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Abstract

We study the stochastic cubic complex Ginzburg-Landau equation with complex-valued
space-time white noise on the three dimensional torus. This nonlinear equation is so
singular that it can only be understood in a renormalized sense. In the first half of this
paper we prove local well-posedness of this equation in the framework of regularity
structure theory. In the latter half we prove local well-posedness in the framework of
paracontrolled distribution theory.
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1 Introduction

The cubic complex Ginzburg-Landau (CGL) equation is one of the most important
nonlinear partial differential equations (PDEs) in applied mathematics and physics. It
describes various physical phenomena such as nonlinear waves, second-order phase
transition, superconductivity, superfluidity among others. See [AK02] for example.

There are also many papers on its stochastic version, the CGL with a noise term
([BS04a, BS04b, KS04, Oda06, PG11, Yan04] to name but a few). In these preceding
works, however, the noise is either non-white or multiplicative. Except when the space
dimension d = 1 in [Hai02], the stochastic cubic CGL with additive space-time white
noise has not been solved.
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The difficulty in the case d ≥ 2 is as follows. Since space-time white noise is so rough,
a solution ut(x) = u(t, x) would be a Schwartz distribution in x, not a function, even if it
existed. Consequently, the cubic nonlinear term |ut|2ut does not make sense in the usual
way. For this reason, well-definedness of the equation itself was unclear and the cubic
CGL with space-time white noise was considered too singular when d ≥ 2.

However, two new theories emerged recently, which can deal with quite singular
stochastic PDEs of this kind. One is regularity structure theory [Hai14] and the other is
paracontrolled distribution theory [GIP15]. They are both descendants of rough path
theory and their deterministic part looks somewhat similar to the counterpart in rough
path theory at least in spirit. However, their probabilistic part is more complicated than
the counterpart in rough path theory since non-trivial renormalization of the noise has
to be done. (There is another theory based on the theory of renormalization groups
[Kup16], which will not be discussed in this paper, however.)

Although they are clearly different theories, examples of stochastic PDEs they can
deal with are very similar. A partial list of singular stochastic PDEs which have been
solved (locally in time) by these theories is as follows: Parabolic Anderson Model
(d = 2, 3) [GIP15, Hai14, BBF15], KPZ equation and its variants (d = 1) [FH14, GP17,
Hos16, FH17], the dynamic Φ4

3-model (d = 3) [Hai14, CC13], Navier-Stokes equation
with space-time white noise (d = 3) [ZZ15], FitzHugh-Nagumo equation with space-time
white noise (d = 3) [BK16].

The main objective of this paper is to prove local well-posedness of the stochastic
cubic complex Ginzburg-Landau equation on the three-dimensional torus T3 = (R/Z)3

of the following form by using these two theories:

∂tu = (i + µ)4u+ ν(1− |u|2)u+ ξ, t > 0, x ∈ T3. (1.1)

Here, i =
√
−1, µ > 0, ν ∈ C are constants and ξ is complex-valued space-time white

noise, that is, a centered complex Gaussian random field with covariance

E[ξ(t, x)ξ(s, y)] = 0, E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y),

where δ denotes the Dirac delta function.

We replace ξ by smeared noise ξε with a parameter 0 < ε < 1 so that ξε → ξ as ε ↓ 0

in an appropriate topology and consider a renormalized equation

∂tu
ε = (i + µ)4uε + ν(1− |uε|2)uε + νCεuε + ξε, t > 0, x ∈ T3, (1.2)

where Cε is a suitably chosen complex constant (specified later) which diverges as ε ↓ 0.
We show that the solution to (1.2) converges to some process in an appropriate topology.
To this end, we use the theory of regularity structure by Hairer [Hai14] and the theory
of paracontrolled distributions by Gubinelli-Imkeller-Perkowski [GIP15]. In the two main
results (Theorems 2.1 and 4.1), we use different approximations of ξ. However, we can
choose the same approximation ξε in both theories. See Remark 4.2. Consequently, we
can see that the solutions obtained in these two theories “essentially coincide”, even
though the idea behind these theories are quite different. (It should be noted, however,
that we do not have a rigorous proof of the exact coincidence of the two solutions. To
prove it, a further investigation of the renormalization constants is needed, which could
be an interesting future task.)

We now make a comment on the space dimension. When d ≥ 4, CGL (1.1) is not
subcritical in the sense of [Hai14] and therefore the equation cannot be solved (or does
not even make sense) by any existing method. Though we do not give a proof in this
paper, we believe that the case d = 2 is actually much easier than our case d = 3.
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This paper is organized as follows. In Sections 2 and 3, following [Hai14], we apply
the theory of regularity structures to the stochastic CGL (1.1). At the beginning of
Section 2 we first present our main result (Theorem 2.1) in a precise form. Then we
construct a regularity structure for (1.1) and prove local-wellposedness of (1.1) in a
deterministic way. Section 3 is devoted to the probabilistic step, in particular, the
renormalization procedure.

In Sections 4 and 5, we apply the paracontrolled calculus to (1.1). In Section 4, we
precisely present our main result (Theorem 4.1) and deterministically solve (1.1) locally
in time in a similar way to [MW17]. We prove the probabilistic part in Section 5 using a
new method developped in [GP17].

Section A is an appendix, in which we recall the definition of complex multiple Itô-
Wiener integrals. The product formula for them is frequently used in Sections 3 and
5.

Notations: We use the following notations: For two functions f and g, we write
f . g if there exists a positive constant C such that f(x) ≤ Cg(x) for any x. We write
f(x) ≈ g(x) if both f(x) . g(x) and g(x) . f(x) hold. To indicate the argument x of a
function f , we use both symbols f(x) and fx.

2 CGL by the theory of regularity structures

In this and the next sections, we study CGL equation by the theory of regularity
structures. We begin by presenting the main result in Theorem 2.1 below.

We denote by ξ periodic space-time white noise on R × T3, which is extended
periodically to R4. We replace ξ by space-time smeared noise ξε = ξ ∗ ρε for ε > 0, where
ρ is non-negative, smooth and compactly supported function on R4 with

∫
ρ = 1, and

ρε(t, x) = ε−5ρ(ε−2t, ε−1x). We consider the classical solution uε of the equation

∂tu
ε = (i + µ)4uε + ν(1− |uε|2 + Cε)uε + ξε, (t, x) ∈ R+ ×R3,

with initial condition u0, where Cε = 2Cε1−2νCε2,1−4νCε2,2 is a sum of diverging constants
as ε ↓ 0 and precise behaviors of them are stated in Proposition 3.4. We write R+ = (0,∞).
For η ∈ R, we define

Cη = Cη(T3,C) = {u ∈ Bη∞,∞(R3,C) ; u(·+ k) = u(·) for any k ∈ Z3},

where Bη∞,∞(R3,C) is a usual inhomogeneous Besov space. We denote by C([0, T ], Cη)

the set of all Cη-valued continuous functions on [0, T ] endowed with the supremum norm
‖ · ‖C([0,T ],Cη).

Theorem 2.1. Let η ∈ (− 2
3 ,−

1
2 ). Then for every u0 ∈ Cη, the sequence {uε} converges

to a limit u in probability as ε ↓ 0. Precisely speaking, this means that there exists an a.s.
strictly positive random time T depending on u0 and ξ, such that u and uε for every ε > 0

belong to the space C([0, T ], Cη) and we have

‖uε − u‖C([0,T ],Cη) → 0

in probability. Furthermore, u is independent of the choice of ρ.

We use the following notations in Sections 2 and 3:

• For z = (t, x1, x2, x3) ∈ R4, we define ‖z‖s = |t| 12 + |x1|+ |x2|+ |x3|.
• For k = (ki)

3
i=0 ∈ Z4

+, we define |k|s = 2k0 + k1 + k2 + k3 and ∂k = ∂k0t ∂
k1
x1
∂k2x2

∂k3x3
.

Here Z+ = {0, 1, 2, . . . }.
• For ϕ ∈ C(R4,C) and δ > 0, we define the space-time scaling around z =

(t, x1, x2, x3) ∈ R4 by

ϕδz(t
′, x′1, x

′
2, x
′
3) = δ−5ϕ(δ−2(t′ − t), δ−1(x′1 − x1), δ−1(x′2 − x2), δ−1(x′3 − x3)).
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We define the parabolic Hölder-Besov space Cαs on R4 for α ∈ R. At this stage, we do
not impose periodicity for elements of Cαs .

• For α > 0, we denote by Cαs the space of complex-valued functions ϕ on R4 such
that ∣∣∂kϕ(z′)−

∑
|k+l|s<α

(z′ − z)l

l!
∂k+lϕ(z)

∣∣ . ‖z′ − z‖α−|k|ss (2.1)

holds locally in z, z′ ∈ R4 and for every k with |k|s < α.

• Denote by C0s = L∞loc(R
4,C) the space of locally bounded functions.

• For r > 0, let Br be the set of complex-valued smooth functions ϕ on R4 supported
in the ball Bs(0, 1) = {z; ‖z‖s ≤ 1} and such that their derivatives of order up to r
are bounded by 1. Let α < 0 and r = d−αe. Denote by Cαs be the space of Schwartz
distributions ξ ∈ S ′ = S ′(R4,C) such that

‖ξ‖α;K := sup
z∈K,ϕ∈Br,δ∈(0,1]

δ−α|〈ξ, ϕδz〉| <∞

for every compact set K ⊂ R4.

2.1 Results on regularity structures

First we recall basic concepts from the theory of regularity structures [Hai14].

Definition 2.2. We say that a triplet T = (A, T,G) is a regularity structure with index
set A, model space T and structure group G, if

• A is a locally finite set of real numbers bounded from below and 0 ∈ A.

• T =
⊕

α∈A Tα with complex Banach spaces (Tα, ‖ · ‖α). Furthermore, T0 ' C and
its unit vector is denoted by 1.

• G is a subgroup of L(T ), the set of continuous linear operators on T , such that, for
every Γ ∈ G, α ∈ A, and τ ∈ Tα,

Γτ − τ ∈ T−α :=
⊕
β<α

Tβ .

Furthermore, Γ1 = 1 for every Γ ∈ G.

Definition 2.3. Let T be a regularity structure. We say that a subspace V =
⊕

β∈A Vβ
with Vβ ⊂ Tβ is a sector of regularity α ≤ 0 if V is invariant under G (i.e. ΓV ⊂ V for
every Γ ∈ G) and α is the minimal index such that Vα 6= {0}. A sector with regularity 0 is
called function-like.

For τ ∈ T , we write ‖τ‖α = ‖τα‖α, where τα is the component of τ in Tα.

Definition 2.4. Let T be a regularity structure and let r = d− inf Ae. A model Z = (Π,Γ)

is a pair of maps Γ : R4 ×R4 3 (z, z′) 7→ Γzz′ ∈ G and Π : R4 3 z 7→ Πz ∈ L(T,S ′), the
set of continuous linear operators from T to S ′, which satisfy

Γzz′Γz′z′′ = Γzz′′ , ΠzΓzz′ = Πz′

for every z, z′, z′′ ∈ R4, and

‖Γ‖γ;K := sup
β<α<γ, τ∈Tα,

(z,z′)∈K2

‖Γzz′τ‖β
‖τ‖α‖z − z′‖α−βs

<∞,
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‖Π‖γ;K := sup
α<γ, τ∈Tα,

z∈K,ϕ∈Br, δ∈(0,1]

|〈Πzτ, ϕ
δ
z〉|

‖τ‖αδα
<∞

for every γ > 0 and compact set K ⊂ R4. For models Z = (Π,Γ) and Z ′ = (Π′,Γ′) on T ,
we write

|||Z|||γ;K = ‖Γ‖γ;K + ‖Π‖γ;K , |||Z − Z ′|||γ;K = ‖Γ− Γ′‖γ;K + ‖Π−Π′‖γ;K .

Following [Hai14, Section 6], we define the space of modelled distributions with
singularity at P = {z = (t, x) ∈ R4 ; t = 0}. For a subset K ⊂ R4, we denote by

KP := {(z, z′) ∈ (K \ P )2 ; z 6= z′, ‖z − z′‖s ≤ 1 ∧ |t| 12 ∧ |t′| 12 }.

Definition 2.5. Let Z = (Π,Γ) be a model on T , γ > 0 and η ∈ R. For a function
f : R4 → T−γ and a subset K ⊂ R4, we define

‖f‖γ,η;K := sup
β<γ

z=(t,x)∈K\P

(1 ∧ |t|
β−η

2 ∨0)‖f(z)‖β ,

|||f |||γ,η;K := ‖f‖γ,η;K + sup
β<γ

(z,z′)∈KP

(1 ∧ |t| ∧ |t′|)
γ−η
2
‖f(z)− Γzz′f(z′)‖β
‖z − z′‖γ−βs

.

We write f ∈ Dγ,ηP = Dγ,ηP (Z) if |||f |||γ,η;K < ∞ for every compact subset K ⊂ R4. If f
takes value in a sector V , we write f ∈ Dγ,ηP (V ;Z).

For models Z, Z ′ and f ∈ Dγ,ηP (Z), f ′ ∈ Dγ,ηP (Z ′), we define

|||f ; f ′|||γ,η;K = ‖f − f ′‖γ,η;K

+ sup
α<γ,

(z,z′)∈KP

(1 ∧ |t| ∧ |t′|)
γ−η
2
‖f(z)− f ′(z)− Γzz′f(z′) + Γ′zz′f

′(z′)‖α
‖z − z′‖γ−αs

.

We denote by M n Dγ,ηP the set of all pairs (Z, f) of a model Z and f ∈ Dγ,ηP (Z). The
topology onMnDγ,ηP is defined by the family of pseudo-metrics {|||· ; ·|||γ,η;K}.
Theorem 2.6 ([Hai14, Theorem 3.10 and Proposition 6.9]). Let Z = (Π,Γ) be a model
on T . Let V be a sector with regularity α ≤ 0 and let r = d−αe. If γ > 0, η ≤ γ, and
α ∧ η > −2, then there exists a unique continuous linear map R : Dγ,ηP (V )→ Cα∧ηs such
that, if K and K ′ are compact subsets of R4 such that K is included in the interior of K ′,
then we have

|〈Rf −Πzf(z), ϕδz〉| . δγ‖Π‖γ;K′ |||f |||γ,η;K′ , (2.2)

uniformly over f ∈ Dγ,ηP (V ), δ ∈ (0, 1], z ∈ K and ϕ ∈ Br with ϕδz supported in K ′ and
uniformly away from P . Furthermore, the mapM n Dγ,ηP (V ) 3 (Z, f) → Rf ∈ Cα∧ηs is
locally uniformly continuous.

Remark 2.7 ([Hai14, Lemma 6.7]). The reconstruction operator R is local in the sense
that, the behavior of Rf on the compact set K ⊂ R4 is uniquely determined by the
values of f and Π in an arbitrary neighborhood of K.

Next we introduce specific symbols and operators to describe (1.1) by regularity
structure: the polynomial structure, product, integration against Green’s function, and
the complex conjugate.

We have the regularity structure T poly given by all polynomials in the symbols
X0, X1, X2, X3, which denote the time and space directions, respectively. Denote Xk =

EJP 22 (2017), paper 104.
Page 6/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/


Stochastic complex Ginzburg-Landau equation

∏3
i=0X

ki
i for a multi-index k ∈ Z4

+, and 1 = X(0,0,0,0). We endow these with the parabolic
degrees |Xk|s = |k|s. Now we define the model space T poly =

⊕
n∈Z+

T poly
n , where

T poly
n = 〈Xk ; |k|s = n〉.

The group G = R4 acts on T poly by defining ΓhX
k = (X − h1)k for every h ∈ R4. Now

we have the regularity structure T poly = (Z+, T
poly,R4). Furthermore, we have the

canonial model (Π,Γ) on T poly given by

(ΠzX
k)(z′) = (z′ − z)k, Γzz′ = Γz′−z, (2.3)

for every z, z′ ∈ R4.
Throughout this section, the regularity structure T = (A, T,G) contains T poly, i.e.

T poly is contained as a sector and the restriction of G on T poly coincides with {Γh ;h ∈
R4}. The model (Π,Γ) acts on T poly by (2.3). Furthermore, we assume that Tn = T poly

n

for every n ∈ Z+.

Proposition 2.8 ([Hai14, Proposition 3.28]). Let V be a function-like sector which con-
tains T poly and such that V ⊂ T poly + T+

α for some α > 0, where T+
α :=

⊕
α≤β Tβ. Let

γ > α, η ∈ R. Then for every f ∈ Dγ,ηP (V ), Rf coincides with the component of f in
V0 = 〈1〉 and belongs to Cαs ((0,∞)×R3), the space of functions ϕ such that the estimate
(2.1) holds uniformly over z, z′ ∈ K for every compact set K ⊂ (0,∞)×R3.

For a pair of sectors (V,W ), a product ∗ : V ×W → T is a continuous bilinear map
such that

• Vα ∗Wβ ⊂ Tα+β for every α, β ∈ A,

• 1 ∗ w = w for every w ∈W and v ∗ 1 = v for every v ∈ V ,

• Γ(v ∗ w) = (Γv) ∗ (Γw) for every (v, w) ∈ V ×W and Γ ∈ G.

The canonical product on T poly is given by Xk ∗X l = Xk+l.

Proposition 2.9 ([Hai14, Proposition 6.12]). Let (V,W ) be a pair of sectors with reg-
ularities α1, α2, respectively, and product ∗ : V × W → T . For every f1 ∈ Dγ1,η1P (V )

and f2 ∈ Dγ2,η2P (W ), the function f = f1 ∗ f2 (projected onto T−γ ) belongs to Dγ,ηP with
γ = (γ1 + α2) ∧ (γ2 + α1) and η = (η1 + α2) ∧ (η2 + α1) ∧ (η1 + η2). Furthermore, this
bilinear map is locally uniformly continuous with respect to the topology ofMnDγ,ηP .

We say that a function K : R4 \ {0} → C is a regularizing kernel (of order 2) if it can
be written by K =

∑
n≥0Kn, where {Kn} satisfies the following assumptions.

Assumption 2.10. • Kn : R4 → C is smooth and supported in a ball Bs(0, 2−n).

• There exists a constant C > 0 such that supz |∂kKn(z)| ≤ C2(3+|k|s)n for every n ≥ 0

and k ∈ Z4
+.

• There exists r > 0 such that
∫
R4 Kn(z)zkdz = 0 for every n ≥ 0 and k with |k|s ≤ r.

For a sector V , an abstract integration map I : V → T is a continuous linear map
such that

• IVα ⊂ Tα+2 for every α ∈ A such that α+ 2 ∈ A,

• Iτ = 0 for every τ ∈ V ∩ T poly,

• (IΓ− ΓI)V ⊂ T poly for every Γ ∈ G.

Given a sector V and an abstract integration map I, we say that a model (Π,Γ) realizes
a regularizing kernel K for I, if for every α ∈ A, τ ∈ Vα and z ∈ R4 we have

ΠzIτ = K ∗ (Πzτ)−ΠzJ (z)τ,
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Stochastic complex Ginzburg-Landau equation

where J (z)τ =
∑
|k|s<α+2

1
k!X

k(∂kK ∗Πzτ)(z). It is a consequence of Assumption 2.10

that (∂kK ∗Πzτ)(z) is defined for all k with |k|s < α+ 2.
For f ∈ Dγ,ηP (V ), we define the modelled distribution Kγf by

(Kγf)(z) = If(z) + J (z)f(z) + (Nγf)(z),

where (Nγf)(z) =
∑
|k|s<γ+2

1
k!X

k∂kK ∗ (Rf −Πzf(z))(z).

Proposition 2.11 ([Hai14, Proposition 6.16]). Let V be a sector of regularity α and with
an abstract integration map I. Let γ > 0 and η < γ. Assume that η ∧ α > −2 and
γ + 2, η + 2 /∈ Z+. Then, for every model Z realizing K for I, the operator Kγ maps

Dγ,ηP (V ) into Dγ
′,η′

P with γ′ = γ + 2, η′ = η ∧ α+ 2, and for every f ∈ Dγ,ηP (V ), we have

RKγf = K ∗ Rf.

Furthermore, the map Kγ :MnDγ,ηP (V )→ Dγ
′,η′

P is locally uniformly continuous.

Remark 2.12. Even in the case that η ∧ α ≤ −2, if there exists a distribution Rf ∈ Cη∧αs

which satisfies (2.2), then Proposition 2.11 still holds.

For a sector V , a complex conjugate map V 3 τ 7→ τ ∈ T is a map such that

• τ 7→ τ is continuous and antilinear, in the sense that λ1τ1 + λ2τ2 = λ1τ1 + λ2 τ2 for
λ1, λ2 ∈ C and τ1, τ2 ∈ V ,

• Vα ⊂ Tα for every α ∈ A,

• Xk = Xk for every k ∈ Z4
+,

• Γτ = Γτ for every τ ∈ V and Γ ∈ G.

For such V , the set V = {τ ; τ ∈ V } is also a sector. We assume that a model (Π,Γ) is
compatible with the complex conjugate, i.e.

Πzτ = Πzτ

for every z ∈ R4 and τ ∈ T . Then we can see that the map Dγ,ηP (V ) 3 f 7→ f ∈ Dγ,ηP is
continuous antilinear, and Rf = Rf holds.

2.2 Regularity structures associated with CGL and admissible models

For smooth ξ, the CGL equation (1.1) is equivalent to the mild form

u = G ∗ {1t>0(ξ + ν(1− uu)u)}+Gu0, (2.4)

where ∗ denotes the space-time convolution, G is the fundamental solution of

∂tG = (i + µ)4G, (t, x) ∈ R+ ×R3, (2.5)

with initial condition G(0, ·) = δ0, extended into the function G : R4 \ {0} → C by
G(t, ·) ≡ 0 if t ≤ 0, and Gu0 denotes the solution of (2.5) with initial condition u0.

We construct a regularity structure associated with (2.4) by following [Hai14, Sec-
tion 8.1]. We assumed that polynomials {Xk} are contained in our regularity structure.
Additionally we have symbols Ξ (noise), an abstract integration I (space-time convolution
with G), and the complex conjugate. Inspired from (2.4), we can define F̃ as the smallest
set of symbols such that {Ξ, Xk} ⊂ F̃ and closed for the operations:

• If τ, τ ′ ∈ F̃ , then ττ ′ = τ ′τ ∈ F̃ .

• If τ ∈ F̃ , then τ ∈ F̃ , where we set Xk = Xk.

• If τ ∈ F̃ \ {Xk}, then Iτ ∈ F̃ .
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Stochastic complex Ginzburg-Landau equation

For a fixed number α < − 5
2 , we define the homogeneity of each variable by

|Ξ|s = α, |Xk|s = |k|s, |ττ ′|s = |τ |s + |τ ′|s, |τ |s = |τ |s, |Iτ |s = |τ |s + 2.

However, F̃ is too big. Precisely we consider the subsets U andW, which are defined by
the smallest sets such that {Ξ, Xk} ⊂ W, {Xk} ⊂ U and

τ ∈ W ⇒ Iτ ∈ U , τ1, τ2, τ3 ∈ U ⇒ τ1τ2τ3 ∈ W.

We set F = U ∪W, and define

Tβ = 〈τ ∈ F ; |τ |s = β〉, T = 〈F〉, U = 〈U〉, W = 〈W〉.

We can see that T contains all polynomials T poly, and furthermore, the abstract integra-
tion I, the complex conjugate, and the product U × U × U →W are well defined. Here
U = 〈τ ; τ ∈ U〉.
Remark 2.13. We do not assume identifications of symbols

τ = τ, τ1τ2 = τ1 τ2

since τ and τ1 τ2 are not involved in the definition of F .

In order to define T as a model space of a regularity structure, the set {|τ |s ; τ ∈ F}
must be bounded from below. A nonlinear SPDE is called subcritical, if the nonlinear
terms formally disappear in some scaling which keeps the linear part and the noise term
invariant. This is equivalent to the property that all symbols except Ξ defined as above
have homogeneities strictly greater than |Ξ|s ([Hai14, Assumption 8.3]). In the present
case, this is equivalent to |(IΞ)2IΞ|s = 3(2 + α) > α, or α > −3.

We need to define the structure group acting on T . Let T+ be the complex free
commutative algebra generated by abstract symbols

F+ = {Xk} ∪ {Jkτ,Jkτ ; τ ∈ F \ {Xk}, |k|s < |τ |s + 2}.

We define the homogeneity of each variable by

|Xk|s = |k|s, |ττ ′|s = |τ |s + |τ ′|s, |Jkτ |s = |Jkτ |s = |τ |s + 2− |k|s.

In the following, we will view Jk as a map from T to T+, by defining Jkτ = 0 if τ = Xk

or |τ |s + 2− |k|s ≤ 0, and linearly extending it for all τ ∈ T .
We construct two linear maps ∆ and ∆+ recursively as follows. The linear map

∆ : T → T ⊗ T+ is defined by

∆1 = 1⊗ 1, ∆Xi = Xi ⊗ 1 + 1⊗Xi (i = 0, 1, 2, 3), ∆Ξ = Ξ⊗ 1,

∆(ττ ′) = (∆τ)(∆τ ′), ∆τ = ∆τ ,

∆Iτ = (I ⊗ IdT+)∆τ +
∑
l,m

X l

l!
⊗ Xm

m!
Jl+mτ.

