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Stochastic differential equations with
sticky reflection and boundary diffusion
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Abstract

We construct diffusion processes in bounded domains Ω with sticky reflection at
the boundary Γ in use of Dirichlet forms. In particular, the occupation time on the
boundary is positive. The construction covers a static boundary behavior and an
optional diffusion along Γ. The process is a solution to a given SDE for q.e. starting
point. Using regularity results for elliptic PDE with Wentzell boundary conditions
we show strong Feller properties and characterize the constructed process even for
every starting point in Ω\Ξ, where Ξ is given explicitly by the involved densities. By a
time change we obtain pointwise solutions to SDEs with immediate reflection under
weak assumptions on Γ and the drift. A non-trivial extension of the construction yields
N-particle systems with the stated boundary behavior and singular drifts. Finally, the
setting is applied to a model for particles diffusing in a chromatography tube with
repulsive interactions.
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1 Introduction

In the first part of the present paper, we construct via Dirichlet form techniques
diffusions on Ω for bounded domains Ω of Rd, d ≥ 1, with boundary Γ, and identify them
as weak solutions of SDEs given by

dXt =1Ω(Xt)
(
dBt +

1

2

∇α
α

(Xt)dt
)
− 1Γ(Xt)

1

2

α

β
(Xt) n(Xt)dt

+ δ 1Γ(Xt)
(
dBΓ

t +
1

2

∇Γβ

β
(Xt)dt

)
, (1.1)

dBΓ
t =P (Xt) ◦ dBt,

X0 =x,
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SDEs with sticky reflection and boundary diffusion

for q.e. x ∈ Ω under weak assumptions on the drifts given by α and β, where n(y) is the
outward normal at y ∈ Γ, P is the projection on the tangent space and δ ∈ {0, 1}. In the
case δ = 1 we additionally assume that d ≥ 2.

A solution to (1.1) can be characterized as Brownian motion with drift inside Ω and
if the process reaches Γ, Brownian motion with drift along Γ may take place, while
a further drift term in normal direction is directed back into the interior of Ω. In
addition, the Brownian motion BΓ = (BΓ

t )t≥0 on Γ is the projection of the d-dimensional
Brownian motion B = (Bt)t≥0 onto the manifold Γ (in the sense of a Stratonovich SDE).
In this situation, the boundary behavior is called sticky and is connected to so-called
Wentzell boundary conditions. In contrast to reflecting (Neumann) boundary conditions
which provide an immediate reflection, Wentzell boundary conditions yield sojourn on
Γ. The infinitesimal generator and semigroup associated to such kind of diffusions
were first investigated in [Fel52] and in [Wen59] on [0,∞). This kind of diffusion is also
considered in [IW89, Chap. IV, Sect. 7] on the half-space Rd+ := {x ∈ Rd : xd ≥ 0}, d ≥ 2,
with Lipschitz continuous, bounded drifts. In [Car09] the author uses a Dirichlet form
approach in order to construct Brownian motion with boundary diffusion in a similar
setting to ours with the essential difference that the boundary behavior is not sticky and
also a drift does not occur, i.e., only constant densities are admissible. More precisely,
the considered approach corresponds to ordinary reflecting boundary conditions (with
the d-dimensional Lebesgue measure as reference measure) instead of a sticky boundary
behavior. Moreover, in [VV03] and [MR06] diffusion operators on Ω with sticky boundary
behavior are considered, but without introducing a boundary diffusion operator on
Γ. This is in accordance with our setting for δ = 0, but the authors assume stronger
conditions and in particular, a drift is not included. Furthermore, we also construct
and analyze the underlying dynamics. Additionally, we deduce regularity properties of
the associated semigroup and resolvent in use of the regularity results given in [Nit11],
[War12] and [War13]. In application, the required additional conditions on the density
can be verified in use of a criterion by [Stu95]. Neither in [Car09] nor in [VV03] and
[MR06] Feller properties of the associated semigroup are investigated. Moreover, for
δ = 0 it is possible to use a random time change in order to obtain solutions to SDEs with
immediate reflection from sticky reflection for a Lipschitz boundary Γ. In this generality,
the existence result seems also new.

In the second part of the present paper, we use the previous results as well as tensor
products and Girsanov transformations of Dirichlet forms in order to construct a solution
of the system of SDEs given by

dXi
t =1Ω(Xi

t)
(
dBit +

1

2

(∇iαi
αi

(Xi
t) +

∇iφ
φ

(Xt)
)
dt
)
− 1Γ(Xi

t)
1

2

αi
βi

(Xi
t) n(Xi

t)dt

+δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t) +

∇Γ,iφ

φ
(Xt)

)
dt
)
, i = 1, . . . , N (1.2)

dBΓ,i
t = P (Xi

t) ◦ dBit
X0 =x ∈ Ω

N
,

where (Bt)t≥0, Bt = (B1
t , . . . , B

N
t ), is an Nd-dimensional standard Brownian motion. The

particle interaction is given by ∇iφ
φ and ∇Γ,iφ

φ , i = 1, . . . , N , where the subindex in ∇i
and ∇Γ,i refers to the i-th component. The Dirichlet form construction takes place under
extremely weak assumptions on the density. In order to analyze the constructed process,
the densities αi and βi, i = 1, . . . , N , are only assumed to fulfill the conditions assumed
for (1.1) whereas φ is C1. Nevertheless, in general φ is allowed to vanish on a set of
measure zero. Hence, it is possible to consider singular interactions. This property of our
construction is important in order to model interacting particle systems in a physically
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SDEs with sticky reflection and boundary diffusion

reasonable way, since naturally two particles are not allowed to be located at the same
position at the same time. For example, a Gibbs measure defined by the Lennard-Jones
potential is an admissible choice and models the repulsion of the particles. Thus, our
results prove the existence of solutions to systems of singular SDEs with sticky boundary.
In the case of a bounded drift, it is not possible to model repulsive behavior.

In [Gra88] a sticky diffusion is constructed by probabilistic methods with regard to
a propagation of chaos result in the follow-up paper [GM89]. The constructed process
coincides with our setting in special cases, but the considered domain is determined by
the zero set of a C2(Rd)-function and the drift is assumed to be Lipschitz continuous
and bounded which is quite restrictive, especially with regard to singular interactions.
The author uses the constructed diffusion to model a system of particles interacting at
the boundary. This interacting particle system in turn is used to model the behavior of
molecules in a chromatography tube. We apply our results to this kind of application.

In [EP14] the authors analyze Brownian motion on [0,∞) which is sticky in 0. They
show that strong solutions do not exist and that the sticky Brownian motion is the limit
of time scaled reflected Brownian motions. This suggests that a strong solution in our
framework also does not exist and hence, the solutions we construct in this paper are
optimal in this sense.

The main novelties summarize as follows:

• Existence of a weak solution to the SDE (1.1) with Lipschitz boundary Γ for δ = 0,
C2 boundary for δ = 1 and possibly unbounded, non-Lipschitz drifts. (Theorem
3.17)

• Ergodicity of the solution to (1.1). (Theorem 3.23)

• Regularity properties of the associated semigroup and resolvent as well as existence
of a solution of (1.1) for an explicitly known set of starting points and singular
drifts. (Section 3.3, Theorem 3.38)

• Existence of weak solutions to SDEs with immediate reflection at Lipschitz bound-
aries Γ and with singular drifts for an explicitly known set of starting points.
(Corollary 3.39)

• Existence of a weak solution to the N -particle SDE (1.2). (Theorem 4.22)

• Application of the concepts to N -particle dynamics in a chromatography tube with
singular interactions. (Section 4.3)

2 Preliminaries

Throughout this paper, Ω ⊂ Rd, d ≥ 1, denotes a non-empty bounded Lipschitz
domain, λ the Lebesgue measure on Ω and σ the surface measure on Γ := ∂Ω. In the
case δ = 1 we assume that d ≥ 2. The standard scalar product on Rd is given by (·, ·) and
norms on Rd by | · | (in particular, for the modulus in R; eventually labeled by a lower
index in order to distinguish norms). Similarly, ‖ · ‖ denotes norms on function spaces.
The metric on Rd induced by the euclidean metric is denoted by deuc.

For a vector x ∈ Ω
N

, N ∈ N, we use the representation x = (x1, . . . , xN ), where
xi ∈ Ω, i = 1, . . . , N , is represented in the form xi = (xi1, . . . , x

i
d). We denote by ∇ the

gradient of a smooth function and by ∂xi
k
, i = 1, . . . , N , k = 1, . . . , d, its partial derivatives.

In the case N = 1 we simply write ∂k for k = 1, . . . , d. By ∇i, i = 1, . . . , N , we denote the
d-dimensional vector given by the partial derivatives with respect to the coordinates xik,
k = 1, . . . , d. Moreover, ∇2 denotes the Hessian for functions mapping from subsets of
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Rd to R and ∆ = Tr(∇2) the Laplacian. ∇2
i and ∆i are defined analogously. In the case

of Sobolev functions we use the same notations in the weak sense.
In order to fix the notation we make the following definitions:

Definition 2.1. Let Ω ⊂ Rd be a bounded domain. The boundary Γ of Ω is said to be
Lipschitz continuous (respectively Ck-smooth) if for every x ∈ Γ there exists a neighbor-
hood V of x in Rd such that Γ ∩ V is the graph of a Lipschitz continuous (respectively
Ck-smooth) function and Ω ∩ V is located at one side of the graph, i.e., it exist new
orthogonal coordinates (y1, . . . , yd) (given by an orthogonal map T ), a reference point
z ∈ Rd−1, real numbers r, h > 0 and a Lipschitz continuous (respectively Ck-smooth)
function ϕ : Rd−1 → R such that in the new coordinates it holds

(i)
V = {y = (y1, . . . , yd) ∈ Rd| |y,d − z| < r, |yd − ϕ(y,d)| < h},

where y,d := (y1, . . . , yd−1) for y = (y1, . . . , yd) ∈ Rd,

(ii)
Ω ∩ V = {y ∈ V | − h < yd − ϕ(y,d) < 0},
Γ ∩ V = {y ∈ V | yd = ϕ(y,d)}.

So Γ is Lipschitz continuous (respectively Ck-smooth) if Ω is locally below the graph
of a Lipschitz continuous (respectively Ck-) function and the graph coincides with Γ.
In this case, we also simply say that Γ is Lipschitz (respectively Ck) or that Ω has
Lipschitz boundary (respectively Ck-boundary). Note that in the case of a Lipschitz
continuous boundary Γ, each ϕ is almost everywhere differentiable by Rademacher’s
theorem. Moreover, it is possible to find a finite open cover (Vi)i=1,...,l of Γ such that the
assumptions in Definition 2.1 are fulfilled for each Vi, i = 1, . . . , l, since Γ is compact.

Definition 2.2. Let Ω be open and bounded with Lipschitz continuous boundary Γ. Then
we define for y = (y1, . . . , yd) ∈ V

ñ(y) :=
(−∇ϕ(y,d), 1)√
|∇ϕ(y,d)|2 + 1

supposed that ϕ is differentiable at y,d := (y1, . . . , yd−1). Let x ∈ Γ and T ∈ Rd×d be the
orthogonal coordinate transformation from Definition 2.1. Then define the (outward)
normal vector at x by

n(x) := T−1 ñ(Tx).

Remark 2.3. Note that the definition of n also makes sense in a neighborhood of x and
n is differentiable near x if Γ is C2.

Definition 2.4. Let x ∈ Γ be such that n(x) exists in the sense of Definition 2.2. Define

P (x) := E − n(x)n(x)t ∈ Rd×d,

where E is the d × d identity matrix. We call P (x) the orthogonal projection on the
tangent space at x. Note that P (x)z = z − (n(x), z) n(x) for z ∈ Rd.
Definition 2.5. Let f ∈ C1(Ω) and x ∈ Γ. Then we define (whenever Γ is sufficiently
smooth at x) the gradient of f at x along Γ by

∇Γf(x) := P (x)∇f(x)

and if f ∈ C2(Ω) the Laplace-Beltrami of f at x by

∆Γf(x) := Tr(∇2
Γf(x)) = divΓ∇Γf(x) = Tr(P (x)∇(P (x)∇f(x))),
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where divΓΦ := Tr(P∇Φ) for Φ = (Φ1, . . . ,Φd) ∈ C1(Ω;Rd) with ∇Φ = (∇Φ1| . . . |∇Φd).
Analogously, we define higher derivatives of order k ∈ N. Let Ck(Γ) be the space of k-
times continuously differentiable functions on Γ. As usual, set C∞(Γ) := ∩k∈N Ck(Γ). As
before, denote by ∇Γ the gradient on Γ and by divΓ the divergence operator. Moreover,
in the case that n is differentiable at x we define the mean curvature of Γ at x by

κ(x) := divΓ n(x).

In the above way, it is possible to obtain from functions in C1(Ω) and C2(Ω) elements in
C1(Γ) and C2(Γ) respectively by restriction.

We have the following relation for the mean curvature κ:

Lemma 2.6. Assume that Γ is C2-smooth. Then

(P∇)tP = −κn,

where ((P∇)tP )i :=
∑
k,j Pjk∂jPik for i = 1, . . . , d.

Proof. Fix i ∈ {1, . . . d}. It holds(
(P∇)tP

)
i

=
∑
k,j

Pjk∂jPik

= −
∑
k,j

Pjk∂j(nink)

= −
∑
k,j

(1− njnk)(∂jnink + ni∂jnk)

= −
(∑
k,j

(1− njnk)∂jnk
)
ni −

∑
k,j

(1− njnk)∂jnink

= −Tr(P∇n)ni − (n, P∇ni) = −κni − (n, P∇ni).

Using that P is the orthogonal projection on
(
span(n)

)⊥
, we get that (n, P∇ni) = 0 and

therfore, the assertion holds true.

Definition 2.7. The Sobolev space H1,k(Γ), k ≥ 1, is defined by C1(Γ)
‖·‖

H1,k(Γ) ⊂
Lk(Γ;σ), i.e., the closure C1(Γ) with respect to the norm

‖ · ‖H1,k(Γ) :=
(
‖ · ‖kLk(Γ;σ) + ‖∇Γ · ‖kLk(Γ;σ)

) 1
k .

Remark 2.8. For a vector valued C1-function Φ on Γ and g ∈ H1,k(Γ), we have the
divergence theorem ∫

Γ

(Φ,∇Γg) dσ = −
∫

Γ

divΓΦ g dσ (2.1)

in view of [Tay11, Chap. 2, Proposition 2.2].

We shortly recall some facts about Brownian motion on Γ. For details about stochastic
analysis on manifolds, we refer to [HT94], [Hsu02] and [IW89]:

By definition, Brownian motion (BΓ
t )t≥0 on a smooth boundary Γ is a Γ-valued stochas-

tic process that is generated by 1
2∆Γ, in analogy to Brownian motion on Rd, in the sense

that (BΓ
t )t≥0 solves the martingale problem for ( 1

2∆Γ, C
∞(Γ)). We recall the following:

Lemma 2.9. Let Γ be a smooth submanifold of Rd as in Definition 2.1. Then a solution
of the Stratonovich SDE

dXt = P (Xt) ◦ dBt, X0 ∈ Γ,

is a Brownian motion on Γ, where (Bt)t≥0 is a Brownian motion in Rd.

