponding quantity for Ḡn(tn(λ)). Denote βn =

(s̄1(νn − 1)n1/3)1/2 and Ō′n(λ) denote the vector ord((β−1
n Ōi(λ))i≥1). By the description

in Algorithm 7, (Ō′n(λ))λ≥λ? evolves as a standard multiplicative coalescent. Further,
note that there exists a constant c > 0 such that βn = cn2/3(1 + oP(1)) which enables us
to deduce the scaling limit results for (Ōn(λ))λ≥λ? from (Ō′n(λ))λ≥λ? .

Multiplicative coalescent with mass and weight

The Feller property of the multiplicative coalescent [2, Proposition 5] ensures the joint
convergence of the number of open half-edges in each component of Ḡn(tn(λ)) at multiple
values of λ as we shall see below. To deduce the scaling limits involving the components
sizes let us consider a dynamic process that is further augmented by a certain weight.
Initially, the system consists of particles (possibly infinitely many) where particle i has
mass xi, and weight zi. Let (Xi(t), Zi(t))i≥1 denote the vector of masses, and weights at
time t. The dynamics of the system is described as follows:

At time t, particles i and j coalesce at rate Xi(t)Xj(t) and create a particle with
mass Xi(t) +Xj(t), and weight Zi(t) + Zj(t).

Denote by MC2(x, z, t) the vector (Xi(t), Zi(t))i≥1 with initial mass x, and weight z. We
shall need the following theorem:
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Theorem 8.8. Suppose that (xn, zn)→ (x,x) in (`2↓)
2. Then, for any t ≥ 0

MC2(xn, zn, t)
L−→ MC2(x,x, t). (8.19)

Proof. For xn = (xni )i≥1 and zn = (zni )i≥1, let w+
n = ord(xni ∨ zni ), w−n = ord(xni ∧ zni ),

where ord denotes the decreasing ordering of the elements. Notice that w+
n → x, and

w−n → x in `2↓. Using the Feller property of the multiplicative coalescent [2, Proposition
5], it follows that

MC2(w+
n ,w

+
n , t)

L−→ MC2(x,x, t), and MC2(w−n ,w
−
n , t)

L−→ MC2(x,x, t), (8.20)

with respect to the (`2↓)
2 topology. Suppose that MC2(w+

n ,w
+
n , t) and MC2(w−n ,w

−
n , t) are

coupled through the subgraph coupling (see [2, Page 838]). For (x, z) ∈ (`2↓)
2, denote

‖(x, z)‖22 = (
∑
i≥1 x

2
i )

1/2 + (
∑
i≥1 z

2
i )1/2. Under the subgraph coupling, (8.20) yields

‖MC2(w+
n ,w

+
n , t)‖222 − ‖MC2(w−n ,w

−
n , t)‖222

P−→ 0. (8.21)

Moreover,

‖MC2(w−n ,w
−
n , t)‖222 ≤ ‖MC2(xn, zn, t)‖222 ≤ ‖MC2(w+

n ,w
+
n , t)‖222. (8.22)

Hence, using [2, Corollary 18 (a)], under the subgraph coupling,

‖MC2(w+
n ,w

+
n , t)−MC2(xn, zn, t)‖222 ≤ ‖MC2(w+

n ,w
+
n , t)‖222 − ‖MC2(xn, zn, t)‖222

P−→ 0,

(8.23)
and the proof follows.

8.4 Asymptotics for the open half-edges

In this section, we show that the open half-edges in the components of Gn(tn(λ))

are approximately proportional to the component sizes. This will enable us to apply
Theorem 8.8 for deducing the scaling limits of the required quantities for the graph
Ḡn(tn(λ)).

Lemma 8.9. There exists a constant κ > 0 such that, for any λ ∈ R and i ≥ 1,

Oi(λ) = κ|C(i)(λ)|+ oP(bn). (8.24)

Further, (On(λ))n≥1 is tight in `2↓ and consequently n−4/3
∑
i≥1(Oi(λ)− κ|C(i)(λ)|)2 P−→ 0.

Proof. Let (dλk)k∈[n] denote the degree sequence of CMn(d, pn(λ)) and define

Opi (λ) =
∑

k∈Cp
(i)

(λ)

(dk − dλk) =
∑

k∈Cp
(i)

(λ)

dk − 2(|C p
(i)(λ)| − 1 + SP(C p

(i)(λ))). (8.25)

Using Remark 8.5 and the fact that the surplus edges in the large components is tight,
it is enough to prove the lemma by replacing Oi(λ) by Opi (λ) and C(i)(λ) by C p

(i)(λ). For
a component C̃ of CMñ(d̃), the corresponding component C̃ p in the percolated graph
is obtained by cleaning up R(C̃ ) red degree-one vertices, see Algorithm 3. Thus, the
number of open half-edges in C̃ p is given by∑

k∈C̃∩[n]

dk −
∑

k∈C̃∩[n]

d̃k +R(C̃ ). (8.26)

Now, all the three terms appearing in the right hand side of (8.26) can be estimated
using Lemma 5.2. Indeed, we can consider weights wi1 = di, wi2 = d̃i, and wi3 = the
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number of red neighbors of vertex i in CMñ(d̃). The conditions in (5.7) are satisfied by
Lemma 7.4, and observing that

max{max
i
wi1,max

i
wi2,max

i
wi3} ≤ dmax = o(n1/3). (8.27)

Note that, using an argument identical to Lemma 7.4, (1/n)
∑
i∈[ñ] wikd̃i converges Pp

almost surely, for all k = 1, 2, 3. Now, (8.24) is a consequence of Lemma 5.12. Denote

Di =
∑

k∈C̃(i)∩[n]

dk, D̃i =
∑

k∈C̃(i)∩[n]

d̃k, Dn = ord((Di)i≥1), and D̃n = ord((D̃i)i≥1).