The linear map ∆+ : T+ → T+ ⊗ T+ is defined by

∆+1 = 1⊗ 1, ∆+Xi = Xi ⊗ 1 + 1⊗Xi (i = 0, 1, 2, 3),

∆+(ττ ′) = (∆+τ)(∆+τ ′), ∆+τ = ∆+τ ,

∆+Jkτ =
∑
l

(
Jk+l ⊗

(−X)l

l!

)
∆τ + 1⊗ Jkτ.
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Then by [Hai14, Theorem 8.16], the pair (T+,∆+) is a Hopf algebra, i.e. ∆+ satisfies
the identity

(IdT+ ⊗∆+)∆+ = (∆+ ⊗ IdT+)∆+

and the algebra homomorphism 1∗ : T+ → T+ defined by 1∗(1) = 1 and 1∗(τ) = 0 for
τ ∈ F+ \ {1} is a counit in the sense that

(1∗ ⊗ IdT+)∆+ = (IdT+ ⊗ 1∗)∆+ = IdT+ ,

and furthermore, the algebra homomorphism A : T+ → T+ recursively defined by

AXk = (−X)k, Aτ = Aτ , AJkτ = −
∑
l

M
(
Jk+l ⊗

X l

l!
A
)

∆τ,

whereM : T+ ⊗ T+ 3 τ ⊗ τ ′ 7→ ττ ′ ∈ T+, is an antipode of T+ in the sense that

M(IdT+ ⊗A)∆+ = 1∗ =M(A⊗ IdT+)∆+.

The pair (T,∆) is a comodule over T+, i.e. ∆ satisfies the identity

(IdT ⊗∆+)∆ = (∆⊗ IdT+)∆.

We denote by G the set of algebra homomorphisms g : T+ → C such that g(τ) = g(τ)

for every τ ∈ T+. Then G is a group with the product ◦ defined by

g ◦ g′ = (g ⊗ g′)∆+, g, g′ ∈ G.

The inverse of g ∈ G is given by g−1 = gA. Each g ∈ G acts on T as the operator
Γg ∈ L(T ) defined by

Γgτ = (IdT ⊗ g)∆τ, τ ∈ T.
The following theorem is a modification of [Hai14, Theorem 8.24].

Theorem 2.14. Let α ∈ (−3,− 5
2 ) and A = {|τ |s ; τ ∈ F}. Then Tcgl := (A, T,G) is a

regularity structure which contains the polynomial structure T poly and has the complex
conjugate on U , the abstract integration map I : W → T , and the products ∗ : U × U →
UU and ∗ : UU × U →W , where UU = 〈ττ ′ ; τ, τ ′ ∈ U〉.

We introduce a class of suitable models associated with Tcgl. Let K be a regularizing

kernel satisfying Assumption 2.10 with r > 0. We denote by T (r)
cgl the regularity structure

obtained by Tγ = 0 for γ > r.

Definition 2.15. We say that a model (Π,Γ) on T (r)
cgl is admissible, if

• Π realizes K for I, compatible with the complex conjugate, and satisfies (2.3),
• Γzz′ = (Γfz )

−1Γfz′ , where fz ∈ G is defined by fz(Xk) = (−z)k and

fz(Jkτ) = −∂kK ∗ (Πzτ)(z), |τ |s + 2− |k|s > 0.

If the model (Π,Γ) is admissible, then the map Πz(Γfz )
−1 : T → S ′ is independent to

z, so that we can write Π = Πz(Γfz )
−1. Furthermore we have

(ΠXk)(z) = zk, ΠIτ = K ∗ (Πτ), Πτ = Πτ .

Conversely, if a linear map Π : T → S ′ satisfies these conditions, and a family {fz ; z ∈ G}
satisfies fz(Xk) = (−z)k and fz(Jkτ) = −∂kK ∗(ΠΓfzτ)(z) for Jkτ with |τ |s+2−|k|s > 0,
then the corresponding admissible model (Π,Γ) is uniquely determined.

We assume that the model is periodic in the space direction. For n ∈ Z3 and
z = (t, x) ∈ R4, we write Snz = (t, x+ n).

Definition 2.16. We say that a model (Π,Γ) on T (r)
cgl is periodic if

(ΠSnzτ)(Snz
′) = (Πzτ)(z′), Γ(Snz)(Snz′) = Γzz′ ,

for every z, z′ ∈ R4 and n ∈ Z3.
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2.3 Abstract solution map

In the regularity structures constructed above, we can reformulate (1.1) as a fixed
point problem in the space Dγ,ηP , by following [Hai14]. First, note that the fundamental
solution of (2.5) is given by

G(t, x) = 1t>0
1√

4π(i + µ)t
3 exp

(
− |x|2

4(i + µ)t

)
.

Here, for λ = reiθ ∈ C (r > 0, θ ∈ (−π2 ,
π
2 )), the square root is defined by

√
λ =
√
reiθ/2.

Hence G has the form G(t, x) = t−3/2Ĝ(t−1/2x) for some Ĝ ∈ S(R3,C) when t > 0, which
satisfies the condition in [Hai14, Lemma 7.4].

Lemma 2.17 ([Hai14, Lemma 7.7]). There exist a regularizing kernel K and a smooth
function R with compact support such that

(G ∗ u)(z) = (K ∗ u)(z) + (R ∗ u)(z)

holds for every periodic function u supported in R+ ×R3 and z ∈ (−∞, 1] ×R3. Fur-
thermore, K and R are supported in R+ ×R3, and K satisfies Assumption 2.10 with
arbitrary fixed r > 0.

For a periodic distribution ξ ∈ S ′, we define the modelled distribution

(Rγξ)(z) =
∑
|k|s<γ

Xk

k!
∂kR ∗ ξ(z).

Now we reformulate (2.4) as a fixed point problem in Dγ,ηP . First, for every periodic
initial condition u0 ∈ Cη with η < 0 and η /∈ Z, the function Gu0 is canonically lifted to an
element of Dγ,ηP for every γ > η, by defining (Gu0)(z) =

∑
|k|s<γ

1
k!X

k∂kGu0(z) ([Hai14,

Lemma 7.5]). Second, note that by Proposition 2.9, the map u 7→ u2u is locally Lipschitz
continuous from Dγ,ηP (U) to Dγ+2α+4,3η

P , if γ > |2α+ 4| and η ≤ α+ 2. Therefore we can
consider the problem

u = (Kγ+2α+4 +RγR)(1t>0F (u)) +Gu0, F (u) = Ξ + ν(1− uu)u, (2.6)

in u ∈ Dγ,ηP . However, F (u) takes values in the sector U of regularity α = |Ξ|s < − 5
2 < −2,

so that Theorem 2.6 is not sufficient to define RF (u). In order to overcome this problem,
we impose the following assumption on the distribution ξ = ΠΞ = ΠzΞ. (Since Ξ is
G-invariant, ΠzΞ is independent to z.)

Assumption 2.18. (1) For α < 0, we denote by C̄αs the completion of smooth functions
under the family of norms:

||||||ξ||||||α;K := sup
s∈R
‖1t>sξ‖α;K

for all compact sets K ⊂ R4. We assume that ξ = ΠΞ belongs to C̄αs for α = |Ξ|s.

(2) K ∗ ξ belongs to the space C(R, Cα+2).

Under the assumption ξ ∈ C̄αs , we can define R(1t>0Ξ) := 1t>0ξ, so that K(1t>0Ξ) is
also defined.

The following theorem is a modification of [Hai14, Theorem 7.8 and Proposition 9.8].
We denote by OT = (−∞, T ]×R3 and ||| · |||γ,η;T := ||| · |||γ,η;OT .

Theorem 2.19. Let α ∈ (− 18
7 ,−

5
2 ), γ > |2α + 4| and η ∈ (− 2

3 , α + 2). Assume that the
regularizing kernel K satisfies Assumption 2.10 with r > γ + 2α+ 6(> 2). Then for every
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admissible and periodic model Z = (Π,Γ) satisfying Assumption 2.18 and every periodic
u0 ∈ Cη, there exists T ∈ (0,∞] such that the fixed point problem (2.6) admits a unique
solution u ∈ Dγ,ηP (U) on (0, T ). The time T can be chosen maximal in the sense that
limt↑T ‖Ru(t, ·)‖Cη =∞ unless T =∞.

Furthermore, the solution u and the survival time T depend on (u0, Z, ξ,K ∗ ξ) locally
uniformly continuously and locally uniformly lower semi-continuously, respectively, in
the topology of Cη ×M× C̄αs × C(R, Cα+2).

Proof. We consider Ξ and F+(u) = ν(1−uu)u separately. Here F+(u) takes values in the
sector W+ with regularity |(IΞ)2IΞ|s = 3(α+2). Let Gγ = Kγ+2α+4 +RγR. The modelled
distribution 1t>0Ξ belongs to Dγ,αP for every γ. Hence under Assumption 2.18-(1), GγΞ is
defined as an element of Dγ,α+2

P (U). On the other hand, Gγ maps Dγ+2α+4,3η
P (W+) into

Dγ,3η+2
P (U) provided that 3η > −2, as a consequence of Proposition 2.11. Furthermore,

following the arguments in [Hai14, Theorem 7.1], we have the bound

|||Gγ(1t>0(Ξ + F+(u)))|||γ,η;T . T
α+2−η

2 (1 + |||F+(u)|||γ+2α+4,3η;T )

for every periodic u ∈ Dγ,ηP (U). As in [Hai14, Theorem 7.8], this yields that there exists
small T > 0 such that (2.6) admits a unique solution u ∈ Dγ,ηP (U) on (0, T ).

To glue local solutions up to maximal time where the solution exists, note that Ru
belongs to the space C((0, T ), Cη), even though η < 0. Indeed, the solution can be
written by u = IΞ + u+, where u+ takes values in the function-like sector U+. As in
Proposition 2.8, Ru+ is Hölder continuous. By Assumption 2.18-(2), RIΞ = K ∗ξ belongs
to C(R, Cη). For s ∈ (0, T ), we start from us ∈ Cη and consider the problem

u = Gγ(1t>s(Ξ + F+(u))) +Gus,

which is well-posed by defining R(1t>sΞ) := 1t>sξ. This can extend the time interval
where the local solution exists, following [Hai14, Proposition 7.11]. The existence of
maximal solution and its continuity with respect to (u0, Z, ξ,K ∗ ξ) are obtained by
standard arguments in PDE theory.

2.4 Renormalization

For each ε > 0, the noise ξε defined in the beginning of Section 2 can be lifted to
an admissible and periodic model Zε = (Πε,Γε) on T (r)

cgl , by defining the linear map
Πε : T → C∞(R4) with the additional assumptions:

ΠεΞ = ξε, Πε(ττ ′) = (Πετ)(Πετ ′).

Furthermore, Zε has the property that Πzτ is a smooth function for every τ ∈ T and
z ∈ R4, then as a consequence, Rεf is also smooth and satisfies

(Rεf)(z) = (Πε
zf(z))(z)

for every modelled distribution f ([Hai14, Remark 3.15]).
We introduce a renormalization of Zε following [Hai14, Section 8.3]. Let F0 ⊂ F

be a subset such that {τ ∈ F ; |τ |s ≤ 0} ⊂ F0, and there exists a subset F∗ ⊂ F0 such
that ∆F0 ⊂ 〈F0〉 ⊗ T+

0 , where T+
0 is the complex free commutative algebra generated by

symbols
F+

0 = {Xk} ∪ {Jkτ,Jkτ ; τ ∈ F∗, |k|s < |τ |s + 2}.

Let M : 〈F0〉 → 〈F0〉 be a linear map such that

MIτ = IMτ, Mτ = Mτ, MXk = Xk.
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Then two linear maps M̂ : T+
0 → T+

0 and ∆M : 〈F0〉 → 〈F0〉⊗T+
0 are uniquely determined

by

M̂Xk = Xk, M̂(ττ ′) = (M̂τ)(M̂τ ′),

M̂Jkτ =M(Jk ⊗ Id)∆Mτ, M̂Jkτ = M̂Jkτ ,

and

(Id⊗M)(∆⊗ Id)∆Mτ = (M ⊗ M̂)∆τ,

since (Id⊗M)(∆⊗ Id) is invertible. Furthermore, the linear map ∆̂M : T+
0 → T+

0 ⊗ T
+
0

is defined by

(AM̂A⊗ M̂)∆+ = (Id⊗M)(∆+ ⊗ Id)∆̂M ,

since (Id⊗M)(∆+ ⊗ Id) is invertible ([Hai14, Proposition 8.36]).

Theorem 2.20 ([Hai14, Theorem 8.44]). Consider F0 and M as above. Assume that for
every τ ∈ F0 and τ̂ ∈ T+

0 we can write

∆Mτ = τ ⊗ 1 +
∑

|τ(1)|s>|τ |s

τ (1) ⊗ τ (2), ∆̂M τ̂ = τ̂ ⊗ 1 +
∑

|τ̂(1)|s>|τ̂ |s

τ̂ (1) ⊗ τ̂ (2).

Then for every admissible model (Π, f) on T (r)
cgl , the maps ΠM and fMz defined by

ΠM = ΠM, fMz = fzM̂

are uniquely extended to an admissible model ZM = (ΠM ,ΓM ) on T (r)
cgl .

Now we give a renormalization map M in a concrete form. In order to simplify
notations, we introduce a graphical notation for the element in F . First, we draw a circle
to represent Ξ. For an element Iτ , we draw a downward black line starting at the root
of τ . For a product ττ ′, we joint these trees at their roots. The complex conjugate τ is
denoted by changing the color black and white to each other. For example,

IΞ = , IΞ2 = , IΞ2IΞ = , I = , = .

Then we can list all of elements with negative homogeneities as follows:

Homogeneity Symbol
α Ξ

3(α+ 2)

2(α+ 2) ,
5α+ 12 ,
α+ 2 ,

4α+ 10 , , , , , ,
2α+ 5 Xi , Xi (i = 1, 2, 3)

0 1

Since α > − 18
7 , the element has positive homogeneity 7α+ 18 > 0, so that it does not

appear here.

Considering chaos expansions of Gaussian models as in Section 2.5, we can define
the renormalization map M = M(C1, C2,1, C2,2) by
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M = ,

M = − C11,

M = − 2C1 ,

M = ( − C11) = − C1 ,

M = − 2C2,11,

M = ( − C11)− C2,21 = − C1 − C2,21,

M = ,

M = ( − 2C1 ) = − 2C1 ,

M = ( − 2C1 ) = − 2C1 ,

M = ( − 2C1 ) = − 2C1 ,

M = ( − 2C1 )( − C11)− 2C2,2

= − 2C1 − C1( − 2C1 )− 2C2,2 ,

M = ( − 2C1 ) − 2C2,1 = − 2C1 − 2C2,1 ,

MXi = Xi ,

MXi = Xi( − C11) = Xi − C1Xi

for some constants C1, C2,1 and C2,2. Since M must be closed in the space 〈F0〉, we
should choose F0 by

F0 = {Ξ, , , , , , , , , , , , , , , Xi , Xi ,1,

, , , , , , , , Xi , Xi , ; i = 1, 2, 3}.

Then it turns out that we can take F∗ = { , , , , }. From now on, the subscript i of
Xi runs over {1, 2, 3}.
Lemma 2.21. The linear map M satisfies the conditions of Theorem 2.20. Furthermore,
the identity

(ΠM
z τ)(z) = (ΠzMτ)(z) (2.7)

holds for every τ ∈ F0 and z ∈ R4.

Proof. Calculations of M̂ , ∆M and ∆̂M are completely parallel to those in [Hai14, Sec-
tion 9.2], so here we show only the results. Indeed we have

M̂J τ = JMτ, M̂Jkτ = Jkτ, (|k|s > 0)

and

∆M = M ⊗ 1 + 2C1Xi ⊗ Ji ,
∆M = M ⊗ 1 + 2C1Xi ⊗ Ji ,
∆M = M ⊗ 1 + 2C1Xi ⊗ Ji ,
∆M = M ⊗ 1 + 2C1Xi ⊗ Ji ,
∆M = M ⊗ 1 + 2C1Xi( − C11)⊗ Ji ,
∆M = M ⊗ 1 + 2C1Xi ⊗ Ji ,

∆Mτ = Mτ ⊗ 1 (otherwise).

Furthermore,

∆̂MJ = JM + 2C1(Xi ⊗ Ji −XiJi ⊗ 1),
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∆̂Mτ = M̂τ ⊗ 1 (otherwise).

(Here and in what follows, summation symbols over the repeated index i are omitted.)
Therefore, M satisfies the conditions of Theorem 2.20. The relation (2.7) is obtained by

ΠM
z τ = (Πz ⊗ fz)∆Mτ

([Hai14, equation (8.34)]) and the fact that ΠzXiτ(z) = 0 for every τ with Xiτ ∈ F .

Proposition 2.22. Let Zε = (Πε,Γε) be a model canonically lifted from a continuous
function ξε. Let S : (u0, Z) 7→ u be the solution map given by Theorem 2.19. Given
constants C1, C2,1 and C2,2, denote by Ẑε = (Π̂ε, Γ̂ε) the renormalized model given by
Theorem 2.20. Then for every periodic u0 ∈ Cη, ûε = RS(u0, Ẑ

ε) solves the equation

∂tû
ε = (i + µ)4ûε + ν(1− |ûε|2 + (2C1 − 2νC2,1 − 4νC2,2))ûε + ξε. (2.8)

Proof. Since the fixed point problem (2.6) can be written by u = IF (u) + · · · , where · · ·
takes values in T poly, we can find functions ϕ and {ϕi}3i=1 such that the solution u ∈ Dγ,ηP
of (2.6) with γ = 1+ (greater than but sufficiently close to 1) can be written by

u = + ϕ1− ν − 2νϕ − νϕ + ϕiXi.

In particular, since Πz = ΠM
z = K ∗ ξε we have

Ru = RMu = K ∗ ξε + ϕ.

On the other hand, by Proposition 2.11, ûε = RMu satisfies the equation

ûε(t, x) =

∫ t

0

∫
R4

G(t− s, x− y)(RMF (u))(s, y)dsdy +

∫
R4

G(t, x− y)u0(y)dy.

Hence it suffices to show that RMF (u) coincides with the driving terms of (2.8). We can
expand F (u) = Ξ + ν(1− uu)u up to homogeneity 0+ as follows.

F (u) = Ξ− ν − 2νϕ − νϕ + 2ν2 + νν

+ ν(1− 2ϕϕ) − νϕ2 + 2ν2ϕ + 2ν2ϕ + 2ννϕ

+ 2ν2ϕ + ννϕ + 4ν2ϕ + 2ννϕ

− νϕiXi − 2νϕiXi + ν(ϕ− ϕ2ϕ)1.

Since RMu = RMu follows from (2.7), we have

RMF (u) = RF (u) + 2νC1K ∗ ξε + 2νC1ϕ

− 4ν2C2,2K ∗ ξε − 2ννC2,1K ∗ ξε − 2ννC2,1ϕ− 4ν2C2,2ϕ

= ξε + ν(1−RuRu)Ru+ 2νC1Ru− 2ννC2,1Ru− 4ν2C2,2Ru
= ξε + ν(1− |ûε|2 + (2C1 − 2νC2,1 − 4νC2,2))ûε.

This completes the proof.

2.5 Convergence of Gaussian models

Our goal is to show the following renormalization result. We give its proof in the next
section since it takes long.
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Proposition 2.23. If we choose Cε1, C
ε
2,1 and Cε2,2 as in (3.4), then there exists a random

model Ẑ independent of the choice of ρ, and for every θ ∈ (0,− 5
2 − α), γ < r, p > 1 and

every compact set K ⊂ R4, we have the bounds

E[|||Ẑε|||pγ;K ] . 1, E[|||Ẑε; Ẑ|||pγ;K ] . εθp. (2.9)

Furthermore, for every T > 0 we have

E[||||||ξε||||||pα;K ] . 1, E[||||||ξε − ξ||||||pα;K ] . εθp, (2.10)

and

E[‖K ∗ ξε‖pC([0,T ],Cα+2)] . 1, E[‖K ∗ ξε −K ∗ ξ‖pC([0,T ],Cα+2)] . εθp. (2.11)

Combining Propositions 2.22 and 2.23, we obtain Theorem 2.1 if we choose Cε =

2Cε1 − 2νCε2,1 − 4νCε2,2.

3 Proof of convergence of renormalized models

In this section, we give a proof of Proposition 2.23. Since the estimates (2.10) and
(2.11) are obtained in [Hai14, Proposition 9.5], we focus on the estimate (2.9). By [Hai14,
Theorem 10.7], it suffices to show that there exist κ, θ > 0 such that, for every τ ∈ F with
|τ |s < 0, every test function ϕ ∈ Br and z ∈ R4, there exists a random variable 〈Π̂zτ, ϕ〉
such that

E[|〈Π̂zτ, ϕ
δ
z〉|2] . δ2|τ |s+κ, E[|〈Π̂zτ − Π̂ε

zτ, ϕ
δ
z〉|2] . ε2θδ2|τ |s+κ. (3.1)

We fix z ∈ R4 throughout this section. The estimates in this section are uniform over z.
This section is organized as follows. In Section 3.1, we recall the Wiener chaos

decomposition of the random variable Π̂zτ and introduce graphical notations to describe
its kernel. In Section 3.2, we give some useful estimates to prove (3.1). In Section 3.3,
we show the required estimate (3.1) for each symbol τ . In Section 3.4, we show the
explicit forms of renormalization constants and their divergence orders.

3.1 Wiener chaos decomposition

The driving noise ξ is space-time white noise on R×T3, which is extended periodically
to R4. In precise, we are given the complex multiple Wiener integral Jp,q on (E,m) =

(R×T3, dtdx1dx2dx3) (see Section A) and a random distribution ξ is defined by 〈ξ, ϕ〉 =

J1,0(πϕ), where ϕ is a compactly supported smooth function and πϕ =
∑
n∈Z3 Snϕ is

its periodic extension, where Snϕ(t, x) = ϕ(t, x+ n). Although J1,0 is an isometry from
L2(E) (not L2(R4)) to L2(Ω), when ϕ is supported in R× [− 1

2 ,
1
2 ]3 (i.e. ϕ and Snϕ have

disjoint supports if n 6= 0) we have the isometry

E[|〈ξ, ϕ〉|2] = ‖πϕ‖2E =

∫
R4

|ϕ(z)|2dz. (3.2)

The approximation ξε(z) = ξ ∗ ρε(z) = J1,0(ρε(z − ·)) belongs to the first Wiener chaos.
By definition and the product formula, for each τ ∈ F we have the Wiener chaos
decomposition

(Π̂ε
zτ)(z′) =

∑
p,q

Jp,q((Ŵε,(p,q)
z τ)(z′)),

where (Ŵε,(p,q)
z τ)(z′) ∈ L2

p,q is the kernel function of Jp,q-exponent of (Π̂ε
zτ)(z′),

parametrized by z′ ∈ R4. In all these kernels mentioned below, we always assume that
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(Ŵε,(p,q)
z τ)(z′) is supported in sufficiently small compact subset as a function of (R4)p+q,

so that we need not distinguish integrals on R×T3 and R4, indeed similarly to (3.2)

E[|〈Π̂zτ, ϕ
δ
z〉|2] ≤ p!q!

∥∥∥∥∫ ϕδz(z
′)(Ŵε,(p,q)

z τ)(z′)dz′
∥∥∥∥2
L2
pq

= p!q!

∫∫
ϕδz(z

′)ϕδz(z
′′)〈(Ŵε,(p,q)

z τ)(z′), (Ŵε,(p,q)
z τ)(z′′)〉L2((R4)p+q)dz

′dz′′.

This assumption is satisfied if we take the support of K sufficiently small.
Following [Hai14, Section 10.5], we introduce the following graphical notations to

write integrated kernels. First a dot represents a variable in R4. A square dot (
z′

)

represents a fixed variable. A gray dot ( ) is a variable integrated out on R4, so it has no
label. A variable representing the multiple Wiener integral Jp,q is written by a black dot
( ) for a variable in Ep, and a white dot ( ) for a variable in Eq, respectively. Second an
arrow represents a function of two variables which are represented by its vertices. We
write

K(z′ − z′′) = z′ z′′ , Kε(z′ − z′′) = z′ z′′ ,

K(z′ − z′′) = z′ z′′ , Kε(z′ − z′′) = z′ z′′ ,

where Kε = K ∗ ρε. Moreover, we write

K(z′ − z′′)−K(z − z′′) = z′ z′′ ,

K(z′ − z′′)−K(z − z′′) = z′ z′′ .

We note that z ∈ R4 is fixed. We write several kernels by combining these notations. For
example,

J3,1( z′ )

=

∫ {∫
(K(z′ − u)−K(z − u))Kε(u− w1)Kε(u− w2)Kε(u− w′)du

}
×K(z′ − w3) : ξ(dw1)ξ(dw2)ξ(dw3)ξ(dw′) : .