EJP 22 (2017), paper 7.
Page 5/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP27
http://www.imstat.org/ejp/


SDEs with sticky reflection and boundary diffusion

Proof. See [Hsu02, Chap. 3, Sect. 2].

Remark 2.10. Note that the dimension of the driving Brownian motion (Bt)t≥0 is strictly
larger than the dimension of the submanifold Γ and hence, according to [Hsu02] the driv-
ing Brownian motion contains some extra information beyond what is usually provided by
a Brownian motion on Γ. Furthermore, a solution of the above SDE is naturally Γ-valued,
since P (x)z is tangential to Γ at x for every x ∈ Γ and z ∈ Rd. In our application, it
is natural to construct a Brownian motion on Γ by means of a d-dimensional Brownian
motion, since a Brownian motion on Rd is involved anyway.

3 Sticky reflected diffusions on Ω

3.1 The Dirichlet form and the associated Markov process

Condition 3.1. Γ is Lipschitz continuous. Moreover, α ∈ L1(Ω;λ), α > 0 λ-a.e., and
β ∈ L1(Γ;σ), β > 0 σ-a.e..

Define
% := 1Ω α+ 1Γ β

as well as
µ := % (λ+ σ) = αλ+ βσ.

Note that the condition α ∈ L1(Ω;λ), α > 0 λ-a.e., and β ∈ L1(Γ;σ), β > 0 σ-a.e. is
equivalent to % ∈ L1(Ω;λ+ σ), % > 0 (λ+ σ)-a.e.. µ is a Borel measure on Ω. Hence, we
can conclude the following:

Proposition 3.2. Under Condition 3.1 we have that C∞(Ω) is dense in L2(Ω;µ).

Let the symmetric and positive definite bilinear form (E ,D) be given by

E(f, g) :=
1

2

∫
Ω

(∇f,∇g) αdλ+
δ

2

∫
Γ

(∇Γf,∇Γg) βdσ for f, g ∈ D := C1(Ω), (3.1)

where (·, ·) denotes the euclidean scalar product in Rd and δ ∈ {0, 1}. In addition, let

EΩ(f, g) :=
1

2

∫
Ω

(∇f,∇g) αdλ for f, g ∈ DΩ := C1(Ω)

as well as

EΓ(f, g) :=
1

2

∫
Γ

(∇Γf,∇Γg) βdσ for f, g ∈ DΓ := C1(Γ).

Note that e(D) = e(DΩ) ⊂ DΓ, where e : C1(Ω)→ C1(Γ) is defined by the restriction of
functions to Γ. In these terms, for f, g ∈ D we get

E(f, g) = EΩ(f, g) + δ EΓ(f, g).

In order to prove closability of (E ,D), we need an additional assumption on the
density %. Define

Rα(Ω) := {x ∈ Ω :

∫
{y∈Ω:|x−y|<ε}

α−1dλ <∞ for some ε > 0}

and analogously Rβ(Γ) with Ω replaced by Γ and λ replaced by σ.

Condition 3.3 (Hamza condition). α = 0 λ-a.e. on Ω\Rα(Ω) and additionally β = 0 σ-a.e.
on Γ\Rβ(Γ) if δ = 1.

Lemma 3.4. Assume that Condition 3.1 and Condition 3.3 are fulfilled. Then the
densely defined, symmetric bilinear forms (EΩ,DΩ) and (EΓ,DΓ) (if δ = 1) are clos-
able on L2(Ω;αλ) and on L2(Γ;βσ) respectively. Moreover, the closures (EΩ, D(EΩ)) and
(EΓ, D(EΓ)) are conservative, strongly local, regular, symmetric Dirichlet forms.
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Proof. The symmetric densely defined bilinear forms are closable and its closures are
symmetric Dirichlet forms by [MR92, Chap. 2, Sect. 2, Example a)] (see in particular
Remark 2.3 of the reference). The remaining properties follow exactly like in the
following proofs for the closure of (E ,D).

Proposition 3.5. Suppose that Condition 3.1 and Condition 3.3 are satisfied. Then
(E ,D) is closable on L2(Ω;µ). We denote its closure by (E , D(E)).

Proof. Let (fk)k∈N be a Cauchy sequence in D = C1(Ω) with respect to E , i.e.,

E(fk − fl, fk − fl)→ 0 as k, l→∞.

Moreover, assume that (fk)k∈N converges to 0 in L2(Ω;µ). We have to show that
E(fk, fk)→ 0 as k →∞.

Since (fk)k∈N is a Cauchy sequence with respect to E , it is also a Cauchy sequence
with respect to EΩ (and EΓ if δ = 1). Moreover, the convergence of (fk)k∈N to 0 in L2(Ω;µ)

implies by definition the convergence to 0 in L2(Ω;αλ) and L2(Γ;βσ). Therefore, we get
EΩ(fk, fk)→ 0 (and EΓ(fk, fk)→ 0 if δ = 1) as k →∞ by Lemma 3.4. Hence,

E(fk, fk) = EΩ(fk, fk) + δ EΓ(fk, fk)→ 0 as k →∞.

Proposition 3.6. Suppose that Condition 3.1 and Condition 3.3 are satisfied. Then
(E , D(E)) is a symmetric, regular Dirichlet form.

Proof. The Markov property follows as in [MR92, Chap.2, Sect. 2, Example c)] by [MR92,
Chap. 1, Proposition 4.10] and the chain rule. Hence, (E , D(E)) is a symmetric Dirichlet
Form. By the Stone-Weierstraß theorem, it holds that C∞(Ω) is dense in C(Ω) with
respect to ‖ · ‖sup. Furthermore, D is dense in D(E) with respect to the E1-norm. Since
C∞(Ω) ⊂ D ⊂ D(E) ∩ C(Ω), we obtain that (E , D(E)) is also regular.

Proposition 3.7. Suppose that Condition 3.1 and Condition 3.3 are satisfied. Then the
symmetric, regular Dirichlet form (E , D(E)) is strongly local and recurrent.

Proof. Using [FOT11, Theo. 3.1.1] and [FOT11, Exercise 3.1.1] it is sufficient to show
the strong local property for elements in D. Therefore, let f, g ∈ D such that g is constant
on some open neighborhood U of supp(f) (in the trace topology of Ω). Then

E(f, g) =
1

2

∫
Ω

(∇f,∇g) αdλ+
δ

2

∫
Γ

(∇Γf,∇Γg) βdσ

=
1

2

∫
Ω∩supp(f)

(∇f,∇g) αdλ+
1

2

∫
Ω\supp(f)

(∇f,∇g) αdλ

+
δ

2

∫
Γ∩supp(f)

(∇Γf,∇Γg) βdσ +
δ

2

∫
Γ\supp(f)

(∇Γf,∇Γg) βdσ

=0,

because each summand is zero, since the integrals are defined over sets where either
f or g is constant. Hence, (E , D(E)) is strongly local. Clearly, 1Ω ∈ D ⊂ D(E) and
E(1Ω,1Ω) = 0. Therefore, (E , D(E)) is also recurrent.

By summarizing the preceding results, we get the following theorem:

Theorem 3.8. Assume Condition 3.1 and Condition 3.3. Then the symmetric and positive
definite bilinear form (E , D) is densely defined and closable on L2(Ω;µ). Its closure
(E , D(E)) is a recurrent, strongly local, regular, symmetric Dirichlet form on L2(Ω;µ).
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By the theory of Dirichlet forms, we obtain immediately the following theorem. For
details see e.g. [MR92, Chap. V, Theorem 1.11] or [FOT11, Theorem 7.2.2 and Exercise
4.5.1]. We remark that the definitions of capacities (and hence, of exceptional sets)
used in the textbooks [FOT11] and [MR92] are introduced in different ways, but that
the defintions coincide in our setting (see [MR92, Chap. III, Remark 2.9 and Exercise
2.10]). (Tt)t>0 denotes the sub-Markovian strongly continuous contraction semigroup on
L2(Ω;µ) corresponding to (E , D(E)).

Theorem 3.9. Suppose that Condition 3.1 and Condition 3.3 are satisfied. Then there
exists a conservative diffusion process (i.e. a strong Markov process with continuous
sample paths and infinite life time)

M :=
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Ω

)
with state space Ω which is properly associated with (E , D(E)), i.e., for all (µ-versions of)
f ∈ Bb(Ω) ⊂ L2(Ω;µ) and all t > 0 the function

Ω 3 x 7→ ptf(x) := Ex
(
f(Xt)

)
:=

∫
Ω

f(Xt)dPx ∈ R

is a quasi continuous version of Ttf . M is up to µ-equivalence unique. In particular, M

is µ-symmetric, i.e.,∫
Ω

ptf g dµ =

∫
Ω

f ptg dµ for all f, g ∈ Bb(Ω) and all t > 0,

and has µ as invariant measure, i.e.,∫
Ω

ptf dµ =

∫
Ω

f dµ for all f ∈ Bb(Ω) and all t > 0.

Remark 3.10. Note that M is canonical, i.e., Ω = C(R+,Ω) and Xt(ω) = ω(t), ω ∈ Ω.
For each t ≥ 0 we denote by Θt : Ω → Ω the shift operator defined by Θt(ω) = ω(·+ t)

for ω ∈ Ω such that Xs ◦ Θt = Xs+t for all s ≥ 0. We take into account to extend the
setting to C(R+,R

d) by neglecting paths leaving Ω.

3.2 Analysis of the Markov process

3.2.1 Generators and boundary conditions

By Friedrichs representation theorem we have the existence of a unique self-adjoint
generator (L,D(L)) corresponding to (E , D(E)).

Proposition 3.11. Suppose that Condition 3.1 and Condition 3.3 are satisfied. Then
there exists a unique, positive, self-adjoint, linear operator (L,D(L)) on L2(Ω;µ) such
that

D(L) ⊂ D(E) and E(f, g) = (−Lf, g)L2(Ω;µ) for all f ∈ D(L), g ∈ D(E).

In order to determine the generator on a subspace of D(L) we assume the following
condition:

Condition 3.12. Γ is Lipschitz continuous. Moreover, α, β ∈ C(Ω), α > 0 λ-a.e. on
Ω, β > 0 σ-a.e. on Γ such that

√
α ∈ H1,2(Ω) and additionally, Γ is C2-smooth and√

β ∈ H1,2(Γ) if δ = 1.

Remark 3.13. Note that Condition 3.12 implies Condition 3.1 and Condition 3.3. In
particular, Condition 3.12 holds if α, β ∈ C1(Ω), α, β > 0.
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Proposition 3.14. Suppose that Condition 3.12 is satisfied. Then, C2(Ω) ⊂ D(L) and

Lf = L̃f :=
1

2

(
1Ω

(
∆f + (

∇α
α
,∇f)

)
− 1Γ

α

β
(n,∇f) + δ 1Γ

(
∆Γf + (

∇Γβ

β
,∇Γf)

)
for f ∈ C2(Ω).

Proof. Let f ∈ C2(Ω) and g ∈ D = C1(Ω). Then we get by the divergence theorem on Ω

and (2.1):

E(f, g) =
1

2

∫
Ω

(∇f,∇g) αdλ+
δ

2

∫
Γ

(∇Γf,∇Γg) βdσ

=
1

2

∫
Ω

(α∇f,∇g) dλ+
δ

2

∫
Γ

(β∇Γf,∇Γg) dσ

= −1

2

∫
Ω

g div(α∇f) dλ+
1

2

∫
Γ

g (∇f, n) αdσ − δ

2

∫
Γ

g divΓ(β∇Γf) dσ

= −1

2

∫
Ω

g (∆fα+ (∇α,∇f)) dλ+
1

2

∫
Γ

g
α

β
(∇f, n) βdσ

− δ

2

∫
Γ

g(β∆Γf + (∇Γβ,∇Γf)) dσ

= −1

2

∫
Ω

g (∆f + (
∇α
α
,∇f)) αdλ+

1

2

∫
Γ

g
α

β
(∇f, n) βdσ

− δ

2

∫
Γ

g(∆Γf + (
∇Γβ

β
,∇Γf)) βdσ

= (−L̃f, g)L2(Ω;µ).

By density of D in D(E) with respect to the E1-norm, the claim follows.

We can define the operator LΩ and the boundary operator LΓ by

LΩf :=
1

2

(
∆f + (

∇α
α
,∇f)

)
and LΓf :=

1

2

(
δ ∆Γf + δ (

∇Γβ

β
,∇Γf)− α

β
(n,∇f)

)
for f ∈ C2(Ω). Then the generator L has the representation Lf = 1Ω LΩf + 1Γ LΓf . The
associated Cauchy problem for g ∈ C2(Ω) has the form

∂
∂tut = 1

2

(
∆ut + (∇αα ,∇ut)

)
, on Ω, t > 0

∆ut + (∇αα ,∇ut)− δ ∆Γut − δ (∇Γβ
β ,∇Γut) + α

β (n,∇ut) = 0, on Γ, t > 0,

u0 = g on Ω.

(3.2)

The condition in (3.2) is called Wentzell boundary condition. Note that if we multiply (3.2)
for δ = 0 by β and then set β to zero, the equation reduces to the Neumann boundary
condition.

For h ∈ C1(Ω), we have by definition and calculation (∇Γh,∇Γf) = (P∇h,∇f) and
∆Γf = Tr(P∇2f)− (n,∇f) Tr(P∇n) = Tr(P∇2f)− (κn,∇f). Hence, we get with

A := 1ΩE + δ 1ΓP (3.3)

as well as

b :=
1

2

(
1Ω
∇α
α

+ 1Γ

(
δ P
∇β
β
− (

α

β
+ κ)n

))
(3.4)

the representation

Lf =
1

2
Tr(A∇2f) + (b,∇f). (3.5)

Note that AAt = A2 = A.
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3.2.2 Solution to the martingale problem and SDE

Theorem 3.15. The diffusion process M from Theorem 3.9 is up to µ-equivalence the
unique diffusion process having µ as symmetrizing measure and solving the martingale
problem for (L,D(L)), i.e., for all g ∈ D(L)

g̃(Xt)− g̃(X0)−
∫ t

0

(Lg)(Xs)ds, t ≥ 0,

is an Ft-martingale under Px for quasi all x ∈ Ω. Here g̃ denotes a quasi-continuous
version of g (for the definition of quasi-continuity see e.g. [MR92, Chap. IV, Proposition
3.3]).

Proof. See e.g. [AR95, Theorem 3.4 (i)].

By the explicit calculation of L given in Proposition 3.14 and the notation in (3.5), we
obtain the following corollary:

Corollary 3.16. Assume that Condition 3.12 is fulfilled. Let g ∈ C2(Ω) and let M be the
diffusion process from Theorem 3.9. Then

g(Xt)− g(X0)−
∫ t

0

1

2
Tr
(
A(Xs)∇2g(Xs)

)
+
(
b(Xs),∇g(Xs)

)
ds, t ≥ 0,

is an Ft-martingale under Px for quasi every x ∈ Ω, where A and b are defined as in (3.3)
and (3.4).

