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Abstract

We study the stochastic cubic complex Ginzburg-Landau equation with complex-valued
space-time white noise on the three dimensional torus. This nonlinear equation is so
singular that it can only be understood in a renormalized sense. In the first half of this
paper we prove local well-posedness of this equation in the framework of regularity
structure theory. In the latter half we prove local well-posedness in the framework of
paracontrolled distribution theory.
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1 Introduction

The cubic complex Ginzburg-Landau (CGL) equation is one of the most important
nonlinear partial differential equations (PDEs) in applied mathematics and physics. It
describes various physical phenomena such as nonlinear waves, second-order phase
transition, superconductivity, superfluidity among others. See [AK02] for example.

There are also many papers on its stochastic version, the CGL with a noise term
([BS04a, BS04b, KS04, Oda06, PG11, Yan04] to name but a few). In these preceding
works, however, the noise is either non-white or multiplicative. Except when the space
dimension d = 1 in [Hai02], the stochastic cubic CGL with additive space-time white
noise has not been solved.
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The difficulty in the case d > 2 is as follows. Since space-time white noise is so rough,
a solution u(z) = u(t, z) would be a Schwartz distribution in x, not a function, even if it
existed. Consequently, the cubic nonlinear term |u;|>u; does not make sense in the usual
way. For this reason, well-definedness of the equation itself was unclear and the cubic
CGL with space-time white noise was considered too singular when d > 2.

However, two new theories emerged recently, which can deal with quite singular
stochastic PDEs of this kind. One is regularity structure theory [Hail4] and the other is
paracontrolled distribution theory [GIP15]. They are both descendants of rough path
theory and their deterministic part looks somewhat similar to the counterpart in rough
path theory at least in spirit. However, their probabilistic part is more complicated than
the counterpart in rough path theory since non-trivial renormalization of the noise has
to be done. (There is another theory based on the theory of renormalization groups
[Kup16], which will not be discussed in this paper, however.)

Although they are clearly different theories, examples of stochastic PDEs they can
deal with are very similar. A partial list of singular stochastic PDEs which have been
solved (locally in time) by these theories is as follows: Parabolic Anderson Model
(d = 2,3) [GIP15, Hail4, BBF15], KPZ equation and its variants (d = 1) [FH14, GP17,
Hos16, FH17], the dynamic <I>§-model (d = 3) [Hail4, CC13], Navier-Stokes equation
with space-time white noise (d = 3) [ZZ15], FitzHugh-Nagumo equation with space-time
white noise (d = 3) [BK16].

The main objective of this paper is to prove local well-posedness of the stochastic
cubic complex Ginzburg-Landau equation on the three-dimensional torus T® = (R/Z)?
of the following form by using these two theories:

Ou=(i+mAu+v(l—uf)ut& >0, zeT .1

Here, i = v/—1, 4 > 0, v € C are constants and £ is complex-valued space-time white
noise, that is, a centered complex Gaussian random field with covariance

E[§(t, x)¢(s,y)] =0, Elg(t,)¢(s,y)] = 6(t — s)d(z —y),

where 0 denotes the Dirac delta function.
We replace ¢ by smeared noise £° with a parameter 0 < e < 1sothat¢é® — &asel0
in an appropriate topology and consider a renormalized equation

O’ = (i 4 p) Auc + v(1 — [uf[*)uc + vCu 4 £, t>0, z€T3 (1.2)

where C° is a suitably chosen complex constant (specified later) which diverges as € | 0.
We show that the solution to (1.2) converges to some process in an appropriate topology.
To this end, we use the theory of regularity structure by Hairer [Hail4] and the theory
of paracontrolled distributions by Gubinelli-Imkeller-Perkowski [GIP15]. In the two main
results (Theorems 2.1 and 4.1), we use different approximations of £&. However, we can
choose the same approximation £€ in both theories. See Remark 4.2. Consequently, we
can see that the solutions obtained in these two theories “essentially coincide”, even
though the idea behind these theories are quite different. (It should be noted, however,
that we do not have a rigorous proof of the exact coincidence of the two solutions. To
prove it, a further investigation of the renormalization constants is needed, which could
be an interesting future task.)

We now make a comment on the space dimension. When d > 4, CGL (1.1) is not
subcritical in the sense of [Hail4] and therefore the equation cannot be solved (or does
not even make sense) by any existing method. Though we do not give a proof in this
paper, we believe that the case d = 2 is actually much easier than our case d = 3.
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This paper is organized as follows. In Sections 2 and 3, following [Hail4], we apply
the theory of regularity structures to the stochastic CGL (1.1). At the beginning of
Section 2 we first present our main result (Theorem 2.1) in a precise form. Then we
construct a regularity structure for (1.1) and prove local-wellposedness of (1.1) in a
deterministic way. Section 3 is devoted to the probabilistic step, in particular, the
renormalization procedure.

In Sections 4 and 5, we apply the paracontrolled calculus to (1.1). In Section 4, we
precisely present our main result (Theorem 4.1) and deterministically solve (1.1) locally
in time in a similar way to [MW17]. We prove the probabilistic part in Section 5 using a
new method developped in [GP17].

Section A is an appendix, in which we recall the definition of complex multiple Ito6-
Wiener integrals. The product formula for them is frequently used in Sections 3 and
5.

Notations: We use the following notations: For two functions f and g, we write
f < g if there exists a positive constant C such that f(x) < Cg¢(z) for any x. We write
f(z) = g(z) if both f(x) < g(x) and g(z) < f(x) hold. To indicate the argument z of a
function f, we use both symbols f(z) and f,.

2 CGL by the theory of regularity structures

In this and the next sections, we study CGL equation by the theory of regularity
structures. We begin by presenting the main result in Theorem 2.1 below.

We denote by ¢ periodic space-time white noise on R x T3, which is extended
periodically to R*. We replace ¢ by space-time smeared noise € = € x p¢ for € > 0, where
p is non-negative, smooth and compactly supported function on R* with [p=1,and
pe(t,r) = e °p(e~2t, e~ 'x). We consider the classical solution u¢ of the equation

o = (i 4+ p)Au +v(1 — [uf|* + CYu +€°, (t,z) € Ry x R3,

with initial condition ug, where C° = 2C] —2vC3 ; —4v (3 , is a sum of diverging constants
as € | 0 and precise behaviors of them are stated in Proposition 3.4. We write R} = (0, 00).
For n € R, we define

C"=C"T? C)={uc Bgoyoo(Rig, C); u(- + k) = u(-) for any k € Z%},

where B, (R?, C) is a usual inhomogeneous Besov space. We denote by C([0,7],C")
the set of all C"-valued continuous functions on [0, 7] endowed with the supremum norm
I leqo,m.en)-

Theorem 2.1. Letn € (—2,—1). Then for every ug € C", the sequence {u} converges
to a limit u in probability as € | 0. Precisely speaking, this means that there exists an a.s.
strictly positive random time T' depending on ug and &, such that u and u¢ for every € > 0

belong to the space C(]0,T],C") and we have
[u® = ulleo,m,eny) — 0
in probability. Furthermore, u is independent of the choice of p.
We use the following notations in Sections 2 and 3:
« For z = (t, 21,22, 23) € R*, we define ||z||s = |t|2 + |21 + | 22| + |23].
« For k = (k;)}_, € Z4, we define |k|; = 2ko + ki + ka + k3 and 0% = 9,°0k19k29%s.
Here Z, ={0,1,2,...}.

s For ¢ € C(R* C) and § > 0, we define the space-time scaling around z =
(tvxlvaax3) S R4 by

(pg(tl» x/la $/27 CL’é) = 5_550(6_2@/ - t)? 6_1($I1 - 1‘1), 5_1(.%'/2 - .172), 5_1('7;({3 - '7“3))
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We define the parabolic Holder-Besov space C¢ on R* for o € R. At this stage, we do
not impose periodicity for elements of C¢'.

» For a > 0, we denote by C¢ the space of complex-valued functions ¢ on R* such
that

alc AN (Z/ - Z)lak:-i-l < o a—|k|s 2.1
R e D A O Ed 2.1
[k+1|s < ’

holds locally in z, 2’ € R* and for every k with |k|s < a.
« Denote by C? = L (R*, C) the space of locally bounded functions.

+ For r > 0, let 3, be the set of complex-valued smooth functions ¢ on R* supported
in the ball B,(0,1) = {z;||z||s < 1} and such that their derivatives of order up to r

are bounded by 1. Let @« < 0 and r = [—a]. Denote by C¢ be the space of Schwartz
distributions ¢ € &' = S'(R*, C) such that

[€llasx = sup 5, @) < o0
z€K,p€B,.,6€(0,1]

for every compact set K C R%.