3.2 Estimates of singularity of kernels

From the scaling property of K =
∑
nKn, we can see that |K(z)| . ‖z‖−3s . It is useful

to consider the singularity of kernels like this. The notation A(z′ − z′′) = z′′z′ −α

implies that A : R4 \ {0} → C is a smooth function supported in a ball and has the
estimate |A(z′ − z′′)| . ‖z′ − z′′‖−αs . We recall some useful estimates from [Hai14,
Section 10.3] and [Hos16, Section 4.7].

Lemma 3.1 ([Hai14, Lemma 10.14]). For α, β ∈ [0, 5), we have

| z′′z′ −β−α | .

{
z′′z′ −α − β + 5 , α+ β > 5,

1, α+ β < 5.

Lemma 3.2 ([Hos16, Lemma 4.31]). Let α, β, α′, β′, γ ∈ (0, 5). If ζ ∈ (0, α ∧ β] and
η ∈ (0, α′ ∧ β′] satisfy

α+ β − 5 < ζ, α′ + β′ − 5 < η, α+ β + α′ + β′ + γ − 10 < ζ + η,

then we have ∣∣∣∣∣∣
z′

w′

z′′

w′′

−α

−β
−γ

−α′

−β′

∣∣∣∣∣∣ . w′z′ −ζ

w′′z′′ −η
.
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For α, β ≥ 0, we use the notation

Qα,β(z′, z′′) = z′
−α

z′′
−α

−β .

Lemma 3.3. Let α, β ∈ [0, 5). For θ ∈ (0, 1 ∧ (2− α− β
2 )), we have

|Qα,β(z′, z′′)| . ‖z′ − z‖θs‖z′′ − z‖θs.

Proof. Since | z′ u | . ‖z′ − z‖θs(‖z′ − u‖−3−θs + ‖z − u‖−3−θs ) by [Hai14,
Lemma 10.18],

|Qα,β(z′, z′′)| . ‖z′ − z‖θs‖z′′ − z‖θs(R(z′, z′′) +R(z, z′′) +R(z′, z) +R(z, z)),

where

R(u′, u′′) = Rz′,z′′(u
′, u′′) =

z′

u′

z′′

u′′

−α

−3 − θ
−β

−α

−3 − θ
.

It suffices to show that R is bounded. By the inequality ‖z′‖−αs ‖z′′‖−βs . ‖z′‖−α−βs +

‖z′′‖−α−βs for α, β ≥ 0, the function R is bounded by the sum of functions of the form

−α − 3 − θ−β−α − 3 − θ ,

which is bounded by 1 since 2(−α− 3− θ)− β + 10 > 0.

3.3 Proof of L2-estimates (3.1)

Now we prove the estimate (3.1) for every τ ∈ F with |τ |s < 0.

3.3.1 Ξ, , , , ,

For τ = Ξ, , , the required estimates follow from [Hai14, Proposition 9.5]. We now treat
τ = , , . By definition,

Π̂ε
z = Πε

z = (Πε
z )2,

Π̂ε
z = Πε

z − Cε1 = (Πε
z )(Πε

z )− Cε1.

By applying the product formula to

Πε
z (z′) = K ∗ ξε(z′) = J1,0( z′ ),

Πε
z (z′) = K ∗ ξε(z′) = J0,1( z′ ),

we have

Π̂ε
z (z′) = J2,0( z′ ),

Π̂ε
z (z′) = J1,1( z′ ) + z′ − Cε1.

If we choose Cε1 = z′ =
∫
|Kε(z)|2dz, the required estimates (2.9) for τ = ,

easily follow. Indeed,

E[|〈Π̂ε
z , ϕδz〉|2] = 2

∫∫
ϕδz(z

′)ϕδz(z
′′) z′ z′′ dz

′dz′′

.
∫∫

ϕδz(z
′)ϕδz(z

′′)

∣∣∣∣ z′ z′′
−1

−1

∣∣∣∣ dz′dz′′
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.
∫∫

ϕδz(z
′)ϕδz(z

′′)‖z′ − z′′‖−2s dz′dz′′ . δ−2

and −2 > | |s = 4(α+ 2). Moreover, if we choose

Π̂z (z′) = J2,0( z′ ),

then we have

E[|〈Π̂ε
z − Π̂z , ϕδz〉|2] . εθδ−2−θ

for small θ > 0. This is obtained by similar argument, since |(Kε −K)(z)| . εθ‖z‖−3−θs

for θ ∈ (0, 1] (see [Hai14, Lemma 10.17]). The case τ = is similar.
For τ = , by the choice of Cε1 we have

Π̂ε
z (z′) = (Πε

z )(z′)2(Πε
z )(z′)− 2Cε1(Πε

z )(z′) = J2,1( z′ ).

Then the estimate (2.9) for τ = easily follows as above. Indeed,

E[|〈Π̂ε
z , ϕδz〉|2] = 2

∫∫
ϕδz(z

′)ϕδz(z
′′) z′ z′′ dz

′dz′′

.
∫∫

ϕδz(z
′)ϕδz(z

′′)

∣∣∣∣∣ z′ z′′
−1

−1

−1

∣∣∣∣∣ dz′dz′′
.
∫∫

ϕδz(z
′)ϕδz(z

′′)‖z′ − z′′‖−3s dz′dz′′ . δ−3

and −3 > | |s = 6(α + 2). The estimates for Π̂ε
z − Π̂z are similarly obtained by

choosing

Π̂ε
z (z′) = J2,1( z′ ).

In the subsequent computations, the estimates of Π̂ε
zτ − Π̂zτ are obtained by similar

arguments to those of Π̂ε
zτ as above by using the bound of Kε −K, so we show only the

uniform boundedness but not the convergence estimates explicitly. For detailed proofs,
see [Hos16, Section 4.8].

3.3.2 Xi , Xi , , , ,

For τ = Xi , Xi , the corresponding estimates are easily obtained. Indeed, since
Π̂ε
zXi (z′) = (x′i − xi)Π̂ε

z (z′) we have

E[|〈Π̂ε
zXi , ϕδz〉|2] = 2

∫∫
ϕδz(z

′)ϕδz(z
′′)(x′i − xi)(x′′i − xi) z′ z′′ dz

′dz′′

.
∫∫

ϕδz(z
′)ϕδz(z

′′)(x′i − xi)(x′′i − xi)‖z′ − z′′‖−2s dz′dz′′ . 1

and 0 > 2|Xi |s = 2(2α+ 5). The case τ = Xi is similar.
Now we turn to , , , . In particular, we consider the renormalizations of

and , since the corresponding chaos decompositions of the two other elements do not
have zeroth order terms. By definition,

Π̂ε
z = Πε

z − 2Cε2,1 = (Πε
z )(Πε

z )− 2Cε2,1,
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Π̂ε
z = Πε

z − Cε1Πε
z − Cε2,2 = (Πε

z − Cε1)(Πε
z )− Cε2,2.

We note that

Πε
z (z′) = K ∗Πε

z (z′)−K ∗Πε
z (z) = J0,2( z′ ),

Πε
z (z′) = K ∗Πε

z (z′)−K ∗Πε
z (z) = J1,1( z′ ).

By applying the product formula (Theorem A.1) we have

Π̂ε
z (z′) = J2,2( z′ ) + 4J1,1( z′ ) + 2( z′ − Cε2,1)

and

Π̂ε
z (z′) = J2,2( z′ ) + J1,1( z′ )

+ J1,1( z′ ) + z′ − Cε2,2.

Hence if we choose

Cε2,1 = z′ , Cε2,2 = z′ ,

we have the required bounds. Indeed, since kernels belonging to the same order chaos
have the same graphs except for the difference of K and K, it suffices to show the
bounds for one of these kernels for each order chaos. For remaining zeroth order terms,
we have the bounds

| z′ z | . | z′ z
−1

−1
−3 | . ‖z′ − z‖−κs

for an arbitrary small κ > 0. For the second order terms, by Lemma 3.3 we have

|
z′ z′′

| = | z′ z′′ | × |Q1,1(z′, z′′)|

. ‖z′ − z‖
1
2−κ
s ‖z′′ − z‖

1
2−κ
s ‖z′ − z′′‖−1s

for small κ > 0. Similarly, for the fourth order terms, we have

|
z′ z′′

| = | z′ z′′ | × |Q0,2(z′, z′′)|

. ‖z′ − z‖1−κs ‖z′′ − z‖1−κs ‖z′ − z′′‖−2s

for small κ > 0. As a consequence, we have

E|〈Π̂ε
z , ϕδz〉|2 .

∫∫
ϕδz(z

′)ϕδz(z
′′){‖z′ − z‖−κs ‖z′′ − z‖−κs

+ ‖z′ − z‖
1
2−κ
s ‖z′′ − z‖

1
2−κ
s ‖z′ − z′′‖−1s

+ ‖z′ − z‖1−κs ‖z′′ − z‖1−κs ‖z′ − z′′‖−2s }dz′dz′′ . δ−2κ

for an arbitrary small κ > 0. The cases τ = , , are similar.
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3.3.3 , , , ,

We treat the case τ = . The cases τ = , are similar. By definition,

Π̂ε
z (z′) = Πε

z (z′)− 2Cε1(Πε
z (z′)− f εz(Ji )(Πε

zXi )(z′))

= Πε
z (z′){K ∗Πε

z (z′)−K ∗Πε
z (z)− 2Cε1(K ∗Πε

z (z′)−K ∗Πε
z (z))}

= J1,0( z′ )J2,1( z′ )

= J3,1( z′ ) + J2,0( z′ ).

The summation symbol over i = 1, 2, 3 is omitted again. For the fourth order term, by
Lemma 3.3 we have

|
z′ z′′

| = | z′ z′′ | × |Q0,3(z′, z′′)|

. ‖z′ − z‖
1
2−κ
s ‖z′′ − z‖

1
2−κ
s ‖z′ − z′′‖−1s

for small κ > 0. For the second order term, we decompose it as

z′ = z′ − z′

z
. (3.3)

By Schwarz’s inequality, it suffices to consider the bound for each term. For the first
term, we have

| z′ z′′ | . | z′ z′′−4 −2 −4 | . ‖z′ − z′′‖−κs

for small κ > 0. For the second term, by Lemma 3.2 we have

| z′
z

z′′

z
| . |

z′

z

z′′

z

−1

−3
−2

−1

−3
|

. ‖z′ − z‖−κs ‖z′′ − z‖−κs

for small κ > 0. As a consequence, we have

E|〈Π̂ε
z , ϕδz〉|2 . δ−2κ.

Finally we treat τ = . The other one is similar. By definition,

Π̂ε
z (z′) = Πε

z{( − 2Cε1 )( − Cε11)− 2Cε2,2 }(z′)
+ 2Cε1f

ε
z(Ji )Πε

z{Xi( − Cε11)}(z′)
= Πε

z( − Cε1)(z′){K ∗Πε
z (z′)−K ∗Πε

z (z)

− 2Cε1(K ∗Πε
z (z′)−K ∗Πε

z (z))}(z′)− 2Cε2,2Πε
z (z′)

= J1,1( z′ )J2,1( z′ )− 2 z′ J1,0( z′ )

= J3,2( z′ ) + J2,1( z′ )
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+ 2J2,1( z′ )

+ 2{J1,0( z′ )− z′ J1,0( z′ )}.

For the fifth order term, we have

|
z′ z′′

| = | z′ z′′ | × |Q0,3(z′, z′′)|

. ‖z′ − z‖
1
2−κ
s ‖z′′ − z‖

1
2−κ
s ‖z′ − z′′‖−2s

for small κ > 0. For the third order terms, we note that the required bounds are obtained
by multiplying z′ z′′ to (3.3), so we have the bound

(‖z′ − z′′‖−2κs + ‖z′ − z‖−κs ‖z′′ − z‖−κs )‖z′ − z′′‖−1s .

For the first order terms, we need to introduce the renormalization

z′ − z′ z′ = RLε ∗Kε(z′ − )− z′
z
,

where Lε(z′ − w) = z′ w and RLε is the distribution defined by

〈RLε, ϕ〉 =

∫
Lε(z)(ϕ(z)− ϕ(0))dz

for test function ϕ, see [Hai14, Definition 10.15]. By [Hai14, Lemma 10.16], we have the
bound

|RLε ∗Kε(z)| . ‖z‖−3s .

For the remaining term, we have

| z′
z

z′′

z

| . |
z′

z

z′′

z

−2

−3
−1

−2

−3
|

. ‖z′ − z‖−
1
2−κ

s ‖z′′ − z‖−
1
2−κ

s .

As a consequence, we have

E[|〈Π̂ε
z , ϕδz〉|2] . δ−1−2κ.

3.4 Behaviors of renormalization constants

In Sections 3.3.1 and 3.3.2, we obtained renormalization constants

Cε1 = z′ =

∫
|Kε(z)|2dz,

Cε2,1 = z′ =

∫
K(z)(Qε(z))2dz,

Cε2,2 = z′ =

∫
K(z)|Qε(z)|2dz,

(3.4)
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where

Qε(z) =

∫
Kε(z − w)Kε(−w)dw.

Note that Qε = Q ∗ πε, where π(t, x) = ε−5π(ε−2t, ε−1x) and

Q(z) =

∫
K(z − w)K(−w)dw, π(z) =

∫
ρ(z − w)ρ(−w)dw,

Proposition 3.4. There exist constants C1, C2,1 and C2,2 independent of ε such that

Cε1 ∼ C1ε
−1, Cε2,1 ∼ C2,1 log ε−1, Cε2,1 ∼ C2,2 log ε−1

as ε ↓ 0. Here for two functions Aε and Bε of ε, we write Aε ∼ Bε if there exists a constant
C independent of ε and |Aε −Bε| ≤ C holds.

In order to prove the above estimates, we prepare some notations. For α > 0 and a
compactly supported function A ∈ C∞(R4 \ {0},C), we say that A ∈ Sα if there exists a
function Ã ∈ C∞(R4 \ {0},C) and A− ∈ L∞(R4,C) such that

• Ã = A+A− on R4 \ {0},
• Ã(λ2t, λx) = λ−αÃ(t, x) for every λ > 0 and (t, x) 6= 0,

• |A−(z)| . ‖z‖−αs for every z ∈ R4.

The second scaling property of Ã ensures that |Ã(z)| . ‖z‖−αs for every z ∈ R4 (see
[Hai14, Lemma 5.5]).

Proposition 3.5. Let α, β ∈ (0, 5).

(1) If A ∈ Sα, B ∈ Sβ and α+ β > 5, then A ∗B ∈ Sα+β−5.

(2) If A ∈ Sα and B ∈ Sβ , then AB ∈ Sα+β .

Proof. For (1), in the decomposition

A ∗B = Ã ∗ B̃ −A− ∗ B̃ − Ã ∗B− +A− ∗B−,

we see that the last three terms are bounded by ‖z‖5−α−βs by using [Hos16, Lemma 4.14].

Hence it suffices to set Ã ∗B = Ã ∗ B̃.
The assertion (2) is similarly obtained.

Proof of Proposition 3.4. First we show the estimate of Cε1. Since K,K ∈ S3, we have
Q ∈ S1. Hence we have

Cε1 = Qε(0) =

∫
Q(−z)πε(z)dz

=

∫
Q̃(−z)πε(z)dz −

∫
Q−(−z)πε(z)dz

= ε−1
∫
Q̃(−z)π(z)dz +O(1).

The last equality follows from the scaling property of Q̃ and the boundedness of Q−.
Next we show the estimate of Cε2,1. Note that

Cε2,1 =

∫
K(z)(Qε(z))2dz ∼

∫
‖z‖s>ε

K(z)(Q(z))2dz.
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Indeed, since |Qε(z)| . ε−1 and |Q(z)−Qε(z)| . εθ‖z‖−1−θs for every θ ∈ (0, 1] (see [Hai14,
Lemma 10.17]), we have∣∣∣∣∣

∫
‖z‖s≤ε

K(z)(Qε(z))2dz

∣∣∣∣∣ . ε−2
∫
‖z‖s≤ε

‖z‖−3s dz . 1

and ∣∣∣∣∣
∫
‖z‖s>ε

K(z){(Qε(z))2 − (Q(z))2}dz

∣∣∣∣∣ . εθ
∫
‖z‖s>ε

‖z‖−5−θs dz . 1.

Hence it suffices to consider
∫
‖z‖s>εR(z)dz, where R = KQ2 ∈ S5. However, we replace

R by a function S+ defined below. Let ϕ be a smooth and nonnegative function such that
supp(ϕ) ⊂ { 12 ≤ ‖z‖s ≤ 2} and

∑∞
n=−∞ ϕ(22nt, 2nx) = 1 for all (t, x) 6= 0. Define

S+ =

∞∑
n=0

R̃ϕn, S− =

−1∑
n=−∞

R̃ϕn,

where ϕn(t, x) = ϕ(22nt, 2nx). Note that R + R− = S+ + S−. Since supp(S− − R−) is
compact, we have ∫

‖z‖s>ε
R(z)dz =

∫
‖z‖s>ε

S+(z)dz +O(1).

By the scaling property of R̃, we have S+ =
∑∞
n=0 Sn, where

Sn(t, x) = 25nS0(22n, 2nx), S0 = R̃ϕ.

Since S0 ∈ C∞0 , we have∫
‖z‖s>ε

S+(z)dz =

∞∑
n=0

∫
‖z‖s>ε

Sn(z)dz

=

∞∑
n=0

∫
‖z‖s>ε2n

S0(z)dz =

N(ε)∑
n=0

∫
‖z‖s>ε2n

S0(z)dz,

where N(ε) ∈ N is the largest number such that {‖z‖s > ε2N(ε)} ∩ supp(S0) 6= ∅, so there
exists a constant C > 0 such that N(ε) ∼ C log ε−1. Since

N(ε)∑
n=0

∣∣∣∣∣
∫
‖z‖s>ε2n

S0(z)dz −
∫
S0(z)dz

∣∣∣∣∣ .
N(ε)∑
n=0

∫
‖z‖ε≤ε2n

dz .
N(ε)∑
n=0

ε525n . ε525N(ε) . 1,

we have the estimate

Cε2,1 = N(ε)

∫
S0(z)dz +O(1) ∼ C

∫
S0(z)dz log ε−1.

The estimate of Cε2,2 is similar.

4 CGL by the theory of paracontrolled distributions

In Sections 4 and 5, we study well-posedness of CGL (1.1) by using the paracontrolled
distribution theory introduced by [GIP15]. In that paper, they studied some problems
such as differential equations driven by fractional Brownian motion, a Burgers-type
stochastic PDE, and a nonlinear version of the parabolic Anderson model. After that
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Catellier-Chouk [CC13] showed local well-posedness of the three-dimensional stochastic
quantization equation (the dynamic Φ4

3 model), which is an R-valued version of CGL.
Our proof of the local well-posedness of CGL consists of two parts: a deterministic

and a probabilistic part.
In Section 4, we deal with a deterministic version of CGL and construct a solution

map from a space of driving vectors to a space of solutions. We also see that the solution
map is continuous. In this section, ξ is a deterministic distribution which takes values
in the Hölder-Besov space C− 5

2−κ for any κ > 0 small enough. To construct the solution
map, we rely on the method introduced by Mourrat-Weber [MW17]. We state the precise
assertion concerning the well-posedness in Theorem 4.27. In Theorem 4.30, we see
that the solution obtained in Theorem 4.27 solves the renormalized equation (1.2) in the
usual sense.

Section 5 is the probabilistic part and devoted to constructing a driving vector X
associated to the space-time white noise ξ defined on R×T3. We follow the approach as
in [GP17] and obtain the driving vector in Theorem 5.9. Here we explain how to mollify
the white noise ξ. Let χ be a smooth real-valued function defined on R3 such that (1)
suppχ ⊂ B(0, 1), where B(x, r) denotes the open ball of radius r > 0 and center x ∈ R3,
(2) χ(0) = 1. We set χε(k) = χ(εk) for every k ∈ Z3. Define ek(x) = e2πik·x for every
k ∈ Z3 and x ∈ T3. Here, the dot · denotes the usual inner product. We define ξε by

ξε =
∑
k∈Z3

χε(k)ξ̂(k)ek. (4.1)

Here, {ξ̂(k)}k∈Z3 denotes the Fourier transform of ξ and it has the same law with
independent copies of the complex white noise on R. We see that ξε → ξ in an appropriate
topology. For the smeared noise ξε, we define a family of processes {Xε}0<ε<1. In this
definition of Xε, we will use the dyadic partition of unity {ρm}∞m=−1 via the resonant
� and renormalization constants cε1, c

ε
2,1 and cε2,2; see Section 4.1 for the definitions of

{ρm}∞m=−1 and � and see (5.5) for the renormalization constants. We obtain the driving
vector X as a limit of {Xε}0<ε<1. By setting cε = 2(cε1 − νcε2,1 − 2νcε2,2), we have |cε| → ∞
as ε→ 0.

By combining Theorems 4.27, 4.30 and 5.9, we obtain the following main theorem in
Sections 4 and 5:

Theorem 4.1. Let 0 < κ′ < 1/18 and u0 ∈ C−
2
3+κ

′
. Consider the renormalized equation

(1.2) with Cε = cε. Then, for every 0 < ε < 1, there exist a unique process uε and a
random time T ε∗ ∈ (0, 1] such that

• uε solves (1.2) on [0, T ε∗ ]×T3,

• T ε∗ converges to some a.s. positive random time T∗ in probability,

• uε converges to some process u defined on [0, T∗)×T3 in the following sense:

lim
ε↓0

sup
0≤s≤T∗/2

‖uεs − us‖C− 2
3
+κ′ = 0

in probability. Here, we set sup0≤s≤T∗/2 ‖u
ε
s − us‖C− 2

3
+κ′ = ∞ on the event {T ε∗ <

T∗/2}. Furthermore, u is independent of the choice of {ρm}∞m=−1 and χ.

Here, we will make comments on this theorem. Note that the process uε and u

are obtained by substituting Xε and X into the solution map, respectively. Since Xε

converges to X and the solution map is continuous, we see that uε converges to u. In
addition, uε solves (1.2) in the usual sense, hence we see the theorem. We need to pay
attention to the assertion that u is independent of the choice of ξε. Recall thatXε depends
on {ρm}∞m=−1. Hence uε may, too. However, we see that uε does not. In fact, we obtain
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an expression of the renormalization constant cε which does not depend on {ρm}∞m=−1
in Proposition 5.21. Hence, (1.2) is independent of {ρm}∞m=−1 and so is the solution uε.
As a consequence, the limit u is independent of {ρm}∞m=−1. In addition, the limit u is
independent of χ because the driving vector X is independent of χ (Theorem 5.9). Hence
we see the solution does not depend on {ρm}∞m=−1 or χ.

Remark 4.2. As stated in Section 1, we can choose common approximation noise for
the renormalized equation (1.2) to obtain the solutions in Theorems 2.1 and 4.1. In this
sense, the solutions in Theorems 2.1 and 4.1 “essentially coincide,” or at least look very
similar.

In Theorem 4.1, the noise ξ is smeared only in spatial direction. However, we can
consider the case that the noise is smeared both in temporal and spatial directions. For
a non-negative Schwartz function % on R4 such that

∫
% = 1, we consider the scaling

%ε(t, x) = ε−5%(ε−2t, ε−1x), which is the mollifier considered in Theorem 2.1, and replace
ξ by smooth noise

ξ̃ε(t, x) =

∫
R×R3

%ε(t− s, x− y)ξ(s, y) dsdy. (4.2)

Then the same claim as Theorem 4.1 holds for the renormalized equation (1.2) with ξ̃ε,
under well-adjusted choice of Cε. Moreover, the limit process coincides with that in
Theorem 4.1. This is because the limit driving vector dose not change under the different
choice of approximations (Remark 5.20).

Finally, we should note that Hoshino showed the global-in-time well-posedness of
CGL (1.1) in the case that µ > 1/

√
8 and <ν > 0 [Hos17b].

Sections 4 and 5 are independent of Sections 2 and 3. We do not use the symbols
introduced in Sections 2 and 3.

4.1 Besov-Hölder spaces and paradifferential calculus

In this section, we introduce the Besov-Hölder spaces and paradifferential calculus.
The results in this section can be found in [GIP15, BCD11] or follow from them easily.

4.1.1 Besov spaces

We introduce the Besov spaces and recall their basic properties. Let D ≡ D(T3,C) be the
space of all smooth C-valued functions on T3 and D′ its dual of D. We set ek(x) = e2πik·x

for every k ∈ Z3 and x ∈ T3. The Fourier transform Ff for f ∈ D is defined by
Ff(k) =

∫
T3 e−k(x)f(x) dx and its inverse F−1g for a rapidly decreasing sequence

{g(k)}k∈Z3 is defined by F−1g(x) =
∑
k∈Z3 g(k)ek(x). For every rapidly decreasing

smooth function φ, we set φ(D)f = F−1φFf =
∑
k∈Z3 φ(k)f̂(k)ek.

We denote by {ρm}∞m=−1 a dyadic partition of unity, that is, it satisfies the following: (1)
ρm : R3 → [0, 1] is radial and smooth, (2) supp(ρ−1) ⊂ B(0, 43 ), supp(ρ0) ⊂ B(0, 83 )\B(0, 34 ),
(3) ρm(·) = ρ0(2−m·) for m ≥ 0, (4)

∑∞
m=−1 ρm(·) = 1. Here B(0, r) = {x ∈ R3; |x| < r}.