Due to the connection of martingale problems and SDEs we get for the coefficients
given by A and b as defined above the following (see [Kal97, Theorem 18.7]):

Theorem 3.17. M is a solution to the SDE

dXt =1Ω(Xt)
(
dBt +

1

2

∇α
α

(Xt)dt
)
− 1Γ(Xt)

1

2

α

β
(Xt) n(Xt)dt

+ δ 1Γ(Xt)
(
dBΓ

t +
1

2

∇Γβ

β
(Xt)dt

)
,

dBΓ
t =P (Xt) ◦ dBt,

X0 =x,

for quasi every starting point x ∈ Ω, where (Bt)t≥0 is a d-dimensional standard Brownian
motion, i.e.,

Xt = x+

∫ t

0

1Ω(Xs)dBs +

∫ t

0

1Ω(Xs)
1

2

∇α
α

(Xs)ds

+ δ

∫ t

0

1Γ(Xs)P (Xs)dBs − δ
∫ t

0

1Γ(Xs)
1

2
κ(Xs)n(Xs)ds (3.6)

+ δ

∫ t

0

1Γ(Xs)
1

2

∇Γβ

β
(Xs)ds−

∫ t

0

1Γ(Xs)
1

2

α

β
(Xs)n(Xs)ds

almost surely under Px for quasi every x ∈ Ω.

Remark 3.18. A Fukushima decomposition of M (see [FOT11, Chap. 5]) yields the same
result as in Theorem 3.17. We would like to mention that the argument used here in
order to get a solution to the SDE (1.1) does not work for reflecting (Neumann) boundary
conditions, since in this case the reflection is not given by a drift term. However, a
Fukushima decomposition is still valid (see e.g. [Tru03]), because in this case it is also
possible to assign an additive functional to the surface measure σ. The advantage in our
situation is that we are able to express the boundary behavior in terms of the generator.

EJP 22 (2017), paper 7.
Page 10/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP27
http://www.imstat.org/ejp/


SDEs with sticky reflection and boundary diffusion

3.2.3 Ergodicity and occupation time

Throughout this section we assume that Condition 3.1 and Condition 3.3 are fulfilled
and denote by M the process constructed in Theorem 3.9. Given the process M, we can
define via its transition semigroup (pt)t≥0 a Dirichlet form and by construction of M this
form is (E , D(E)) again. Recall that the sub-Markovian strongly continuous contraction
semigroup on L2(Ω;µ) of (E , D(E)) is denoted by (Tt)t≥0. We use the results provided in
[FOT11, Chap. 4.7] in order to prove an ergodic theorem for M. To do this, we restrict
to invariant subsets of Ω and show the part of the form (E , D(E)) on the invariant set
is irreducible recurrent. This allows to determine the occupation time of the process
on Γ and, as a consequence, to show that the boundary behavior is indeed sticky. The
main result of this section is Theorem 3.23. In order to avoid confusion, we label the
capacity of a set by the underlying Dirichlet form. For the sake of convenience, we state
all proofs for the case δ = 1, which can easily be modified to hold for δ = 0.

First, we define the notion of parts of Dirichlet forms:

Definition 3.19 (part of a Dirichlet form). Let (G, D(G)) be an arbitrary regular Dirichlet
form on some locally compact, separable metric space X, m a positive Radon measure
on X with full topological support and G an open subset of X. Then we define by
GG(f, g) := G(f, g) for f, g ∈ D(GG) := {f ∈ D(G)| f̃ = 0 G-q.e. on X\G} the part of the
form (G, D(G)) on G, where f̃ denotes an G-quasi-continuous version of f . Indeed, this
defines a regular Dirichlet form on L2(G;m) (see [FOT11, Theorem 4.4.3]).

Throughout this section, suppose that Condition 3.12 is satisfied and denote by

M :=
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Ω

)
the process constructed in Section 3.1. Furthermore, for an open subset G of Ω

MG :=
(
Ω,F , (Ft)t≥0, (X

0
t )t≥0, (Θt)t≥0, (Px)x∈G∆

)
is called the part of the process M on G, where X0

t (ω) results from Xt(ω) by killing the
path upon leaving G for ω ∈ Ω. By [FOT11, Theorem 4.4.2] the process MG is associated
to (EG, D(EG)).

Let C be the set of all connected components of Ω1 := Ω\Ξ, where

Ξ := {x ∈ Ω| α(x) = 0 or (x ∈ Γ and β(x) = 0)} = {% = 0} ∪ {x ∈ Γ| α(x) = 0}.

Moreover, for G ∈ C let GΓ := G ∩ Γ.

Condition 3.20. capE(Ξ) = 0 and α, β ∈ C(Ω).

Note that Condition 3.20 implies Condition 3.3.

Lemma 3.21. Assume that Condition 3.20 is fulfillded. Then

(i) capEΩ(Ξ) = 0 and capEΓ(Ξ ∩ Γ) = 0.

(ii) Each G ∈ C is open in Ω and quasi closed with respect to E . In particular, G is
Tt-invariant.

(iii) The assertion in (ii) holds accordingly for G and GΓ with respect to EΩ and EΓ
respectively.

Proof. (i) Note that D(E) is a subset of D(EΩ) and D(EΓ) by restriction and EΩ,1, EΓ,1 ≤ E1
on this set. Let ε > 0. Then there exists an open set U in Ω which contains Ξ such that
capE(U) < ε. By definition of the capacity, we get also capEΩ(U) < ε and capEΓ(U∩Γ) < ε.
Hence, the assertion holds true.
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(ii) Let G ∈ C. G is open by definition. Let ε > 0. We show that Ω\G is quasi open. Since
capE(Ξ) = 0, there exists an open subset U of Ω which contains Ξ such that capE(U) < ε.
The set Ũ :=

⋃
G̃∈C\{G} G̃ ∪ U is open and contains Ω\G. Moreover,

capE(Ũ\(Ω\G)) ≤ capE(U) < ε.

Hence, G is quasi closed.
(iii) Note that G and GΓ are open in Ω and Γ respectively. The remaining part of the
statement follows by (i) with the same arguments as in (ii).

Remark 3.22. Let G ∈ C.

(i) Due to [FOT11, Lemma 4.6.3], the preceding lemma implies that there exists a
properly exceptional set N such that G\N is M-invariant in the sense that

Px(Xt ∈ (G\N)∆ for all t ≥ 0) = 1 for all x ∈ G\N.

(ii) It is possible that GΓ = G ∩ Γ is not connected in Γ\Ξ. Therefore, we denote by CG
the set containing all connected components of GΓ. In particular,

⋃
G∈C CG is the

set of all connected components of Γ\Ξ.

(iii) Define Fk := {x ∈ G| deuc(x,Ξ) > 1
k}. This yields a sequence of open subsets

of G increasing to G. For α, β ∈ C(Ω), it follows that γk := ess infx∈Fk
% > 0,

k = 1, 2, . . . , (with respect to the measure λ). Similarly, we define Fk for sets in CG.
More precisely, for AG ∈ CG let Fk := {x ∈ AG| deuc(x,Ξ ∩ Γ) > 1

k} and define γk
with respect to σ.

(iv) By a similar argument as in (iii), Lp-norms on K with respect to the measures µ
and λ (or σ) respectively are equivalent for some compact set K properly contained
in some G (or AG).

Theorem 3.23. Suppose that Condition 3.20 is fulfilled. Then for all G ∈ C and
f ∈ L1(G;µ) it holds

lim
t→∞

1

t

∫ t

0

f(Xs)ds =

∫
G
fdµ

µ(G)

almost surely under Px for quasi all x ∈ G.

Proof. Fix G ∈ C. Due to [FOT11, Theorem 4.7.3(iii)], the definition of MG and Remark
3.22 (i) it is sufficient to show that (EG, D(EG)) is irreducible recurrent. In order to
deduce recurrence of (E , D(E)), by [FOT11, Theorem 1.6.3] it is enough to observe that
1Ω ∈ D(E) and E(1Ω,1Ω) = 0. Hence, 1G = 1G1Ω ∈ D(EG) by Tt-invariance of G and
EG(1G,1G) = 0, since

0 = E(1Ω,1Ω) = E(1G,1G) + E(1Ω\G,1Ω\G).

This implies recurrence of (EG, D(EG)) by [FOT11, Theorem 1.6.3]. Taking into account
that the considered form is recurrent, irreducibility is equivalent to the condition that
every f ∈ D(EG) with EG(f, f) = 0 is µ-a.e. constant (on G) by [CF11, Theorem 2.1.11].
Let AG ∈ CG and denote by (EAG

Γ , D(EAG

Γ )) the part of the form (EΓ, D(EΓ)) on AG.
Moreover, denote by (EGΩ , D(EGΩ )) the part of the form (EΩ, D(EΩ)) on G. (EAG

Γ , D(EAG

Γ )) is
the closure of (EΓ, C1(AG)) by [FOT11, Theorem 4.4.3] and thus, it is irreducible. Indeed,
the closure of the pre-Dirichlet form∫

AG

(∇Γf,∇Γg) dσ, f, g ∈ C1(AG)
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on L2(AG;σ) yields reflecting Brownian motion which is irreducible (see e.g. [CF11,
p.128]). Hence, the closure of the form defined for functions in C1(AG) on L2(AG;σ)

is also irreducible in view of [CF11, Theorem 2.1.11]. Hence, it follows by [FOT11,
Corollary 4.6.4] and Remark 3.22 (iii) that (EAG

Γ , D(EAG

Γ )) is irreducible. Similarly, it
holds that (EGΩ , D(EGΩ )) is irreducible.

Let f ∈ D(EG) and choose a seqeunce (fk)k∈N in C1(G) such that fk → f with
respect to

√
EG1 . Then the restriction to Γ is by definition EΓ-Cauchy and converges to

the restriction of f in L2(Γ;βσ). Therefore, the convergence holds also in D(EΓ). An
analogous statement holds in D(EΩ). Thus,

EG(f, f) = E(f, f) = lim
k→∞

E(fk, fk) = lim
k→∞

(EΩ(fk, fk) + EΓ(fk, fk)) = EΩ(f, f) + EΓ(f, f)

by definition. By invariance it holds

EG(f, f) = EGΩ (1Gf,1Gf) +
∑

AG∈CG

EAG

Γ (1AG
f,1AG

f).

Therefore, EG(f, f) = 0 implies that each summand on the right hand side vanishes and
hence, f = cG αλ-a.e. on G ∩ Ω for some constant cG and f = cAG

βσ-a.e. on AG for
some constant cAG

by [CF11, Theorem 2.1.11] and irreducibility. Thus, we can conclude

f = cG1G∩Ω +
∑

AG∈CG

cAG
1AG

.

It rests to show that cG = cAG
for all AG ∈ CG. Fix a point z ∈ AG. Then there exists a

neighborhood U of z in Ω such that U ⊂ G and U ∩Γ ⊂ AG. Choose a C∞-cutoff function
η defined on Ω which is constantly one near z and has support properly contained in U .
Then it is easy to see that ηf ∈ D(EG) and (ηfk)k∈N is an approximation for ηf whenever
(fk)k∈N is a sequence of C1(G)-functions which approximates f in D(EG). In particular,
this implies convergence in L2(U ∩ Γ;σ) and even in L2(∂(U ∩ Ω);σ). Since ηcG is the
unique continuous extension of f |U∩Ω to U , it is clear that ηf ∈ H1,2(U ∩ Ω) ∩ C(U ∩ Ω)

and Tr(ηf) = ηcG, where Tr : H1,2(U ∩Ω)→ L2(U ∩Γ;σ) is the (restricted) trace operator.
Thus,

ηcG = Tr(ηf) = L2(U ∩ Γ;σ)− lim
k→∞

Tr(ηfk) = L2(U ∩ Γ;σ)− lim
k→∞

(ηfk)|U∩Γ = ηcAG
.

Hence, ηcAG
= ηcG σ-a.e. on U ∩ Γ and therefore, cAG

= cG.

Corollary 3.24. Suppose that Condition 3.20 is fulfilled. Fix a component G of Ω1 which
intersects Γ. Then

lim
t→∞

1

t

∫ t

0

1Γ(Xs)ds =
µ(G ∩ Γ)

µ(G)
(3.7)

almost surely under Px for quasi all x ∈ G.

Remark 3.25. Note that the right hand side of (3.7) is strictly positive if µ(G ∩ Γ) > 0

and there exists always some G ∈ C such that µ(G ∩ Γ) > 0, since µ(Γ) > 0. This implies
that the process sojourns arbitrarily long on Γ.

For the subsequent proposition and example we need the notion of a strongly regular
Dirichlet form (see also [Stu94] and [Stu95]):

Definition 3.26 (strong regularity). A regular Dirichlet form (G, D(G)) on L2(X;m),
where X is a connected, locally compact, separable Hausdorff space and m is a positive
Radon measure with full support, is called strongly regular, if the topology induced by
the intrinsic metric

d(x, y) := sup{f(x)− f(y)| f ∈ D(G) ∩ C(X) with ν〈f〉 ≤ m}, x, y ∈ X,
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coincides with the original topology on X. Here ν〈f〉 ≤ m means that the so-called
energy measure of f is absolutely continuous with respect to m and its Radon-Nikodym

derivative
dν〈f〉
dm is almost everywhere less or equal than one.

Lemma 3.27. Let ∅ 6= U be an open subset of Ω\Ξ such that U ⊂ Ω\Ξ. Then the restric-
tion maps i1 : f 7→ f |U∩Ω and i2 : f 7→ f |U∩Γ (under the condition that U ∩Γ 6= ∅) are con-
tinuous maps from D(E) to H1,2(U ∩Ω) and H1,2(U ∩ Γ) respectively. In particular, there
exists a constant C1 = C1(%, U) <∞ such that ‖f‖H1,2(U∩Ω), ‖f‖H1,2(U∩Γ) ≤ C1

√
E1(f, f)

for f ∈ D(E).

Proof. By continuity of α and β, there exist constants 0 < %− and %+ < ∞ such that
%− ≤ % ≤ %+ on U . Let f ∈ D. Then∫

U∩Ω

(f2 + |∇f |2) dλ ≤ 1

%−

∫
U∩Ω

(f2 + |∇f |2) αdλ

≤ 1

%−

∫
Ω

(f2 + |∇f |2) αdλ

≤ 1

%−
E1(f, f) <∞.

Similary, we obtain ∫
U∩Γ

(f2 + |∇Γf |2) dσ ≤ 1

%−
E1(f, f) <∞.

Hence, i1 : D → H1,2(U ∩ Ω) and i1 : D → H1,2(U ∩ Ω) are well-defined and continuous.
Therefore, the maps admit a continuous extension to D(E). Let f ∈ D(E). Then the
image of f is simply the restriction of f to the respective set (see also Remark 3.22 (iv))
and thus, the restriction is an element of the corresponding Sobolev space. The last
statement holds with C1 := 1

%− .

Lemma 3.28. Let f ∈ D(E) ∩ C(Ω) and choose a sequence (fk)k∈N in D whiches con-
verges to f with respect to E1. Then

ν〈fk〉 = |∇fk|2 αλ+ |∇Γfk|2 βσ

and |∇Γfk|2 = |∇fk|2 − |nnt ∇fk|2 for each k ∈ N . Moreover, (∇fk)k∈N has the limit ∇f
in L2(Ω;αλ) and similarly, (∇Γfk)k∈N has the limit ∇Γf ∈ L2(Γ;βσ). In particular the
convergence holds in L2

loc(Ω\Ξ;λ) and L2
loc(Γ\Ξ;σ). The energy measure of f is given by

ν〈f〉 = |∇f |2 αλ+ |∇Γf |2 βσ.