2.1 Results on regularity structures
First we recall basic concepts from the theory of regularity structures [Hail4].

Definition 2.2. We say that a triplet T = (A, T, G) is a regularity structure with index
set A, model space T and structure group G, if

e A is a locally finite set of real numbers bounded from below and 0 € A.

* T'=@,c To with complex Banach spaces (1., || - ||). Furthermore, Ty ~ C and
its unit vector is denoted by 1.

e G is a subgroup of L(T'), the set of continuous linear operators on T, such that, for
everyl' € G,a€ A, and 1T € T,,

I'r—7eT, =T

B<a
Furthermore, I'1 =1 forevery ' € G.

Definition 2.3. Let T be a regularity structure. We say that a subspace V = @ﬁeA Vs
with Vg C T} is a sector of regularity o < 0 if V is invariant under G (i.e. I'V C V for
every I’ € G) and « is the minimal index such that V,, # {0}. A sector with regularity 0 is
called function-like.

For 7 € T, we write ||T]la = ||7alla, Where 7, is the component of 7 in T,.

Definition 2.4. Let T be a regularity structure and let r = [—inf A]. A model Z = (IL,T")
is a pairofmapsT : R* x R* 3 (2,2') = .., € Gand Il : R* > z = 11, € L(T,S'), the
set of continuous linear operators from T to S’, which satisfy

Fzz’rz’z” = Fzz”a Hzrzz’ = Hz’
for every z, 2, 2" € R*, and

”FZZ’THﬁ

1T}y = =
T pcacyrern, [llallz — 2277
2,2 )EK?

)
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I 8
||H||’\/,K = Sup M < o0
a<y,7€T,, ||T||a5a
ZEK, SDEBT766(071]

for every v > 0 and compact set K C R*. For models Z = (II,T) and Z' = (I',T") on T,
we write

120 = [Tl + 1T llyire, 12 = 2l = IT =T

vK + HH - H/||’Y§K'

Following [Hail4, Section 6], we define the space of modelled distributions with
singularity at P = {z = (t,z) € R*;t = 0}. For a subset K C R*, we denote by

Kp:={(z,2) e (K\P)>;2# 2, ||z—2|s <LAt]Z A ]2 ).

Definition 2.5. Let Z = (II,T') be a model on 7, v > 0 and n € R. For a function
f:R" = T; and a subset K C R", we define

B=n
e = sup (LATZ YOF ()],
B<y

z=(t,x)eK\P

s | f(2) =T f(ls.

[EREd M

171

|%n;K = || f] v K+ ZUP (LA A |t/D

<y
(z,2")EKp

We write f € D" = DE(Z) if | f|ly,nx < oo for every compact subset K C R*. If f
takes value in a sector V, we write f € D" (V; Z).
For models Z, Z' and f € D}"(Z), ' € D" (Z'), we define

‘”f, f/m%n;K = ||f - fI”%n;K

+ sup (LAJE A
a<7y,

(z,z')GKp

2o 1) = /2) = Toaf () + T f (Dl

Iz =237

We denote by M x D" the set of all pairs (Z, f) of a model Z and f € D}"(Z). The
topology on M x D}" is defined by the family of pseudo-metrics {||; -||n.x }-

Theorem 2.6 ([Hail4, Theorem 3.10 and Proposition 6.9]). Let Z = (II,I") be a model
on 7. LetV be a sector with regularity « < 0 and let r = [—a]. Ify > 0, n < v, and
a An > —2, then there exists a unique continuous linear map R : D}" (V') — C&" such
that, if K and K’ are compact subsets of R* such that K is included in the interior of K’,
then we have

(Rf =L f(2), 92| S O Wllyrc N f s (2.2)

uniformly over f € D}"(V), § € (0,1], z € K and ¢ € B, with % supported in K' and
uniformly away from P. Furthermore, the map M x DL"(V) > (Z, f) — Rf € C2"" is
locally uniformly continuous.

Remark 2.7 ([Hail4, Lemma 6.7]). The reconstruction operator R is local in the sense
that, the behavior of Rf on the compact set K C R* is uniquely determined by the
values of f and II in an arbitrary neighborhood of K.

Next we introduce specific symbols and operators to describe (1.1) by regularity
structure: the polynomial structure, product, integration against Green’s function, and
the complex conjugate.

We have the regularity structure 7P°Y given by all polynomials in the symbols
Xo, X1, X5, X3, which denote the time and space directions, respectively. Denote X* =

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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3 X% for a multi-index k € Z4, and 1 = X(.0.0.0) We endow these with the parabolic
=0 “*1
degrees | X*|; = |k[;. Now we define the model space 7Y = @, ., Tr°Y, where

TR = (X5 k|5 = n).

The group G = R* acts on TP°Y by defining I'; X* = (X — h1)* for every h € R*. Now
we have the regularity structure 7°°% = (Z,,7?°Y R*). Furthermore, we have the
canonial model (II,T") on 7P°Y given by

(ILX*)(2) = (2 —2)*, T, =T.,_., (2.3)

for every z, 2’ € R

Throughout this section, the regularity structure 7 = (A, T, G) contains 7°°Y, i.e.
TP°Y is contained as a sector and the restriction of G on TP°Y coincides with {I'; ; h €
R*}. The model (I, T") acts on TP°Y by (2.3). Furthermore, we assume that T}, = T°Y
foreveryn e Z,.
Proposition 2.8 ([Hail4, Proposition 3.28]). Let V be a function-like sector which con-
tains T*°Y and such that V C T*°Y 4 T for some a > 0, where T} := @, ;T5. Let
v > a, n € R. Then for every f € D}"(V), Rf coincides with the component of f in
Vo = (1) and belongs to C¢((0,0) x R?), the space of functions ¢ such that the estimate
(2.1) holds uniformly over z,z' € K for every compact set K C (0,00) x R3.

For a pair of sectors (V, W), a product = : V x W — T is a continuous bilinear map
such that

* VoxWg CT,ypforevery o, € A,
e lxw=wforeveryw € Wandv*1=vforeveryv eV,
e T(vxw) = (T'v) x (Tw) for every (v,w) € V x W andT € G.

The canonical product on TP°Y is given by X* x X! = Xkt

Proposition 2.9 ([Hail4, Proposition 6.12]). Let (V,W) be a pair of sectors with reg-
ularities oy, o, respectively, and product « : V. x W — T. For every f; € D} (V)
and f, € D""(W), the function f = f1 * f, (projected onto T ) belongs to D" with
=1+ a))A(y2+a1) and n = (m + az) A (92 + a1) A (1 + n2). Furthermore, this
bilinear map is locally uniformly continuous with respect to the topology of M x D}".
We say that a function K : R*\ {0} — C is a regularizing kernel (of order 2) if it can
be written by K =} ., K,, where {K,} satisfies the following assumptions.
Assumption 2.10. e K, : R* — C is smooth and supported in a ball B,(0,2™").

» There exists a constant C' > 0 such that sup, |0FK,,(z)| < C2G+Ikl)7 for every n > 0
and k € Z4.

* There exists r > 0 such that [, K,(z)z"dz = 0 for everyn > 0 and k with |k|, <.

For a sector V, an abstract integration map Z : V — T is a continuous linear map
such that

* IV, C Tyyo for every a € A such that o 4+ 2 € A,
» Zr =0 for every 7 € V N TPV,
s (IT —TI)V C T*°Y for every I € G.

Given a sector V and an abstract integration map Z, we say that a model (II,T') realizes
a regularizing kernel K for Z, if for every o € A, 7 € V,, and z € R* we have

.7t = K * (I,7) — I,J ()T,
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where J(2)T = 34 cap2 X (07K *I1.7)(2). It is a consequence of Assumption 2.10
that (0K * I1.7)(z) is defined for all k with |k|s < a + 2.
For f € D};"(V), we define the modelled distribution K., f by

(Ky)(2) =Zf(2) + T (2)f(2) + NAF)(2),

where (NV5f)(2) = Y i), cho X P K+ (Rf —TL.f(2))(2).

Proposition 2.11 ([Hail4, Proposition 6.16]). Let V' be a sector of regularity o and with
an abstract integration map Z. Let v > 0 and n < . Assume that n A a > —2 and
v+2,n+2 ¢ Z,. Then, for every model Z realizing K for Z, the operator K., maps

DL"(V) into D'];’"I withy =~v+2, 7 =nAa+2, and for every f € DS"(V), we have
REKLf=Kx*Rf.

Furthermore, the map K, : M x D" (V) — D],/’”/ is Iocally uniformly continuous.

Remark 2.12. Even in the case that n A a < —2, if there exists a distribution Rf € C"
which satisfies (2.2), then Proposition 2.11 still holds.