The Littlewood-Paley blocks {4m}∞m=−1 are defined by 4m = ρm(D).
We are ready to define Besov space Cα = Cα(T3,C) for α ∈ R. It is defined as the

completion of D under the norm

‖f‖Cα = sup
m≥−1

2mα‖4mf‖L∞ .

The next is frequently used results on Besov spaces:

Proposition 4.3 ([BCD11, Theorem 2.80]). We have the following:

• ‖f‖Cα . ‖f‖Cβ if α < β.
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• Let α, α1, α2 ∈ R satisfy α = (1− θ)α1 + θα2 for some 0 < θ < 1. Then, we have

‖f‖Cα ≤ ‖f‖1−θCα1 ‖f‖θCα2 .

4.1.2 Paraproducts and Commutator estimates

For every f ∈ Cα, g ∈ Cβ , we set

f 5 g =
∑

m1≥m2+2

4m1f4m2g, f 4 g =
∑

m1+2≤m2

4m1f4m2g,

f � g =
∑

|m1−m2|≤1

4m1f4m2g.

The following are properties of paraproduct.

Proposition 4.4 (Paraproduct and resonant estimate [BCD11, Theorem 2.82 and 2.85]).
We have the following:

(1) For every β ∈ R, ‖f 4 g‖Cβ . ‖f‖L∞‖g‖Cβ .

(2) For every α < 0 and β ∈ R, ‖f 4 g‖Cα+β . ‖f‖Cα‖g‖Cβ .

(3) If α+ β > 0, then ‖f � g‖Cα+β . ‖f‖Cα‖g‖Cα .

Remark 4.5. Let f ∈ Cα and g ∈ Cβ for α < 0 and β > 0 with α + β > 0. Then the
product fg is well-defined as an element in Cα.

Proposition 4.6 (Commutator estimates, [GIP15, Lemma 2.4]). Let 0 < α < 1, β, γ ∈ R

satisfy β + γ < 0 and α+ β + γ > 0. Define the map R by

R(f, g, h) = (f 4 g) � h− f(g � h)

for f, g, h ∈ C∞(T3,C). Then R is uniquely extended to a continuous trilinear map from
Cα × Cβ × Cγ to Cα+β+γ .

4.1.3 Regularity of Cα-valued functions

Here we consider Cα-valued functions and introduce several classes of them. Let
0 < δ ≤ 1 and η ≥ 0 and define these classes as follows:

• CTCα is the space of all continuous functions from [0, T ] to Cα which is equipped
with the supremum norm

‖u‖CT Cα = sup
0≤t≤T

‖ut‖Cα ,

• CδTCα is the space of all δ-Hölder continuous functions from [0, T ] to Cα which is
equipped with the seminorm

‖u‖CδT Cα = sup
0≤s<t≤T

‖ut − us‖Cα
|t− s|δ

,

• EηTCα = {u ∈ C ((0, T ], Cα); ‖u‖EηT Cα <∞}, where

‖u‖EηT Cα = sup
0<t≤T

tη‖ut‖Cα ,

EJP 22 (2017), paper 104.
Page 27/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/


Stochastic complex Ginzburg-Landau equation

• Eη,δT Cα = {u ∈ C ((0, T ], Cα); ‖u‖Eη,δT Cα <∞}, where

‖u‖Eη,δT Cα = sup
0<s<t≤T

sη
‖ut − us‖Cα
|t− s|δ

,

• Lα,δT = CTCα ∩ CδTCα−2δ,
• Lη,α,δT = EηTCα ∩ CTCα−2η ∩ E

η,δ
T Cα−2δ.

Remark 4.7. We introduced the norms on the spaces EηTCα and Eη,δT Cα in order to control

explosion at t = 0. The definition of Lα,δT is natural from the time-space scaling of CGL.

For µ > 0, we set L1 = ∂t − {(i + µ)4− 1}, P 1
t = et{(i+µ)4−1}. We present results on

smoothing effects of semigroup {P 1
t }t≥0.

Proposition 4.8 (Effects of heat semigroup). Let α ∈ R.

(1) For every δ > 0, ‖P 1
t u‖Cα+2δ . t−δ‖u‖Cα uniformly in t > 0.

(2) For every δ ∈ [0, 1], ‖(P 1
t − 1)u‖Cα−2δ . tδ‖u‖Cα uniformly in t > 0.

Proposition 4.9 (Schauder estimates). Let T > 0. We see the following:

(1) Let u ∈ Cα. For every β ≥ α and δ ∈ [0, 1], we have

‖(t 7→ P 1
t u)t≥0‖

L
β−α

2
,β,δ

T

. ‖u‖Cα .

(2) Let α 6= β. Let u ∈ EηTCα for η ∈ [0, 1) and set

Ut =

∫ t

0

P 1
t−sus ds.

Then for every γ ∈ [α, α− 2η + 2), β ∈ [γ, α+ 2) and δ ∈ (0, β−α2 ], we have

‖U‖
L
β−γ

2
,β,δ

T

. T
α−2η+2−γ

2 ‖u‖EηT Cα .

Proposition 4.10 (Commutation between paraproduct and heat semigroup). Let α < 1,
β ∈ R, δ ≥ 0. Define

[P 1
t , u4]v = P 1

t (u4 v)− u4 P 1
t v.

Then we have

‖[P 1
t , u4]v‖Cα+β+2δ . t−δ‖u‖Cα‖v‖Cβ

uniformly over t > 0.

We can show the above results in a similar way as [Hos17a, Corollary 2.6, Proposi-
tion 2.8] and [MW17, Propsosition A.15], because µ > 0.

4.2 Definitions of driving vectors and solutions

First of all, we give the definition of a driving vector. We set

I(u0, v)t = P 1
t u0 +

∫ t

0

P 1
t−svs ds, (4.3)

I(v)t =

∫ t

−∞
P 1
t−svs ds, (4.4)

whenever they are well-defined. Note that if we can choose u0 =
∫ 0

−∞ P 1
−svs ds, then

I(u0, v) = I(v).
Let 0 < κ < κ′ < 1/18 and T > 0. The following is the definition of a driving vector.
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Definition 4.11. We call a vector of space-time distributions

X = (X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X ,X )

∈ CTC−
1
2−κ × (CTC−1−κ)2 × (CTC1−κ)2 × L

1
2−κ,

1
4−

1
2κ

T × (CTC−κ)6 × (CTC−
1
2−κ)2

which satisfies I(X0 , X ) = X and I(X0 , X ) = X a driving vector of CGL. We
denote by X κT the set of all driving vectors. We define the norm ‖ · ‖XκT by the sum of the
norm of each component.

Note that we assume that the component X has Hölder continuity and it belongs to

L
1
2−κ,

1
4−

1
2κ

T . We easily see that the space X κT is a closed set of the product Banach spaces.
Next we define the space of solutions and give the notion of a solution.

We describe the tree-like symbols , , , ,. . . in the definition. The dot and the
line denote the white noise and the operation I, respectively. Hence, represents
I(ξ) = Z. The symbols and stand for the complex conjugate of Z and the product ZZ,
respectively. So means I(Z2Z). Finally, denotes the resonance term of I(Z2Z) and
Z.

Definition 4.12. We set

Dκ,κ
′

T = L
5
6−κ

′,1−κ′,1− 1
2κ
′

T × L1−κ′+κ, 32−2κ
′,1−κ′

T .

Next, we fix X ∈ X κT and set Z = X and W = X . Define F and G on Dκ,κ
′

T by

F (v, w) = −ν{2(−νX + v + w) 4X + (−νX + v + w)4X }, (4.5)

G(v, w) = G1(v, w) + · · ·+G8(v, w). (4.6)

Here G1(v, w), . . . , G8(v, w) will be defined shortly.
Since Zt ∈ C−

1
2−κ and Wt ∈ C

1
2−κ, the product WtZt and WtZt are not defined a

priori. We define them by

WZ = W (4+ 5)Z +X , WZ = W (4 + 5)Z +X .

The products W 2Z and WWZ are also defined by

W 2Z = 2WX +R(W,Z,W )

+ (W 4 Z)(4 + 5)W +W (W 5 Z),

WWZ = WX +WX +R(W,Z,W )

+ (W 4 Z)(4 +5)W +W (W 5 Z).

It follows from Proposition 4.4 that (WZ)t, (WZ)t, (W
2Z)t, (WWZ)t ∈ C−

1
2−κ hold.

In order to define G6(v, w), we use com(v, w) defined as follows. For every v0 ∈ C−
2
3+κ

′

and (v, w) ∈ Dκ,κ
′

T , we set

v̂t = P 1
t v0 +

∫ t

0

P 1
t−s[F (v, w)(s)] ds.

Define

com(v, w) = v̂ + ν{2(−νW + v + w) 4X + (−νW + v + w)4X }. (4.7)
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From Lemma 4.23, we see that com(v, w) � X and com(v, w) � X are well-defined.
Roughly speaking, com(v, w)t is something like

[[I(·),−2ν(−νW + v + w)4]X ]t + [[I(·),−ν(−νW + v + w)4]X ]t.

Here, [[I(·), u4]v]t = I(u4 v)t − ut 4 I(v)t.
We are in a position to define G1,. . . ,G8. We write u2 = v + w and set

G1(v, w) = −νu22u2,
G2(v, w) = −ν{u22(Z − νW ) + 2u2u2(Z − νW )},

G3(v, w) = −ν
{
u2(2ννWW − 2νWZ − 2νWZ − 4νX − νX )

+ u2(ν2W 2 − 2νWZ − 2νX − 2νX )
}

+ (ν + 1)u2,

G4(v, w) = −ν
{
− ν2νW 2W + ν2W 2Z + 2ννWWZ

+ 4ν2WX + 4ν2R(W,X ,X )

+ 2ν2WX + 2ν2R(W,X ,X )

+ 2ννWX + 2ννR(W,X ,X )

+ ννWX + ννR(W,X ,X )

− 2νX − 2νW 5X

− νX − νW 5X
}

+ (ν + 1)(Z − νW ),

G5(v, w) = −ν
{
− 4νR(u2, X ,X )− 2νR(u2, X ,X )

− 2νR(u2, X ,X )− νR(u2, X ,X )
}
,

G6(v, w) = −ν{2 com(v, w)�X + com(v, w)�X },

G7(v, w) = −ν{2w �X + w �X },

G8(v, w) = −ν{2u2 5X + u2 5X }.

The mapM = (M1,M2) is defined on Dκ,κ
′

T by

[M1(v, w)](t) = P 1
t v0 +

∫ t

0

P 1
t−sF (v, w)(s) ds, (4.8)

[M2(v, w)](t) = P 1
t w0 +

∫ t

0

P 1
t−sG(v, w)(s) ds (4.9)

for every (v0, w0) ∈ C− 2
3+κ

′ × C− 1
2−2κ. We will use Proposition 4.9 to check that the map

is well-defined map from Dκ,κ
′

T to itself and has good property.

Definition 4.13. For every (v0, w0) ∈ C− 2
3+κ

′ × C− 1
2−2κ and X ∈ X κT , we consider the

system {
vt = [M1(v, w)](t),

wt = [M2(v, w)](t).
(4.10)

If there exists (v, w) ∈ Dκ,κ
′

T∗
for some T∗ > 0, then we call (v, w) the solution to (1.1)

on [0, T∗].
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Stochastic complex Ginzburg-Landau equation

In Theorem 4.30, we see that the solution obtained in the sense of this definition
solves the renormalized equation (1.2) in the usual sense. Hence, this definition is
proper.

We interpret (4.10) as a fixed point problemM : (v, w) 7→ (M1(v, w),M2(v, w)). We
show that the map M is well-defined and a contraction in Section 4.3. Section 4.4
is devoted to the construction and the uniqueness of the solution. We show that the
solution to (1.1) satisfies a renormalized equation in Section 4.5. In that section, we see
the validity of the notion of the solution to CGL.

Before starting our discussion, we will remark on the function spaces we have just
introduced.

Remark 4.14. We make several comments on Lη,αT and Lη,α,δT .

• The inclusion Lα,δT ⊂ Lα,δ
′

T holds for every 0 < δ′ ≤ δ. To prove this assertion, we
use Proposition 4.3. Set θ = δ′/δ. Then α − 2δ′ = (α − 2δ)θ + α(1 − θ). For every
W ∈ Lα,δT , we see

‖Wt −Ws‖Cα−2δ′ ≤ ‖Wt −Ws‖θCα−2δ‖Wt −Ws‖1−θCα
. {(t− s)δ‖W‖CδT Cα−2δ}θ‖W‖1−θCT Cα

. (t− s)δ
′
‖W‖Lα,δT .

• The inclusion Lη,α,δT ⊂ Lη,α,δ
′

T holds for 0 < δ′ ≤ δ. Indeed, for every v ∈ Lη,α,δT and
0 < s < t ≤ T , we have

‖vt − vs‖Cα−2δ ≤ s−η|t− s|δ‖v‖Eη,δT Cα−2δ ,

‖vt − vs‖Cα ≤ ‖vt‖Cα + ‖vs‖Cα ≤ t−η‖v‖EηT Cα + s−η‖v‖EηT Cα .

Hence, for θ = δ′/δ, we see

‖vt − vs‖Cα−2δ′ ≤ ‖vt − vs‖θCα−2δ‖vt − vs‖1−θCα
. {s−η|t− s|δ‖v‖Eη,δT Cα−2δ}θ{s−η‖v‖EηT Cα}

1−θ

. s−η|t− s|δ
′
‖v‖Lη,α,δT

,

which implies v ∈ Lη,α,δ
′

T .

• For every v ∈ Lη,α,δT and α− 2η ≤ γ ≤ α, we have vt ∈ Cγ and

‖vt‖Cγ ≤ t−
1
2 (γ−(α−2η))‖v‖Lη,α,δT

for any 0 < t ≤ T . Since vt ∈ Cα−2η∩Cα, we take θ such that γ = (α−2η)(1−θ)+αθ

and use Proposition 4.3 to obtain

‖vt‖Cγ ≤ ‖vt‖1−θCα−2η‖vt‖θCα ≤ ‖v‖1−θCT Cα−2η{t−η‖v‖EηT Cα}
θ ≤ t−ηθ‖v‖Lη,α,δT

.

Combining this with ηθ = 1
2 (γ − (α− 2η)), we see the assertion.

Remark 4.15. We make several comments on L
1
2−κ,

1
4−

1
2κ

T and Dκ,κ
′

T . Recall that

L
1
2−κ,

1
4−

1
2κ

T = CTC
1
2−κ ∩ C

1
4−

1
2κ

T C0,

L
5
6−κ

′,1−κ′,1− 1
2κ
′

T = E
5
6−κ

′

T C1−κ
′
∩ CTC−

2
3+κ

′
∩ E

5
6−κ

′,1− 1
2κ
′

T C−1,

L1−κ′+κ, 32−2κ
′,1−κ′

T = E1−κ
′+κ

T C 3
2−2κ

′
∩ CTC−

1
2−2κ ∩ E1−κ

′+κ,1−κ′
T C− 1

2 .
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Stochastic complex Ginzburg-Landau equation

• For every 0 < κ < κ′, we have L
1
2−κ,

1
4−

1
2κ

T ⊂ L
1
2−κ,

1
4−

1
2κ
′

T = CTC
1
2−κ ∩ C

1
4−

1
2κ
′

T Cκ′−κ.
This inclusion implies

‖Xt −Xs ‖Cκ′−κ . (t− s) 1
4−

1
2κ
′
‖X ‖

C
1
4
− 1

2
κ

T Cκ′−κ
.

• Note that

Dκ,κ
′

T = L
5
6−κ

′,1−κ′,1− 1
2κ
′

T × L1−κ′+κ, 32−2κ
′,1−κ′

T

⊂ L
5
6−κ

′,1−κ′, 12−κ
′

T × L1−κ′+κ, 32−2κ
′, 12−κ

′

T

holds and, for every (v, w) ∈ Dκ,κ
′

T , we have

‖vt − vs‖L∞ . ‖vt − vs‖Cκ′ . s−( 5
6−κ

′)(t− s) 1
2−κ

′
‖v‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

,

‖wt − ws‖L∞ . ‖wt − ws‖Cκ′ . s−(1−κ
′+κ)(t− s) 1

2−κ
′
‖w‖

L
1−κ′+κ, 3

2
−2κ′,1−κ′

T

.

• For every (v, w) ∈ Dκ,κ
′

T , we have

‖vt‖Cα ≤ t−
1
2 (α+ 2

3−κ
′)‖v‖

L
5
6
−κ′,1−κ′,1− 1

2
κ′

T

,

‖wt‖Cβ ≤ t−
1
2 (β+ 1

2+2κ)‖w‖
L

1−κ′+κ, 3
2
−2κ′,1−κ′

T

,

where α and β satisfy − 2
3 + κ′ ≤ α ≤ 1− κ′ and − 1

2 − 2κ ≤ β ≤ 3
2 − 2κ′.

In particular, for α = β = κ′ − κ, we have

‖vt‖L∞ ≤ ‖vt‖Cκ′−κ ≤ t
− 2−3κ

6 ‖v‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

,

‖wt‖L∞ ≤ ‖wt‖Cκ′−κ ≤ t
− 1

2 ( 1
2+κ

′+κ)‖w‖
L

1−κ′+κ, 3
2
−2κ′,1−κ′

T

,

‖vt + wt‖L∞ ≤ ‖vt‖L∞ + ‖wt‖L∞ . t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

.

In the last estimate, we used 0 < κ < κ′ < 1/18 and 0 < t ≤ T . We also see

‖vt + wt‖Cγ . t−
1
2 (γ+ 2

3−κ
′)‖(v, w)‖Dκ,κ′T

if − 1
2 − 2κ ≤ γ ≤ 1− κ′.

4.3 Properties of the integration map

Let 0 < κ < κ′ < 1/18 and 0 < T ≤ 1. We fix X,X(1), X(2) ∈ X κ1 and set Z = X ,

W = X , Z(i) = X ,(i) and W (i) = X(i), for i = 1, 2. We sometimes use the symbol FX ,
GX andM(v0,w0),X = (M1

(v0,w0),X
,M2

(v0,w0),X
) to indicate the dependence on the driving

vector X and the initial data (v0, w0).

4.3.1 Properties ofM1

Let us start our discussion with F .

Lemma 4.16. For any (v, w) ∈ Dκ,κ
′

T and 0 < t ≤ T , we have F (v, w)(t) ∈ C−1−κ and

‖F (v, w)(t)‖C−1−κ ≤ C(‖X‖Xκ1 + t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

)‖X‖Xκ1 ,

where C is a positive constant depending only on κ, κ′, µ and ν.
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Proof. Set Φ = −νW + v + w. From Wt ∈ C
1
2−κ, vt ∈ C1−κ

′
and wt ∈ C

3
2−2κ

′
, we see that

Φt ∈ C
1
2−κ and ‖Φt‖L∞ ≤ ‖Wt‖L∞ + ‖vt‖L∞ + ‖wt‖L∞ hold for every (v, w) ∈ Dκ,κ

′

T . Note
that ‖Wt‖L∞ . ‖Wt‖C 1

2
−κ ≤ ‖X‖XκT holds from Proposition 4.3. From Remark 4.15, we

see

‖vt‖L∞ . t−
2−3κ

6 ‖v‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

≤ t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

,

‖wt‖L∞ . t−
1
2 ( 1

2+κ
′+κ)‖w‖

L
1−κ′+κ, 3

2
−2κ′,1−κ′

T

≤ t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

.

Combining this with Xt ∈ C−1−κ and using Proposition 4.4, we see Φt 4Xt ∈ C−1−κ and

‖Φt 4Xt ‖C−1−κ . ‖Φt‖L∞‖Xt ‖C−1−κ

≤ (‖X‖Xκ1 + t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

)‖X‖Xκ1 .

The term Φt 4Xt also has a similar bound. From the defintion of F (v, w), we see the
assertion.

Proposition 4.17. The mapM1 : Dκ,κ
′

T → L
5
6−κ

′,1−κ′,1− 1
2κ
′

T is well-defined and, for any

(v, w) ∈ Dκ,κ
′

T , we have

‖M1(v, w)‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

≤ C1(1 + ‖v0‖C− 2
3
+κ′ ) + C2T

1−κ′
2 ‖(v, w)‖Dκ,κ′T

.

Here, C1 and C2 are positive constants depending only on κ, κ′, µ, ν and ‖X‖Xκ1 . In
particular, they are given by at most second-order polynomials in ‖X‖Xκ1 .

Proof. Applying the first assertion of Proposition 4.9 with α = − 2
3 + κ′, β = 1− κ′ and

δ = 1− 1
2κ
′ to v0 ∈ C−

2
3+κ

′
, we see

‖(t 7→ P 1
t v0)t≥0‖

L
5
6
−κ′,1−κ′,1− 1

2
κ′

T

. ‖v0‖C− 2
3
+κ′ .

From Lemma 4.16, we see F (v, w) ∈ E
2−3κ

6

T C−1−κ and its norm has an upper bound
C1(1+‖(v, w)‖Dκ,κ′T

). Here, C1 is positive and is given by a polynomial in ‖X‖Xκ1 . Applying

the second assertion in Proposition 4.9 with α = −1−κ, β = 1−κ′, γ = − 2
3 +κ′, δ = 1− 1

2κ
′

and η = 2−3κ
6 to F (v, w) ∈ E

2−3κ
6

T C−1−κ, we see∥∥∥∥(t 7→
∫ t

0

P 1
t−sF (v, w)(s) ds)t≥0

∥∥∥∥
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

. T
1−κ′

2 ‖F (v, w)‖
E

2−3κ
6

T C−1−κ
≤ T

1−κ′
2 C2(1 + ‖(v, w)‖Dκ,κ′T

).

The proof is completed.

Next we show thatM1 is Lipschitz continuous.

Lemma 4.18. For any (v(1), w(1)), (v(2), w(2)) ∈ Dκ,κ
′

T and 0 < t ≤ T , we have

‖FX(1)(v(1), w(1))(t)− FX(2)(v(2), w(2))(t)‖C−1−κ

≤ C(1 + t−
2−3κ

6 )
{
‖X(1) −X(2)‖Xκ1 + ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

}
.

Here, C is a positive constant depending only on κ, κ′, µ, ν, ‖X(i)‖Xκ1 and
‖(v(i), w(i))‖Dκ,κ′T

. In particular, it is given by a first-order polynomial in ‖X(i)‖Xκ1 and

‖(v(i), w(i))‖Dκ,κ′T

.
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Stochastic complex Ginzburg-Landau equation

Proof. Set Φ(i) = −νW (i) + v(i) + w(i) for i = 1, 2. Then

‖Φ(1)
t 4X

(1),
t − Φ

(2)
t 4X

(2),
t ‖C−1−κ

=
1

2
‖(Φ(1)

t + Φ
(2)
t ) 4 (X

(1),
t −X(2),

t ) + (Φ
(1)
t − Φ

(2)
t ) 4 (X

(1),
t +X

(2),
t )‖C−1−κ

. ‖Φ(1)
t + Φ

(2)
t ‖L∞‖X

(1),
t −X(2),

t ‖C−1−κ + ‖Φ(1)
t − Φ

(2)
t ‖L∞‖X

(1),
t +X

(2),
t ‖C−1−κ .

The term ‖Φ(1)
t + Φ

(2)
t ‖L∞ is dominated as follows:

‖Φ(1)
t + Φ

(2)
t ‖L∞ . ‖Φ(1)

t ‖L∞ + ‖Φ(2)
t ‖L∞

.
∑
i=1,2

(‖X(i)‖XκT + t−
2−3κ

6 ‖(v, w)(i)‖Dκ,κ′T

)‖X(i)‖XκT

= C1 + t−
2−3κ

6 C2,

where C1 and C2 are positive constants given by

C1 = ‖X(1)‖2Xκ1 + ‖X(2)‖2Xκ1 ,

C2 = ‖(v(1), w(1))‖Dκ,κ′T

‖X(1)‖Xκ1 + ‖(v(2), w(2))‖Dκ,κ′T

‖X(2)‖Xκ1 .

The term ‖Φ(1)
t − Φ

(2)
t ‖L∞ is dominated as follows:

‖Φ(1)
t − Φ

(2)
t ‖L∞ . ‖X(1) −X(2)‖XκT + t−

2−3κ
6 ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

.

Setting C3 = ‖X(1)‖Xκ1 + ‖X(2)‖Xκ1 , we see

‖Φ(1)
t 4X

(1),
t − Φ

(2)
t 4X

(2),
t ‖C−1−κ

. (C1 + t−
2−3κ

6 C2)‖X(1) −X(2)‖XκT

+

{
‖X(1) −X(2)‖XκT + t−

2−3κ
6 ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

}
C3

. (C1 + C2 + C3)(1 + t−
2−3κ

6 )

×
{
‖X(1) −X(2)‖XκT + ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

}
,

which implies the conclusion.

Proposition 4.19. For any (v(1), w(1)), (v(2), w(2)) ∈ Dκ,κ
′

T , we have

‖M1

(v
(1)
0 ,w

(1)
0 ),X(1)

(v(1), w(1))−M1

(v
(2)
0 ,w

(2)
0 ),X(2)

(v(2), w(2))‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

≤ C3‖v(1)0 − v
(2)
0 ‖C− 2

3
+κ′ +C4T

1−κ′
2

(
‖X(1)−X(2)‖Xκ1 + ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

)
.