Proof. Let f ∈ D. Define ν := |∇f |2 αλ+ |∇Γf |2 βσ. We have to show that

2 E(fg, f)− E(f2, g) =

∫
Ω

g dν

for all g ∈ D(E) ∩ C(Ω). Then the result follows by uniqueness of ν〈f〉. Since also D is
dense in C(Ω) with respect to ‖ · ‖sup, it is enough to restrict to functions g ∈ D. In this
case,

2 E(fg, f)− E(f2, g)

=

∫
Ω

(∇(fg),∇f)αdλ+

∫
Γ

(∇Γ(fg),∇Γf)βdσ − 1

2

∫
Ω

(∇f2,∇g)αdλ− 1

2

∫
Γ

(∇Γf
2,∇Γg)βdσ

=

∫
Ω

(∇(fg),∇f)αdλ+

∫
Γ

(∇Γ(fg),∇Γf)βdσ −
∫

Ω

(∇f, f ∇g)αdλ−
∫

Γ

(∇Γf, f ∇Γg)βdσ

=

∫
Ω

g(∇f,∇f) αdλ+

∫
Γ

g(∇Γf,∇Γf) βdσ

=

∫
Ω

g dν.
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Note that |∇Γf |2 = |(E−nnt)∇f |2 = |∇f |2− |nnt ∇f |2. Replacing f by fk yields the first
statement. By [FOT11, p.124] it holds(∫

Ω

gdν〈f〉
) 1

2 −
( ∫

Ω

gdν〈fk〉
) 1

2

 ≤ ( ∫
Ω

gdν〈f−fk〉
) 1

2 ≤
√

2‖f‖sup E(f − fk, f − fk).

Hence, ∫
Ω

g dν〈f〉 = lim
k→∞

∫
Ω

g dν〈fk〉

= lim
k→∞

( ∫
Ω

g |∇fk|2 αdλ+

∫
Γ

g |∇Γfk|2 βdσ
)
.

Define Gj := Ω\B 1
j
(Ξ) for j ∈ N. Then each Gj fulfills the assumptions of Lemma 3.27

and Gj ↑ Ω\Ξ as j → ∞. This yields a weak gradient ∇f and ∇Γf on each set Gj and
Gj ∩ Γ respectively. Therfore, we can define ∇f and ∇Γf globally outside Ξ and∫

Ω

|∇f |2 αdλ ≤ lim inf
j→∞

∫
Ω

1Gj
|∇f |2 αdλ ≤ EΩ(f, f),

since the last inequality holds for fixed j ∈ N. The statement holds similarly for ∇Γf .
Applying this to f − fk finishes the proof.

Proposition 3.29. (E , D(E)) is strongly regular.

Proof. We show that the intrinsic metric d is equivalent to the euclidean metric deuc.

First, let fi(x) := xi, x ∈ Ω, for i = 1, . . . , d. Then fi ∈ D with
dν〈fi〉
dµ ≤ 1 a.e. and for

x, y ∈ Ω holds (by eventually replacing fi by −fi)

d(x, y) ≥ max
i=1,...,d

(
fi(x)− fi(y)

)
= max
i=1,...,d

|xi − yi| ≥ C̃1 deuc(x, y)

for some constant C̃1 = C̃1(d) <∞. Moreover, by Lemma 3.28

d(x, y) ≤ sup{f(x)− f(y)| f ∈ D(E) ∩ C(Ω) with ν〈f〉 ≤ µ}
≤ sup{f(x)− f(y)| f ∈ H1,∞(Ω) ∩ C(Ω) with |∇f | ≤ 1 a.e.}

and the last expression is locally bounded by deuc. Indeed, by the proof of [Alt06, Satz
8.5] every f ∈ H1,∞(Ω) has a unique continuous version in C0,1(Ω) and there is some
constant C̃2 = C̃2(Ω) <∞ such that

f(x)− f(y) ≤ C̃2 ‖∇f‖L∞(Ω) deuc(x, y).

Example 3.30. Assume additionally to Condition 3.1 that α, β ∈ C(Ω) and the following
property:

µ(Br(Ξ)) ≤ C r2 as r → 0. (3.8)

Then, as a consequence of strong regularity, capE(Ξ) = 0 by [Stu95, Theorem 3] and
therefore, Theorem 3.23 applies.

3.3 Lp-strong Feller properties

The diffusion process constructed in Section 3.2.2 has the drawback that the main
result given in Theorem 3.17 only holds for quasi every starting point x ∈ Ω and it is not
explicitly known how this set of admissible starting points looks like. In the following, we
prove regularity properties of the associated Lp-resolvent and conclude that the results
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of Theorem 3.17 even hold for every starting point x ∈ Ω1 := Ω\Ξ under additional
conditions on the density, where as before

Ξ := {x ∈ Ω| α(x) = 0 or (x ∈ Γ and β(x) = 0)} = {% = 0} ∪ {x ∈ Γ| α(x) = 0}.

More precisely, we show the sufficient conditions given in [BGS13, Condition 1.3] in
use of a regularity result from [Nit11] for δ = 0 and from [War13] (see also [War12]) for
δ = 1. Then, we apply [BGS13, Theorem 1.4]. Moreover, we use the connection of parts
of processes and parts of Dirichlet forms in order to identify the Dirichlet form of the
new process with state space Ω1. This allows to proceed again as in Section 3.2.2, but
now without a set of starting points we have to exclude. Note that Ω1 is not closed in Rd

if Ξ 6= ∅. We use this notation in order to be consistent with [BGS13].
We denote by (Tt)t≥0 the strongly continuous contraction semigroup, by (Gλ)λ>0 the

strongly continuous contraction resolvent and by (L,D(L)) the generator corresponding
to (E , D(E)). By the Beurling-Deny theorem there exists an associated strongly continu-
ous contraction semigroup (T rt )t>0 on Lr(Ω;µ) with generator (Lr, D(Lr)) and resolvent
(Grλ)λ>0 for every 1 ≤ r < ∞, see [LS96, Proposition 1.8] and [LS96, Remark 1.3]. If
r > 1 then (T rt )t>0 is the restriction of an analytic semigroup by [LS96, Remark 1.2]. In
this context associated means that for f ∈ L1(Ω;µ) ∩ L∞(Ω;µ) = L∞(Ω;µ), it holds that
Ttf = T rt f for every t > 0. With this notation we also have Tt = T 2

t for t ≥ 0, Gλ = G2
λ for

λ > 0 and L2 = L.
Assume that Condition 3.12 is fulfilled. In order to prove the required regularity

result we assume additionally the following property:

Condition 3.31. There exists p ≥ 2 with p > d
2 and p > d if δ = 0 such that

|∇α|
α
∈ Lploc(Ω\Ξ;αλ) and additionally

|∇Γβ|
β
∈ Lploc(Γ\Ξ;βσ) if δ = 1

or equivalently

1Ω
|∇α|
α

+ δ 1Γ
|∇Γβ|
β
∈ Lploc(Ω1;µ).

In the following, we assume Condition 3.12, Condition 3.31 and again that

(i) capE(Ξ) = 0 (i.e., Condition 3.20),

which is e.g. fulfilled under the condition (3.8) given in Example 3.30.
We prove that

(ii) there exists p > 1 such that D(Lp) ↪→ C(Ω1) and the embedding is locally continu-
ous, i.e., for x ∈ Ω1 there exists a Ω1-neighborhood U and a constant C = C(U) <∞
such that

sup
y∈U
|ũ(y)| ≤ C‖u‖D(Lp) for all u ∈ D(Lp),

where ũ denotes the continuous version of u (on Ω1),

(iii) for each point x ∈ Ω1 exists a sequence of functions (un)n∈N in D(Lp) such that for
every y 6= x, y ∈ Ω1, exists a un with un(y) = 0 and un(x) = 1.

We say that a sequence (un)n∈N as in (iii) is point separating in x.
Then, as a consequence of [BGS13, Theorem 1.4], there exists a diffusion process

M :=
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Ω

)
with state space Ω which leaves Ω1 Px-a.s., x ∈ Ω1, invariant. The Dirichlet form
associated to M is given by (E , D(E)) and the transition semigroup (pt)t>0 of M is Lp-
strong Feller, i.e., pt(Lp(Ω;µ)) ⊂ C(Ω1). Moreover, it solves the (Lp, D(Lp)) martingale
problem for every point x ∈ Ω1.

EJP 22 (2017), paper 7.
Page 16/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP27
http://www.imstat.org/ejp/


SDEs with sticky reflection and boundary diffusion

Lemma 3.32. For p as in Condition 3.31 and f ∈ C2
c (Ω1) holds

Lpf = L2f = Lf

and in this case Lf is explicitly given by (3.5). Moreover, if the additional stronger
condition

|∇α|
α
∈ Lp(Ω;αλ) and additionally

|∇Γβ|
β
∈ Lp(Γ;βσ) if δ = 1

is fulfilled, the statement holds even for every f ∈ C2(Ω).

Proof. The statement for p = 2 has been proven in Proposition 3.14. Then, the general
statement follows by the assumptions on α and β similar to [BG14, Lemma 2.3], since f
and Lf are elements of Lp(Ω;µ) for f ∈ C2

c (Ω1). Under the additional condition we even
have f, Lf ∈ Lp(Ω;µ) for f ∈ C2(Ω) and the statement extends to the larger class.

In a similar way as in the case of Neumann boundary conditions (see [BG14, Section
4]) we get the following:

Theorem 3.33. Assume that Condition 3.12 is fulfilled. Let U be an open subset of Ω in
the subspace topology. The following holds:

(i) C1
c (U) ↪→ D ↪→ D(E).

(ii) Assume additionally that U ⊂ Ω1. The restriction maps iΩ and iΓ (supposed that
δ = 1 and U ∩Γ 6= ∅), which restrict functions from Ω to U ∩Ω and U ∩Γ respectively,
are continuous mappings from D(E) to H1,2(U ∩ Ω) and H1,2(U ∩ Γ) respectively.
Moreover, it holds

E(u, v) =
1

2

∫
U∩Ω

(∇u,∇v) αdλ+
δ

2

∫
U∩Γ

(∇Γu,∇Γv) βdσ (3.9)

and there exists a constant C2 = C2(α, β, d,G) <∞ such that

‖u‖2H1,2(U∩Ω) + δ‖u‖2H1,2(U∩Γ) ≤ C2E1(u, u) (3.10)

for u ∈ D(E) and v ∈ C1
c (U).

(iii) Let 2 ≤ p <∞, γ > 0. Let x ∈ Ω and let U := BR(x) = {y ∈ Ω| deuc(x, y) < R} be an
open ball around x in Ω with radius R > 0 such that U ⊂ Ω1. For all f ∈ Lp(Ω;µ),
we have Gpγf ∈ H1,2(U ∩ Ω) and Gpγf ∈ H1,2(U ∩ Γ) for δ = 1, whenever U ∩ Γ is
non-empty. Moreover, with u := Gpγf it holds

γ

∫
U

uv dµ+
1

2

∫
U∩Ω

(∇u,∇v) αdλ+
δ

2

∫
U∩Γ

(∇Γu,∇Γv) βdσ =

∫
U

fv dµ (3.11)

for all v ∈ C1
c (U).

Additionally, for R0 > R such that U0 ⊂ Ω\{% = 0}, where U0 := BR0(x), we have
the norm inequalities

‖u‖2H1,2(U∩Ω) + δ‖u‖2H1,2(U∩Γ) ≤ C3(‖f‖Lp(U0;λ+σ) + ‖u‖Lp(U0;λ+σ))
2 (3.12)

and

‖u‖2H1,2(U∩Ω) + δ‖u‖2H1,2(U∩Γ) ≤ C4‖f‖2Lp(Ω;µ)
(3.13)

with constants C3 = C3(α, β,R,R0, d, p) <∞ and C4 = 2 C3 <∞.
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Proof. (i) is clear. The first part of (ii) and inequality (3.10) hold by Lemma 3.27 (the
result for δ = 0 holds similarly).

E(u, v) =
1

2

∫
U∩Ω

(∇u,∇v) αdλ+
δ

2

∫
U∩Γ

(∇Γu,∇Γv) βdσ

is evident for u ∈ D and v ∈ C1
c (U) ⊂ D = C1(Ω). Fix v ∈ C1

c (U). Then E(·, v) is a

continuous linear functional on D(E) with respect to the E
1
2
1 -norm. Moreover,

F (u) :=
1

2

∫
U∩Ω

(∇u,∇v) αdλ+
δ

2

∫
U∩Γ

(∇Γu,∇Γv) βdσ

is continuous on D(E) (or rather on the space obtained by restricting functions to
U ) with respect to the norm given by ‖u‖2H1,2(U∩Ω) + δ‖u‖2H1,2(U∩Γ), since α and β are
bounded from above and from below away from zero on U (by continuity). Thus, it is also

continuous with respect to the E
1
2
1 -norm in view of (3.10) and therefore, F has to coincide

with E(·, v) by uniqueness, since the equality holds on the dense subset D. Therefore,
(3.9) is established.

Next, we prove (iii). Let R and R0 be as stated. First, we show (3.12) for p = 2.
Choose a cutoff function η which is constantly one in BR′(x) for some R0 > R′ > R and
has compact support in BR0

(x). For f ∈ L2(Ω;µ) we have u := G2
γf ∈ D(E) and it is easy

to see that also ηu ∈ D(E), since ηun converges to ηu as n→∞ if (un)n∈N approximates
u in D(E). As in (ii) it can be shown that for fixed v ∈ D(E) holds

E(v, ηu) =
1

2

∫
U0∩Ω

(∇v,∇(ηu)) αdλ+
δ

2

∫
U0∩Γ

(∇Γv,∇Γ(ηu)) βdσ.