For a sector V, a complex conjugate map V > 7+ 7 € T is a map such that

» 7 T is continuous and antilinear, in the sense that A\;7; + AaT2 = A\ 71 + A2 75 for
A, €Candm,m eV,

* V, C T, for every o € A,

o Xk = X* for every k € Z*,

s I'T=I7foreveryr € VandTl €G.

For such V, the set V = {7;7 € V} is also a sector. We assume that a model (II,T) is
compatible with the complex conjugate, i.e.

I,7 =117

for every z € R* and 7 € T. Then we can see that the map D}, (V) > f+— f € D" is
continuous antilinear, and R f = R f holds.

2.2 Regularity structures associated with CGL and admissible models

For smooth &, the CGL equation (1.1) is equivalent to the mild form
u=Gx* {10 + v(l — uvn)u)} + Guy, (2.4)
where * denotes the space-time convolution, GG is the fundamental solution of
oG = (i+wAG, (t,x) € Ry x R?, (2.5)

with initial condition G(0,-) = dy, extended into the function G : R*\ {0} — C by
G(t,-) =0if t <0, and Gug denotes the solution of (2.5) with initial condition wg.

We construct a regularity structure associated with (2.4) by following [Hail4, Sec-
tion 8.1]. We assumed that polynomials {X*} are contained in our regularity structure.
Additionally we have symbols = (noise), an abstract integration 7 (space-time convolution
with (7), and the complex conjugate. Inspired from (2.4), we can define F as the smallest
set of symbols such that {Z, X*} C F and closed for the operations:

« If 7,7/ € F, then 77/ = 7'7 € F.
e If 7 € F, then 7 € F, where we set Xk = X*,
« Ifr € F\ {X"*}, then Z7 € F.
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For a fixed number a < —%, we define the homogeneity of each variable by
Z]s = a, |Xk‘s = [kls, |m7'ls =Irls +|'|s, |Tls = I7ls, |T7ls = |7]s +2.

However, F is too big. Precisely we consider the subsets ¢/ and W, which are defined by
the smallest sets such that {Z, X*} ¢ W, {X*} Cc U/ and

TeW=Irel, 71,72,73 EU= 117973 € W.
We set F = U/ U)WV, and define
TB:<T€‘F7|T|5:ﬂ>a T:<‘F>7 U:<u>a W:<W>

We can see that 7' contains all polynomials 7P°Y, and furthermore, the abstract integra-
tion Z, the complex conjugate, and the product U x U x U — W are well defined. Here
U= (T;T7el).

Remark 2.13. We do not assume identifications of symbols

T=T, M2=TiT2

since T and 7{ 7> are not involved in the definition of F.

In order to define T as a model space of a regularity structure, the set {|7|s;7 € F}
must be bounded from below. A nonlinear SPDE is called subcritical, if the nonlinear
terms formally disappear in some scaling which keeps the linear part and the noise term
invariant. This is equivalent to the property that all symbols except = defined as above
have homogeneities strictly greater than |Z|,; ([Hail4, Assumption 8.3]). In the present
case, this is equivalent to |(ZZ)?ZZ|; = 3(2 + @) > a, or a > —3.

We need to define the structure group acting on 7. Let T be the complex free
commutative algebra generated by abstract symbols

Fr = {X"YU{Jur, Tt 57 € F\AX Y (K], < |7]s + 2}
We define the homogeneity of each variable by
IXF|s = [klss |77 |s = |7ls + |17]ss | TiTls = [ Totls = |7]s + 2 — |K]s.

In the following, we will view 7 as a map from 7T to T, by defining J,7 = 0if 7 = X k
or |7|s + 2 — |k|s < 0, and linearly extending it for all 7 € T..

We construct two linear maps A and AT recursively as follows. The linear map
A:T = T®TT is defined by

Al=1®1, AX;=X;1+11X; (i=0,1,2,3), AZE=2®1,
A7) = (AT)(AT)), AT = AT,

Xt xm
AZ7 = (Z@1dpe ) AT+ O JiemT.

l,m
The linear map A" : Tt — TT ® T is defined by

AT1=1®1, ATX;=X;®1+1®X; (1=0,1,2,3),
AT (r7) = (ATT) (AT, ATF=AFT,
(-X)'

AT Tt = Z (ijrl ® l') AT+ 1® JiT.
l !
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Then by [Hail4, Theorem 8.16], the pair (T, A") is a Hopf algebra, i.e. AT satisfies
the identity

(Idpr @ ANHAT = (AT @ Idp4)AT
and the algebra homomorphism 1* : 7+ — T+ defined by 1*(1) = 1 and 1*(7) = 0 for
7 € Ft\ {1} is a counit in the sense that

(1* ® Idp+)AT = (Idp+ ® 1%)AT = Idp+,

and furthermore, the algebra homomorphism A : T+ — TF recursively defined by

!
AXE = (=X)F, AT = A7, AJWr = —ZM (jk+l ® iiA) AT,
z !

where M : Tt T 37 ® 7 — 77/ € TT, is an antipode of T in the sense that
M(Idp+ @ AT =1F = M(A®Idp+)AT.
The pair (7, A) is a comodule over T, i.e. A satisfies the identity
(Idy ® ATA = (A @ Idp+)A.

We denote by G the set of algebra homomorphisms g : T+ — C such that g(7) = g(7)
for every 7 € TT. Then G is a group with the product o defined by

gog =(g®g)A", g, €G.

The inverse of g € G is given by g—!

I'y € L(T) defined by

= gA. Each g € G acts on T as the operator

Iyr=(ldr ® g)A1, T7€T.
The following theorem is a modification of [Hail4, Theorem 8.24].
Theorem 2.14. Let a € (-3,—2) and A = {|7|s;7 € F}. Then Tey := (A, T,G) is a
regularity structure which contains the polynomial structure 7P°Y and has the complex

conjugate on U, the abstract integration map Z : W — T, and the products x : U x U —
UU and *: UU x U — W, where UU = (77" ;7,7 € U).

We introduce a class of suitable models associated with 7c.1. Let K be a regularizing

kernel satisfying Assumption 2.10 with » > 0. We denote by 7;;3) the regularity structure
obtained by T, = 0 for v > r.

Definition 2.15. We say that a model (II,T') on 7;2"1) is admissible, if
e Il realizes K for 7, compatible with the complex conjugate, and satisfies (2.3),
e T... = (Ty.)"'Ty,, where f. € G is defined by f.(X*) = (—2)* and
fo(Tr) = —0FK + (IL,7)(2), |7]s +2— |k|s > 0.

If the model (II,T") is admissible, then the map II,(I'y.)~! : " — &' is independent to
z, so that we can write IT = I, (I's,) ~!. Furthermore we have

(MIX*)(2) = 2%, NIr=Kx(IIr), 7 =TIIr.

Conversely, if a linear map IT : T — S’ satisfies these conditions, and a family {f, ; z € G}
satisfies f.(X*) = (—2)F and f.,(J7) = —OFK * (IIT'y_7)(2) for Jj7 with |7|s+2—|k|s > 0,
then the corresponding admissible model (I, T') is uniquely determined.

We assume that the model is periodic in the space direction. For n € Z3 and
z = (t,z) € R*, we write S,z = (t,z + n).

Definition 2.16. We say that a model (I,T") on Tc(grl) is periodic if
(HSTI,ZT)(S"Z/) = (HZT)(Z/)’ I‘(Snz)(Snz’) = Fzz/v
for every z,z' € R* and n € Z3.

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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2.3 Abstract solution map
In the regularity structures constructed above, we can reformulate (1.1) as a fixed

point problem in the space D},", by following [Hail4]. First, note that the fundamental
solution of (2.5) is given by

z) = ——ex el
Gt = Lemo 471'(i—i—u)t3 p( 4(i+ﬂ)t>.

Here, for A = r¢'? € C (r > 0, 6 € (—%, Z)), the square root is defined by VA = /re®/2.
Hence G has the form G(t,z) = t~3/2G(t~/2z) for some G € S(R?, C) when ¢ > 0, which
satisfies the condition in [Hail4, Lemma 7.4].

Lemma 2.17 ([Hail4, Lemma 7.7]). There exist a regularizing kernel K and a smooth
function R with compact support such that

(G xu)(z) = (K xu)(z) + (R*u)(2)

holds for every periodic function u supported in Ry x R? and z € (—o0,1] x R3. Fur-
thermore, K and R are supported in R, x R?, and K satisfies Assumption 2.10 with
arbitrary fixed r > 0.