Here, C3 and C4 are positive constants depending only on κ, κ′, µ, ν, ‖X(i)‖Xκ1 and
‖(v(i), w(i))‖Dκ,κ′T

. In particular, they are given by at most first-order polynomials in

‖X(i)‖Xκ1 and ‖(v(i), w(i))‖Dκ,κ′T

.

Proof. The assertion follows from Lemma 4.18 and the fact that

M1
X(1)(v

(1), w(1))−M1
X(2)(v

(2), w(2))

= P 1
t (v

(1)
0 − v

(2)
0 ) +

∫ t

0

P 1
t−s{FX(1)(v(1), w(1))(s)− FX(2)(v(2), w(2))(s)} ds.

By a similar argument to the proof of Proposition 4.17, we see the conclusion.
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4.3.2 Properties ofM2

Here, we consider properties ofM2. Let 0 < T ≤ 1. We fix X ∈ X κ1 and write Z = X

and W = X . We denote by δst the difference operator, that is, δstf = f(t)− f(s).

First of all, we study com(v, w) defined by (4.7). Let v0 ∈ C−
2
3+κ

′
and (v, w) ∈ Dκ,κ

′

T .
For notational simplicity, we set Φ1 = −2ν(−νW + v + w), Φ2 = −ν(−νW + v + w),
Ψ1 = X , Ψ2 = X and

Ut =

∫ t

0

P 1
t−s[F (v, w)(s)] ds− Φ1

t 4Xt − Φ2
t 4Xt .

Remark 4.20. The implicit constants which will appear in Lemma 4.21, 4.22 and 4.23
depend only on κ, κ′, µ, ν and ‖X‖Xκ1 . In particular, the constants are given by an at
most first-order polynomials in ‖X‖Xκ1 .

Lemma 4.21. For every 0 < t ≤ T , we have the following:

(1) We have

Ut = −Φ1
t 4 P 1

t X0 − Φ2
t 4 P 1

t X0

+
∑
i=1,2

{∫ t

0

δstΦ
i 4 P 1

t−sΨ
i
s ds−

∫ t

0

[P 1
t−s,Φ

i
s4]Ψi

s ds

}
.

(2) We have Ut ∈ C1+κ
′

and

‖Ut‖C1+κ′ . 1 + t−κ
′
{1 + ‖vt‖L∞ + ‖wt‖L∞}

+

∫ t

0

(t− s)−
3+2κ

4 ‖vs‖C 1
2
+κ′ ds+

∫ t

0

(t− s)−
1+2κ′

2 ‖ws‖C1+2κ′ ds

+

∫ t

0

(t− s)−
2+κ+κ′

2 {‖δstv‖L∞ + ‖δstw‖L∞} ds.

Proof. We show the first assertion. For (Φ,Ψ) = (Φ1,Ψ1), Proposition 4.10 implies

P 1
t−s[Φ4 Ψ](s) = P 1

t−s[Φs 4Ψs]

= Φs 4 P 1
t−sΨs + [P 1

t−s,Φs4]Ψs

= Φt 4 P 1
t−sΨs − δstΦ 4 P 1

t−sΨs + [P 1
t−s,Φs4]Ψs.

Hence∫ t

0

P 1
t−s[Φ 4Ψ](s) ds

= Φt 4
∫ t

0

P 1
t−sΨs ds−

∫ t

0

δstΦ 4 P 1
t−sΨs ds+

∫ t

0

[P 1
t−s,Φs4]Ψs ds.

Substituting
∫ t
0
P 1
t−sΨs ds = Xt − P 1

t X0 to the first term in the above, we see∫ t

0

P 1
t−s[Φ 4Ψ](s) ds− Φt 4Xt

= −Φt 4 P 1
t X0 −

∫ t

0

δstΦ 4 P 1
t−sΨs ds+

∫ t

0

[P 1
t−s,Φs4]Ψs ds. (4.11)

Since a similar equality holds for (Φ,Ψ) = (Φ2,Ψ2), we have verified the first assertion.
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For the second assertion, we estimate the terms in (4.11). For the first term in (4.11),
we use 1 + κ′ = 1− κ+ 2 · κ+κ

′

2 and obtain

‖Φ1
t 4 P 1

t X0 ‖C1+κ′ . ‖Φ
1
t‖L∞‖P 1

t X0 ‖C1+κ′

. ‖ − νWt + vt + wt‖L∞ · t−
κ+κ′

2 ‖X0 ‖C1−κ

. t−κ
′
{1 + ‖vt‖L∞ + ‖wt‖L∞}.

We estimate the second term in (4.11). From 1 + κ′ = −1− κ+ 2 · 2+κ+κ
′

2 , we have

‖δstΦ 4 P 1
t−sΨs‖C1+κ′ . ‖δstΦ‖L∞‖P

1
t−sΨs‖C1+κ′

. ‖δstΦ‖L∞ · (t− s)−
2+κ+κ′

2 ‖Ψs‖C−1−κ

. (t− s)−
2+κ+κ′

2 ‖δstΦ‖L∞ .

Note

‖δstΦ‖L∞ . ‖δstv‖L∞ + ‖δstw‖L∞ + ‖δstW‖L∞ ,

‖δstW‖L∞ . ‖δstW‖Cκ′−κ . (t− s) 1
4−

1
2κ
′
‖W‖

C
1
4
− 1

2
κ′

T Cκ′−κ
.

For the latter estimate, see Remark 4.15. From them, we have∥∥∥∥∫ t

0

δstΦ 4 P 1
t−sΨs ds

∥∥∥∥
C1+κ′

.
∫ t

0

(t− s)−
2+κ+κ′

2 {‖δstv‖L∞ + ‖δstw‖L∞ + (t− s) 1
4−

1
2κ
′
} ds

.
∫ t

0

(t− s)−
2+κ+κ′

2 {‖δstv‖L∞ + ‖δstw‖L∞} ds+ 1.

The last inequality follows from
∫ t
0
(t − s)−1−κ+κ

′
2 + 1

4−
1
2κ
′
ds < ∞. The estimate of the

second term has finished.
Lastly, we estimate the third term. We consider the contribution of W , v and w

separably. In the proof, we use Proposition 4.10. Note

1 + κ′ =

(
1

2
− κ
)

+ (−1− κ) + 2 · 3 + 4κ+ 2κ′

4

=

(
1

2
+ κ′

)
+ (−1− κ) + 2 · 3 + 2κ

4

= (1− κ′ + κ) + (−1− κ) + 2 · 1 + 2κ′

2
.

We also use ‖Ψs‖C−1−κ . 1. For W , we see∥∥∥∥∫ t

0

[P 1
t−s,Ws4]Ψs ds

∥∥∥∥
C1+κ′

.
∫ t

0

(t− s)−
3+4κ+2κ′

4 ‖Ws‖C 1
2
−κ‖Ψs‖C−1−κ ds

. 1.

For v and w, we have∥∥∥∥∫ t

0

[P 1
t−s, vs4]Ψs ds

∥∥∥∥
C1+κ′

.
∫ t

0

(t− s)−
3+2κ

4 ‖vs‖C 1
2
+κ′ ds,
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∥∥∥∥∫ t

0

[P 1
t−s, ws4]Ψs ds

∥∥∥∥
C1+κ′

.
∫ t

0

(t− s)−
1+2κ′

2 ‖ws‖C1−κ′+κ ds

.
∫ t

0

(t− s)−
1+2κ′

2 ‖ws‖C1+2κ′ ds.

The proof is completed.

Lemma 4.22. For any (v, w) ∈ Dκ,κ
′

T and 0 < t ≤ T , we have com(v, w)(t) ∈ C1+κ′ and

‖ com(v, w)(t)‖C1+κ′ . 1 + t−
5
6 ‖v0‖C− 2

3
+κ′ + t−κ

′
(1 + ‖vt‖L∞ + ‖wt‖L∞)

+

∫ t

0

(t− s)−
3+2κ′

4 ‖vs‖C 1
2
+κ′ ds+

∫ t

0

(t− s)−
1+2κ′

2 ‖ws‖C1+2κ′ ds

+

∫ t

0

(t− s)−1−
κ+κ′

2 (‖δstv‖L∞ + ‖δstw‖L∞) ds.

Proof. From definition (4.7), we have com(v, w)(t) = P 1
t v0 + Ut.

Noting 1 + κ′ =
(
− 2

3 + κ′
)

+ 2 · 56 = 1
2 + κ′ + 2 · 14 and using Proposition 4.8, we see

‖P 1
t v0‖C1+κ′ . t−

5
6 ‖v0‖C− 2

3
+κ′ ,∥∥∥∥∫ t

0

P 1
t−svs ds

∥∥∥∥
C1+κ′

≤
∫ t

0

‖P 1
t−svs‖C1+κ′ ds .

∫ t

0

(t− s)− 1
4 ‖vs‖C 1

2
+κ′ ds.

Note that the last term smaller than or equal to
∫ t
0
(t− s)− 3+2κ

4 ‖vs‖C 1
2
+κ′ ds. Combining

these and Lemma 4.21, we see the conclusion.

Lemma 4.23. For any (v, w) ∈ Dκ,κ
′

T and 0 < t ≤ T , we have

‖ com(v, w)(t)‖C1+κ′ . C(1 + t−
5
6 ‖v0‖C− 2

3
+κ′ + t−

1+2κ+2κ′
2 ‖(v, w)‖Dκ,κ′T

).

Proof. We estimate each term in the upper bound of ‖ com(v, w)(t)‖C1+κ′ in Lemma 4.22
by using Remark 4.15. The first three terms are estimated as follows:

1 + t−
5
6 ‖v0‖C− 2

3
+κ′ + t−κ

′
(1 + ‖v(t)‖L∞ + ‖w(t)‖L∞)

. 1 + t−
5
6 ‖v0‖C− 2

3
+κ′ + t−(κ′+ 2−3κ

6 )(1 + ‖(v, w)‖Dκ,κ′T

).

To estimate other terms, we use the fact that the inequality∫ t

0

(t− s)−θ1s−θ2 ds . t1−θ1−θ2

holds for 0 < θ1, θ2 < 1 and t > 0. From Remark 4.15, we see∫ t

0

(t− s)−
3+2κ′

4 ‖vs‖C 1
2
+κ′ ds+

∫ t

0

(t− s)−
1+2κ′

2 ‖ws‖C1+2κ′ ds

. t−( 1
3+

1
2κ
′)‖v‖

L
5
6
−κ′,1−κ′,1− 1

2
κ′

T

+ t−( 1
4+2κ′+κ)‖w‖

L
1−κ′+κ, 3

2
−2κ′,1−κ′

T

and∫ t

0

(t− s)−
(
1+κ+κ′

2

)
(‖δstv‖L∞ + ‖δstw‖L∞) ds

. t−
2+3κ+3κ′

6 ‖v‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

+ t−
1+3κ+κ′

2 ‖w‖
L

1−κ′+κ, 3
2
−2κ′,1−κ′

T

.

Combining them, we see the estimate of ‖ com(v, w)(t)‖C1+κ′ .
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Lemma 4.24. For any (v, w) ∈ Dκ,κ
′

T and 0 < t ≤ T , we have

‖G(v, w)(t)‖
C−

1
2
−2κ ≤ C

(
1 + t−

5
6 ‖v0‖C− 2

3
+κ′ + t−

2−3κ
2

(
‖(v, w)‖3

Dκ,κ
′

T

+ ‖(v, w)‖Dκ,κ′T

))
.

Here, C is a positive constant depending only on κ, κ′, µ, ν and ‖X‖Xκ1 and it is given by
a third-order polynomial in ‖X‖Xκ1 .

Proof. We write u2 = v + w. It follows from Remark 4.15 that

‖G1(v, w)(t)‖L∞ . ‖vt + wt‖3L∞ . t−
2−3κ

2 ‖(v, w)‖3
Dκ,κ

′
T

.

To estimate G2(v, w)(t), we use the Bony decomposition. Applying the decomposition
to u2(t) ∈ C 1

2+κ
′
, we see

‖u2(t)2‖
C

1
2
+κ′ = ‖u2(t)� u2(t) + 2u2(t)4 u2(t)‖

C
1
2
+κ′

. ‖u2(t)‖2
C

1
2 ( 1

2
+κ′) + 2‖u2(t)‖L∞‖u2(t)‖

C
1
2
+κ′

. t−
11−6κ′

12 ‖(v, w)‖2
Dκ,κ

′
T

+ 2t−
2−3κ

6 ‖(v, w)‖Dκ,κ′T

· t− 7
12 ‖(v, w)‖Dκ,κ′T

= t−
11−6κ′

12 ‖(v, w)‖2
Dκ,κ

′
T

+ 2t−
11−6κ

12 ‖(v, w)‖2
Dκ,κ

′
T

. t−
11−6κ

12 ‖(v, w)‖2
Dκ,κ

′
T

.

In these estimate, we used 0 < κ < κ′ < 1/18 (see Remark 4.15). The term
‖u2(t)u2(t)‖

C
1
2
+κ′ has the same bound. Since G2(v, w)(t) = a1u2(t)2 + a2u2(t)u2(t) for

some a1, a2 ∈ C−
1
2−κ and u2(t) ∈ C 1

2+κ
′
, we have

‖G2(v, w)(t)‖
C−

1
2
−κ . ‖u2(t)2‖

C
1
2
+κ′ + ‖u2(t)u2(t)‖

C
1
2
+κ′

. t−
11−6κ

12 ‖(v, w)‖2
Dκ,κ

′
T

.

Noting ‖(v, w)‖2
Dκ,κ

′
T

≤ ‖(v, w)‖3
Dκ,κ

′
T

+ ‖(v, w)‖Dκ,κ′T

, we see the estimate.

Since G3(v, w)(t) = b1u2(t) + b2u2(t) + (ν + 1)u2(t) for some b1, b2 ∈ C−
1
2−κ, we have

‖G3(v, w)(t)‖
C−

1
2
−κ . ‖u2(t)‖

C
1
2
+κ′ . t−

7
12 ‖(v, w)‖Dκ,κ′T

.

The estimates of G4(v, w)(t) and G5(v, w)(t) are obtained easily. The terms which
admits the lowest regularity in the defintions of G4(v, w)(t) are Wt 5X and Wt 5X

and their regularity is − 1
2 − 2κ. Therefore we obtain ‖G4(v, w)(t)‖

C−
1
2
−2κ . 1. From

Proposition 4.6, we see

‖G5(v, w)(t)‖
C

1
2
+κ′−2κ . ‖u2‖C 1

2
+κ′ . t−

7
12 ‖(v, w)‖Dκ,κ′T

.

From the definition of G6(v, w)(t), we have

‖G6(v, w)(t)‖Cκ′−κ . ‖ com(v, w)(t)�Xt ‖C1+κ′+(−1−κ) + ‖com(v, w)(t)�Xt ‖C1+κ′+(−1−κ)

. ‖ com(v, w)(t)‖C1+κ′

. C(1 + t−
5
6 ‖v0‖C− 2

3
+κ′ + t−

1+2κ+2κ′
2 ‖(v, w)‖Dκ,κ′T

).

In the last line, we used Lemma 4.23.
For τ = , , we see

‖wt �Xτ
t ‖C(1+κ′)+(−1−κ) . ‖wt‖C1+κ′‖X

τ
t ‖C−1−κ . t−

3+2κ+κ′
4 ‖(v, w)‖Dκ,κ′T

,
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‖u2(t)5Xτ
t ‖
C(

1
2
+κ′)+(−1−κ) . ‖u2(t)‖

C
1
2
+κ′‖Xτ

t ‖C−1−κ . t−
7
12 ‖(v, w)‖Dκ,κ′T

.

In these estimates, we used Remark 4.15 . We obtain

‖G7(v, w)(t)‖Cκ′−κ . t−
3+4κ+2κ′

4 ‖(v, w)‖Dκ,κ′T

,

‖G8(v, w)(t)‖
C−

1
2
+κ′−κ . t−

7
12 ‖(v, w)‖Dκ,κ′T

.

The proof is completed.

Proposition 4.25. The map M2 : Dκ,κ
′

T → L1−κ′+κ, 32−2κ
′,1−κ′

T is well-defined and, for

any (v, w) ∈ Dκ,κ
′

T , we have

‖M2(v, w)‖
L

1−κ′+κ, 3
2
−2κ′,1−κ′

T

≤ C1(1 + ‖v0‖C− 2
3
+κ′ + ‖w0‖C− 1

2
−2κ)

+ C2T
3
2κ
(
‖(v, w)‖3

Dκ,κ
′

T

+ ‖(v, w)‖Dκ,κ′T

)
.

Here, C1 and C2 are positive constants depending only on κ, κ′, µ, ν and ‖X‖Xκ1 . They
are given by at most third-order polynomials in ‖X‖Xκ1 .

Proof. Recall (4.9). It follows from Proposition 4.9 that

‖(t 7→ P 1
t w0)t≥0‖

L
1−κ′+κ, 3

2
−2κ′,1−κ′

T

. ‖w0‖C− 1
2
−2κ .

Lemma 4.24 implies G(v, w) ∈ E
2−3κ

2

T C− 1
2−2κ and

‖G(v, w)‖
E

2−3κ
2

T C−
1
2
−2κ
≤ C

(
1 + ‖v0‖C− 2

3
+κ′ + ‖(v, w)‖3

Dκ,κ
′

T

+ ‖(v, w)‖Dκ,κ′T

)
.

Proposition 4.9 implies∥∥∥∥(t 7→
∫ t

0

P 1
t−sG(v, w)(s) ds)t≥0

∥∥∥∥
L

1−κ′+κ, 3
2
−2κ′,1−κ′

T

. T
3
2κ‖G(v, w)‖

E
2−3κ

2
T C−

1
2
−2κ

.

Combining these, we have shown the assertion.

We also have local Lipschitz continuity ofM2.

Proposition 4.26. For any (v(1), w(1)), (v(2), w(2)) ∈ Dκ,κ
′

T , we have

‖M2

(v
(1)
0 ,w

(1)
0 ),X(1)

(v(1), w(1))−M2

(v
(2)
0 ,w

(2)
0 ),X(2)

(v(2), w(2))‖
L

5
6
−κ′,1−κ′,1− 1

2
κ′

T

≤ C3

(
‖v(1)0 − v

(2)
0 ‖C− 2

3
+κ′ + ‖w(1)

0 − w
(2)
0 ‖C− 1

2
−2κ

)
+ C4T

3
2κ
(
‖X(1) −X(2)‖XκT + ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

)
Here, C3 and C4 are positive constants depending only on κ, κ′, µ, ν, ‖X(i)‖Xκ1 and
‖(v(i), w(i))‖Dκ,κ′T

. In particular, they are given by at most second-order polynomials in

‖X(i)‖Xκ1 and ‖(v(i), w(i))‖Dκ,κ′T

.

Proof. We can show the assertion by a similar way as Proposition 4.25.
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4.4 Local existence and uniqueness

We show local well-posedness of CGL (1.1). This is the most important theorem in
this section.

Theorem 4.27. Let 0 < κ < κ′ < 1/18. There exists a continuous function T̃∗ : C− 2
3+κ

′ ×
C− 1

2−2κ ×X κ1 → (0, 1] such that the following (1) and (2) hold:

(1) For every (v0, w0) ∈ C− 2
3+κ

′ × C− 1
2−2κ and X ∈ X κ1 , set T∗ = T̃∗(v0, w0, X). Then, the

system (4.10) admits a unique solution (v, w) ∈ Dκ,κ
′

T∗
and there is a positive constant

C depending only on µ, ν, κ, κ′, T∗ and ‖X‖Xκ1 such that

‖(v, w)‖Dκ,κ′T∗
≤ C

(
1 + ‖v0‖C− 2

3
+κ′ + ‖w0‖C− 1

2
−2κ

)
.

(2) Let {(v(n)0 , w
(n)
0 )}∞n=1 and {X(n)}∞n=1 converge to (v0, w0) in C− 2

3+κ
′ × C− 1

2−2κ and X

in X κ1 , respectively. Set T (n)
∗ = T̃∗(v

(n)
0 , w

(n)
0 , X(n)) and let (v(n), w(n)) be a unique

solution on [0, T
(n)
∗ ] to the system (4.10) with the initial condition (v

(n)
0 , w

(n)
0 ) driven

by X(n). Then, for every 0 < t < T∗, we have

lim
n→∞

‖(v(n), w(n))− (v, w)‖Dκ,κ′t
= 0.

In the proof the function T̃∗ is concretely given by T̃∗(v0, w0, X) = T∗, where T∗ is
defined by (4.13) and (4.14). We prove the theorem by using the properties ofM we
have just shown.

For every 0 < T ≤ 1 and M > 0, we define

BT,M = {(v, w) ∈ Dκ,κ
′

T ; ‖(v, w)‖Dκ,κ′T

≤M}.

Propositions 4.17 and 4.25 imply

‖M(v, w)‖Dκ,κ′T

≤ C1

(
1 + ‖v0‖C− 2

3
+κ′ + ‖w0‖C− 1

2
−2κ

)
+ C2T

3
2κ(‖(v, w)‖3

Dκ,κ
′

T

+ ‖(v, w)‖Dκ,κ′T

).

Here, C1 and C2 are positive constants depending only on κ, κ′, µ, ν and ‖X‖Xκ1 . In
particular, they are given by at most third-order polynomials in ‖X‖Xκ1 . Propositions 4.19
and 4.26 imply

‖M
(v

(1)
0 ,w

(1)
0 ),X(1)(v

(1), w(1))−M
(v

(2)
0 ,w

(2)
0 ),X(2)(v

(2), w(2))‖Dκ,κ′T

≤ C3(‖v(1)0 − v
(2)
0 ‖C− 2

3
+κ′ + ‖w(1)

0 − w
(2)
0 ‖C− 1

2
−2κ)

+ C4T
3
2κ(‖X(1) −X(2)‖XκT + ‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

). (4.12)

Here, C3 and C4 are positive constants depending only on κ, κ′, µ, ν, ‖X(i)‖Xκ1 and
‖(v(i), w(i))‖Dκ,κ′T

. In particular, they are given by at most second-order polynomials in

‖X(i)‖Xκ1 and ‖(v(i), w(i))‖Dκ,κ′T

.

Proof of Theorem 4.27. For the proof of existence, we use Propositions 4.17 and 4.25.
We will show the mapM is contraction from BT,M to itself for small T > 0 and suitable
M > 0 and obtain the existence of solution by the fixed point theorem. Let M ≥ 1. For

any (v, w) ∈ Dκ,κ
′

T , we have

‖M(v, w)‖Dκ,κ′T

≤ (C1 + C2)(1 + ‖v0‖C− 2
3
+κ′ + ‖w0‖C− 1

2
−2κ + T

3
2κM3)
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≤ (C1 + C2)(1 + ‖v0‖C− 2
3
+κ′ + ‖w0‖C− 1

2
−2κ)(1 + T

3
2κM3).

In a similar way, we see

‖M(v(1), w(1))−M(v(2), w(2))‖Dκ,κ′T

≤ C‖X‖Xκ1 T
3
2κ(1 +M2)‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T

.

Here C‖X‖Xκ1
> 0 is given by a second-order polynomial with respect to ‖X‖XκT . Set

M∗ = 2(C1 + C2)(1 + ‖v0‖C− 2
3
+κ′ + ‖w0‖C− 1

2
−2κ) ∨ 1, (4.13)

T
3
2κ
∗ = M−3∗ ∧ {2C‖X‖Xκ1 (1 +M2

∗ )}−1 ∧ 1. (4.14)

Then

‖M(v, w)‖Dκ,κ′T∗
≤M∗, (4.15)

‖M(v(1), w(1))−M(v(2), w(2))‖Dκ,κ′T∗
≤ 1

2
‖(v(1), w(1))− (v(2), w(2))‖Dκ,κ′T∗

. (4.16)

We see that the mapM is contraction on BT∗,M∗ Therefore there exists a unique fixed
point (v, w) ∈ BT∗,M∗ ofM, which is a solution on [0, T∗].

Next we show that the solution on [0, T∗] is unique. Let (v(1), w(1)), (v(2), w(2)) ∈ Dκ,κ
′

T∗

are solutions with a common initial condition (v0, w0). We show that (v(1), w(1)) =

(v(2), w(2)). Taking M > 0 such that

‖(v(1), w(1))‖Dκ,κ′T∗
∨ ‖(v(2), w(2))‖Dκ,κ′T∗

≤M,

the similar arguments as above ensure that M is a contraction on BT∗∗,M , where
T∗∗(≤ T∗) depends on M . Hence (v(1), w(1)) and (v(2), w(2)) coincide on [0, T∗∗]. We can
continue this procedure on [T∗∗, 2T∗∗], [2T∗∗, 3T∗∗], . . . . However, in these steps, we need
to check that (ṽ(i), w̃(i))(t) = (v(i), w(i))(t+ T∗∗) satisfies

‖(ṽ(i), w̃(i))‖Dκ,κ′T∗−T∗∗
≤M,

since for example

‖ṽ(i)‖
E

5
6
−κ′

T∗−T∗∗C
1−κ′

= sup
T∗∗<t≤T∗

(t− T∗∗)
5
6−κ

′
‖v(i)(t)‖C1−κ′

≤ sup
0<t≤T∗

t
5
6−κ

′
‖v(i)(t)‖C1−κ′

= ‖v(i)‖
E

5
6
−κ′

T∗ C1−κ′
.