Note that η2 is again a cutoff function with the properties we supposed for η. We have
by calculation

Eγ(ηu, ηu) =γ

∫
U0

(ηu)2dµ+
1

2

∫
U0∩Ω

(∇(ηu),∇(ηu)) αdλ+
δ

2

∫
U0∩Γ

(∇Γ(ηu),∇Γ(ηu)) βdσ

=Eγ(u, η2u)− 1

2

∫
U0∩Ω

ηu(∇u,∇η) αdλ− δ

2

∫
U0∩Γ

ηu(∇Γu,∇Γη) βdσ

+
1

2

∫
U0∩Ω

u(∇η,∇(ηu)) αdλ+
δ

2

∫
U0∩Γ

u(∇Γη,∇Γ(ηu)) βdσ

=

∫
U0

fη2u dµ− 1

2

∫
U0∩Ω

ηu(∇u,∇η) αdλ− δ

2

∫
U0∩Γ

ηu(∇Γu,∇Γη) βdσ

+
1

2

∫
U0∩Ω

u(∇η,∇(ηu)) αdλ+
δ

2

∫
U0∩Γ

u(∇Γη,∇Γ(ηu)) βdσ. (3.14)

We get with the inequality ab ≤ ε
2b

2 + 1
2εa

2 for ε > 0, a, b ≥ 0:∫
U0∩Ω

ηu(∇u,∇η) αdλ

 ≤ K1

∫
U0∩Ω

|η∇u||∇η||u| dλ

≤ K2

∫
U0∩Ω

|η∇u||u| dλ

≤ K2

( ∫
U0∩Ω

|∇(ηu)||u| dλ+

∫
U0∩Ω

|u||∇η||u| dλ
)

≤ K3

(
‖∇(ηu)‖L2(U0∩Ω;λ) ‖u‖L2(U0∩Ω;λ) + ‖u‖2L2(U0∩Ω;λ)

)
≤ ε

2
‖ηu‖2H1,2(U0∩Ω) + (

K2
3

2ε
+K3)‖u‖2L2(U0∩Ω;λ)
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for suitable constants K1 ≤ K2 ≤ K3 <∞. Similarly, we get (by eventually increasing
K3) that∫

U0∩Ω

u(∇η,∇(ηu)) αdλ

 ≤ ε

2
‖ηu‖2H1,2(U0∩Ω) + (

K2
3

2ε
+K3)‖u‖2L2(U0∩Ω;λ).

For the two corresponding terms in (3.14) on U0 ∩ Γ, the similar statement follows by
the same arguments. Moreover, we have∫

U0

fη2u dµ

 ≤ ‖f‖L2(U0;µ)‖ηu‖L2(U0;µ)

≤ 1

2

(
‖f‖2L2(U0;µ) + ‖ηu‖2L2(U0;µ)

)
≤ K4

(
‖f‖2L2(U0;λ+σ) + ‖ηu‖2L2(U0;λ+σ)

)
for a constant K4 < ∞. Together with (3.10) and (3.14) follows that there exists a
constant K5 <∞ such that

‖ηu‖2H1,2(U0∩Ω) + δ‖ηu‖2H1,2(U0∩Γ)

≤ K5

(
‖f‖2L2(U0;λ+σ) + (1 +

1

ε
)‖u‖2L2(U0;λ+σ) + ε(‖ηu‖2H1,2(U0∩Ω) + δ‖ηu‖2H1,2(U0∩Γ))

)
Choosing ε = 1

2K5
yields a constant K6 <∞ such that

‖u‖2H1,2(U∩Ω) + δ‖u‖2H1,2(U∩Γ) ≤ K6

(
‖f‖2L2(U0;λ+σ) + ‖u‖2L2(U0;λ+σ)

)
.

For arbitrary p ≥ 2 note that for W := L1(Ω;µ) ∩ L∞(Ω;µ) ⊂ L2(Ω;µ) ∩ Lp(Ω;µ), W is
dense in Lp(Ω;µ) and Gpγf = G2

γf for f ∈W . For f ∈W inequality (3.12) applies, since
the L2-norm on U0 can be estimated by the Lp-norm. Then (3.12) holds also for each
f ∈ Lp(Ω;µ) by a density argument and continuity of Gpγ . (3.13) is a direct consequence
of (3.12) and the fact that Gpγ is a contraction.

It rests to prove (3.11). For f ∈W and v ∈ C1
c (U) holds Eγ(G2

γf, v) = (f, v)L2(Ω;µ), i.e.,

γ

∫
U

G2
γfv dµ+

1

2

∫
U∩Ω

(∇G2
γf,∇v) αdλ+

δ

2

∫
U∩Γ

(∇ΓG
2
γf,∇Γv) βdσ =

∫
U

fv dµ

by (ii). Fix v ∈ C1
c (U) and let f ∈ Lp(Ω;µ). Then we can approximate f in Lp(Ω;µ)

by functions from W due to density. Using (3.13) and continuity of the considered
functionals, this proves (3.11).

Corollary 3.34. Assume that Condition 3.12 is fulfilled. Let 2 ≤ p <∞, γ > 0. Further-
more, let x ∈ Ω and U := BR(x) = {y ∈ Ω| deuc(x, y) < R} be an open ball around x in Ω

with radius R > 0 such that U ⊂ Ω1. For u := Gpγf holds

γ

∫
U

uv dµ+
1

2

∫
U∩Ω

(∇u,∇v) αdλ+
δ

2

∫
U∩Γ

(∇Γu,∇Γv) βdσ =

∫
U

fv dµ (3.15)

for all v ∈ K, where K is defined as the closure of C1
c (U) with respect to the norm given

by

‖ · ‖2K := ‖ · ‖2H1,2(U∩Ω) + δ‖ · ‖2H1,2(U∩Γ).

Proof. We fix f ∈ Lp(Ω;µ) and u = Gpγf . Then, (3.15) yields continuous linear functionals
on K and therefore, the assertion holds by density and (3.11).
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Remark 3.35. We want to deduce from (3.15) that Gpγf is continuous on Ω1 for p as
in Condition 3.31. Note that for interior points x ∈ Ω\Ξ = Ω\{α = 0} it is possible to
choose R small enough such that BR(x) ∩ Γ = ∅. In this case, (3.15) reduces to

γ

∫
U

uv αdλ+
1

2

∫
U

(∇u,∇v) αdλ =

∫
U

fv αdλ (3.16)

for all v ∈ H1,2
0 (U) with f ∈ Lp(G;λ), i.e., this is the weak formulation of an elliptic

PDE on G with Dirichlet boundary conditions. Then it is well-known by the theory of
DeGiorgi-Nash-Moser that u is Hölder continuous near x for p > d

2 (see e.g. [GT01],
[Sta63] or [HL97]). Thus, x ∈ Γ\Ξ is the case of main interest.

By Corollary 3.34 u := Gpγf solves the equation (3.15). Therefore, the following
theorem holds by [Nit11, Theorem 3.14] for δ = 0 and [War13, Theorem 3.2] (see also
[War12]) for δ = 1:

Theorem 3.36. Assume that Condition 3.12 is fulfilled. Let p > d
2 , p ≥ 2, p > d if δ = 0

and γ > 0 and f ∈ Lp(Ω;µ). Then u := Gpγf ∈ C(Ω1) and for every x ∈ Ω1 exists a

neighborhood U with U ⊂ Ω1 and a constant C4 = C4(U,α, β, d, p, γ) <∞ such that

sup
y∈U
|ũ(y)| ≤ C4‖f‖Lp(Ω;µ),

where ũ denotes the continuous version of u on Ω1.

Proof. For x ∈ Ω1 let U be an open ball in Ω around x such that U ⊂ Ω1. This is possible,
since Ω1 is open in Ω by Condition 3.12. u solves (3.15) and therefore, u possesses a
Hölder continuous version ũ on U in view of [Nit11, Theorem 3.14] for δ = 0 and [War13,
Theorem 3.2] for δ = 1. Moreover, the aforementioned results yield the stated norm
estimate, since u ∈ Lp(Ω;µ), Gpγ is a contraction, α, β are bounded and the Lp(U)-norm

as well as the Lp(U ∩ Γ)-norm can be estimated by the Lp(Ω;µ)-norm.
Indeed, [War13, Theorem 3.2] is proven directly by a generalization of de Girogi’s

method to the Wentzell setting and is formulated for the special case that α is strictly
positive and C1 as well as β is a positive constant. Nevertheless, by the ideas of the
proof of [GT01, Theorem 8.24] the proof generalizes to our setting, since the densities
α and β are assumed to be continuous and therefore, they are locally on Ω1 bounded
from below away from zero. Moreover, the localization in Section 4.3 of [War13] shows
that it is sufficient to consider test functions in K, i.e., functions vanishing on ∂U ∩ Ω, in
order to obtain the required regularity result. Hence, the claim follows by (3.15). Note
that [War13, Theorem 3.2] applies directly in use of the localization to U if we assume
additionally to Condition 3.12 that α ∈ C1(Ω) and β is a positive constant.

In [Nit11, Theorem 3.14] the problem is reduced to the interior case mentioned in
Remark 3.35 and [GT01, Theorem 8.24] is used. Thus, this approach also includes a
localization which implies that it is sufficient to consider test functions in C1

c (U) in order
to get a local result. Hence, the claim follows again by (3.15).

Lemma 3.37. For each point x ∈ Ω1 exists a sequence (un)n∈N in C∞c (Ω1) ⊂ D(Lp),
p > 1, that is point separating in x.

Proof. Fix x ∈ Ω1 and n ∈ N. Then it is clear that we can find a function ũn in C∞c (Rd)

such that ũn(x) = 1 and supp(ũn) ⊂ B 1
n

(x). Define un := ũn+m|Ω for m large enough.

Theorem 3.38. Assume that Condition 3.12, Condition 3.20 and Condition 3.31 are
fulfilled. Then there exists a conservative diffusion process

M =
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Ω1

)
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with state space Ω1 such that

Xt = x+

∫ t

0

1Ω(Xs)dBs +

∫ t

0

1Ω(Xs)
1

2

∇α
α

(Xs)ds

+ δ

∫ t

0

1Γ(Xs)P (Xs)dBs − δ
∫ t

0

1Γ(Xs)
1

2
κ(Xs)n(Xs)ds

+ δ

∫ t

0

1Γ(Xs)
1

2

∇Γβ

β
(Xs)ds−

∫ t

0

1Γ(Xs)
1

2

α

β
(Xs)n(Xs)ds

almost surely under Px for every x ∈ Ω1. Moreover, its Dirichlet form is given by
(E , D(E)) on L2(Ω1;µ) and the transition semigroup (pt)t>0 of M is Lp-strong Feller, i.e.,
pt(Lp(Ω1;µ)) ⊂ C(Ω1). In particular, (pt)t>0 it strong Feller, i.e., pt(Bb(Ω1)) ⊂ C(Ω1).
Furthermore, Theorem 3.23 holds for every starting point in Ω1. In particular, M has a
sticky boundary behavior, i.e.,

lim
t→∞

1

t

∫ t

0

1Γ(Xs)ds > 0

Px-a.s. for every x ∈ Ω1 such that x is in a component of Ω1 intersecting Γ.

Proof. First, we have to check the assumptions of [BGS13, Theorem 1.4], namely that
D(Lp) ↪→ C(Ω1), that the embedding is locally continuous and the point separating
property. It holdsD(Lp) = GpγL

p(Ω;µ) and hence, we haveD(Lp) ↪→ C(Ω1) and moreover,
for u = Gp1f ∈ D(Lp) it holds locally

sup
y∈U
|ũ(y)| ≤ C4‖f‖Lp(Ω;µ)

= C4‖(1− Lp)u‖Lp(Ω;µ) ≤ C4(‖u‖Lp(Ω;µ) + ‖Lpu‖Lp(Ω;µ)) = C4‖u‖D(Lp).

The existence of a point spearating sequence for each point x ∈ Ω1 follows by Lemma
3.32 and Lemma 3.37. This assures the existence of a process M with state space Ω as
stated at the beginning of this section such that Ω1 is invariant for all starting points in
Ω1 and its transition semigroup is Lp-strong Feller. In particular, the process M solves
the (Lp, D(Lp)) martingale problem and Lp is given as in Proposition 3.14 for functions
in C2

c (Ω1) (see also Lemma 3.32). Since Bb(Ω) ⊂ Lp(Ω;µ), it follows that the process is
also strong Feller in the sense that the transition semigroup maps Bb(Ω) into C(Ω1). By
admitting only starting points in Ω1 and invariance, we obtain a process M as stated.
Then, this process is (Lp-)strong Feller. In particular, the absolute continuity condition
given in [FOT11, (4.2.9)] is fulfilled. The associated Dirichlet form is given by (E , D(E))

on L2(Ω1;µ) by Definition 3.19 and the following remark on parts of processes. Similarly,
the generator is also given by (L,D(L)) considered as an operator on L2(Ω1;µ). For
this reason, M solves the (L,D(L))-martingale problem under Px for every x ∈ Ω1. By
Proposition 3.14 we even get that C2(Ω) ⊂ D(L). Hence, by the same arguments as
in Theorem 3.17 we can conclude that M solves the given SDE and furthermore, the
ergodicity result holds accordingly for every starting point x ∈ Ω1, since the required
properties directly transfer from the L2(Ω;µ) to the L2(Ω1;µ) setting.

In the case δ = 0, we obtain the following corollary on distorted Brownian motion in
Ω with immediate reflection in normal direction at Lipschitz boundaries Γ and singular
drifts:

Corollary 3.39. Assume that Γ is Lipschitz continuous, α ∈ C(Ω), α > 0 λ-a.e.,
√
α ∈

H1,2(Ω),
|∇α|
α
∈ Lploc(Ω\{α = 0};αλ) for some p > d, p ≥ 2,
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and capE({α = 0}) = 0. Then, there exists a diffusion process

M̃ =
(
Ω, F̃ , (F̃t)t≥0, (Yt)t≥0, (Θt)t≥0, (Px)x∈Ω\{α=0}

)
with state space Ω\{α = 0} such that

Yt = x+ B̃t +

∫ t

0

1

2

∇α
α

(Ys) ds−
∫ t

0

1

2
α(Ys)n(Ys) dl

Y
s

almost surely under Px for every x ∈ Ω\{α = 0}, where (B̃t)t≥0 is a d-dimensional
standard Brownian motion and (lYt )t≥0 is the boundary local time of M̃, i.e., lY0 = 0,
(lYt )t≥0 is non-decreasing and∫ t

0

1Γ(Ys) dl
Y
s = lYt , t ≥ 0.

Proof. Set β(x) := 1 for every x ∈ Ω. Then, the assumptions of Theorem 3.38 are fulfilled
with δ = 0 and it exists a process M as stated. In particular, we have Ξ = {α = 0}.
Similarly as in [EP14, Theorem 5], define

τ(t) :=

∫ t

0

1Ω(Xs) ds, t ≥ 0.

It holds τ(0) = 0, τ(t)→∞ as t→∞ due to the ergodicity and (τ(t))t≥0 is non-decreasing.
Thus, the right-inverse (At)t≥0 of (τ(t))t≥0 exists and we define the time changed process

Yt := XAt
, t ≥ 0,

with underlying time changed σ-algebra F̃ and filtration (F̃t)t≥0. It holds

〈
∫ A·

0

1Ω(Xs)dBs〉t =

∫ At

0

1Ω(Xs) ds =

∫ At

0

dτ(s) = τ(At) = t.

Hence, there exists a standard Brownian motion (B̃t)t≥0 such that∫ At

0

1Ω(Xs)dBs = B̃t, t ≥ 0.

Moreover, we have∫ At

0

1Ω(Xs)
1

2

∇α
α

(Xs)ds =

∫ At

0

1

2

∇α
α

(Xs)dτ(s) =

∫ t

0

1

2

∇α
α

(XAs
)ds =

∫ t

0

1

2

∇α
α

(Ys)ds

for t ≥ 0. Set lXt :=
∫ t

0
1Γ(Xs) ds and define lYt := lXAt

for t ≥ 0. It holds

t = τ(At) =

∫ At

0

1Ω(Xs) ds = At − lYt , t ≥ 0.