For a periodic distribution £ € §’, we define the modelled distribution

Now we reformulate (2.4) as a fixed point problem in D}, First, for every periodic
initial condition uy € C" with < 0 and 7 ¢ Z, the function Guy is canonically lifted to an
element of D" for every v > 7, by defining (Guo)(2) = 3. o, 11X *0"Guo(2) ([Hail4,
Lemma 7.5]). Second, note that by Proposition 2.9, the map u — u?% is locally Lipschitz
continuous from D}"(U) to DRT?* T3 if o > |2a. + 4] and 7 < a + 2. Therefore we can
consider the problem

u= (Kyt2a+4a + RyR)(Lt>0F (v)) + Guo, F(u)=Z+v(l —ua)u, (2.6)

in u € D}". However, F(u) takes values in the sector U of regularity o = [Z[, < —2 < -2,

so that Theorem 2.6 is not sufficient to define RF(u). In order to overcome this problem,

we impose the following assumption on the distribution ¢ = II= = II,=. (Since = is

G-invariant, I1,= is independent to z.)

Assumption 2.18. (1) For o < 0, we denote by ég the completion of smooth functions
under the family of norms:

|§|a;K 1= sup ||1t>s§Ha;K
seR

for all compact sets K C R*. We assume that ¢ = II= belongs to C® for a = |=|,.

(2) K * ¢ belongs to the space C(R,C2).

Under the assumption £ € C¢, we can define R(1:~0Z) := 1:>0&, so that £(1:50E) is
also defined.

The following theorem is a modification of [Hail4, Theorem 7.8 and Proposition 9.8].
We denote by Or = (—o0, T] x R® and || - [l n;7 := || - 4,504 -
Theorem 2.19. Let o € (—+2,-2), v > [2a+ 4| and n € (—2,a + 2). Assume that the
regularizing kernel K satisfies Assumption 2.10 with r > v+ 2« + 6(> 2). Then for every

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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admissible and periodic model Z = (II,T") satisfying Assumption 2.18 and every periodic
ug € C", there exists T € (0, oo] such that the fixed point problem (2.6) admits a unique
solution v € D)}"(U) on (0,T). The time T' can be chosen maximal in the sense that
limerr ||Ru(t, -)||en = oo unless T' = oo.

Furthermore, the solution v and the survival time T depend on (ug, Z, ¢, K * £) locally
uniformly continuously and locally uniformly lower semi-continuously, respectively, in
the topology of C" x M x C% x C(R,C**2).

Proof. We consider = and F'*(u) = v(1 —uu)u separately. Here F'*(u) takes values in the
sector W with regularity |(ZZ)?ZE|, = 3(a+2). Let G, = Ky42q4+4+ R, R. The modelled
distribution 1,-0= belongs to D) for every . Hence under Assumption 2.18-(1), G, = is
defined as an element of D;**?(U). On the other hand, G, maps D} *™#7(W+) into
D}L*"2(U) provided that 37 > —2, as a consequence of Proposition 2.11. Furthermore,
following the arguments in [Hail4, Theorem 7.1], we have the bound

at2-—n

|”g7(1t>0(5 + F+(u)))|"%77;T ST = (1+ ”|F+(U)|”“/+2a+4,3n;T)

for every periodic u € D]:,’"(U ). As in [Hail4, Theorem 7.8], this yields that there exists
small T > 0 such that (2.6) admits a unique solution v € D},"(U) on (0, 7).

To glue local solutions up to maximal time where the solution exists, note that Ru
belongs to the space C((0,7),C"), even though n < 0. Indeed, the solution can be
written by u = ZZ + ut, where u™ takes values in the function-like sector Ut. As in
Proposition 2.8, Ru™ is Holder continuous. By Assumption 2.18-(2), RZZ = K £ belongs
to C(R,C"). For s € (0,T), we start from u, € C" and consider the problem

U= g’Y(lt>s(E + F+(u))) + Gusa

which is well-posed by defining R(1;~sZ) := 1;5:£. This can extend the time interval
where the local solution exists, following [Hail4, Proposition 7.11]. The existence of
maximal solution and its continuity with respect to (ug, Z,&, K % ) are obtained by
standard arguments in PDE theory. O

2.4 Renormalization

For each € > 0, the noise £° defined in the beginning of Section 2 can be lifted to
an admissible and periodic model Z¢ = (II¢,T') on 7;21'), by defining the linear map

I1¢ : T — C*>°(R?) with the additional assumptions:
HGE — 67 He(TT/) — (HET)(HGT/).

Furthermore, Z¢ has the property that II,7 is a smooth function for every 7 € T and
z € R*, then as a consequence, R€f is also smooth and satisfies

(Rf)(z) = (L f(2))(2)

for every modelled distribution f ([Hail4, Remark 3.15]).

We introduce a renormalization of Z¢ following [Hail4, Section 8.3]. Let Fy C F
be a subset such that {7 € F;|r|s < 0} C Fo, and there exists a subset F,. C Fy such
that AFy C (Fo) ® TOJr , Where TOJr is the complex free commutative algebra generated by
symbols

Fof = {X*YU{Thr, Tt ;7 € Fu, |kls < |7]s + 2}

Let M : (Fo) — (Fo) be a linear map such that

MZIr=IMr, M7=DMr, MXF=XP"

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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Then two linear maps M : T;” — T," and AM : (F,) — (Fo) @ T are uniquely determined
by

Mx* =Xk M(rr') = (Mr)(Mr'),
MTyr = M(T ®1Q)AM 7, MTp7 = MJe,

and
(I1d © M)(A @ Id)AM 7+ = (M @ M)A,
since (Id ® M)(A ® 1d) is invertible. Furthermore, the linear map AM : T, — 75" @ T
is defined by
(AMA® M)AY = (Id @ M)(AY @ Id)AM,

since (Id ® M)(AT ® Id) is invertible ([Hail4, Proposition 8.36]).

Theorem 2.20 ([Hail4, Theorem 8.44]). Consider F, and M as above. Assume that for
every T € Fy and 7 € T,} we can write

AMr=rg1+ Y Wer® AMi-ieo14+ Y Wei).

‘7(1)|S>‘T|s |7A'(1)|S>|7A"S

Then for every admissible model (I1, f) on 7;(grl), the maps I and fM defined by

oV =1m, fM=fMm

are uniquely extended to an admissible model Z* = (IT", TM) on 7;5;1).

Now we give a renormalization map M in a concrete form. In order to simplify
notations, we introduce a graphical notation for the element in F. First, we draw a circle
to represent =. For an element 77, we draw a downward black line starting at the root
of 7. For a product 77/, we joint these trees at their roots. The complex conjugate 7 is
denoted by changing the color black and white to each other. For example,

==1, I=2=V, IZT==V, IV =Y, YV=¢.

Then we can list all of elements with negative homogeneities as follows:

Homogeneity Symbol
o =
3(a+2) A%
2(a+2) V.V
S+ 12 ¥, ¢
o+ 2 I, 1
4o+ 10 Y. ¥ ¢
200+ 5 X;V, X
0 1

Since a > —1—78, the element ¥¥ has positive homogeneity 7« + 18 > 0, so that it does not
appear here.

Considering chaos expansions of Gaussian models as in Section 2.5, we can define
the renormalization map M = M (Cy,Cs1,C22) by
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MV =V,
MV:V—Cl].,
MV =V —-2C1,

M¥=Y(V-Ci1)=¥-CY,
MY = 3§ —20,1,
MY¥=Y(V-Ci1)—Cr21 =¥ —C1Y — Cs21,
M$ =¥,
MY = (Y -2C:0)1 =¥ — 2010,
MY =(Y-2C:0)I=%—-2C1¢
MY = (¢ —2Ci()1 = %7201@,
MY = (Y —2C1()(V 11) —2Cs 1
:$—QC1~£°—C1(V—QC1()—20272|7
MY =(Y —2C10)V —2C11 =% —2C1 ¢ — 20211,
MX;V =X;V,
MX;V =X;(V-Ci1) =X;V -1 X
for some constants C,C>; and Cs>. Since M must be closed in the space (F;), we
should choose Fj by

fOZ{E7V7v7Wa$’7$7IaHa%7%)%,%7$7$5$5Xivaxiv717
&7‘@7?7675’5@a¥3 VaX’L'7X1Ha(7Z: 1a233}

Then it turns out that we can take F,. = {1,1, V, V, ¥ }. From now on, the subscript ¢ of
X; runs over {1,2,3}.

Lemma 2.21. The linear map M satisfies the conditions of Theorem 2.20. Furthermore,
the identity

(Y'7)(2) = (1. M7)(2) 2.7)
holds for every T € Fy and z € R*.