Obviously (ṽ(i), w̃(i)) is a solution with the initial condition (v(1), w(1))(T∗∗) =

(v(2), w(2))(T∗∗). Therefore we can iterate the above arguments on [kT∗, (k + 1)T∗∗ ∧ T ]

for k = 1, 2, . . . and thus (v(1), w(1)) and (v(2), w(2)) coincide on [0, T∗].
We show the last assertion. From (4.13) and (4.14), we see that T∗ continuously

depends on the initial condition (v0, w0) and the driving vector X. Since C2 depends on
the driving vector X continuously, M∗ is a continuous map from (v0, w0) and X. From
this fact and the continuity of C‖X‖Xκ1

, we see the continuity of T∗. Hence we have

T
(n)
∗ → T∗. Without loss of generality, for fixed t < T∗, we assume that T (n)

∗ > t for
every n. From (4.15) and the continuity of M∗ with respect to (v0, w0) and X, we see
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supn ‖(v(n), w(n))‖Dκ,κ′T

< ∞. From this fact and (4.12), we can choose C ′3 and C ′4 such

that

‖(v, w)− (v(n), w(n))‖Dκ,κ′t
≤ C ′3

(
‖v0 − v(n)0 ‖C− 2

3
+κ′ + ‖w0 − w(n)

0 ‖C− 1
2
−2κ

)
+ C ′4t

3
2κ
(
‖X −X(n)‖Xκ1 + ‖(v, w)− (v(n), w(n))‖Dκ,κ′t

)
.

Hence we have (v(n), w(n)) → (v, w) in [0, t∗] for some t∗ ≤ t depending on C ′3 and C ′4.
Iterating this argument, we have the convergence in [0, t]. The proof is completed.

Remark 4.28. If (v0, w0) ∈ C1−κ′ × C 3
2−2κ

′
, we obtain the local well-posedness on the

space L1−κ′,1−κ′2
T × L

3
2−κ

′,1−κ′
T without explosion at t = 0 by similar arguments.

Proposition 4.29. For every (v0, w0) ∈ C− 2
3+κ

′ × C− 1
2−2κ and X ∈ X κT , there exists

Tsur ∈ (0,∞] such that the system (4.10) has a unique solution (v, w) ∈ Dκ,κ
′

t for every
t < Tsur, and

lim
t↑Tsur

(‖v‖
CtC−

2
3
+κ′ + ‖w‖

CtC−
1
2
−2κ) =∞

unless Tsur = ∞. Furthermore, the mapping from (v0, w0, X) to the maximal solution

(v, w) is continuous in the sense that, for a sequence {(v(n)0 , w
(n)
0 , X(n))} which converges

to (v0, w0, X), we have Tsur ≤ lim infn→∞ T
(n)
sur and

‖(v(n), w(n))− (v, w)‖Dκ,κ′t
→ 0

for every t < Tsur.

Proof. Let (v, w) ∈ Dκ,κ
′

T∗
be a unique solution on [0, T∗] shown in Theorem 4.27 Because

of Remark 4.28, we can start from (v, w)(T∗) ∈ C1−κ
′ × C 3

2−2κ
′

and construct a solution

(v̄, w̄) ∈ Dκ,κ
′

T∗∗
with (v̄, w̄)(0) = (v, w)(T∗). Obviously the extended function

(v̂, ŵ)(t) =

{
(v, w)(t) t ∈ [0, T∗]

(v̄, w̄)(t− T∗) t ∈ [T∗, T∗ + T∗∗]

belongs to Dκ,κ
′

T∗+T∗∗
and solves the system (4.13). Uniqueness on [0, T∗ + T∗∗] also holds.

We can iterate this argument until the time Tsur, which is a supremum up to when the
existence and uniqueness hold.

The lower semi-continuity of Tsur follows from the continuity of T∗. Let
(v

(n)
0 , w

(n)
0 , X(n)) → (v0, w0, X). For any fixed t < Tsur, we can construct a unique so-

lution in [0, t] by gluing finite number of local solutions as above. In this procedure, each
of length of time interval converges, so that the solution (v(n), w(n)) exists in [0, t] for

sufficiently large n. This implies t < lim infn→∞ T
(n)
sur .

Now assume that Tsur <∞. If

lim
t↑Tsur

(‖v‖
CtC−

2
3
+κ′ + ‖w‖

CtC−
1
2
−2κ) <∞,

we can start from (v, w)(Tsur − δ) ∈ C−
2
3+κ

′ × C− 1
2−2κ for small δ > 0 and construct a

solution on [0, T∗], where T∗ is uniform over δ. This implies that for sufficiently small
δ > 0, we can construct a solution on [Tsur − δ

2 , Tsur + δ
2 ] without explosion at the starting

time. This is a contradiction, so we obtain the existence and uniqueness up to survival
time with respect to the weaker norms.
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4.5 Renormalized equation

In this subsection, we show that a solution in the sense of Theorem 4.27 to the
equation with a driving vector constructed from a driving force ξ ∈ CTCβ for β > −2 and
renormalization constants solves the renormalized equation.

We fix complex constants c1, c2,1 and c2,2 and define functions Xτ as in Table 1 for

every graphical symbols τ and construct the driving vector X = (X , . . . ,X ). The Y/N in
the Driver column in Table 1 indicates whether the term Xτ is included in the definition
of a driving vector or not. The term Xτ with Driver column N is going to be used to
define other terms. For the definition of I(∗, •), see (4.3). Note that we can interpret
the product in Table 1 in the usual sense because X is a C-valued continuous function
by the assumption ξ ∈ CTCβ for β > −2. The number in Regularity column denotes the
exponent ατ of the Hölder-Besov space Cατ which the term Xτ takes values in. Precisely,
ατ means ατ − κ for any κ > 0 small enough.

Driver Symbol Definition Regularity ατ

Y X (= Z) I(X0, ξ) −1/2

N X X −1/2

Y X (X )2 −1

Y X X X − c1 −1

N X (X )2 −1

N X X X − 2c1X −3/2

Y X I(X0 , X ) +1

Y X I(X0 , X ) +1

Y X (= W ) I(X0 , X ) +1/2

Y X X �X 0

Y X X �X 0

Y X X �X 0

Y X X �X − 2c2,1 0

Y X X �X − c2,2 0

Y X X �X 0

Y X X �X − 2c2,2X −1/2

Y X X �X − 2c2,1X −1/2

Table 1: Definition of a driving vectors

The next theorem is about the renormalized equation.

Theorem 4.30. Let 0 < κ < κ′ < 1/18. Let ξ ∈ CTCβ and X0, X0 , X0 , X0 ∈ Cβ+2

for β > −2. Construct X ∈ X κ1 as in Table 1. Let (v, w) ∈ Dκ,κ
′

T be the solution to
(4.10) with the initial condition (v0, w0) ∈ C− 2

3+κ
′ × C− 1

2−2κ for the driving vector X. Set
u = Z − νW + v + w and c = 2(c1 − νc2,1 − 2νc2,2). Then u solves

∂tu = (i + µ)4u+ ν(1− |u|2)u+ νcu+ ξ, t > 0, x ∈ T3.

with the initial condition u0 = Z0 − νW0 + v0 + w0 in the usual mild sense.

The next lemma plays a key role to prove Theorem 4.30.
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Lemma 4.31. Let (v, w) be the solution to (4.10). Set u2 = v + w. Then, we have

F (v, w) +G(v, w)

= −ν
{

(−νW + u2)2(Z − νW + u2) + 2(−νW + u2)(−νW + u2)Z

+ 2(−νW + u2)X + (−νW + u2)X

+ 2(νc2,1 + 2νc2,2)(Z − νW + u2)
}

+ (ν + 1)(Z − νW + u2).

(4.17)

Proof. It follows from the definition that

G1(v, w) +G2(v, w) = −ν
{
u22(Z − νW ) + u2(u22 + 2u2(Z − νW ))

}
. (4.18)

We will show

G3(v, w) +G4(v, w) +G5(v, w) (4.19)

= −ν
{
u2(2ννWW − 2νWZ − 2νWZ) + u2(ν2W 2 − 2νWZ)

− ν2νW 2W + ν2W 2Z + 2ννWWZ

− 4ν((−νW + u2) 4X )�X

− 2ν((−νW + u2)4X )�X

− 2ν((−νW + u2)4X )�X

− ν((−νW + u2)4X )�X

− 2νW (�+ 5)X − νW (� +5)X

+ 2(νc2,1 + 2νc2,2)(Z − νW + u2)
}

+ (ν + 1)(Z − νW + u2)

and

G6(v, w) +G7(v, w) +G8(v, w) (4.20)

= −ν
{

2u2(�+ 5)X + u2(� +5)X

+ 4ν((−νW + u2)4X )�X

+ 2ν((−νW + u2)4X )�X

+ 2ν((−νW + u2)5X )�X

+ ν((−νW + u2)4X ) �X
}
.

Summing them up, we obtain

G1(v, w) + · · ·+G8(v, w)

= −ν
{{
u22 + 2u2(Z − νW ) + ν2W 2 − 2νWZ

}
u2

+
{
u22 − 2νWu2 + 2Zu2 + ν2W 2 − 2νWZ

}
(−νW )

+
{
u22 − 2νWu2 + ν2W 2

}
Z

+ 2(−νW + u2)(� +5)X + (−νW + u2)(�+ 5)X

+ 2(νc2,1 + 2νc2,2)(Z − νW + u2)
}

+ (ν + 1)(Z − νW + u2) + cv − w
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= −ν
{

(−νW + u2)2(Z − νW + u2) + 2(−νW + u2)(−νW + u2)Z

+ 2(−νW + u2)(� +5)X + (−νW + u2)(�+ 5)X

+ 2(νc2,1 + 2νc2,2)(Z − νW + u2)
}

+ (ν + 1)(Z − νW + u2),

which implies the conclusion.
For the rest of this proof, we prove (4.19) and (4.20). To show (4.19), we use the

definition of X and Proposition 4.6. From them, we see

WX + 4νR(W,X ,X ) = W{(X �X )− c2,2}+ (W 4X )�X −W (X �X )

= (W 4X )�X − c2,2W

A similar argument implies

WX +R(W,X ,X ) = (W 4X )�X

WX +R(W,X ,X ) = (W 4X )�X

WX +R(W,X ,X ) = (W 4X )�X − 2c2,1W.

Applying these identities and the definitions of X and X , we obtain

G4(v, w) = −ν
{
− ν2νW 2W + ν2W 2Z + 2ννWWZ

+ 4ν2{(W 4X )�X − c2,2W}+ 2ν2(W 4X )�X

+ 2νν(W 4X )�X + νν{(W 4X )�X − 2c2,1W}

− 2ν(W �X − 2c2,2X )− 2νW 5X

− ν(W �X − 2c2,1X )− νW 5X
}

+ (ν + 1)(Z − νW )

= −ν
{
− ν2νW 2W + ν2W 2Z + 2ννWWZ

+ 4ν(νW 4X )�X + 2ν(νW 4X )�X

+ 2ν(νW 4X )�X + ν(νW 4X ) �X

− 2νW (� +5)X − νW (� +5)X

+ 2(νc2,1 + 2νc2,2)(Z − νW )
}

+ (ν + 1)(Z − νW ).

We use the similar argument to obtain

G3(v, w) +G5(v, w) = −ν
{
u2(2ννWW − 2νWZ − 2νWZ) + u2(ν2W 2 − 2νWZ)

− 4ν(u2 4X )�X − 2ν(u2 4X )�X

− 2ν(u2 4X )�X − ν(u2 4X )�X

+ 2(νc2,1 + 2νc2,2)u2
}

+ (ν + 1)u2.

Combining them, we see (4.19). From the definition of com(v, w), we obtain (4.20). The
proof is completed.
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Proof of Theorem 4.30. Set u2 = v + w, u1 = −νW + u2 and u = Z + u1. Note that u2
solves L1u2 = F (v, w) + G(v, w). Substituting X = ZZ − c and X = Z2 to (4.17), we
have

F (v, w) +G(v, w) = −ν(Z + u1)2(Z + u1) + ν(Z + u1) + 2νc(Z + u1)

+ ν(Z2Z − 2c1Z) + Z + u1

= −νu2u+ νu+ 2νcu+ ν(Z2Z − 2c1Z) + u

where c = c1 − νc2,1 + 2νc2,2. Hence

{∂t − (i + µ)4}u = L1u− u
= L1(Z − νW + u2)− u
= ξ − ν(Z2Z − 2c1Z) + {F (v, w) +G(v, w)} − u
= −νu2u+ νu+ 2νcu+ ξ.

The proof is completed.

5 Proof of convergence of driving vectors

This section is a probabilistic part of proof of Theorem 4.1. In this section, we
construct a driving vector X ∈ X κT associated to the white noise ξ (Theorem 5.9).
After that we derive the expression of renormalization constants cε1, c

ε
2,1 and cε2,2 used

in the construction of X (Proposition 5.21) and obtain the divergence rate of them
(Proposition 5.22).

First of all, we define Ornstein-Uhlenbeck like process Z = Z(t, x), which is a seed
of the driving vector. The process Z is defined as a stationary solution to the following
equation:

∂tZ = {(i + µ)4− 1}Z + ξ.

The solution has a formal expression

Zt = I(ξ)t =

∫ t

−∞
P 1
t−sξs ds =

∑
k∈Z3

(∫ t

−∞
P 1
t−sek ξ̂s(k) ds

)
.

Here, I is defined by (4.4). Since Z is a distribution-valued process, we cannot define
processes such as Z2 and Z2Z a priori. To define such processes, we consider an
approximation {Zε}0<ε<1 of Z and define Z2 and Z2Z as renormalized limits of (Zε)2

and Z2Z in an appreciate topology, respectively. To this end, we recall the smeared noise
{ξε}0<ε<1 defined by (4.1) approximates the white noise ξ. Using the approximation, we
define

Zεt =

∫ t

−∞
P 1
t−sξ

ε
s ds =

∑
k∈Z3

χε(k)

(∫ t

−∞
P 1
t−sek ξ̂s(k) ds

)
. (5.1)

We recall that the Fourier transform {ξ̂(k)}k∈Z3 of ξ has the same law of the white
noise associated to (E,B, dm). Here, E = R× Z3, B is the product σ-field of B(R) and
2Z

3

and dm = dsdk, where ds and dk are the Lebesgue measure on R and the counting
measure Z3, respectively. Note that dm is given by

m(A) =

∫
E

1A(s, k) dsdk =
∑
k∈Z3

∫
R

1A(s, k) ds.

EJP 22 (2017), paper 104.
Page 46/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/


Stochastic complex Ginzburg-Landau equation

We denote by B∗ the set of all elements A ∈ B such that m(A) < ∞. Let M(A) =∑
k∈Z3

∫
R
1A(s, k)ξ̂s(k) ds for A ∈ B∗. Since {M(A);A ∈ B∗} is a jointly isotropic complex

normal such that E[M(A)M(B)] = m(A ∩B), we can define complex multiple Itô-Wiener
integrals Jp,q to calculate (Zε)2 and (Zε)2Zε; see Section A. By using them, we show
their convergence after renormalization and construct the driving vector X.

Throughout this section, we use the notations in Section A and the following:

• We use m = (s, k), n = (t, l), µ = (σ, k) and ν = (τ, l) to denote a generic element in
E.

• For νi = (τi, li), we write ν−i = (τi,−li).
• For p1, . . . , pn ∈ Z\{0}, we write kp1,...,pn = (kp1 , . . . , kpn) and k[p1,...,pn] = kp1 + · · ·+
kpn for shorthand. We use the same abbreviation for s, t, l, m, n, σ, τ , µ and ν.

• We define |k|∗ = 1 + |k| = 1 +
√
k21 + k22 + k23 for k = (k1, k2, k3) ∈ Z3 and |m|∗ =

|(s, k)|∗ = 1 + |s|1/2 + |k|. The same notations are used for l, n, µ and ν.

Let f : Ep+q → C satisfy∫
Rp+q

|f((s, k)1,...,p, (t, l)1,...,q)|2 ds1 · · · dspdt1 · · · dtq <∞

for every k1, . . . , kp, l1, . . . , lq ∈ Z3. For such f , we can define the Fourier transform Ftimef

with respect to time parameters. In particular, if f is integrable and square-integrable
with respect to the time parameters, then Ftimef is given by

[Ftimef ]((σ, k)1,...,p, (τ, l)1,...,q) =

∫
Rp+q

ds1 · · · dspdt1 · · · dtq

× e−2πi(σ1s1+···+σpsp+τ1t1+···+τqtq)f((s, k)1,...,p, (t, l)1,...,q).

5.1 Convergence criteria

In this subsection, we establish convergence criteria of Itô-Wiener integrals.

5.1.1 Cα-valued random variables

We want to define a random field of the form

X(x) = Jp,q(f(x))

for a kernel f ∈ C(T3, L∞p,q) even if f(x) /∈ L2
p,q. Here L∞p,q is the space of the es-

sentially bounded measurable functions defined on Ep+q. Assume now that 〈f, φ〉 =∫
T3 f(x)φ(x) dx ∈ L2

p,q for every φ ∈ D and define the family of random variables

X(φ) = Jp,q(〈f, φ〉).

If there exists a D′-valued random variable X̃ such that

〈X̃, φ〉 = X(φ),

then we write X̃(x) = Jp,q(f(x)).
Now we define Xj(x) = X((F−1ρj)(x − ·)). If X =

∑
j≥−1Xj converges in D′, it

satisfies 〈X,φ〉 = X(φ) for every φ ∈ D, so we can write X(x) = Jp,q(f(x)).

Proposition 5.1. Let α ∈ R and p ∈ (1,∞). If

Cα,p =
∑
j≥−1

2(2αp+1)j

(
sup
x∈T3

E[|Xj(x)|2]

)p
<∞,
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then X =
∑
j≥−1Xj converges in L2p(Ω, Cα) and we have

E[‖X‖2pCα ] . Cα,p.

Proof. Since 〈f, (F−1ρj)(x − ·)〉 = 4jf(x), we have FXj(k) = Jp,q(ρjFf(k)), which
implies that the support of FXj(k) contained in an annulus. Hence we can apply
[BCD11, Lemma 2.69] to X. By a similar argument as [Hos17a, Lemma 5.3], we see
the assertion. (There, the following well-known property of Gaussian measures are
used: on each fixed inhomogeneous Wiener chaos, all the Lp-norms, 1 < p < ∞, are
equivalent.)

5.1.2 Good kernels

We consider a random field of the form

X(t, x) = Jp,q(f(t,x))

for a kernel f(t, ·) ∈ C(T3, L∞p,q) which satisfies the conditions as above for each fixed t.
We are interested in the case that f satisfies the following good conditions.

Definition 5.2. We say that a family {f(t,x)}t≥0,x∈T3 is good if it has the form

f(t,x)(m1,...,p, n1,...,q) = ek[1...p]−l[1...q](x)Ht(m1,...,p, n1,...,q)

for some Ht ∈ L∞p,q which is in L2 with respect to (s1,...,p, t1,...,q) for each fixed
(k1,...,p, l1,...,q) and Qt = FtimeHt satisfies

Qt(µ1,...,p, ν1,...,q) = e−2πi(σ[1...p]+τ[1...q])tQ0(µ1,...,p, ν1,...,q).

For a function f : Ep+q → C, we set

ρ̃jf(m1,...,p, n1,...,q) = ρj(k[1...p] − l[1...q])f(m1,...,p, n1,...,q).

We define

R(σ1,...,p, τ1,...,q) = σ[1...p] + τ[1...q].

In order to estimate the Besov norm of X, it is enough to estimate Q0.

Proposition 5.3. Let {f(t,x)}t≥0,x∈T3 be a good kernel. Assume that there exist β ∈ R,
θ0 ∈ (0, 2] and C > 0 such that

‖|R| θ2 ρ̃jQ0‖L2
p,q
≤ C2(β+θ)j

for every j ≥ −1 and θ ∈ [0, θ0). Then we have

E[‖X‖2pCκT Cα−2κ ] . C2p, (5.2)

for every p ∈ (1,∞), α < −β and κ ∈ [0, θ02 ). Here C0
TCα = CTCα.

Proof. Let 1 < p < ∞ satisfy 2(α + β)p + 1 < 0. For every t ∈ [0,∞), we have Xt ∈ Cα
from

E[‖Xt‖2pCα ] <∞.

We will show this inequality. Set Xj(t, x) = Jp,q(〈f(t,·), (F−1ρj)(x − ·)〉). Since
〈f(t, ·), (F−1ρj)(x− ·)〉 = [4jf(t,·)](x) = ρ̃jf(t,x), we have

E[|Xj(t, x)|2] = ‖ρ̃jf(t,x)‖2L2
p,q

= ‖Ftimeρ̃jf(t,x)‖2L2
p,q

= ‖ρ̃je−2πiRtQ0‖2L2
p,q

= ‖ρ̃jQ0‖2L2
p,q
.
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Using the assumption with θ = 0, we obtain E[|Xj(t, x)|2] ≤ (C2βj)2. Hence

Cα,p =

∞∑
j=−1

2(2αp+1)j(C2βj)2p ≤ C2p
∞∑

j=−1
2(2(α+β)p+1)j <∞.

From Proposition 5.1, we see the inequality.
We show X ∈ CκTCα−2κ and (5.2) for κ ∈ (0, θ0/2). Set α′ = α−2κ and take 2κ < θ < θ0

such that α′+β+θ < 0. For any 1 < p <∞ such that 2(α′+β+θ)p+1 < 0 and (θ−2κ)p > 1,
we can show that

E[‖Xt −Xs‖2pCα′ ] ≤ C|t− s|
pθ,

where C is a positive constant independent of s, t. Note (pθ−1)/2p > κ. These inequalities
and the Kolmogorov continuity theorem [Kun90, Theorem 1.4.1] implies X ∈ CκTCα−2κ
and (5.2). Next we show the assertions for κ = 0. Let α < α′′ < −β. Then we see
X ∈ Cκ′T Cα

′′−2κ′ for κ′ ∈ (0, θ0/2) by the above discussion. Choosing κ′ = (α′′ − α)/2, we
obtain X ∈ Cκ′T Cα, which implies the conclusion.

For a function f : Ep+q → C and µ = (σ, k), we write∫
µ[1...p]+ν[(−1)...(−q)]=µ

f(µ1,...,p, ν1,...,q)

for the integration over the “hyperplane” {µ[1...p] + ν[(−1)...(−q)] = µ}.
Proposition 5.4. Let {f(t,x)}t≥0,x∈T3 be a good kernel. Assume that there exist γ > 1,
δ ≥ 0 and C > 0 such that∫

µ[1...p]+ν[(−1)...(−q)]=µ

|Q0(µ1,...,p, ν1,...,q)|2 ≤ C|µ|−2γ∗ |k|−2δ∗ . (5.3)

Then we have

‖|R|θ/2ρ̃jQ0‖L2
p,q

. C2(
5
2−γ−δ+θ)j

for every θ ∈ [0, γ − 1). As a consequence, we have

E[‖X‖2pCκT Cα−2κ ] . C2p,

for every p ∈ (1,∞), α < − 5
2 + γ + δ and κ ∈ [0, γ−12 ∧ 1).

Proof. Since

‖|R|θ/2ρ̃jQ0‖2L2
p,q

=
∑
k∈Z3

ρj(k)2
∫
R

|σ|θ
(∫

µ[1...p]+ν[(−1)...(−q)]=µ

|Q0(µ1,...,p, ν1,...,q)|2
)
dσ

≤ C
∑
k∈Z3

ρj(k)2|k|−2δ∗
∫
R

|µ|−2(γ−θ)∗ dσ

if γ − θ > 1, we have

‖|R|θ/2ρ̃jQ0‖2L2
p,q

. C
∑
k∈Z3

ρj(k)2|k|−2δ∗ |k|2(1−γ+θ)∗

. C(2j)3(2j)2(1−γ+θ−δ)

= C2(5−2γ−2δ+2θ)j .

The proof is completed.
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5.2 Definitions of driving vectors

Since Z is a distribution-valued process, we cannot define a process such as Z2, ZZ
and Z2Z a priori. To define such processes, we consider an approximation {Zε}0<ε<1 of
Z and define Z2, ZZ and Z2Z as renormalized limits of (Zε)2, ZεZε and (Zε)2Zε.

5.2.1 Ornstein-Uhlenbeck like process and its approximations

We give an expression of Zε defined by (5.1) in terms of Itô-Wiener integral. Since we
have P 1

s ek = h(s, k)ek, where h(s, k) = e−{4π
2(i+µ)|k|2+1}s, we see

Zεt =
∑
k∈Z3

χε(k)

∫ t

−∞
h(t− s, k)ek ξ̂s(k) ds. (5.4)

Hence, we can write Zε(t,x) = J1,0(f ε(t,x)) with

f ε(t,x)(s, k) = ek(x)Hε
t (s, k), Hε

t (s, k) = χε(k)Ht(s, k),

Ht(s, k) = 1[0,∞)(t− s)h(t− s, k).