Hence, At = t+ lYt for t ≥ 0. Moreover,∫ t

0

1Γ(Ys) ds =

∫ At

0

1Γ(Xs) dτ(s) =

∫ At

0

1Γ(Xs) 1Ω(Xs) ds = 0

for t ≥ 0. Consequently,

lYt =

∫ At

0

1Γ(Xs) ds =

∫ t

0

1Γ(Ys) dAs =

∫ t

0

1Γ(Ys) dl
Y
s .
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Remark 3.40. Note that Γ is only assumed to be Lipschitz continuous in Theorem 3.38
for δ = 0 and Corollary 3.39. This weak assumption is possible, since we do not need
to assume an additional boundary condition in order to identify elements in the domain
of the Lp-generator in the sticky boundary setting. The Wentzell boundary condition
is rather contained in the measure µ in terms of the surface measure σ. Therefore,
we can specify a point separating sequence in Lemma 3.37. As a consequence, the
outward normal direction n(x) is only well-defined for σ-a.e. x ∈ Γ. Nevertheless,
it is reasonable that the constructed processes do not hit such non-smooth bound-
ary points for t > 0 (set of Hausdorff dimension d − 2) and starting in a non-smooth
boundary point does not require to define a normal direction. A similar result to Corol-
lary 3.39 can e.g. be found in [FT95]. Nevertheless, as far as we know Corollary
3.39 extends previous results, since we provide an additional singular drift resulting
from α.

4 Interacting particle systems with sticky boundary

4.1 The Dirichlet form and the associated Markov process

4.1.1 General setting

Assume that Γ := ∂Ω is Lipschitz continuous. Let (G, D(G)) be the recurrent, strongly
local, regular, symmetric Dirichlet form on L2(Ω;λ + σ) in accordance with Theorem

3.8 for α = β = 1Ω. Set Λ := Ω
N

. Note that Λ ⊂ RNd is connected and compact. In

the following we use the product measure
∏N
i=1 µi on Λ, where µi := λi + σi is defined

on Ω and the index i gives reference to the corresponding coordinate. For functions
f, g ∈ C1(Λ), i ∈ I and xj ∈ Ω for j ∈ I, j 6= i, define

E i(f, g)(x1, . . . , xi−1, xi+1, . . . , xN )

:= G(f(x1, . . . , xi−1, ·, xi+1, . . . , xN ), g(x1, . . . , xi−1, ·, xi+1, . . . , xN )).

Define the symmetric bilinear form (Ẽ ,D) by

Ẽ(f, g) :=

N∑
i=1

∫
Ω

N−1
E i(f, g)

∏
j 6=i

dµj for f, g ∈ D := C1(Λ). (4.1)

Using the definition of the form G yields

Ẽ(f, g) =
1

2

∫
Λ

N∑
i=1

(
1Λi,Ω (∇if,∇ig) + δ 1Λi,Γ(∇Γ,if,∇Γ,ig)

)
︸ ︷︷ ︸

=:Γ(f,g)

N∏
j=1

dµj , (4.2)

where Λi,Ω := {x = (x1, . . . , xN ) ∈ Λ| xi ∈ Ω} and Λi,Γ := {x = (x1, . . . , xN ) ∈ Λ| xi ∈ Γ}.
In particular, Λi,Ω ∪̇ Λi,Γ = Λ for every i = 1, . . . , N . Here, the subindex i = 1, . . . , N in ∇i
and ∇Γ,i refers to the gradient with respect to the i-th component in x = (x1, . . . , xN ) ∈ Λ

with xi ∈ Ω. In the same way, we use the notation ∆i, i = 1, . . . , N , for the Laplacian
with respect to the i-th component.

Condition 4.1. % ∈ L1(Λ;
∏N
i=1 µi), % > 0

∏N
i=1 µi-a.e..

Define µ by µ := %
∏N
j=1 µj and (E ,D) by
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E(f, g) :=
1

2

∫
Λ

N∑
i=1

(
1Λi,Ω (∇if,∇ig) + δ 1Λi,Γ(∇Γ,if,∇Γ,ig)

)
%

N∏
j=1

dµj (4.3)

=
1

2

∫
Λ

Γ(f, g) %

N∏
j=1

dµj

=
1

2

∫
Λ

Γ(f, g) dµ

for f, g ∈ D. Note that the case δ = 0 corresponds to the setting of a system of particles
which has a sticky but static boundary behavior. Then, the bilinear form (E ,D) can be
written in the simpler form

E(f, g) =
1

2

∫
Λ

N∑
i=1

1Λi,Ω(∇if,∇ig) %

N∏
j=1

dµj for f, g ∈ D.

Remark 4.2. In the case of immediately reflecting (Neumann) boundary condition the
invariant measure for the corresponding diffusion on Ω (for N = 1) is given by %λ. For
this reason, the invariant measure for an interacting N particle system, N ∈ N, is

absolutely continuous with respect to the Lebesgue measure on Ω
N

. Thus, the cases
N = 1 and N > 1 can be unified. In the case of a sticky boundary behavior, this is not
possible anymore, since the surface measure σ is involved.

By the fact that µ is a Borel measure on Λ we get again the following result:

Proposition 4.3. Under Condition 4.1 we have that C∞(Λ) is dense in L2(Λ;µ).

Although (E ,D) is given in (4.3) by a square field operator, it is sometimes useful
to rewrite (E ,D) as sum of bilinear forms. Define ΛB := {x ∈ Λ| xi ∈ Ω for i ∈ B, xi ∈
Γ for i ∈ I\B} and νB :=

∏
i∈B λi

∏
i∈I\B σi. Then

Λ =
⋃̇

B⊂I
ΛB and µ =

∑
B⊂I

% νB︸︷︷︸
=:µB

.

In this terms it holds
E(f, g) =

∑
∅6=B⊂I

EB(f, g) for f, g ∈ D,

where

EB(f, g) :=
1

2

∫
ΛB

∑
i∈B

(∇if,∇ig) + δ
∑
i∈I\B

(∇Γ,if,∇Γ,ig) dµB .

Moreover, define for x ∈ ΓN−|B|, B 6= ∅, and % ∈ L1(Λ;
∏N
i=1 µi)

RΩ
% (B, x) := {y ∈ Ω|B||

∫
{z∈Ω|B|| |z−y|<ε}

%−1
∏
i∈B

λi <∞ for some ε > 0}.

The dependence of x is given in the sense that the variables of % given by the index set
I\B are fixed by the components of x. Since % is an element of L1(ΛB ;µB), RΩ

% (B, x) is

only defined for
∏
i∈I\B σi-a.e. x ∈ ΓN−|B|. Similarly, for y ∈ Ω|B| let RΓ

% (B, y) be given
by

RΓ
% (B, y) := {x ∈ ΓN−|B||

∫
{z∈ΓN−|B|| |z−x|<ε}

%−1
∏
i∈I\B

σi <∞ for some ε > 0}.

In this case, the variables of % given by the index set B are fixed by the components
of y and RΓ

% (B, y) is only defined for
∏
i∈B λi-a.e. y ∈ Ω|B|. Note that in both cases B

determines the components which are not at the boundary.
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The following condition is a generalized version of the usual Hamza condition (see
e.g. [MR92, Chapter II, (2.4)]):

Condition 4.4 (Hamza condition). It holds

(H1) % = 0
∏
i∈B λi-a.e. on Ω|B|\RΩ

% (B, x) for
∏
i∈I\B σi-a.e. x ∈ ΓN−|B| for every

∅ 6= B ⊂ I

and if δ = 1 additionally

(H2) % = 0
∏
i∈I\B σi-a.e. on ΓN−|B|\RΓ

% (B, y) for
∏
i∈B λi-a.e. y ∈ Ω|B| for every B ( I.

(For B = I the condition (H1) and for B = ∅ the condition (H2) reduce to the ordinary
Hamza condition.)

Remark 4.5. (i) Condition 4.4 is a natural generalization of the ordinary Hamza
condition, since in the present setting of sticky particles we are also interested in
dynamics whenever one (or several) particles are located at the boundary. The set
B determines the components inside Ω and its complement I\B the components
on Γ. Thus, (H1) ensures that the Hamza condition for the components inside
Ω is fulfilled, wherever the remaining components stick on Γ. Since we are also
interested in dynamics on Γ if δ = 1, (H2) is the corresponding condition in this
case.

(ii) For Ω = (0,∞) (H1) of Condition 4.4 coincides with [FGV16, Condition 2.7] (dis-
regarding that (0,∞) is unbounded), since in this case the surface measure on Γ

reduces to the case of the point measure in 0.

Remark 4.6. If % is e.g. continuous on Λ and positive
∏N
i=1 µi-a.e., then % is out-

side the set {% = 0} locally bounded away from zero and hence, RΩ
% (B, x) = {y ∈

Ω|B|| %(z(B,x,y)) > 0} and RΓ
% (B, y) = {x ∈ ΓN−|B|| %(z(B,x,y)) > 0}, where

zi(B,x,y) =

{
yγB(i), if i ∈ B
xi−γB(i), if i ∈ I\B

with γB : I → {1, . . . , |B|}, i 7→ |{1 ≤ j ≤ i| j ∈ B}|. Hence,

Ω|B|\RΩ
% (B, x) = {y ∈ Ω|B|| %(z(B,x,y)) = 0}

and
ΓN−|B|\RΓ

% (B, x) = {y ∈ ΓN−|B|| %(z(B,x,y)) = 0}

for every x ∈ ΓN−|B|, y ∈ Ω|B| and Condition 4.4 is fulfilled.

Lemma 4.7. Suppose that Condition 4.1 and Condition 4.4 are satisfied. Then the
bilinear form (E ,D) is closable on L2(Λ;µ).

Proof. Let (fk)k∈N be an E-Cauchy sequence in D such that fk → 0 in L2(Λ;µ) as k →∞.
In particular, (fk)k∈N is EB-Cauchy and converges to 0 in L2(ΛB ;µB) for every ∅ 6= B ⊂ I.
Thus, by definition of EB we have that (∂jfk)k∈N is Cauchy in L2(ΛB ;µB) for every
j = d(i − 1) + l, where i ∈ B and l ∈ {1, . . . , d} and hence, ∂jfk → hj ∈ L2(ΛB ;µB) as
k →∞. In other words,∫

ΓN−|B|

∫
Ω|B|

(∂jfk − hj)2%
∏
i∈B

λi
∏
i∈I\B

σi → 0 as k →∞. (4.4)

Therefore, it exists a subsequence (∂jfkl)l∈N such that ∂jfkl → hj as l→∞ in the space
L2(Ω|B|; %

∏
i∈B λi)

∏
i∈I\B σi-a.e. and similarly, fkl → 0 as l → ∞ in L2(Ω|B|; %

∏
i∈B λi)
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∏
i∈I\B σi-a.e.. This implies that hj = 0 on Ω|B| %

∏
i∈B λi-a.e.

∏
i∈I\B σi-a.e. by (H1) of

Condition 4.4 (see [MR92, Chapter II, Section 2a)]) and hence, hj = 0 µB-a.e. on ΛB.
In the case δ = 1, we obtain a similar statement for the components of ∇Γ,ifk, i ∈ I\B,
k ∈ N, by considering the term in analogy to (4.4) and integrating first with respect to∏
i∈I\B σi and afterwards with respect to

∏
i∈B λi. By Fatou’s lemma holds

E(fk, fk) ≤ lim inf
l→∞

E(fk − fkl , fk − fkl)→ 0 as k →∞.

We denote the closure of (E ,D) on L2(Λ;µ) by (E , D(E)).

Proposition 4.8. Suppose that Condition 4.1 and Condition 4.4 are satisfied. Then
(E , D(E)) is a symmetric, regular Dirichlet form.

Proof. By Proposition 4.3 and Lemma 4.7 (E ,D) is symmetric, densely defined and
closable with closure (E , D(E)) which is also symmetric. Moreover, by [MR92, Chapter
I, Prop. 4.10] and the representation (4.3), (E , D(E)) possesses the Markov property.
Finally, C∞(Λ) ⊂ C1(Λ) ⊂ D(E) ∩ C(Λ) implies that D(E) ∩ C(Λ) is dense in D(E) with

respect to the E
1
2
1 -norm as well as in C(E) with respect to the sup-norm. Hence, (E , D(E))

is regular.

By the same arguments as in Proposition 3.7 it holds:

Proposition 4.9. Suppose that Condition 4.1 and Condition 4.4 are satisfied. Then the
symmetric, regular Dirichlet form (E , D(E)) is strongly local and recurrent.

We summarize the preceding results in the following theorem:

Theorem 4.10. Assume that Condition 4.1 and Condition 4.4 are fulfilled. Then the
symmetric and positive definite bilinear form (E ,D) is densely defined and closable on
L2(Λ;µ). Its closure (E , D(E)) is a recurrent, strongly local, regular, symmetric Dirichlet
form on L2(Λ;µ).

In analogy to Theorem 3.9 we can conclude the following:

Theorem 4.11. Suppose that Condition 4.1 and Condition 4.4 are satisfied. Then there
exists a conservative diffusion process (i.e. a strong Markov process with continuous
sample paths and infinite life time)

M :=
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Λ

)
with state space Λ which is properly associated with (E , D(E)), i.e., for all (µ-versions of)
f ∈ Bb(Λ) ⊂ L2(Λ;µ) and all t > 0 the function

Λ 3 x 7→ ptf(x) := Ex
(
f(Xt)

)
:=

∫
Λ

f(Xt)dPx ∈ R

is a quasi continuous version of Ttf . M is up to µ-equivalence unique. In particular, M

is µ-symmetric (µ is stationary), i.e.,∫
Λ

ptf g dµ =

∫
Λ

f ptg dµ for all f, g ∈ Bb(Λ) and all t > 0,

and has µ as invariant measure (µ is reversible), i.e.,∫
Λ

ptf dµ =

∫
Λ

f dµ for all f ∈ Bb(Λ) and all t > 0.

Remark 4.12. Note that M is canonical, i.e., Ω = C(R+,Λ) and Xt(ω) = ω(t), ω ∈ Ω.
For each t ≥ 0 we denote by Θt : Ω → Ω the shift operator defined by Θt(ω) = ω(·+ t)

for ω ∈ Ω such that Xs ◦ Θt = Xs+t for all s ≥ 0. We take into account to extend the
setting to C(R+,R

Nd) by neglecting paths leaving Λ.
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4.1.2 Densities with product structure

We introduce a special case of the setting given in Section 4.1.1 which will be of particular
importance later on.

Condition 4.13. Assume that % is of the form

%(x) = φ(x)

N∏
i=1

%i(x
i) for x = (x1, . . . , xN ) ∈ Λ. (4.5)

%i ∈ L1(Ω;λ+ σ), i = 1, . . . , N , is given as in Condition 3.1 for some αi ∈ L1(Ω;λ), αi > 0

λ-a.e. and βi ∈ L1(Γ;σ), βi > 0 σ-a.e. such that the respective Hamza conditions are
fulfilled (see Condition 3.3). Moreover, φ is a

∏N
i=1(αiλi + βiσi)-a.e. positive, real valued,

measurable function on Λ such that φ ∈ L1(Λ;
∏N
i=1(αiλi + βiσi)). Furthermore, we

assume that φ fulfills Condition 4.4.