Proof. Calculations of M, AM and AM are completely parallel to those in [Hail4, Sec-
tion 9.2], so here we show only the results. Indeed we have

MJr=JMr, MJr=Tir, ([kls > 0)

and

AMY = MY ©1+201X; ® Jil,

AM% :MV ®1+2C1Xi| ®$l,

AMY = MY ©1+20, X1 @ T,

AMY = MY ©1+20.X:1 @ Jil,

AMY =M¥ ®1+2C,X,(V - C11) @ Jil,

AME =ME @1+20.X;V o Ti1,

AMr = M7 ®1 (otherwise).
Furthermore,
AMTY = TMV +201(X; @ Jil — X, Til @ 1),

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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AMr = M7 ®1 (otherwise).

(Here and in what follows, summation symbols over the repeated index ¢ are omitted.)
Therefore, M satisfies the conditions of Theorem 2.20. The relation (2.7) is obtained by

HiVIT =1, ® fZ)AMT
([Hail4, equation (8.34)]) and the fact that II, X;7(z) = 0 for every 7 with X;7 ¢ F. O

Proposition 2.22. Let Z¢ = (II¢,I'°) be a model canonically lifted from a continuous
function £¢. Let S : (ug,Z) — u be the solution map given by Theorem 2.19. Given
constants C1,C3 1 and Cs o, denote by Z¢ = (f[e, fe) the renormalized model given by
Theorem 2.20. Then for every periodic ug € C", 4¢ = RS(uyp, ZG) solves the equation

Opa® = (i + p) A+ v(1 — |a¢]> 4+ (20) — 20Cq 1 — 4vCy 0))ac + £°. (2.8)

Proof. Since the fixed point problem (2.6) can be written by v = ZF(u) + - - -, where - - -
takes values in TP°Y, we can find functions ¢ and {¢'}?_; such that the solution u € D}
of (2.6) with v = 17 (greater than but sufficiently close to 1) can be written by

u=14+0l—vY¥ —2v0pY¥ —1v3Y + ¢'X;.
In particular, since IT,1 = I¥ | = K * £€ we have
Ru=RMu= K« £+ ¢.

On the other hand, by Proposition 2.11, 4¢ = RM« satisfies the equation

W (t,x) = / Gt —s,z— y)(RMF(u))(s, y)dsdy + / G(t,z — y)uo(y)dy.
0 JR4 R4

Hence it suffices to show that R™ F(u) coincides with the driving terms of (2.8). We can
expand F(u) = Z + v(1 — u)u up to homogeneity 0" as follows.

Fu)=Z—-vV¥ — 200V —vpV +20°% + 17 @
+v(1=202)1 — vl + 20°5% + 270% + 20vp Y
+20°0% + 1w $ + 40 ¥ + 2070 Y
— v X;V — 200" X,V + v(p — %) 1.
Since RMy = RMu follows from (2.7), we have
RMF(u) = RF(u) + 2vC K % £ + 20Ch ¢
— 420K % £ — 20005 1 K % £ — 20DCo 10 — 4°Co 00

= ¢+ (1 — RuRu)Ru + 2vC1 Ru — 2v5Cy 1 Ru — 4v2Cy s Ru
= é-e + V(]. - |ﬁ6|2 + (261 - 2?02’1 - 4VCQ’2))’LAL€.

This completes the proof. O

2.5 Convergence of Gaussian models

Our goal is to show the following renormalization result. We give its proof in the next
section since it takes long.
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Proposition 2.23. If we choose C7, (5, and C§ , as in (3.4), then there exists a random

model Z independent of the choice of p, and for every 6 € (0, —2—a),y<r p>1and
every compact set K C R*, we have the bounds

ENZNW k) St EIZS 215 x] S . 2.9
Furthermore, for every T' > 0 we have

El6l ] S 1, Bl —El..] S €, (2.10)
and

< . (2.11)

B[IK « €2, S1 BIIK € — K €% 0y corsy) S

[O’T]Tca+2)] ~

Combining Propositions 2.22 and 2.23, we obtain Theorem 2.1 if we choose C¢ =
207 = 2005 — 403 5.

3 Proof of convergence of renormalized models

In this section, we give a proof of Proposition 2.23. Since the estimates (2.10) and
(2.11) are obtained in [Hail4, Proposition 9.5], we focus on the estimate (2.9). By [Hail4,
Theorem 10.7], it suffices to show that there exist , 6 > 0 such that, for every 7 € F with
|7|s < 0, every test function ¢ € B, and z € R?, there exists a random variable (IT.7, ©)
such that

E[[(IL7, )] S 6°71F, B[(ILr —TIir, o2) 7] S 26771, (CRY

We fix z € R? throughout this section. The estimates in this section are uniform over z.

This section is organized as follows. In Section 3.1, we recall the Wiener chaos
decomposition of the random variable II,7 and introduce graphical notations to describe
its kernel. In Section 3.2, we give some useful estimates to prove (3.1). In Section 3.3,
we show the required estimate (3.1) for each symbol 7. In Section 3.4, we show the
explicit forms of renormalization constants and their divergence orders.

3.1 Wiener chaos decomposition

The driving noise ¢ is space-time white noise on R x T3, which is extended periodically
to R*. In precise, we are given the complex multiple Wiener integral 7, , on (E,m) =
(R x T3, dtdz1dxodz3) (see Section A) and a random distribution ¢ is defined by (€, ) =
Ji0(mp), where ¢ is a compactly supported smooth function and 7 = ) ;s S, is
its periodic extension, where S,,¢(t, ) = ¢(t,z + n). Although J; o is an isometry from
L*(E) (not L*(R*)) to L*(f2), when ¢ is supported in R x [—3, 1]® (i.e. ¢ and S, ¢ have
disjoint supports if n # 0) we have the isometry

Bllie. o] = Il = [ le@)Fdz. (62)

The approximation £¢(z) = & x p(z) = J1,0(p°(z — )) belongs to the first Wiener chaos.
By definition and the product formula, for each = € F we have the Wiener chaos
decomposition

(IEr)(2) = D Tpa(W2P97)(2)),

p.q

where (We®97)(2) € L%, is the kernel function of J,,-exponent of (IIS7)(2'),

parametrized by 2z’ € R*. In all these kernels mentioned below, we always assume that
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A ’Q)T)(z’ ) is supported in sufficiently small compact subset as a function of (R*)P*¢,
so that we need not distinguish integrals on R x T2 and R*?, indeed similarly to (3.2)

2
E[|(IL.7,¢%) %] < plg!

/ 3 V) ()

Liq
= plq! // ‘Pg(zl)sog(z”)<(W§’(p’q)7')(z/), (W?(p’q)T)(Z")>L2((R4)p+q)dzldz//.

This assumption is satisfied if we take the support of K sufficiently small.
Following [Hail4, Section 10.5], we introduce the following graphical notations to

write integrated kernels. First a dot represents a variable in R*. A square dot ( . )
z

represents a fixed variable. A gray dot ( ») is a variable integrated out on R?, so it has no
label. A variable representing the multiple Wiener integral 7, 4 is written by a black dot
(e) for a variable in EP, and a white dot (o) for a variable in F, respectively. Second an
arrow represents a function of two variables which are represented by its vertices. We
write

K -2 = J/me—my K¢z —2") = 2w P
K —2") = J/me—my", Ke(2 —2") = o/ mdmylt
where K¢ = K * p°. Moreover, we write
K(Z -2 K(z-2")= /uéd—my" |
K(Z -2 K(z=2")= /uéd—m" .

We note that z € R* is fixed. We write several kernels by combining these notations. For
example,

J3.1( z"w. € .

= / {/(K(z’ —u) — K(z —u))K“(u —w)K(u — ws) K¢(u — w’)du}
x K(2' —w3) : &(dwy)é(dws)€(dws)E(dw') : .

3.2 Estimates of singularity of kernels

From the scaling property of K = > K, we can see that |K (z)| < ||z 3. It is useful
to consider the singularity of kernels like this. The notation A(z' — 2”) = /= "
implies that A : R*\ {0} — C is a smooth function supported in a ball and has the
estimate |A(z' — 2")| < |2/ — 2"||;*. We recall some useful estimates from [Hail4,
Section 10.3] and [Hos16, Section 4.7].

Lemma 3.1 ([Hail4, Lemma 10.14]). For a, 8 € [0, 5), we have
J/m—a—pra-my | o+ >5,
| 2/ o Bruy | <
1, a+ B <5

Lemma 3.2 ([Hos16, Lemma 4.31]). Let o, 3,0/, 5",y € (0,5). If{ € (0,a A ] and
n € (0,a' A 8] satisfy
at+B-5<( o+ =5<n at+fra +F+7-10<(+m,

then we have

’ "
zn "z 'm mqy
—o P z w
S < '
W' \[E’L.w,, S m i myy!!
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For a, 8 > 0, we use the notation

Qaal,2") = /e Em o T 5e

Lemma 3.3. Let o, § € [0,5). Forf € (0,1A(2—a— g)), we have
|Qa,s (2, 2 S 12" = 220" — =[5

Proof. Since | z/méd—mu| < |2/ — z||§(||z’ — u\|s‘3_9 + ||z — u||s_3‘9) by [Hail4,
Lemma 10.18],

|Qas (22" S 112" = 2l2llz" = 2lI2(R(2', 2") + R(2,2") + R(¢', 2) + R(2, 2)),

where
P m,
rooN roony el — A=<
R(u',u") = Ry v (v, u") = u/._s_lg ._S_GIUN.