Note that Qt = FtimeHt is given by

Qt(σ, k) =
e−2πiσt

−2πiσ + 4π2(i + µ)|k|2 + 1
.

In particular, we see Qt(µ) = e−2πiσtQ0(µ). We simply write Q0 = Q.

5.2.2 Definition of driving vectors

For every 0 < ε < 1 and graphical symbols τ , we define distributions Xε,τ as in Table 2.
The operator I is defined by (4.4) and the constants cε1, cε2,1 and cε2,2 in Table 2 are defined
by

cε1 = E[Xε,
(t,x)X

ε,
(t,x)], cε2,1 =

1

2
E[Xε,

(t,x) �Xε,
(t,x)], cε2,2 = E[Xε,

(t,x) �Xε,
(t,x)]. (5.5)

The other symbols and regularities have the same meanings as in Table 1. We set

Xε = (Xε, , Xε, , Xε, , Xε, , Xε, , Xε, ,

Xε, , Xε, , Xε, , Xε, , Xε, , Xε, , Xε, , Xε, ).

The constants cε1, cε2,1 and cε2,2 look dependent on (t, x) and the dyadic partition {ρm}∞m=−1
of unity. However, we will show that they are not in Proposition 5.21.

5.2.3 Itô-Wiener integral expressions of driving vectors

We give expressions of Xε,τ by Itô-Wiener integrals.
We start to discuss with τ = , , , , , , , , . We denote by p(τ) and q(τ) the

number of circles and squares in τ , respectively. We write

χε(k1,...,p, l1,...,q) =

p∏
i=1

χε(ki)

q∏
j=1

χε(lj).

Proposition 5.5. Let τ = , , , , , , , , , p = p(τ) and q = q(τ). Then Xε,τ
(t,x) =

Jp,q(f ε,τ(t,x)), where f ε,τ(t,x) = f ε,τ(t,x)(m1,...,p, n1,...,q) is a good kernel with functions Hε,τ
t and

Qε,τ0 defined as follows.
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Driver Distribution Xε,τ Definition Regularity ατ
Y Xε, Zε −1/2

N Xε, Xε, −1/2

Y Xε, (Xε, )2 −1

Y Xε, Xε,Xε, − cε1 −1

N Xε, (Xε, )2 −1

N Xε, Xε, Xε, − 2cε1X
ε, −3/2

Y Xε, I(Xε, ) +1

Y Xε, I(Xε, ) +1

Y Xε, I(Xε, ) +1/2

Y Xε, Xε, �Xε, 0

Y Xε, Xε, �Xε, 0

Y Xε, Xε, �Xε, 0

Y Xε, Xε, �Xε, − 2cε2,1 0

Y Xε, Xε, �Xε, − cε2,2 0

Y Xε, Xε, �Xε, 0

Y Xε, Xε, �Xε, − 2cε2,2X
ε, −1/2

Y Xε, Xε, �Xε, − 2cε2,1X
ε, −1/2

Table 2: List of distributions

(1) We have Hε,τ
t (m1,...,p, n1,...,q) = χε(k1,...,p, l1,...,q)H

τ
t (m1,...,p, n1,...,q), where {Hτ

t }t≥0 ∈
L2
p,q is given as follows.

• Ht(m1) = Ht(m1) and Ht(n1) = Ht(n1).
• For τ = , , , ,

Hτ
t (m1,...,p, n1,...,q) =

p∏
i=1

Ht(mi)

q∏
j=1

Ht(nj).

• Let τ0 = , , for τ = , , , respectively.

Hτ
t (m1,...,p, n1,...,q) =

∫
R

Ht(u, k[1...p] − l[1...q])Hτ0
u (m1,...,p, n1,...,q) du.

(2) We have Qε,τ0 (µ1,...,p, ν1,...,q) = χε(k1,...,p, l1,...,q)Q
τ
0(µ1,...,p, ν1,...,q), where Qτ0 ∈ L2

p,q is
given as follows.

• Q0(µ1) = Q(µ1) and Q0(ν1) = Q0(−ν−1).
• For τ = , , , ,

Qτ0(µ1,...,p, ν1,...,q) =

p∏
i=1

Q0(µi)

q∏
j=1

Q0(νj).

• Let τ0 = , , for τ = , , , respectively.

Qτ0(µ1,...,p, ν1,...,q) = Q(µ[1...p] + ν[(−1)...(−q)])Q
τ0
0 (µ1,...,p, ν1,...,q).

In the above, we regard Hτ
t as a function with respect to n1,...,q and m1,...,p for p = 0

and q = 0, respectively. In particular, Hτ
t is a constant for p = q = 0. We use the same

convention for Qτ0 .

EJP 22 (2017), paper 104.
Page 51/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/


Stochastic complex Ginzburg-Landau equation

Proof. The assertion follows from Proposition A.1.

From this proposition, we can guess the limit Xτ of {Xε,τ}0<ε<1 as follows:

Definition 5.6. Let τ ∈ { , , , , , , , , }, p = p(τ) and q = q(τ). We define

fτ(t,x)(m1,...,p, n1,...,q) = ek[1...p]−l[1...q]H
τ
t (m1,...,p, n1,...,q)

and Xτ
(t,x) = Jp,q(fτ(t,x)).

Next, we consider Xε,τ for τ = , , , , , , , . For these τ , we define
(τ1, τ2) = ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), respectively. We simply
write pi = p(τi) and qi = q(τi) for i = 1, 2. We set p = p1 + p2 and q = q1 + q2.

We define the function ψ◦ : Z3 × Z3 → R by

ψ◦(k, l) =
∑
|i−j|≤1

ρi(k)ρj(l). (5.6)

Proposition 5.7. For above (τ1, τ2), it holds that

Xε,τ1
t �Xε,τ2

t (x) =
∑
g

Jp−#g,q−#g(f ε,(τ1,τ2,g)(t,x) ),

where g runs over all of the graphs consisting of disjoint edges

(i, j) ∈ {1, . . . , p1} × {q1 + 1, . . . , q} ∪ {p1 + 1, . . . , p} × {1, . . . , q1},

and f ε,(τ1,τ2,g)(t,x) is a good kernel with functions Hε,(τ1,τ2,g)
t and Qε,(τ1,τ2,g)0 defined as follows.

(1) Hε,(τ1,τ2,∅)
t is given by

H
ε,(τ1,τ2,∅)
t (m1,...,p, n1,...,q) = ψ◦(k[1...p1] − l[1...q1], k[(p1+1)...p] − l[(q1+1)...q])

×Hε,τ1
t (m1,...,p1 , n1,...,q1)Hε,τ2

t (m(p1+1),...,p, n(q1+1),...,q).

For general g, Hε,(τ1,τ2,g)
t is given by

H
ε,(τ1,τ2,g)
t (m1,...,p, n1,...,q \ g) =

∫
E2#g

H
ε,(τ1,τ2,∅)
t (m1,...,p, n1,...,q) d(m,n)g,

where (m1,...,p, n1,...,q \ g) means that variables (mi, nj) are removed for all (i, j) ∈ g
and d(m,n)g =

∏
(i,j)∈g δ(mi − nj)dmidnj .

(2) Qε,(τ1,τ2,∅)0 is given by

Q
ε,(τ1,τ2,∅)
0 (µ1,...,p, ν1,...,q) = ψ◦(k[1...p1] − l[1...q1], k[(p1+1)...p] − l[(q1+1)...q])

×Qε,τ10 (µ1,...,p1 , ν1,...,q1)Qε,τ10 (µ(p1+1),...,p, ν(q1+1),...,q).

For general g, Qε,(τ1,τ2,g)0 is given by

Q
ε,(τ1,τ2,g)
0 (µ1,...,p, ν1,...,q \ g) =

∫
E2#g

Q
ε,(τ1,τ2,∅)
0 (µ1,...,p, ν1,...,q) d(µ, ν)g,

where (µ1,...,p, ν1,...,q \ g) means that variables (µi, νj) are removed for all (i, j) ∈ g
and d(µ, ν)g =

∏
(i,j)∈g δ(µi + ν−j)dµidνj .
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For example,

Q
ε,( , ,∅)
0 (µ1,2,3, ν1) = ψ◦(k[12] − l1, k3)χε(k1, k2, k3, l1)

×Q(µ[12] + ν−1)Q(µ1)Q(µ2)Q(−ν−1)Q(µ3),

Q
ε,( , ,(3,1))
0 (µ1, µ2) =

∫
E2

ψ◦(k[12] − l1, k3)χε(k1, k2, k3, l1)

×Q(µ[12] + ν−1)Q(µ1)Q(µ2)Q(−ν−1)

×Q(µ3) δ(µ3 + ν−1) dµ3dν1.

Proof. Contraction formula of Hε,(τ1,τ2,g)
t is trivial from the product formula of Wiener

chaoses. For example, we see

X
ε,

(t,x) = Xε,
(t,x) �Xε,

(t,x)

=
∑

[4m1
Xε,
t ](x)[4m2

Xε,
t ](x)

=
∑
J2,1(ρm1f

ε,
(t,x))J1,0(ρm2f

ε,
(t,x))

= J3,1(f
ε,( , ,∅)
(t,x) ) + J2,0(f

ε,( , ,(3,1))
(t,x) ),

where the summation runs over integers m1,m2 ≥ −1 with |m1 −m2| ≤ 1. In order to

obtain contraction formula of Qε,(τ1,τ2,g)0 , we use Plancherel’s formula∫
R2

f(s)g(t)δ(s− t) dsdt =

∫
R2

f̂(σ)ĝ(τ)δ(σ + τ) dσdτ.

Note that µi + ν−j = 0 if and only if σi + τj = 0, ki = lj . This formula is obtained as
follows.∫

R2

f(s)g(t)δ(s− t) dsdt =

∫
R

f(s)ḡ(s) ds =

∫
R

f̂(σ)ˆ̄g(σ) dσ

=

∫
R

f̂(σ)ĝ(−σ) dσ =

∫
R2

f̂(σ)ĝ(τ)δ(σ + τ) dσdτ.

The proof is completed.

In Table 3, we give a list of all contractions g for each (τ1, τ2) and define the corre-
sponding symbols (τ1, τ2, g). Note that the graphs in the same line gives the same kernel
f ε,(τ1,τ2,g), so we write (τ1, τ2, g) by the same symbol. By taking the renormalization into
account, we have the following decompositions:

Xε, = J3,1(f ε, ) + J2,0(f ε, ),

Xε, = J2,2(f ε, ) + 2J1,1(f ε, ),

Xε, = J3,1(f ε, ) + 2J2,0(f ε, ),

Xε, = J2,2(f ε, ) + 4J1,1(f ε, ),

Xε, = J2,2(f ε, ) + J1,1(f ε, ) + J1,1(f ε, ),

Xε, = J1,3(f ε, ) + 2J0,2(f ε, ),

Xε, = J3,2(f ε, ) + 2J2,1(f ε, ) + J2,1(f ε, ) + 2J1,0(Rf ε, ),

Xε, = J2,3(f ε, ) + 4J1,2(f ε, ) + 2J0,1(Rf ε, )

(5.7)
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where

Rf ε, = f ε, − cε2,2f
ε, , Rf ε, = f ε, − cε2,1f

ε, .

τ1 τ2 g (τ1, τ2, g)

1 2 1 3 ∅
{(3, 1)}

1 2 1 2 ∅
{(1, 2)}, {(2, 2)}

1 2 3 1 ∅
{(1, 1)}, {(2, 1)}

1 2 1 2
∅

{(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}
{(1, 1), (2, 2)}, {(1, 2), (2, 1)}

1 1 2 2

∅
{(1, 2)}
{(2, 1)}

{(1, 2), (2, 1)}
1 1 2 3 ∅

{(1, 2)}, {(1, 3)}

1 2 1 3 2

∅
{(1, 2)}, {(2, 2)}
{(3, 1)}

{(1, 2), (3, 1)}, {(2, 2), (3, 1)}

1 2 1 2 3
∅

{(1, 2)}, {(1, 3)}, {(2, 2)}, {(2, 3)}
{(1, 2), (2, 3)}, {(1, 3), (2, 2)}

Table 3: List of graphical symbols for contractions

Finally, we define a process Xτ , which is a candidate of the limit of {Xε,τ}0<ε<1. It

may be natural to define H(τ1,τ2,g)
t by the same way as in Proposition 5.7 by replacing

Hε,τi
t by Hτi

t for i = 1, 2. This definition makes sense if #g = 0, 1, however, does not if
#g = 2. In Section 5.3.3, we will show that there exist kernels Rfτ for τ = , such
that

Rf ε, → Rf , Rf ε, → Rf

as ε→ 0.

Definition 5.8. For τ ∈ { , , , , , }, we define

Xτ
(t,x) =

∑
#g=0,1

Jp−#g,q−#g(fτ(t,x)).

For τ = , , we define

X = J3,2(f ) + 2J2,1(f ) + J2,1(f ) + 2J1,0(Rf ),

X = J2,3(f ) + 4J1,2(f ) + 2J0,1(Rf ).
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The following is the main theorem in this section:

Theorem 5.9. Let κ > 0 and T > 0. Then, we have

lim
ε↓0

E[‖X −Xε‖pXκT ] = 0

for every 1 < p <∞.

Remark 5.10. The limit process X in Theorem 5.9 is given explicitly by generalized
Itô-Wiener integrals. Since the expression of kernels are independent of χ, so is X.

The proof of this theorem will be given in the next section.

5.3 Proof of convergence of driving vectors

In this section, we show the convergence Xε,τ → Xτ for all τ . As stated above, they
have the good kernels. Hence, it is sufficient to estimate Qτ0 and Qτ0 − Q

ε,τ
0 , due to

Proposition 5.4.

5.3.1 Useful estimates

In order to estimate Qτ0 and Qτ0 −Q
ε,τ
0 , we use the following lemmas many times.

Lemma 5.11. If α, β ∈ (0, 5) and α+ β > 5, we have∫
E

|µ|−α∗ |ν − µ|−β∗ dµ . |ν|−α−β+5
∗ .

Proof. We modify [GP17, Lemma 9.8] to the three dimensional case.

Lemma 5.12. The function ψ◦ defined by (5.6) is bounded and supported in the set
{(k, l);C−1|l|∗ ≤ |k|∗ ≤ C|l|∗} for some C > 0. Moreover, we have

|ψ◦(k, l)| . |k + l|−θ∗ |l|θ∗

for every θ > 0.

Proof. The properties |ψ◦(k, l)| ≤ 1 and ψ◦(k, l) > 0 imply |k|∗ ≈ |l|∗ are trivial. We show
the last property. Since if (k, l) ∈ supp(ψ◦) then |l|∗/|k|∗ & 1 and |k+ l|∗ ≤ |k|∗+ |l|∗ . |k|∗,
we have

|ψ◦(k, l)| . |k|−θ∗ |l|θ∗ . |k + l|−θ∗ |l|θ∗

for every θ > 0.

5.3.2 Lower order terms

Now we consider Xτ for τ = , , , , , , , , .

Proposition 5.13. For τ = , , , , , , , , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2 . |µ|−2γτ∗ ,∫
µ[1...p]+ν[(−1)...(−q)]=µ

|(Qτ0 −Q
ε,τ
0 )(µ1,...,p, ν1,...,q)|2 . ελ|µ|−2γτ+λ∗ ,

for every λ ∈ (0, 1], where γτ = 2 (τ = , ), 32 (τ = , , ), 1 (τ = ), 72 (τ = , ), 3 (τ = ).
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Proof. For τ = , , the required estimates is trivial from |Q(µ)| . |µ|−2∗ . Indeed,

|Q0(µ1)|2 = |Q(µ1)|2 . |µ1|−4∗ , |Q0(ν1)|2 = |Q(ν−1)|2 . |ν1|−4∗ .

For τ = , from Lemma 5.11 we have∫
µ[12]=µ

|Q0(µ1,2)|2 .
∫
µ[12]=µ

|µ1|−4∗ |µ2|−4∗ . |µ|−3∗ .

The case τ = , are parallel. For τ = , we have∫
µ[12]+ν−1=µ

|Q0 (µ1,2, ν1)|2 .
∫
µ[12]+ν−1=µ

|µ1|−4∗ |µ2|−4∗ |ν−1|−4∗ . |µ|−2∗ .

For τ = , , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2

. |µ|−4∗
∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ00 (µ1,...,p, ν1,...,q)|2 .

{
|µ|−7∗ , τ = , ,

|µ|−6∗ , τ = .

Here, we used Proposition 5.5 (2). The required estimates of Qτ0 −Q
ε,τ
0 is obtained by

similar computations by using Qτ0 −Q
ε,τ
0 = (1− χε)Qτ0 and the inequality

|1− χε(k1,...,p, l1,...,q)| . ελ

 p∑
i=1

|ki|λ +

q∑
j=1

|lj |λ
 . ελ

 p∑
i=1

|µi|λ∗ +

q∑
j=1

|νj |λ∗

 (5.8)

for every λ ∈ (0, 1].

Proof of Theorem 5.9 for , , , , , . Propositions 5.4 and 5.13 imply the conclusion.

Note that we need to prove X is Hölder continuous in time.

5.3.3 Higher order terms

Now we consider Xτ for τ = , , , , , , , . We define (τ1, τ2) for each τ as
in Proposition 5.7. We note that Xτ is written as a sum of Itô-Wiener integrals which
have good kernels f (τ1,τ2,g) for #g = 0, 1 and Rf (τ1,τ2,g) for #g = 2 such as (5.7). We will
estimate these functions for the case #g = 0, 1, 2 separately.

First we consider the functions Qτ0 = Q
(τ1,τ2,∅)
0 .

Proposition 5.14. For τ = , , , , , , , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2 . |µ|−2γτ+κ∗ |k|−2δτ−κ∗ ,∫
µ[1...p]+ν[(−1)...(−q)]=µ

|(Qτ0 −Q
ε,τ
0 )(µ1,...,p, ν1,...,q)|2 . ελ|µ|−2γτ+κ+λ∗ |k|−2δτ−κ+λ∗ ,

for every small κ > 0 and λ > 0, where

(γτ , δτ ) =


(2, 12 ), τ = , ,

( 3
2 , 1), τ = , , , ,

( 3
2 ,

1
2 ), τ = , .
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Proof. We have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2

.
∫
µ′1+µ

′
2=µ

ψ◦(k
′
1, k
′
2)2
∫
µ[1...p1]+ν[(−1)...(−q1)]=µ

′
1

|Qτ10 (µ1,...,p1 , ν1,...,q1)|2

×
∫
µ[(p1+1)...p]+ν[(−q1−1)...(−q)]=µ

′
1

|Qτ20 (µ(p1+1),...,p, ν(q1+1),...,q)|2

.
∫
µ′1+µ

′
2=µ

ψ◦(k
′
1, k
′
2)2|µ′1|

−2γτ1
∗ |µ′2|

−2γτ2
∗ .

We estimate them by using Proposition 5.13 and Lemma 5.12. In the case τ = , ,
Proposition 5.13 implies (γτ1 , γτ2) = (3, 2). Applying Lemma 5.12, we have

ψ◦(k
′
1, k
′
2)2|µ′1|−6∗ |µ′2|−4∗ . |k′1 + k′2|−1−κ∗ |k′1|1+κ∗ |µ′1|−6∗ |µ′2|−4∗

≤ |k|−1−κ∗ |µ′1|−5+κ∗ |µ′2|−4∗ .

for any µ′1 + µ′2 = µ. Hence∫
µ′1+µ

′
2=µ

ψ◦(k
′
1, k
′
2)2|µ′1|−6∗ |µ′2|−4∗ . |k|−1−κ∗

∫
µ′1+µ

′
2=µ

|µ1|−5+κ∗ |µ2|−4∗

. |k|−1−κ∗ |µ|−4+κ∗ .

For τ = , , , , (γτ1 , γτ2) = (7
2 ,

3
2 ) implies∫

µ′1+µ
′
2=µ

ψ◦(k
′
1, k
′
2)2|µ′1|−7∗ |µ′2|−3∗ . |k|−2−κ∗

∫
µ′1+µ

′
2=µ

|µ1|−5+κ∗ |µ2|−3∗

. |k|−2−κ∗ |µ|−3+κ∗ .

For τ = , , (γτ1 , γτ2) = (3, 32 ) implies∫
µ′1+µ

′
2=µ

ψ◦(k
′
1, k
′
2)2|µ′1|−6∗ |µ′2|−3∗ . |k|−1−κ∗

∫
µ′1+µ

′
2=µ

|µ1|−5+κ∗ |µ2|−3∗

. |k|−1−κ∗ |µ|−3+κ∗ .

By noting (5.8), we can estimate Qτ0 −Q
ε,τ
0 in a similar way.

Next we consider the functions Qτ0 for τ = , , , , , , , , , . We show
three propositions; Propositions 5.15, 5.16 and 5.17.

Proposition 5.15. For τ = , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2 . |µ|−5∗ ,∫
µ[1...p]+ν[(−1)...(−q)]=µ

|(Qτ0 −Q
ε,τ
0 )(µ1,...,p, ν1,...,q)|2 . ελ|µ|−5+λ∗ ,

for every small λ > 0.

Proof. We consider the case τ = . Note

Q0 (µ1,2) =

∫
E2

ψ◦(k[12] − l1, k3)Q(µ[12] + ν−1)
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×Q(µ1)Q(µ2)Q(−ν−1)Q(µ3) δ(µ3 + ν−1) dµ3dν1

= Q(µ1)Q(µ2)

∫
E

ψ◦(k[12] − k3, k3)Q(µ[12] − µ3)|Q(µ3)|2 dµ3.

By using the estimate |ψ◦(k[12] − k3, k3)| ≤ 1, we have

|Q0 (µ1,2)| . |µ1|−2∗ |µ2|−2∗
∫
E

|µ[12] − µ3|−2∗ |µ3|−4∗ dµ3 . |µ1|−2∗ |µ2|−2∗ |µ[12]|−1∗ .

Hence ∫
µ[12]=µ

|Q0 (µ1,2)|2 . |µ|−2∗
∫
µ[12]=µ

|µ1|−4∗ |µ2|−4∗ . |µ|−5∗ .

We will show the second inequality for τ = . The inequality (5.8) implies

|Q0 (µ1,2) − Q
ε,

0 (µ1,2)| . |µ1|−2∗ |µ2|−2∗ · ελ/2{|µ1|λ∗ + |µ2|λ∗ + |µ[12]|λ∗}1/2|µ[12]|−1∗ .

Hence we obtain the second inequality for τ = .
The assertion for is verified in the same way.

Proposition 5.16. For τ = , , , , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2 . |µ|−4+κ∗ |k|−1−κ∗ ,∫
µ[1...p]+ν[(−1)...(−q)]=µ

|(Qτ0 −Q
ε,τ
0 )(µ1,...,p, ν1,...,q)|2 . ελ|µ|−4+κ+λ∗ |k|−1−κ∗ ,

for every small κ > 0 and λ > 0.

Proof. We give a proof for the case τ = only, because we can show the other cases in
the same way. Note

Q0 (µ1,3) =

∫
E2

ψ◦(k[12], k3 − l1)Q(µ[12])

×Q(µ1)Q(µ2)Q(µ3)Q(−ν−1) δ(µ2 + ν−1) dµ2dν1

= Q(µ1)Q(µ3)

∫
E

ψ◦(k1 + k2, k3 − k2)Q(µ[12])|Q(µ2)|2 dµ2.

Lemma 5.12 implies

ψ◦(k1 + k2, k3 − k2) . |k1 + k3|
− 1+κ

2
∗ |k1 + k2|

1+κ
2
∗ ≤ |k1 + k3|

− 1+κ
2

∗ |µ[12]|
1+κ
2
∗ .

Combining them, we have

|Q0 (µ1,3)| . |µ1|−2∗ |µ3|−2∗ |k1 + k3|
− 1+κ

2
∗

∫
E

|µ[12]|
− 3−κ

2
∗ |µ2|−4∗ dµ2

. |µ1|−2∗ |µ3|−2∗ |k1 + k3|
− 1+κ

2
∗ |µ1|

− 1−κ
2

∗

Hence ∫
µ[13]=µ

|Q0 (µ1,3)|2 . |k|−1−κ∗

∫
µ[13]=µ

|µ1|−5+κ∗ |µ3|−4∗ . |k|−1−κ∗ |µ|−4+κ∗ .
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In a similar way, we see

|Q0 (µ1,3)−Q
ε,

0 (µ1,3)|

. |µ1|−2∗ |µ3|−2∗ |k1 + k3|
− 1+κ

2
∗ · ελ/2{|µ1|λ∗ + |µ2|λ∗ + |µ[12]|λ∗}1/2|µ1|

− 1−κ
2

∗ ,

which implies the second assertion. The proof has been completed.

Proposition 5.17. For τ = , , , we have∫
µ[1...p]+ν[(−1)...(−q)]=µ

|Qτ0(µ1,...,p, ν1,...,q)|2 . |µ|−4+κ∗ |k|−κ∗ ,∫
µ[1...p]+ν[(−1)...(−q)]=µ

|(Qτ0 −Q
ε,τ
0 )(µ1,...,p, ν1,...,q)|2 . ελ|µ|−4+κ+λ∗ |k|−κ∗

for every small κ > 0 and λ > 0.