Remark 4.14. Note that Condition 4.13 implies Condition 4.1 and Condition 4.4.

Under these conditions it is also possible to consider the form defined in (4.3) from
a different point of view. Define the form (E i, D(E i)), i = 1, . . . , N , as the closure of the
bilinear form

1

2

∫
Ω

(∇f,∇g) αidλ+
δ

2

∫
Γ

(∇Γf,∇Γg) βidσ for f, g ∈ C1(Ω) (4.6)

on L2(Ω;αiλ + βiσ) and set µi := αiλi + βiσi. Then, it is possible to define (Ẽ ,D) and
(E ,D) as in (4.2) and (4.3) respectively with % replaced by φ. This construction yields the
same bilinear form (E ,D) on L2(Λ;µ), where µ = %

∏N
i=1(λi + σi).

Roughly speaking, the first definition of (E ,D) in Section 4.1.1 corresponds to a
Girsanov transformation of N independent sticky Brownian motions on Ω with constant
stickyness along Γ (each associated to the form (G, D(G))) such that the transformed
process has a drift given by ∇%% . In the present section, the form (E i, D(E i)), i = 1, . . . , N ,

describes a distorted sticky Brownian motion on Ω with drift ∇αi

αi
inside Ω and the

stickyness along Γ is given by αi

βi
as well as a drift along Γ given by ∇Γβi

βi
. Then, the

Girsanov transformation by φ yields an additional drift ∇φφ . Note that the resulting form

and process (up to equivalence) are the same, since the pre-Dirichlet forms on C1(Λ)

coincide.
Densities with product structure as presented in the present section have the ad-

vantage that we can handle the densities %i, i = 1, . . . , N , by considering the forms
(E i, D(E i)), i = 1, . . . , N , as given in (4.6). For this type of Dirichlet form it is possible to
use the (regularity) results of Section 3.3. In this way the assumptions imposed on %i,
i = 1, . . . , N , are not very restrictive. Only for the interaction part φ it is necessary to
demand stronger requirements.

It is desirable to prove similar results as in Section 3.3 for the present setting and
general densities % which are not necessarily strictly positive. Unfortunately, we do not
have a suitable regularity result at hand.

4.2 Analysis of the Markov process

4.2.1 Generators and boundary conditions

Proposition 4.15. Suppose that Condition 4.1 and Condition 4.4 are satisfied. Then
there exists a unique, self-adjoint, linear operator (L,D(L)) on L2(Λ;µ) such that

D(L) ⊂ D(E) and E(f, g) = (−Lf, g)L2(Λ;µ) for all f ∈ D(L), g ∈ D(E).
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In order to determine (L,D(L)) for a suitable class of functions we need the following
additional condition on % and Γ:

Condition 4.16. Assume that Γ is C2-smooth. % is given as in Section 4.1.2. Moreover,
it holds φ ∈ C1(Λ) such that ∇φφ ∈ L

2(Λ;µ). αi, βi ∈ C(Ω),
√
αi ∈ H1,2(Ω) and if δ = 1√

βi ∈ H1,2(Γ) for i = 1, . . . , N (,i.e., Condition 3.12).

Remark 4.17. Note that if αi, βi, i = 1, . . . , N , and φ are a.e. positive and the additional
conditions of Condition 4.16 are fulfilled, Condition 4.1 and Condition 4.4 are implied in
view of Remark 4.6.

Proposition 4.18. Suppose that Condition 4.16 is satisfied. Then, C2(Λ) ⊂ D(L) and

Lf =

N∑
i=1

(
1Λi,Ω (Li,Ωf + Li,Ωφ f) + 1Λi,Γ (Li,Γf + Li,Γφ f)

)
for f ∈ C2(Λ), (4.7)

where Li,Ωf , Li,Γf , Li,Ωφ f and Li,Γφ f for i = 1, . . . , N are given by

Li,Ωf =
1

2

(
∆if + (

∇iαi
αi

,∇if)
)
,

Li,Γf = −1

2

αi
βi

(ni,∇if) +
δ

2

(
∆Γ,if + (

∇Γ,iβi
βi

,∇Γ,if)
)
,

Li,Ωφ f =
1

2
(
∇iφ
φ
,∇if),

Li,Γφ f =
δ

2
(
∇Γ,iφ

φ
,∇Γ,if),

where ni is the outward normal for the i-th particle.

Proof. Let f ∈ C2(Λ) and g ∈ D = C1(Λ). By integration by parts, (4.5) and Proposition
3.14 follows

E(f, g) =
1

2

∫
Λ

N∑
i=1

(
1Λi,Ω(∇if,∇ig) + δ 1Λi,Γ(∇Γ,if,∇Γ,ig)

)
%

N∏
j=1

(dλj + dσj)

=
1

2

N∑
i=1

∫
Λi,Ω

(∇if,∇ig) %

N∏
j=1

(dλj + dσj) +
δ

2

N∑
i=1

∫
Λi,Γ

(∇Γ,if,∇Γ,ig) %

N∏
j=1

(dλj + dσj)

=
1

2

N∑
i=1

∫
Ω

N−1

(∫
Ω

(∇if,∇ig) % dλi

)∏
j 6=i

(dλj + dσj)

+
δ

2

N∑
i=1

∫
Ω

N−1

(∫
Γ

(∇Γ,if,∇Γ,ig) % dσi

)∏
j 6=i

(dλj + dσj)

=
1

2

N∑
i=1

∫
Ω

N−1

(
−
∫

Ω

(
∆if + (

∇i%
%
,∇if)

)
g %dλi +

∫
Γ

αi
βi

(ni,∇if)g %dσi

)∏
j 6=i

(dλj + dσj)

+
δ

2

N∑
i=1

∫
Ω

N−1

(
−
∫

Γ

(∆Γ,if + (
∇Γ,i%

%
,∇Γ,if) % dσi

)∏
j 6=i

(dλj + dσj).

Note that on Λi,Ω holds ∇i%
% = ∇iαi

αi
+ ∇iφ

φ due to the product structure of % and similarly,

if δ = 1 and xi ∈ Γ holds ∇Γ,i%
% =

∇Γ,iβi

βi
+
∇Γ,iφ
φ due to (4.5). Hence,

E(f, g) =

∫
Λ

−
N∑
i=1

(
1Λi,Ω (Li,Ωf + Li,Ωφ f) + 1Λi,Γ (Li,Γf + Li,Γφ f)

)
g dµ

and therefore, the assertion holds true, since D is dense in D(E).
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Remark 4.19. Note that the drift in normal direction increases if the factor αi

βi
increases.

Hence, it is justifiable to say that the boundary is less sticky for the i-th particle at
a point x ∈ Γ if βi(x) decreases. This property can also be discovered in a similar
way by Corollary 3.24, since as a consequence of this ergodicity theorem the parti-
cle spends less time on the boundary if

∫
Γ
βidσ decreases (compare also to [FGV16,

Corollary 5.7]).

Define for i = 1, . . . , N

Ai := 1Λi,ΩE + δ 1Λi,ΓP i

as well as

bi :=
1

2

(
1Λi,Ω

(∇iαi
αi

+
∇iφ
φ

)
+ 1Λi,Γ

(
− αi
βi

ni + δ
∇Γ,iβi
βi

+ δ
∇Γ,iφ

φ

))
,

where E denotes the d×d identity matrix and P i is the projection onto the tangent space
for the i-th particle. Then, set

A :=


A1 0 . . . 0

0 A2 . . . 0
... 0

. . .
...

0 . . . 0 AN

 and b :=

b1...
bn

 (4.8)

Using this notation, we get for f ∈ C2(Λ) the representation

Lf =
1

2
Tr(A∇2f) + (b,∇f). (4.9)

Note that AAt = A2 = A.

4.2.2 Solution to the martingale problem and SDE

Theorem 4.20. The diffusion process M from Theorem 4.11 is up to µ-equivalence the
unique diffusion process having µ as symmetrizing measure and solving the martingale
problem for (L,D(L)), i.e., for all g ∈ D(L)

g̃(Xt)− g̃(X0)−
∫ t

0

(Lg)(Xs)ds, t ≥ 0,

is an Ft-martingale under Px for quasi all x ∈ Λ. Here g̃ denotes a quasi-continuous
version of g (for the definition of quasi-continuity see e.g. [MR92, Chap. IV, Proposition
3.3]).

Proof. See e.g. [AR95, Theorem 3.4 (i)].

By Proposition 4.18 L is explicitly known on the set C2(Λ). Using the representation
given in (4.9), we obtain the following corollary:

Corollary 4.21. Assume that Condition 4.16 is fulfilled. Let g ∈ C2(Λ) and let M be the
diffusion process from Theorem 4.11. Then

g(Xt)− g(X0)−
∫ t

0

1

2
Tr(A(Xs)∇2g(Xs)) + (b(Xs),∇g(Xs))ds, t ≥ 0,

is an Ft-martingale under Px for quasi every x ∈ Λ, where A and b are defined in (4.8).

Consequently, we obtain the following theorem in analogy to Theorem 3.17:
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Theorem 4.22. M is a solution to the SDE

dXi
t =1Ω(Xi

t)
(
dBit +

1

2

(∇iαi
αi

(Xi
t) +

∇iφ
φ

(Xt)
)
dt
)
− 1Γ(Xi

t)
1

2

αi
βi

(Xi
t) n(Xi

t)dt

+δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t) +

∇Γ,iφ

φ
(Xt)

)
dt
)
, i = 1, . . . , N (4.10)

dBΓ,i
t = P (Xi

t) ◦ dBit
X0 =x,

for quasi every starting point x ∈ Λ, where (Bt)t≥0, Bt = (B1
t , . . . , B

N
t ), is an Nd-

dimensional standard Brownian motion.

Remark 4.23. As before, this results can also be deduced by a Fukushima decomposition
of M the argument used here in order to get a solution to the SDE (4.10) does not work
in this way for reflecting (Neumann) boundary conditions.

Remark 4.24. In the proof of Corollary 3.39 we constructed a diffusion with immediate
reflection from a diffusion with sticky reflection by a random time change. For δ = 0 an
evident idea would be to construct an interacting particle system with instantaneous
reflection and to transform this system of SDEs to a solution of (4.10) by a random time
change. However, this seems not possible. The canonical Dirichlet form is given by the
closure of

1

2

∫
Λ

(∇f,∇g)%dλN for f, g ∈ C1(Λ) on L2(Λ; %λN ), (4.11)

where λN denotes the Lebesgue measure on Λ. For this kind of Dirichlet form we have
a well-known regularity theory at hand which enables us to construct solutions to the
underlying SDE even for singular drifts for every starting point in a specified set of
admissible initial values (see e.g. [FG08], [BG14] and [FT95]). Usually, only starting
points in {% = 0} and in the corners of Λ (two or more particles at the boundary of
Ω) are not admissible, since the boundary is not sufficiently smooth at these points.
Nevertheless, such kind of dynamics do not diffuse on the boundary of Λ and hence, a
time changed process will also not have this property. Therefore, it is not possible to
construct an interacting particle system with sticky reflection via time change in use of
the closure of (4.11), since a particle which reaches Γ is expected to sojourn a positive
amount of time on Γ and meanwhile, the remaining particles keep on moving undelayed.
This implies a diffusion on the boundary of Λ.

4.2.3 Solutions by Girsanov transformations

Assume that Condition 4.16 is fulfilled and set

Ξi := {x ∈ Ω| αi(x) = 0 or (x ∈ Γ and βi(x) = 0)} = {%i = 0} ∪ {x ∈ Γ| αi(x) = 0}.

Condition 4.25. For every i = 1, . . . , N , there exists pi ≥ 2 with pi >
d
2 and pi > d if

δ = 0 such that

|∇αi|
αi

∈ Lpiloc(Ω\Ξi;αiλ) and additionally
|∇Γβi|
βi

∈ Lpiloc(Γ\Ξi;βiσ) if δ = 1

or equivalently

1Ω
|∇αi|
αi

+ δ 1Γ
|∇βi|
βi
∈ Lpiloc(Ω\Ξi;µi).

Moreover, capEi(Ξi) = 0.
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Define Ωi := Ω\Ξi. Assume that Condition 4.16 and Condition 4.25 are fulfilled.
According to Theorem 3.38 there exists for every i = 1, . . . , N a diffusion process

Mi :=
(
Ωi,F i, (F it )t≥0, (X

i
t)t≥0, (Θ

i
t)t≥0, (P

i
x)x∈Ωi

)
with strong Feller transition semigroup (pit)t>0 and transition function (pit(x, ·))t>0, x ∈ Ωi.
The processes Mi, i = 1, . . . , N , is associated to the form (E i, D(E i)) on L2(Ωi;µi), where
µi = αiλ+ βiσ. In particular, (pit)t>0 is absolutely continuous with respect to µi, i.e., for
every t > 0 and x ∈ Ωi, there exists a non-negative, measurable function pit(x, y), y ∈ Ωi,
such that

pit(x,A) =

∫
A

pit(x, y)dµi(y) for every A ∈ B(Ωi).

Let M be given by

M :=
(
×Ni=1 Ωi,⊗Ni=1F i, (⊗Ni=1F it )t≥0, (Xt)t≥0, (Θt)t≥0, (⊗Ni=1P

i
xi)x=(x1,...,xN )∈Λ̃

)
,

where Λ̃ := ×Ni=1Ωi as well as

Xt(ω) := (X1
t (ω1), . . . ,XN

t (ωN )) and Θt(ω) := (Θ1
t (ω1), . . . ,ΘN

t (ωN ))

for ω = (ω1, . . . , ωN ) ∈ ×Ni=1Ω
i. Set Px := ⊗Ni=1P

i
xi for x = (x1, . . . , xN ) ∈ Λ̃.

Denote by (pt)t>0 the transition semigroup and by (pt(x, ·))t>0, x ∈ Λ̃, the transition
function of M. Then, it holds for every A = A1 × · · · ×AN ∈ ×Ni=1B(Ωi) ⊂ B(Λ̃)

pt(x,A) =

∫
×N

i=1Ωi

1A(Xt(ω)) dPx(ω)

=

∫
×N

i=1Ωi

N∏
i=1

1Ai(X
i
t(ωi)) dPx(ω)

=

N∏
i=1

∫
Ωi

1Ai(X
i
t(ωi)) dP

i
xi(ωi) =

N∏
i=1

pit(x
i, Ai)

by definition of Px. Since ×Ni=1B(Ωi) generates B(Λ̃), it holds

pt(x,A) =

∫
A

N∏
i=1

pit(x
i, yi)

N∏
i=1

dµi(y
i) for every A ∈ B(Λ̃).

As a consequence, pt(x, ·), t > 0, x ∈ Λ̃, is absolutely continuous with respect to
∏N
i=1 µi

and

ptf(x1, . . . , xN ) = p̂Nt . . . p̂
1
tf(x1, . . . , xN ) for every f ∈ Bb(Λ̃), (4.12)

where
p̂itf(x1, . . . , xN ) := pitf(x1, . . . , xi−1, ·, xi+1, . . . , xN )(xi)

and the order of the p̂it, i = 1, . . . , N , is arbitrary.
Consider the symmetric bilinear form on L2(Λ̃;

∏N
i=1 µi) given by

(
⊗Ni=1 E i

)
(f, g) :=

N∑
i=1

∫
×j 6=iΩj

E i(f, g)
∏
j 6=i

dµj ,

where

f, g ∈D(⊗Ni=1E i) := {f ∈ L2(Λ̃;

N∏
i=1

µi)
∣∣ for each i = 1, . . . , N and for

∏
j 6=i

µj − a.e.