It suffices to show that R is bounded. By the inequality ||2/|;¢|2"[I57 < ||12/I;97° +
|2”||7¢# for a, B > 0, the function R is bounded by the sum of functions of the form

P ey N ey o

which is bounded by 1 since 2(—a —3 —0) — 3+ 10 > 0. O

3.3 Proof of L?-estimates (3.1)
Now we prove the estimate (3.1) for every 7 € F with |7|; < 0.

3.3.1 = 1,01,V,V,V¥

For 7 = Z, 1, 1, the required estimates follow from [Hail4, Proposition 9.5]. We now treat
7=V,V, V. By definition,

MLV =TIEV = (T151)%,
eV =TV — Cf = (TSN)(ITED) — Cf.
By applying the product formula to

T N(2) = K % €5(2) = Tro o/ mdemme ),
E0(2") = K+ &(2") = Joa( 2/m0 ),

we have

MV (2) = Jool ELE iy}

v (2) = Ji1( 2w (‘. )+ z";

If we choose Cf = z";__,
easily follow. Indeed,

BV, o7 =2 [[ 6 nke ] pmr detas”
5 5
s / / P2 ()i (") | /e | d2'd2"
EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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< / / () — 22 < 5

and —2 > | V|; = 4(a + 2). Moreover, if we choose

IV (2) = J2,0( z"(<: )
then we have
E[(IISV —TLV,¢0)*] S 67270

for small § > 0. This is obtained by similar argument, since |(K¢ — K)(z)| < €|z 73~
for 0 € (0,1] (see [Hail4, Lemma 10.17]). The case 7 = V is similar.
For 7 = V¥, by the choice of C{ we have

IV (=) = (LD () (ME)(2) = 205 (I () = Taa( 2/

.0
° )
‘O
Then the estimate (2.9) for 7 = V¥ easily follows as above. Indeed,
BV )P =2 [ [ o268 2w
/ / ()b ()
s [[ el - ara 55

and —3 > | V|, = 6(a + 2). The estimates for [I1¢W — I, ¥ are similarly obtained by
choosing

cigwo do dz

’-‘-ﬂ-’- 2| dZ dZ”

MV () = Toa( 2/nE=e).

©)

In the subsequent computations, the estimates of 1:[27- — f[zr are obtained by similar
arguments to those of ﬂZ’T as above by using the bound of K¢ — K, so we show only the
uniform boundedness but not the convergence estimates explicitly. For detailed proofs,
see [Hos16, Section 4.8].

3.3.2 XiV7XiV7¥’7$7¥’7$

For 7 = X,;V,X,;V, the corresponding estimates are easily obtained. Indeed, since
X V(2') = () — 2;)IIE V(2') we have

BNV 27 =2 [ [ 63w~ i) (ol ) e gt de'd
S [[ et @ - el - wll - P S 1
and 0 > 2|X;V|; = 2(2a + 5). The case 7 = X;V is similar.
Now we turn to ¥, ¢, ¥, ¥. In particular, we consider the renormalizations of ¢

and ¥, since the corresponding chaos decompositions of the two other elements do not
have zeroth order terms. By definition,

MY =TE$ — 205, = (L V)(IISY) — 205,

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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MY =T5Y — C{IEY — C5, = (IISV — C5H)(TILY) — Cs .

We note that

MY (2) = K#IEV () = K # TV (2) = Jo o 2/méd—o 407 ),

(6]
[ ]

MY () = K+ TV () — K+ ISV (2) = T ( 2/ m e 470 ).

By applying the product formula (Theorem A.1) we have

{0 ) +2( 2w = 5,1)

Hence if we choose

we have the required bounds. Indeed, since kernels belonging to the same order chaos
have the same graphs except for the difference of K and K, it suffices to show the
bounds for one of these kernels for each order chaos. For remaining zeroth order terms,
we have the bounds

P AP P emmoth = T P L o

for an arbitrary small x > 0. For the second order terms, by Lemma 3.3 we have

e G 0 wuny .
| i }\, ‘ = | o W e >ul | > |Q171(2’/,ZN)|
Py ).2//

i-k

1_
N e e e P

for small x > 0. Similarly, for the fourth order terms, we have
£..03
I S T FIT o TR e ]
AT S T P
ol R A R EA A
for small k > 0. As a consequence, we have

B[ %, ) < / / A O (A e A o

1_ 1_
=22 = 2l S

+2 =2l Tl = 2l T - 2 d S 6

for an arbitrary small x > 0. The cases 7 = ¥, ¥, § are similar.

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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333 ¥.%.¢.¥%.¥

We treat the case 7 = Y. The cases 7 = ¥, % are similar. By definition,

MY () =TIL Y (2) — 205 (TS (2)) — FE(TN)(TIEXT)(2))
= TN () {K « ISV (2) — K * TS W (2) — 205 (K « TSN (2) — K = TIS1(2))}

The summation symbol over ¢ = 1,2, 3 is omitted again. For the fourth order term, by
Lemma 3.3 we have

| i ' % | = | o W e Sum,l ‘ % |Q073(z',z”)|
Z/.< ........ ).Z”
1_ 1_
ol A A A

for small x > 0. For the second order term, we decompose it as

R SR ° S BRp— ° O B °
’IQ—I— - = ’IQ— - — /'m - . 3.3
z & . z & o z e & (3.3)

By Schwarz’s inequality, it suffices to consider the bound for each term. For the first
term, we have

| e g s | < | e = | Sl - 2
for small x > 0. For the second term, by Lemma 3.2 we have

U o 7= =z
| 2/ v 0% ~ | S| |
y4

m Z_
S =2 = 2l
for small k > 0. As a consequence, we have

E|(ILY, o) < 672

Finally we treat = = ¥. The other one is similar. By definition,

MY (2) = M{(Y — 2051 )(V — Cf1) — 205 ,1}(2)
+ 205 FE (TN X (V — C51) H(Z)
=TV -CHE WK +TIEW(2) — K xTIE VY (2)
—2C5(K *TIS1(2)) — K+ TIS1(2)) }(2) — 205’211;[(,2')

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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| =] z/mg Bwe | x|Qos(Z,2")]

1_ 1_
Sl =227l = 22 = 2

for small x > 0. For the third order terms, we note that the required bounds are obtained
by multiplying /= ¢ «$mz" to (3.3), so we have the bound

(12" = 2”177 + [l2" = 2lIT7]12" = 2lIT5)2" = 2" 15

For the first order terms, we need to introduce the renormalization

BRI K 0 e A

where L¢(2' —w) = 2/ -?—;‘[-w and RL¢ is the distribution defined by

<mﬁ#ﬁ:/LWMﬂ@—¢@WZ

for test function ¢, see [Hail4, Definition 10.15]. By [Hail4, Lemma 10.16], we have the
bound

[RLE = K(2)| < |21

For the remaining term, we have

P R T AR st - |
F TSy w T A =g .
z Z
_1_ _1
Sl =2l 22" = 2lls 27

As a consequence, we have

E[(IL &, o)) S o712,

3.4 Behaviors of renormalization constants

In Sections 3.3.1 and 3.3.2, we obtained renormalization constants

cf = - [P
cs, = - [ R ) (3.4)
Cso = - [ K@l C)P

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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where
z) = /KE(Z —w)K¢(—w)dw.
Note that Q¢ = Q * 7, where 7(t,2) = ¢ °n(e~%t,¢"'z) and

K= wR(-widu, 7()= [ plz = wip(-u)du,
Proposition 3.4. There exist constants C1,Cs; and C5 2 independent of e such that
Cf ~ 016_1, 0571 ~ 02,1 10g 6_1, 0571 ~ 0272 log 6_1

as e | 0. Here for two functions A. and B, of ¢, we write A, ~ B, if there exists a constant
C independent of ¢ and |A — B¢| < C holds.

In order to prove the above estimates, we prepare some notations. For o > 0 and a
compactly supported function A € C=(R*\ {0}, C), we say that A € &, if there exists a
function A € C*°(R*\ {0},C) and A_ € L>=(R*, C) such that

« A=A+ A_onR*\ {0},
o AN, Az) = A\"“A(t,z) for every A > 0 and (,z) # 0,
e [A_(2)| £ ||z||;* for every z € R™.