Proof. Here, we will show the assertion for τ = only. Note

Q0 (µ1,3, ν1) =

∫
E2

ψ◦(k[12] − l1, k3 − l2)Q(µ[12] + ν−1)Q(µ1)Q(µ2)Q(−ν−1)

×Q(µ3)Q(−ν−2) δ(µ2 + ν−2) dµ2dν2

= Q(µ1)Q(µ3)Q(−ν−1)

×
∫
E

ψ◦(k[12] − l1, k3 − k2)Q(µ[12] + ν−1)|Q(µ2)|2 dµ2.

We use Lemma 5.12 to obtain

ψ◦(k[12] − l1, k3 − k2) . |k[13] − l1|
−κ2
∗ |k[12] − l1|

κ
2
∗ . |k[13] − l1|

−κ2
∗ |µ[12] + ν−1|

κ
2
∗ .

Hence

|Q0 (µ1,3, ν1)| . |µ1|−2∗ |µ3|−2∗ |ν−1|−2∗ |k[13] − l1|
−κ2
∗

∫
E

|µ[12] + ν−1|
−2+κ

2
∗ |µ2|−4∗ dµ2

. |µ1|−2∗ |µ3|−2∗ |ν−1|−2∗ |k[13] − l1|
−κ2
∗ |µ1 + ν−1|

−1+κ
2

∗ ,

which implies∫
µ[13]+ν−1=µ

|Q0 (µ1,3, ν1)|2 . |k|−κ∗
∫
µ[13]+ν−1=µ

|µ1|−4∗ |µ3|−4∗ |ν−1|−4∗ |µ1 + ν−1|−2+κ∗

. |k|−κ∗ |µ|−4+κ∗ .

In addition, we have

|Q0 (µ1,3, ν1)−Q
ε,

0 (µ1,3, ν1)| . |µ1|−2∗ |µ3|−2∗ |ν−1|−2∗ |k[13] − l1|
−κ2
∗

× ελ/2{|µ1|λ∗ + |µ3|λ∗ + |ν−1|λ∗ + |µ1 + ν−1|λ∗}1/2|µ1 + ν−1|
−1+κ

2
∗ ,

which implies the conclusion. The proof is completed.

Finally we consider the functions RQτ0 for τ = , . First of all, we have to define
the renormalized kernels Rfτ . Since

RQ
ε,

0 = Q
ε,

0 −Q
ε,

0 Qε,0 ,
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RQ
ε,

0 = Q
ε,

0 −Q
ε,

0 Qε,0 ,

we have

RQ
ε,

0 (µ1) = χε(k1)Q(µ1)

∫
E2

χε(k2,3)2|Q(µ2)|2|Q(µ3)|2

× δ0,µ1{ψ◦(·+ k2 − k3, k3 − k2)Q(·+ µ2 − µ3)} dµ2dµ3,

RQ
ε,

0 (ν1) = χε(k1)Q(−ν−1)

∫
E2

χε(k1,2)2|Q(µ1)|2|Q(µ2)|2

× δ0,−ν−1
{ψ◦(·+ k[12],−k[12])Q(·+ µ[12])} dµ1dµ2,

where δµ1,µ2
f = f(µ2)− f(µ1) is the difference operator. We set

RQ0 (µ1) = Q(µ1)

∫
E2

|Q(µ2)|2|Q(µ3)|2

× δ0,µ1
{ψ◦(·+ k2 − k3, k3 − k2)Q(·+ µ2 − µ3)} dµ2dµ3,

RQ0 (ν1) = Q(−ν−1)

∫
E2

|Q(µ1)|2|Q(µ2)|2

× δ0,−ν−1
{ψ◦(·+ k[12],−k[12])Q(·+ µ[12])} dµ1dµ2,

if they are well-defined. The required kernels Rfτ is defined by good kernels with
RHτ

t := F−1time(e
−2πiRtQτ0). The following proposition implies that these kernels are

well-defined and Rf ε,τ converges to Rfτ .

Proposition 5.18. For τ = , , we have

|RQτ0(µ)|2 . |µ|−4+κ∗ ,

|(RQτ0 −RQε,τ0 )(µ)|2 . ελ|µ|−4+κ+λ∗

for every small κ > 0 and λ > 0.

In order to prove this proposition, we extend the domains of ψ◦ = ψ◦(k, l) and
Q = Q(σ, k) into R6 and R4 in a natural way, respectively. We write k = (k1, k2, k3) ∈ R3.
Then, we have the following estimate of their derivatives:

Lemma 5.19. For every 0 < κ < 1, it holds that

|∂kαψ◦(k, l)| . 1|k|≈|l||k|−1+κ∗ , |∂σQ(µ)| . |µ|−4∗ , |∂kαQ(µ)| . |µ|−3∗ .

Proof. The latter two inequality can be shown easily. We show the first inequality. Note
that (k, l) ∈ suppψ◦ implies |k| ≈ |l|. We see

∂kαψ◦(k, l) =
∑
|i−j|≤1

2−i∂kαρ0(2−ik)ρj(l) =
∑
i≥−1

2−i∂kαρ0(2−ik)
∑

j;|i−j|≤1

ρj(l).

In this calculation, we abused the symbols ρ−1 and ρ0. We see that the compact-
ness of supp ρ0 implies |∂kαρ0(2−ik)| . |2−ik|−1+κ∗ ≤ 2−i(1−κ)|k|−1+κ∗ and the summation∑
j;|i−j|≤1 ρj(l) has an upper bound independent of i. Hence,

|∂kαψ◦(k, l)| .
∑
|i−j|≤1

2−i(2−κ)|k|−1+κ∗ . |k|−1+κ∗ .

The proof is completed.
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Proof of Proposition 5.18. We focus on τ = .

First we esimate the difference operator part in RQ0 . We write τsµ = (τ2σ, τk) for
µ ∈ E and τ ∈ [0, 1]. The fundamental theorem of calculus and Lemma 5.19 imply

|δ0,µ1
{ψ◦(·+ k2,−k2)Q(·+ µ2)}| =

∣∣∣∣∫ 1

0

d

dτ
{ψ◦(·,−k2)Q}(τsµ1 + µ2) dτ

∣∣∣∣
. |k1|

∫ 1

0

1|τk1+k2|≈|k2||τk1 + k2|−1+κ∗ |τsµ1 + µ2|−2∗ dτ

+ |σ1|
∫ 1

0

τ |τsµ1 + µ2|−4∗ dτ + |k1|
∫ 1

0

|τsµ1 + µ2|−3∗ dτ.

Hence we have∫
E2

|Q(µ2)|2|Q(µ3)|2|δ0,µ1{ψ◦(·+ k2 − k3, k3 − k2)Q(·+ µ2 − µ3)}| dµ2dµ3

. A1 +A2 +A3,

where

A1 =

∫
E2

dµ2dµ3 |µ2|−4∗ |µ3|−4∗ |k1|
∫ 1

0

1|τk1+k2−k3|≈|k2−k3|

× |τk1 + k2 − k3|−1+κ∗ |τsµ1 + µ2 − µ3|−2∗ dτ,

A2 =

∫
E2

dµ2dµ3 |µ2|−4∗ |µ3|−4∗ |σ1|
∫ 1

0

τ |τsµ1 + µ2 − µ3|−4∗ dτ,

A3 =

∫
E2

dµ2dµ3 |µ2|−4∗ |µ3|−4∗ |k1|
∫ 1

0

|τsµ1 + µ2 − µ3|−3∗ dτ.

We estimate the terms A1, A2 and A3. Note that Lemma 5.11 holds even if ν ∈ R4.
We start the estimates with A1. By changing variables with µ′2 = µ2 and µ′3 = µ2 − µ3

and the Fubini theorem, we have

A1 = |k1|
∫
E2

dµ′2dµ
′
3 |µ′2|−4∗ |µ′2 − µ′3|−3∗

×
(∫ 1

0

1|τk1+k′3|≈|k′3||τk1 + k′3|−1+κ∗ |τsµ1 + µ′3|−2∗ dτ

)
. |k1|

∫
E

dµ′3 |µ′3|−3
(∫ 1

0

1|τk1+k′3|≈|k′3||τk1 + k′3|−1+κ∗ |τsµ1 + µ′3|−2∗ dτ

)
= |k1|

∫ 1

0

dτ

∫
E

dµ′3 1|τk1+k′3|≈|k′3||τk1 + k′3|−1+κ∗ |τsµ1 + µ′3|−2∗ |µ′3|−3.

The Young inequality implies∫
R

dσ′3 |τsµ1 + µ′3|−2∗ |µ′3|−3∗ ≤
∫
R

dσ′3
(
|τsµ1 + µ′3|−5∗ + |µ′3|−5∗

)
= |τk1 + k′3|−3∗ + |k′3|−3∗ .

Hence∫
E

dµ′3 1|τk1+k′3|≈|k′3||τk1 + k′3|−1+κ∗ |τsµ1 + µ′3|−2∗ |µ′3|−3

.
∑
k′3

1|τk1+k′3|≈|k′3||τk1 + k′3|−1+κ∗
(
|τk1 + k′3|−3∗ + |k′3|−3∗

)
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.
∑
k′3

1|τk1+k′3|≈|k′3||k
′
3|−4+κ∗ .

∑
k′3:|τk1|.|k′3|

|k′3|−4+κ∗ . |τk1|−1+κ∗ .

Here, we used that |τk1| ≤ |τk1 + k′3| + |k′3| . |k′3| in the case that |τk1 + k′3| ≈ |k′3|.
Combining them and using that |τsµ|∗ ≥ τ |µ|∗ for every τ ∈ [0, 1], we obtain

A1 . |k1|
∫ 1

0

dτ(τ |k1|∗)−1+κ . |k1|κ∗ ≤ |µ1|κ∗ .

The estimate of A1 has finished.
The estimates of A2 and A3 is easy. Indeed, we have

A2 . |σ1|
∫ 1

0

τ |τsµ1|−2∗ dτ, A3 . |k1|
∫ 1

0

|τsµ1|−1∗ dτ.

Since |τsµ|∗ ≥ τ |µ|∗ for every τ ∈ [0, 1], we have

A2 . |σ1|
∫ 1

0

τ |τsµ1|κ−2∗ dτ . |σ1||µ1|κ−2∗

∫ 1

0

τκ−1 dτ . |µ1|κ∗ ,

A3 . |k1|
∫ 1

0

|τsµ1|κ−1∗ dτ . |k1||µ1|κ−1∗

∫ 1

0

τκ−1 dτ . |µ1|κ∗

for every κ ∈ (0, 1).
Hence

|RQτ0(µ)|2 . |µ|−4+κ∗ .

We obtain the estimate of |(RQτ0 −RQε,τ0 )(µ)|2 in a similar way. We can see the assertion
is valid for τ = in the same way.

Proof of Theorem 5.9 for , , , , , , , . We will use Proposition 5.4. The con-
stant (γτ , δτ ) in Proposition 5.14 satisfies

γτ + δτ =


5
2 , τ = , ,
5
2 , τ = , , , ,

2, τ = , .

(5.9)

The assertions for the case and follow from (5.9) and Proposition 5.15. For , ,

and , we see the assertion from (5.9) and Proposition 5.16. For and , we use (5.9),
Propositions 5.17 and 5.18.

Remark 5.20. We can construct another sequence {X̃ε} of driving vectors from the
space-time smeared noise ξ̃ε defined by (4.2). As stated in Remark 4.2, the limit driving
vector does not change. In order to show this fact, for simplicity, we consider the
case that temporal and spatial variables are separated: %ε(t, x) = %ε0(t)%ε1(x). Here,
%ε0(t) = ε−2%0(ε−2t) and %ε1(x) = ε−3%1(ε−1x) for even functions %0 and %1. Since the noise
is smeared in time, the solution Z̃ε of ∂tZ̃ε = {(i + µ)4− 1}Z̃ε + ξ̃ε is given by the same
formula as (5.4), with ξ̂s(k) replaced by the convolution

∫
ξ̂u(k)%ε0(s− u) du. By shifting

the mollifier to the heat kernel, we have the formula

Z̃εt =
∑
k∈Z3

∫ ∞
−∞

H̃ε
t (s, k)ek ξ̂s(k) ds,

where H̃ε
t (s, k) = χε(k)

∫
Ht(u, k)%ε0(s − u) du and χ = F%1. Then the corresponding

Fourier transform Q̃εt = FtimeH̃
ε
t is given by

Q̃εt(σ, k) = ϕ0(ε2σ)χε(k)Qt(σ, k),
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where ϕ0 = Ftime%0. This implies Q0 − Q̃ε0 has the good estimate as in Proposition 5.13,
so that Z̃ε converges to the same limit Z as that of Zε. In the proof, we replace χε(k) in
Proposition 5.13 by ϕ0(ε2σ)χε(k). By similar arguments, we can see the invariance of
the limit for all other elements of X̃ε. Since Z̃ε is stationary in time, we can define the
new renormalization constants c̃ε1, c̃ε2,1 and c̃ε2,2 in the same way as (5.5) and see the new
constants depend only on ε. However, they may not coincide with cε1, cε2,1 and cε2,2.

5.4 Properties of renormalization constants

In this subsection, we study the renormalization constants cε1, c
ε
2,1 and cε2,2 defined

by (5.5). We use Propositions 5.5 and 5.7 to show that they are independent of (t, x)

and the choice of the dyadic partition {ρm}∞m=−1 of unity (Proposition 5.21) and obtain
the divergence rate (Proposition 5.22). Proposition 5.21 and Theorem 4.30 imply the
renormalized equation (1.2) does not depend on the choice of the dyadic partition of
unity. Hence the solution to (1.2) is independent of the partition.

5.4.1 Expression of renormalization constants

We obtain explicit expressions of cε1, cε2,1 and cε2,2 as follows:

Proposition 5.21. We have the following:

cε1 =
∑
k∈Z3

χε(k)2

2(4π2|k|2 + 1)
, (5.10)

cε2,1 =
∑

k1,k2∈Z3

χε(k1, k2)2

4(4π2µ|k1|2 + 1)(4π2µ|k2|2 + 1)(α1 + iβ1)
, (5.11)

cε2,2 =
∑

k1,l1∈Z3

χε(k1, l1)2

4(4π2µ|k1|2 + 1)(4π2µ|l1|2 + 1)(α2 + iβ2)
, (5.12)

where

α1 = 4π2µ(|k1 + k2|2 + |k1|2 + |k2|2) + 3, β1 = 4π2(|k1 + k2|2 − |k1|2 − |k2|2),

α2 = 4π2µ(|k1 − l1|2 + |k1|2 + |l1|2) + 3, β2 = 4π2(|k1 − l1|2 − |k1|2 + |l1|2).

Proof. From Proposition 5.5, we have

cε1 =
∑
k∈Z3

∫
R

f ε,(t,x)(s, k)f ε,(t,x)(s, k) ds =
∑
k∈Z3

∫
R

χε(k)2|Ht(s, k)|2 ds =
∑
k∈Z3

χε(k)2

2(4π2|k|2 + 1)
,

which is (5.10).
We show (5.11). From Propositions 5.5 and 5.7, we have

cε2,1 = H
ε,( , ,{(1,1),(2,2)})
t

=

∫
E2

ψ◦(k1 + k2,−(k1 + k2))Hε,
t (m1,2)Hε,

t (m1,2) dm1dm2.

By using ψ◦(k1 + k2,−(k1 + k2)) = 1 and∫
R

dsHu(s, k)Ht(s, k) =
1

2(4π2µ|k|2 + 1)
Ht(u, k),∫

R

dtHu(t, l)Ht(t, l) =
1

2(4π2µ|l|2 + 1)
Ht(u, l),

we obtain the assertion. We can show (5.12) in the same way.
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5.4.2 Divergence rate of renormalization constants

Here, we show the following proposition concerning divergence rate of the the renor-
malization constants:

Proposition 5.22. There exists a positive constant C such that

C−1ε−1 ≤ cε1 ≤ Cε−1, (5.13)

C−1 log ε−1 ≤ |cε2,1| ≤ C log ε−1, (5.14)

C−1 log ε−1 ≤ |cε2,2| ≤ C log ε−1 (5.15)

for any 0 < ε < 1.

Since the estimate (5.13) follows easily from (5.10), we show (5.14) and (5.15) for
the rest of this subsection.

Lemma 5.23. Let α1, β1, α2 and β2 be as in Proposition 5.21. There exist positive
constants C1 and C2 such that

< 1

α1 + iβ1
≥ C1(|k1|2 + |k2|2 + 1)−1,

∣∣∣∣ 1

α1 + iβ1

∣∣∣∣ ≤ C2(|k1|2 + |k2|2 + 1)−1,

< 1

α2 + iβ2
≥ C1(|k1|2 + |l1|2 + 1)−1,

∣∣∣∣ 1

α2 + iβ2

∣∣∣∣ ≤ C2(|k1|2 + |l1|2 + 1)−1,

for any k1, k2 and l1.

Proof. We show the assertion for 1/(α1+ iβ1). Since |k1|2+ |k2|2+1 . α1 . |k1|2+ |k2|2+1

and |β1| . |k1|2 + |k2|2 + 1, we see

< 1

α1 + iβ1
= <α1 − iβ1

α2
1 + β2

1

=
α1

α2
1 + β2

1

&
|k1|2 + |k2|2 + 1

(|k1|2 + |k2|2 + 1)2

and ∣∣∣∣ 1

α1 + iβ1

∣∣∣∣ =

∣∣∣∣α1 − iβ1
α2
1 + β2

1

∣∣∣∣ . |k1|2 + |k2|2 + 1

(|k1|2 + |k2|2 + 1)2
.

The assertion is verified. We can show the assertion for 1/(α2 + iβ2) in the same way.

Proof of Proposition 5.22. We first prove of the lower estimate. We show that there
exists a constant C1 such that

<cε2,1,<cε2,2 ≥ C1 log ε−1,

for any 0 < ε < 1.
We consider only cε2,1 and estimate the real part of summands in (5.11). Proposi-

tion 5.21 and Lemma 5.23 imply

<cε2,1 &
∑

k1,k2∈Z3

χε(k1)2χε(k2)2(|k1|2 + 1)−1(|k2|2 + 1)−1(|k1|2 + |k2|2 + 1)−1

≥
∑

k1,k2∈Z3

χε(k1)2χε(k2)(|k1|2 + |k2|2 + 1)−3

≥ 1 + log ε−1,

which implies the lower estimate of <cε2,1. We can obtain that of <cε2,2 by the same way.
Next we prove the upper estimate. We show that there exists a constant C1 such that

|cε2,1|, |cε2,2| ≤ C2 log ε−1

for any 0 < ε < 1.
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We consider only cε2,1. Proposition 5.21 and Lemma 5.23 imply

|cε2,1| .
∑

k1,k2∈Z3

χε(k1)2χε(k2)2(|k1|2 + 1)−1(|k2|2 + 1)−1(|k1|2 + |k2|2 + 1)−1

≤
∑

|k1|,|k2|≤ε−1

(|k1|2 + 1)−1(|k2|2 + 1)−1(|k1|2 + |k2|2 + 1)−1.

In this estimate, we used suppχ ⊂ B(0, 1). We divide the region of the summation
{(k1, k2); |k1| ≤ ε−1 and |k2| ≤ ε−1} ⊂ Z3 × Z3 into

A1 = {(k1, k2); |k1| ≤ 2 or |k2| ≤ 2},
A2 = {(k1, k2); 2 ≤ |k1| ≤ |k2| ≤ ε−1},
A3 = {(k1, k2); 2 ≤ |k2| ≤ |k1| ≤ ε−1}.

The summation over A1 is estimated as follows:∑
(k1,k2)∈A1

(|k1|2 + 1)−1(|k2|2 + 1)−1(|k1|2 + |k2|2 + 1)−1 .
∑
k∈Z3

(|k|2 + 1)−2 <∞.

For the summation over A2, we have∑
(k1,k2)∈A2

(|k1|2 + 1)−1(|k2|2 + 1)−1(|k1|2 + |k2|2 + 1)−1 ≤
∑

(k1,k2)∈A2

|k1|−2|k2|−2|k2|−2

≤
∑

k2:2≤|k2|≤ε−1

 ∑
k1:2≤|k1|≤|k2|

|k1|−2
 |k2|−4 .

∑
2≤|k2|≤ε−1

|k2||k2|−4 . log ε−1.

The summation over A3 has the same upper bound. Hence we see |cε2,1| . log ε−1. We
can prove |cε2,2| . log ε−1 by the same way. The proof is completed.

A Complex multiple Itô-Wiener integral

We recall some notations and properties of complex multiple Wiener integrals from
[Itô52].

A complex random variable Z is called isotropic complex normal if <Z and =Z are
independent, has the same law with mean 0 and (<Z,=Z) is jointly normal. A system of
complex random variables {Zλ} is called jointly isotropic complex normal if

∑n
i=1 ciZλi

is isotropic complex normal for any n, any c1, . . . , cn ∈ C, and any indices λ1, . . . , λn.
Note that the isotropic complex normal {Zλ} satisfies E[ZλZµ] = 0 = E[ZµZν ]. The
distribution of jointly isotropic complex normal system {Zλ} is uniquely determined by
the positive-definite matrix Vλµ = E[ZλZµ] ([Itô52, Theorem 2.3]).

Let (E,B,m) be a σ-finite, atomless measure space, and B∗ be the set of all elements
A ∈ B such that m(A) <∞. Then there exists a jointly isotropic complex normal system
{M(A) ;A ∈ B∗} defined on a probability space (Ω,F ,P ) such that

E[M(A)M(B)] = m(A ∩B),

and its distribution is uniquely determined ([Itô52, Theorem 3.1]).
Now the complex multiple Itô-Wiener integral of f ∈ L2

p,q = L2(Ep ×Eq) is defined as
follows. Let Sp,q be the set of L2

p,q functions of the form

f =

n∑
i1,...,ip,j1,...,jq=1

ai1...ipj1...jq1Ei1×···×Eip×Ej1×···×Ejq
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with n ∈ Z+, where E1, . . . , En are any disjoint sets of B∗ and {ai1...ipj1...jq} is a set of
complex numbers such that = 0 unless i1, . . . , ip, j1, . . . , jq are all different. For f of this
form, we define

Jp,q(f) =

n∑
i1,...,ip,j1,...,jq=1

ai1...ipj1...jqM(Ei1) · · ·M(Eip)M(Ej1) · · ·M(Ejq ).

This functional has the property E[|Jp,q(f)|2] ≤ p!q!‖f‖2L2
p,q

. We defined the Itô-Wiener

integral for non-symmetric functions, hence, we cannot expect the equality in this in-
equality. Since Sp,q is dense in L2

p,q, the integral Jp,q is uniquely extended into continuous
linear map from L2

p,q to L2(P ). We set L2
0,0 = C and J0,0(c) = c. From [Itô52, Theorem 7],

we have

E[|Jp,q(f)|2] ≤ p!q!‖f‖L2
p,q
,

E[Jp,q(f)Jr,s(g)] = 0 for (p, q) 6= (r, s).

The product formula is important. For 0 ≤ r1 ≤ p1∧ q2 and 0 ≤ r1 ≤ q1∧p2, we denote
by F(p1, q1; p2, q2; r1, r2) the set of graphs consisting of disjoint r1 + r2 edges

(p′, q′) ∈ {1, . . . , p1} × {q1 + 1, . . . , q1 + q2} ∪ {p1 + 1, . . . , p1 + p2} × {1, . . . , q1}.

For (f, g) ∈ L2
p1,q1 × L2

p2,q2 and γ ∈ F(p1, q1; p1, q2; r1, r2), we define f ⊗γ g ∈
L2
p1+p2−(r1+r2),q1+q2−(r1+r2) by

(f ⊗γ g)(t1, . . . , tp1+p2 , s1, . . . , sq1+q2 \ {(tp′ , sq′)}(p′,q′)∈γ)

=

∫
Er1+r2

h({(tp′ , sq′)}(p′,q′)∈γ)
∏

(p′,q′)∈γ

dm(tp′ , sq′),

where h : Er1+r2 → C is defined by

h({(tp′ , sq′)}(p′,q′)∈γ) = f(t1, . . . , tp1 , s1, . . . , sq1)

× g(tp1+1, . . . , tp1+p2 , sq1+1, . . . , sq1+q2)|tp′=sq′ ,(p′,q′)∈γ .

Theorem A.1 ([Itô52, Theorem 9], [Nua06, Proposition 1.1.2]). For every f ∈ L2
p1,q1 and

g ∈ L2
p2,q2 , we have

Jp1,q1(f)Jp2,q2(g) =

p1∧q2∑
r1=0

p2∧q1∑
r2=0

∑
γ∈F(p1,q1;p2,q2;r1,r2)

Jp1+p2−(r1+r2),q1+q2−(r1+r2)(f ⊗γ g).

For example, we have

J2,1(f)J0,2(g) = J2,3(f ⊗∅ g) + J1,2(f ⊗{(1,1)} g) + J1,2(f ⊗{(1,2)} g)

+ J1,2(f ⊗{(2,2)} g) + J1,2(f ⊗{(2,3)} g)

+ J0,1(f ⊗{(1,2),(2,3)} g) + J0,1(f ⊗{(1,3),(2,2)} g).
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