(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ ×j 6=iΩj : f(x1, . . . , xi−1, ·, xi+1, . . . , xn) ∈ D(E i)}
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and E i(f, g) denotes E i acting on the i-th variable of f and g. Due to [BH91, Chapter
V, Section 2.1] (⊗Ni=1E i, D(⊗Ni=1E i)) is a Dirichlet form on L2(Λ̃;

∏N
i=1 µi). Obviously, this

Dirichlet form extends the pre-Dirichlet form (Ẽ ,D) defined in (4.1).

Lemma 4.26. C1(Λ) is dense in D(⊗Ni=1E i) w.r.t.
(
⊗Ni=1 E i

) 1
2

1
, i.e., (⊗Ni=1E i, D(⊗Ni=1E i)) is

the closure of (Ẽ ,D) on L2(Λ̃;
∏N
i=1 µi).

Proof. First, note that C1(Λ) ⊂ D(⊗Ni=1E i) by definition of D(⊗Ni=1E i). For simplicity, we
only consider the case N = 2. The statement for arbitrary N ∈ N follows by the same
arguments. By [BH91, Proposition 2.1.3b)] D(E1)⊗D(E2) is dense in D(E1⊗E2). Thus, it
is sufficient to show that C1(Λ) is dense in D(E1)⊗D(E2). Then the assertion follows by
a diagonal sequence argument. Let h ∈ D(E1)⊗D(E2) such that h(x1, x2) = f(x1)g(x2)

for
∏2
i=1 µi-a.e. (x1, x2) ∈ Λ̃, where f ∈ D(E1) and g ∈ D(E2). Since C1(Ω) is dense

in D(E1) and D(E2), we can choose sequences (fk)k∈N and (gk)k∈N in C1(Ω) such that

fk → f in D(E1) and gk → g in D(E2) as k → ∞. Define hk(x1, x2) := fk(x1)g
(
kx

2) for
x1, x2 ∈ Ω. Then it follows easily by the prodcut structure of the underlying measure
that the sequence (hk)k∈N, hk ∈ C1(Λ), converges in L2(Λ̃;

∏2
i=1 µi) to h and moreover,

the sequence is E1 ⊗ E2-Cauchy.

Denote by (T it )t>0 the L2(Ωi;µi)-semigroup of (E i, D(E i)), i = 1, . . . , N . By [BH91,
Chapter V, Proposition 2.1.3] the L2(Λ̃;

∏N
i=1 µi)-semigroup (Tt)t>0 associated to the

product Dirichlet form (⊗Ni=1E i, D(⊗Ni=1E i)) is given by

Ttf = T̂Nt · · · T̂ 1
t f for f ∈ L2(Λ̃;

N∏
i=1

µi),

where
T̂ it f(x1, . . . , xn) := T it f(x1, . . . , xi−1, ·, xi+1, . . . , xn)(xi)

for x = (x1, . . . , xn) ∈ Λ̃. Since Mi is associated to the form (E i, D(E i)) for i = 1, . . . , N ,
it follows by (4.12) and Lemma 4.26 the following:

Proposition 4.27. The Dirichlet form associated to M is given by the closure of
(Ẽ , C1(Λ)) on L2(Λ̃;

∏N
i=1 µi).

Additionally to Condition 4.16 and Condition 4.25 we assume the following:

Condition 4.28. φ is strictly positive.

Under these conditions on φ it is possible to perform a Girsanov transformation of M.
Consider the multiplicative functional (Zt)t≥0, Zt = exp(Mt − 〈M〉t2 ), given by

Mt :=

∫ t

0

∇ lnφ(Xt)dBt, t ≥ 0.

Note that ∇ lnφ(Xt) = ∇φ
φ (Xt) and Bt, t ≥ 0, are RNd valued and also that ∇ lnφ is

bounded due to Condition 4.28.
In view of Remark 3.10 (applied to (E i, D(E i)), i = 1, . . . , N ), it holds ×Ni=1Ω

i =

C(R+, Λ̃) and ⊗Ni=1F i = B(C(R+, Λ̃)). Thus, (×Ni=1Ω
i,⊗Ni=1F i) is a standard measurable

space (see [IW89, Chapter I, Definition 3.3]) and hence, by [IW89, Chapter IV, Section
4] there exists for every x ∈ Λ̃ a probability measure Pφ

x such that
(
Pφ
x

)
|⊗N

i=1Fi
t

= Pφ
x,t,

where

Pφ
x,t(A) :=

∫
A

Zt(ω)dPx(ω) for A ∈ ⊗Ni=1F it .

Let
Mφ :=

(
×Ni=1 Ωi,⊗Ni=1F i, (⊗Ni=1F it )t≥0, (Xt)t≥0, (Θt)t≥0, (P

φ
x)x∈Λ̃

)
.
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Then, the transition function (pφt (x, ·))t>0 of Mφ is absolutely continuous with respect
to µ for every x ∈ Λ̃. Indeed, by the previous considerations the transition function
(pt(x, ·))t>0 is absolutely continuous with respect to

∏N
i=1 µi. Assume that A ∈ B(Λ̃) is

given such that µ(A) = 0. Since φ is bounded from above and from below away from
zero in view of Condition 4.28 and the continuity of φ, it also holds that

∏N
i=1 µi(A) = 0

and hence, pt(x,A) = 0 for every t > 0 and x ∈ Λ̃, i.e.,∫
×N

i=1Ωi

1A(Xt) dPx = 0 for every t > 0 and x ∈ Λ̃.

Therefore, we also have

pφt (x,A) =

∫
×N

i=1Ωi

1A(Xt) dP
φ
x =

∫
×N

i=1Ωi

1A(Xt) dP
φ
x,t =

∫
×N

i=1Ωi

Zt 1A(Xt) dPx = 0

We summarize the results of this section in the following theorem:

Theorem 4.29. Mφ is a solution to the SDE

dXi
t =1Ω(Xi

t)
(
dBit +

1

2

(∇iαi
αi

(Xi
t) +

∇iφ
φ

(Xt)
)
dt
)
− 1Γ(Xi

t)
1

2

αi
βi

(Xi
t) n(Xi

t)dt

+δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t) +

∇Γ,iφ

φ
(Xt)

)
dt
)
, i = 1, . . . , N (4.13)

dBΓ,i
t = P (Xi

t) ◦ dBit
X0 =x,

for every starting point x ∈ Λ̃, where (Bt)t≥0, Bt = (B1
t , . . . , B

N
t ), is an Nd-dimensional

standard Brownian motion. Moreover, the Dirichlet form associated to Mφ is given by
(E , D(E)) on L2(Λ̃;µ) and its transition function (pφt (x, ·))t>0 is absolutely continuous with
respect to µ for every x ∈ Λ̃.

Proof. Due to Theorem 3.38 every Mi solves the respective d-dimensional SDE for
every starting point in Ωi, i = 1, . . . , N . Hence, the process M solves the SDE for N
independent particles, i.e., it solves (4.13) for φ given by the indicator function on Λ. As
a consequence Mφ solves (4.13) by the Girsanov transformation theorem (see [IW89,
Chapter IV, Section 4]). Moreover, by the same arguments as in [GV17] the Dirichlet
form of the transformed process Mφ is given by (E , D(E)).

4.3 Application to particle systems with singular interactions

In [Gra88] the author investigates a martingale problem with Wentzell boundary
conditions in a very general form. In particular, the relation to SDEs is developed and an
existence result is shown. As an application the author constructs a system of interacting
particles in a domain with sticky boundary. This particle system gives a model for
particles diffusing in a chromatography tube. More precisely, the considered domain is
given by Θ := {x ∈ Rd| x1 > 0} and the investigated SDE on Θ reads as follows:

dXt = σ(Xt)dNt + b(Xt)(dt− ρ(Xt)dKt) + γ(Xt)dKt + τ(Xt)dCKt
,

X0 = x ∈ Θ,

where (Xt)t≥0 is a continuous, Θ-valued process, (Ct)t≥0 is a d-dimensional standard
Brownian motion, (Nt)t≥0 is a d-dimensional continuous martingale and (Kt)t≥0 is given
such that K0 = 0, Kt is increasing, dKt = 1∂Θ(Xt)dKt, and

〈N i, N j〉t = δij
(
t−
∫ t

0

ρ(Xs)dKs

)
.

EJP 22 (2017), paper 7.
Page 33/37

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP27
http://www.imstat.org/ejp/


SDEs with sticky reflection and boundary diffusion

Here, the main focus is placed on the very general form of the martingale problem and
SDE as well as the assumptions on σ and a = σσT , which is not necessarily strictly
elliptic. In former results (see e.g. [IW89, Chapter IV, Section 7]), it is assumed amongst
other things that a11 ≥ c > 0. In [Gra88] it is shown that the martingale problem with the
sojourn condition ρ(Xt)dKt ≤ 1∂Θ(Xt)dt has a solution if and only if the above SDE has a
weak solution. Sufficient conditions are τ = 0, σ and b are uniformly Lipschitz continuous
and bounded, γ = n is the inward normal vector and ρ is bounded, measurable and
positive. Nevertheless, the smoothness conditions on b are rather strong. If we assume
additionally that a11 > 0 (e.g. if σ is given by the identity matrix), it holds that

ρ(Xt)dKt = 1∂Θ(Xt)dt.

In the case of the identity matrix, the underlying SDE is given by

dXt = 1Θ(Xt)dBt + b(Xt)1Θ(Xt)dt+
1

ρ(Xt)
n(Xt)dt,

X0 = x ∈ Θ,

where (Bt)t≥0 is a d-dimensional standrad Brownian motion. This setting corresponds
to the one considered in Section 3 for δ = 0. The corresponding system of interacting
particles is given by

dXi
t = 1Θ(Xi

t)dB
i
t + bi(Xt)1Θ(Xi

t)dt+
1

ρi(Xt)
n(Xi

t)dt, i = 1, . . . , N,

X0 = x ∈ Θ
N
,

where Xt = (X1
t , . . . ,X

N
t ). According to [Gra88] an application for this system of SDEs is

a model for molecules diffusing in a chromatography tube. The particles are pushed by a
flow of gas and are absorbed and released by a liquid state deposited on the boundary
of the tube. Hence, it is resonable to suppose a sticky boundary behavior. However,
it is physically unreasonable that two molecules are located at the same position in Θ

at the same time. In order to avoid this kind of behavior it is necessary to consider a
singular drift bi, i = 1, . . . , N , which causes a strong repulsion if two particles get close
to each other. The construction of such kind of stochastic dynamics via Dirichlet forms
has already been realized for absorbing and reflecting boundary conditions.

In analogy to [FG08, Section 5], a continuous pair potential (without hard core) is a
continuous function ζ : Rd → R ∪ {∞} such that ζ(−x) = ζ(x) ∈ R for all x ∈ Rd\{0}. ζ
is said to be repulsive if there exists a continuous decreasing function η : (0,∞)→ [0,∞)

with limt→0 η(t) =∞ and R > 0 such that

ζ(x) ≥ η(|x|) for |x| ≤ R.

In particular, ζ(0) = ∞. For N ∈ N and a repulsive continuous pair potential ζ we
consider the function

φ(x) := exp(−
∑

1≤i,j≤N
i6=j

ζ(xi − xj)) for x = (x1, . . . , xN ) ∈ Λ = Ω
N
.

Note that φ(x) = 0 if there exist i, j ∈ {1, . . . , N} such that xi = xj .
Let Γ be C2-smooth. We assume that ζ is a repulsive, continuous pair potential such

that φ ∈ C1(Λ) and moreover, we assume that

∇φ
φ
∈ L2(Λ;µ) with µ = φ

N∏
i=1

(αiλi + βiσi),
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where αi and βi are continuous and a.e. positive such that
√
αi ∈ H1,2(Ω) and

√
βi ∈

H1,2(Γ) for i = 1, . . . , N . Then Condition 4.16 is fulfilled and Theorem 4.22 can be
applied, i.e., there exists a solution to the SDE

dXi
t =1Ω(Xi

t)
(
dBit +

1

2

(∇iαi
αi

(Xi
t)−

∑
j 6=i

∇iζ(Xi
t −Xj

t )
)
dt
)
− 1

2
1Γ(Xi

t)
αi
βi

(Xi
t) n(Xi

t)dt

+δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t)−

∑
j 6=i

∇Γ,iζ(Xi
t −Xj

t )
)
dt
)
, i = 1, . . . , N

dBΓ,i
t = P (Xi

t) ◦ dBit
X0 =x,

for quasi every starting point x ∈ Λ.

Example 4.30. A possible example is given by the Lennard-Jones potential

ζ(x) = 4ε
(
(
c

|x|
)12 − (

c

|x|
)6
)
,

where ε and c are positive constants. It holds

∇iφ
φ

(x) = −
∑
j 6=i

∇iζ(xi − xj)

=
24ε

c2

∑
j 6=i

(
2
( c

|xi − xj |
)14 −

( c

|xi − xj |
)8)(

xi − xj
)
.

With f(r) := 24ε
c2

(
2
(
c
r

)14 −
(
c
r

)8)
we get

∇i lnφ(x) =
∑
j 6=i

f(|xi − xj |)
(
xi − xj).

Thus, the absolute value of the acting force obviously depends only on the distance of
the respective particles. Moreover, let αi, βi ∈ C1(Ω) be strictly positive for i = 1, . . . , N .
In this case, the corresponding system of SDEs is given by

dXi
t =1Ω(Xi

t)
(
dBit +

1

2

(∇iαi
αi

(Xi
t)−

∑
j 6=i

f(|Xi
t −Xj

t |)(Xi
t −Xj

t )
)
dt
)

−1

2
1Γ(Xi

t)
αi
βi

(Xi
t) n(Xi

t)dt

+δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t)−

∑
j 6=i

f(|Xi
t −Xj

t |) P (Xi
t)(X

i
t −Xj

t )
)
dt
)
,

dBΓ,i
t = P (Xi

t) ◦ dBit, i = 1, . . . , N

X0 =x,

where (Bt)t≥0, Bt = (B1
t , . . . , B

N
t ), is an Nd-dimensional standard Brownian motion.

Note that if a particle sticks on Γ and δ = 1, the acting force causes a drift along Γ until
the particle is reflected. Moreover, it is natural to obtain in this case only a solution for
quasi every starting point, since points in Λ which describe configurations where two
or more particles are at the same position in Ω are naturally not admissible in view of
the singularity of ζ in 0. An appropriate regularity results regarding the elliptic PDE
associated to the form (E , D(E)) would allow to apply the results of [BGS13]. In this case,
for strictly positive αi and βi, i = 1, . . . , N , a process on Λ\{φ = 0} = {x = (x1, . . . , xN ) ∈
Λ| xi 6= xj for every i 6= j} can be constructed which is a solution to the above SDE for
every starting point in Λ\{φ = 0}.
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