The second scaling property of A ensures that |A(z)| < ||z]|7® for every z € R? (see
[Hail4, Lemma 5.5]).

Proposition 3.5. Let o, 5 € (0, 5).
(1) fAc 6, BecGganda+ 3 >5, then Ax B € Guqp_s.
(2) If A€ &, and B € &g, then AB € G,g.
Proof. For (1), in the decomposition
A*B:g*E—A,*E—Z*B,—i—A,*B,,

we see that the last three terms are bounded by ||z||2~*~# by using [Hos16, Lemma 4.14].

Hence it suffices to set A «B=AxB.
The assertion (2) is similarly obtained. O

Proof of Proposition 3.4. First we show the estimate of C§. Since K, K € &3, we have

@ € ©;. Hence we have
:/Q(—z)ﬂ (2)dz
- [GCan @i [o-(-
_1/Q (z)dz + O(1).

The last equality follows from the scaling property of @ and the boundedness of () _.
Next we show the estimate of C5 ;. Note that

C51= /K )2dz ~ /|Z|S>€K(z)(Q(z)) dz.

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
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Indeed, since |Q(2)| < e ! and |Q(2) —Q(2)| < €| 2|71~ for every 6 € (0,1] (see [Hail4,
Lemma 10.17]), we have

V}<mewww

st [ et
Iz]]s<e

and

‘/ o> K(2){(Q(2))* = (Q(2))*}dz

sﬁ/ J2ll75 0z < 1.
[|]|s>e

Hence it suffices to consider [, . £(z)dz, where R = KQ® € &5. However, we replace
R by a function S, defined below. Let ¢ be a smooth and nonnegative function such that
supp(p) C {2 < ||z|ls <2} and 307 »(22"t,2"2) = 1 for all (¢,z) # 0. Define

e’} —1
Sy = Zégﬁn, S_ = Z E@ny
n=0

n—=—oo

where ¢, (t,z) = ¢(22"t,2"z). Note that R+ R_ = Sy + S_. Since supp(S_ — R_) is
compact, we have
/ R(z)dz = / Sy(z)dz + O(1).
llzlls>e€ llzlls>e€

By the scaling property of R, we have Sy = 220:0 Sn, wWhere
S, (t,x) = 2°"5,(2%",2"x), S, = Re.

Since Sy € C§°, we have

/ St (z)dz = Z/ Sn(z)dz
llzlls>e€ 0" llzlls>e¢
N (e)

o
= E / (2)dz = E / So(z)d
Hz\ls>e2" l|z]|s >e2m

n=0

where N(¢) € N is the largest number such that {||z[|s > €2V} Nsupp(Sy) # 0, so there
exists a constant C' > 0 such that N(¢) ~ C'loge™!. Since

NG N(e) N(e)
Z / 2)dz — /SO Ydz| < Z/ dz < Z €595 < H9PN() < 1
n=0 HZHS>€2" H <e2n o

we have the estimate
C51= /SO )dz + O(1 C’/So )dzloge !,
The estimate of (5 , is similar. O

4 CGL by the theory of paracontrolled distributions

In Sections 4 and 5, we study well-posedness of CGL (1.1) by using the paracontrolled
distribution theory introduced by [GIP15]. In that paper, they studied some problems
such as differential equations driven by fractional Brownian motion, a Burgers-type
stochastic PDE, and a nonlinear version of the parabolic Anderson model. After that
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Catellier-Chouk [CC13] showed local well-posedness of the three-dimensional stochastic
quantization equation (the dynamic <I>§ model), which is an R-valued version of CGL.

Our proof of the local well-posedness of CGL consists of two parts: a deterministic
and a probabilistic part.

In Section 4, we deal with a deterministic version of CGL and construct a solution
map from a space of driving vectors to a space of solutions. We also see that the solution
map is continuous. In this section, £ is a deterministic distribution which takes values
in the Holder-Besov space C ~3-* for any x > 0 small enough. To construct the solution
map, we rely on the method introduced by Mourrat-Weber [MW17]. We state the precise
assertion concerning the well-posedness in Theorem 4.27. In Theorem 4.30, we see
that the solution obtained in Theorem 4.27 solves the renormalized equation (1.2) in the
usual sense.

Section 5 is the probabilistic part and devoted to constructing a driving vector X
associated to the space-time white noise ¢ defined on R x T3. We follow the approach as
in [GP17] and obtain the driving vector in Theorem 5.9. Here we explain how to mollify
the white noise &. Let x be a smooth real-valued function defined on R3 such that (1)
supp x C B(0,1), where B(z,r) denotes the open ball of radius r > 0 and center x € R?,
(2) x(0) = 1. We set x(k) = x(¢k) for every k € Z>. Define ej(r) = >k for every
k € Z3 and = € T3. Here, the dot - denotes the usual inner product. We define £¢ by

€= > x(k)é(k)ex. (4.1)

Here, {é(k)}kezs denotes the Fourier transform of ¢ and it has the same law with
independent copies of the complex white noise on R. We see that (¢ — £ in an appropriate
topology. For the smeared noise £¢, we define a family of processes {X“}o<c<1. In this
definition of X¢, we will use the dyadic partition of unity {p,,}>°__; via the resonant
and renormalization constants ¢j, ¢5; and ¢5 ,; see Section 4.1 for the definitions of
{pm}>__, and and see (5.5) for the renormalization constants. We obtain the driving
vector X as a limit of {X“}o<.<1. By setting ¢ = 2(c{ — ey ; — 2vc5 ,), we have [¢¢| — oo
ase— 0.
By combining Theorems 4.27, 4.30 and 5.9, we obtain the following main theorem in
Sections 4 and 5:

Theorem 4.1. Let 0 < v’ < 1/18 and up € C—3%+'_ Consider the renormalized equation

(1.2) with C¢ = ¢¢. Then, for every 0 < € < 1, there exist a unique process u° and a
random time T¢ € (0, 1] such that

e u¢ solves (1.2) on [0,T¢] x T3,
e T¢ converges to some a.s. positive random time T, in probability,
e u¢ converges to some process u defined on [0,7,) x T? in the following sense:

li € — =0
i

in probability. Here, we set supy<,<r, /2 [[us — uSHC,%M, = oo on the event {T¢ <
T./2}. Furthermore, u is independent of the choice of {p,, }5°__; and x.

Here, we will make comments on this theorem. Note that the process u° and u
are obtained by substituting X and X into the solution map, respectively. Since X°¢
converges to X and the solution map is continuous, we see that u¢ converges to u. In
addition, u€ solves (1.2) in the usual sense, hence we see the theorem. We need to pay
attention to the assertion that v is independent of the choice of £¢. Recall that X ¢ depends
on {p, }5°__,. Hence u® may, too. However, we see that v does not. In fact, we obtain

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
Page 25/68


http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/

Stochastic complex Ginzburg-Landau equation

an expression of the renormalization constant ¢ which does not depend on {p,,}3°__,
in Proposition 5.21. Hence, (1.2) is independent of {p,,}5°__; and so is the solution u°.
As a consequence, the limit u is independent of {p,,}>°__;. In addition, the limit u is
independent of y because the driving vector X is independent of y (Theorem 5.9). Hence
we see the solution does not depend on {p,,, }5°__; or x.

Remark 4.2. As stated in Section 1, we can choose common approximation noise for
the renormalized equation (1.2) to obtain the solutions in Theorems 2.1 and 4.1. In this
sense, the solutions in Theorems 2.1 and 4.1 “essentially coincide,” or at least look very
similar.

In Theorem 4.1, the noise ¢ is smeared only in spatial direction. However, we can
consider the case that the noise is smeared both in temporal and spatial directions. For
a non-negative Schwartz function ¢ on R* such that J 0 =1, we consider the scaling
0°(t, ) = e ®p(e~2t, e 1x), which is the mollifier considered in Theorem 2.1, and replace
¢ by smooth noise

)= [ o-sa sl dsdy @.2)

Then the same claim as Theorem 4.1 holds for the renormalized equation (1.2) with 56,
under well-adjusted choice of C¢. Moreover, the limit process coincides with that in
Theorem 4.1. This is because the limit driving vector dose not change under the different
choice of approximations (Remark 5.20).

Finally, we should note that Hoshino showed the global-in-time well-posedness of
CGL (1.1) in the case that x> 1/+/8 and Rv > 0 [Hos17b].

Sections 4 and 5 are independent of Sections 2 and 3. We do not use the symbols
introduced in Sections 2 and 3.

4.1 Besov-Holder spaces and paradifferential calculus

In this section, we introduce the Besov-Holder spaces and paradifferential calculus.
The results in this section can be found in [GIP15, BCD11] or follow from them easily.