(8.28)
Using (5.55), (D̃n)n≥1 is tight in `2↓. Further wi3 ≤ di for all i. Thus, for the `2↓ tightness
of (On(λ))n≥1, it is enough to show the `2↓ tightness of (Dn)n≥1. Denote the conditional

probability, conditioned on the uniform perfect matching in Algorithm 3 (S2), by P̃(·).
Notice that, since Algorithm 3 (S1), and (S2) are carried out independently, D̃i ∼
Bin(Di,

√
pn) under P̃. Using standard concentration inequalities [19, (2.9)], it follows

that

P̃(D̃i < Di
√
pn(1−√pn)) ≤ 2e−Dip

3/2
n /3, (8.29)

and thus for I = {k : Dk > nε}, the union bound yields

P(∃i ∈ I : Di > aD̃i)→ 0, (8.30)

for some constant a > 0. Let En denote the corresponding event in (8.30). Thus, for any
η > 0,

P

(
n−4/3

∑
k>K,k∈I

D2
k > η

)
≤ P

(
n−4/3

∑
k>K

D̃2
k >

η

a

)
+P(En)→ 0, (8.31)

if we first take first take limit as n→∞, and then K →∞, and use the `2↓ tightness of

(D̃n)n≥1. Further,
∑
k/∈I D

2
k ≤ n1+2ε = o(n4/3), if ε < 1/6. This completes the proof of the

`2↓ tightness of (Dn)n≥1 and consequently that of (On(λ))n≥1.

8.5 Proof of Theorem 3.7

We will consider the case k = 2 only, since the case for general k can be proved
inductively. Fix −∞ < λ0 < λ1 <∞. Suppose that the modified Algorithm 7 starts at time
λ? = λ0. By Lemma 8.9 and Theorem 3.6, (On(λ0), κCn(λ0)) converges in distribution to
κ
√
ν(γ̃λ0 , γ̃λ0). Now, from Remark 8.7, an application of Theorem 8.8 gives

(Cn(λ0), C̄n(λ1))
L−→
√
ν(γ̃λ0 , γ̃λ1). (8.32)

The fact that the limiting distribution corresponding to C̄n(λ1) is equal to
√
νγ̃λ1 follows

from the Feller property of multiplicative coalescent, [3, Theorem 2], and Theorem 8.8.
For x,y ∈ `2↓, denote x � y if x is the vector in decreasing order of elements {yij : i, j ≥ 1}
such that

∑
j yij ≤ yi for all i ≥ 1. Thus if y is obtained by coalescing elements of x, then

x � y. Under the coupling in Remark 8.6, it follows that Cn(λ) � C̄n(λ) almost surely,
for each λ ≥ λ0. Using [2, Corollary 18 (a)], it follows that

‖C̄n(λ1)−Cn(λ1)‖22 ≤ ‖C̄n(λ1)‖22 − ‖Cn(λ1)‖22 , (8.33)

where ‖ · ‖2 denote the `2-norm. The final ingredient is the following straightforward
lemma:
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Lemma 8.10. Suppose Xn, Yn are non-negative random variables such that Xn ≤ Yn

a.s. and Xn
L−→ X, Yn

L−→ X. Then,

Yn −Xn
P−→ 0. (8.34)

Proof. Note that ((Xn, Yn))n≥1 is tight in R2. Thus, for any (n′i)i≥1 there exists a subse-

quence (ni)i≥1 ⊂ (n′i)i≥1 such that (Xni , Yni)
L−→ (Z1, Z2). Using the marginal distribu-

tional limits we get Z1
L
= X, Z2

L
= X. Also the joint distribution of (Z1, Z2) is concentrated

on the line y = x in the xy plane. Thus, (Xni , Yni)
L−→ (X,X). This limiting distribution

does not depend on the subsequence (ni)i≥1. Thus the tightness of ((Xn, Yn))n≥1 implies

(Xn, Yn)
L−→ (X,X). The proof is now complete.

Now, observe that ‖Cn(λ1)‖22 ≤ ‖C̄n(λ1)‖22 and ‖Cn(λ1)‖22 , and ‖C̄n(λ1)‖22 have the
same distributional limit by Theorem 3.3, and (8.32). Thus, Lemma 8.10 implies that
‖C̄n(λ1)‖22 − ‖Cn(λ1)‖22

P−→ 0, and (8.32), (8.33) yield

(Cn(λ0),Cn(λ1))
L−→
√
ν(γ̃λ0 , γ̃λ1). (8.35)

Finally, the proof of Theorem 3.7 is complete by applying Proposition 8.4.
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