4.1.1 Besov spaces

We introduce the Besov spaces and recall their basic properties. Let D = D(T?, C) be the
space of all smooth C-valued functions on T? and D’ its dual of D. We set ey (z) = 2™k
for every k € Z® and x € T3. The Fourier transform Ff for f € D is defined by
Ffk) = fT3 e_r(x)f(z)dr and its inverse F~!g for a rapidly decreasing sequence
{9(k)}rezs is defined by F~'g(x) = >, .zs g(k)ex(x). For every rapidly decreasing
smooth function ¢, we set ¢(D)f = F 1oFf =3,z o(k) f(k)ey.

We denote by {p., }5°__; a dyadic partition of unity, that is, it satisfies the following: (1)
pm: R — [0,1] is radial and smooth, (2) supp(p—1) C B(0, ), supp(po) C B(0, $)\B(0, 3),
(3) pm () = po(27™) for m >0, (4) >oo_ | pm(-) = 1. Here B(0,r) = {z € R3;|z| < r}.
The Littlewood-Paley blocks {A,,}5°__, are defined by A, = p (D).

We are ready to define Besov space C® = C%(T?, C) for a € R. It is defined as the
completion of D under the norm

[fllee = sup 2" Ay fll Lo
m>—1

The next is frequently used results on Besov spaces:
Proposition 4.3 ([BCD11, Theorem 2.80]). We have the following:

* [ fllee S NS lles ifor < B.
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e Let o, 1,0 € R satisfy a = (1 — 0)ay + Oas for some 0 < 6 < 1. Then, we have

—6 0
I lles < I fllear £ gas-

4.1.2 Paraproducts and Commutator estimates

For every f € C%, g € C?, we set

f59="> Apflmg fAg= Y Dupflmg,

mi>mo+2 mi1+2<mg

f 9= Z ATl’Ll fAm2g-

\mlfmg\gl

The following are properties of paraproduct.

Proposition 4.4 (Paraproduct and resonant estimate [BCD11, Theorem 2.82 and 2.85]).
We have the following:

fAglles S\l llgllce-
fAgllcors S flleellglles-

(3) Ifa+ >0, then |[|f  gllcars < [ fllc=llgl

(1) Forevery 8 € R,

(2) Foreverya < 0andf €R,

C(l .

Remark 4.5.let f € C* and g € C° for a < 0 and § > 0 with o + 8 > 0. Then the
product fg is well-defined as an element in C*.

Proposition 4.6 (Commutator estimates, [GIP15, Lemma 2.4]). Let0 < a < 1, 8,7 € R
satisfy f + v < 0 and o+  + v > 0. Define the map R by

for f,g,h € C°(T3,C). Then R is uniquely extended to a continuous trilinear map from
C* x CB x C7 to Coth+,
4.1.3 Regularity of C“-valued functions

Here we consider C%-valued functions and introduce several classes of them. Let
0 < 6 <1 and n > 0 and define these classes as follows:

» CpC* is the space of all continuous functions from [0, 7] to C* which is equipped
with the supremum norm

[ullores = sup |luellce,
0<t<T

+ O2.C“ is the space of all §-Hélder continuous functions from [0, 7] to C* which is
equipped with the seminorm

lullggen = sup L= tslles
O ™ gcacicr  |t—s]®

» £7C% = {u € C((0,T],C%); lullgnce < oo}, where

ullgnce = sup t"|ullce,

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
Page 27/68


http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/

Stochastic complex Ginzburg-Landau equation

+ £1500 = fu € C((0.T1.C°):

£n5ce < oo}, where

Jullgnsca = sup anllue = tsllee _“SL'CQ,
T 0<s<t<T |t — s

« L3° = CrC* N CHCo,

o LI = ENCO N OpCoT N EROC,
Remark 4.7. We introduced the norms on the spaces £.C* and 5;"56"" in order to control
explosion at ¢t = 0. The definition of C?ﬂ"s is natural from the time-space scaling of CGL.

For ;1 > 0, we set L' = 0; — {(i + u)A — 1}, P} = e'{(i+W4-1} We present results on
smoothing effects of semigroup {P}};>.

Proposition 4.8 (Effects of heat semigroup). Let o € R.

(1) For every § > 0, ||Plulca+2s < t7°%||ullca uniformly int > 0.

(2) For every § € [0,1], ||(P} — 1)ullga—2s < t%||ul|lca uniformly int > 0.

Proposition 4.9 (Schauder estimates). Let T' > 0. We see the following:
(1) Letu € C*. Forevery 8 > a and § € [0,1], we have

I Pluisoll sce py S llulce.
LT
(2) Letow # (. Letu € £C forn € [0,1) and set

t
Ut:/ Pl Jugds.
0

Then for every v € [a,a0 —2n+2), B € [y,a+2) and ¢ € (0, ﬁfTa} we have

a—2n+2—vy
HUHEL;’Z,ﬁ,a ST 2 ”u'
T

gnce-
Proposition 4.10 (Commutation between paraproduct and heat semigroup). Let a < 1,
B € R, > 0. Define
[P}, ud]v = PL(udv) —ud Plv.
Then we have
1P} udv]|cataras S 70 uflcal|v]ce

uniformly overt > 0.

We can show the above results in a similar way as [Hos17a, Corollary 2.6, Proposi-
tion 2.8] and [MW17, Propsosition A.15], because p > 0.

4.2 Definitions of driving vectors and solutions
First of all, we give the definition of a driving vector. We set

t
I(ug,v); = Plug +/ Pl v, ds, (4.3)
0
¢
1(v)e = / P/_ v, ds, (4.4)
whenever they are well-defined. Note that if we can choose vy = f?oo P! v, ds, then

I(ug,v) = I(v).
Let 0 < k < k' < 1/18 and T > 0. The following is the definition of a driving vector.
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Definition 4.11. We call a vector of space-time distributions

x = (x!xV x¥ xY XY x ¥ x ¥ xF ¥ ¥ Y Y
€ CrC~ 3% x (OpC177)2 x (CpCLl™")2 x L2772 5 (CpC")0 x (OpC3—")?2

which satisfies (X, , XV) = xY and 1(X.), x¥) = XY a driving vector of CGL. We
denote by Xf: the set of all driving vectors. We define the norm | - || xs by the sum of the
norm of each component.

Note that we assume that the component X ¥ has Holder continuity and it belongs to

ﬁ%_n’%_%ﬂ. We easily see that the space A’ is a closed set of the product Banach spaces.
Next we define the space of solutions and give the notion of a solution.

We describe the tree-like symbols I, V, ¥, Y,...in the definition. The dot and the
line denote the white noise and the operation I, respectively. Hence, | represents
I(¢) = Z. The symbols { and V stand for the complex conjugate of Z and the product ZZ,
respectively. So ¥ means I(Z2Z). Finally, ‘{, denotes the resonance term of I(Z2Z) and
Z.

Definition 4.12. We set
7 5 ! ! 1 ’ ’ 3 ’ ’
k' pg—kK L 1—KL1—35k 1-r'+k,5—2K",1-K
Dy =LE X Lo .

Next, we fix X € X% and set Z = Xland W = X‘{’. Define F and G on D;’“/ by

Fo,w) = —v{2(—vXY 4 v+ w) 4 x¥ + (—oxT 4o+ 4 xV, (4.5)
Gv,w) =Gi(v,w) + -+ + Gg(v,w). (4.6)

Here G4 (v, w),...,Gs(v,w) will be defined shortly.
Since Z; € C—3" and W, € C3~*, the product W;Z, and W,Z, are not defined a
priori. We define them by

WZ-W(4+5)7Z+x7, WZ—W(4+5)Z+XF.
The products W2Z and WW Z are also defined by

W2Z — oW X ¥ 4 ROW,Z, W)
+(WAZ)(4+5)W+WW5Z),

wivz —wx ¥+ wx¥ 4 rav, 2, w)
+ (WA Z)(4+5)W+W(W52Z).

It follows from Proposition 4.4 that (W Z),, (WZ),, (W2Z),,(WWZ), € C~2~* hold.
In order to define G (v, w), we use com(v, w) defined as follows. For every vy € C~ 3+
and (v,w) € D", we set

t
0 = Plug —|—/ Pl [F(v,w)(s)] ds.
0
Define

com(v,w) =0+ v{2(—vW +v+w)4 XV + (-vW+v+w) 4 XY}. 4.7)
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From Lemma 4.23, we see that com(v,w) XY and com(v,w) XV are well-defined.
Roughly speaking, com(v, w); is something like

(1), —2v(—vW + v + w)A] X Y], + [I(), —v(—PW + v + w)4] X "),

Here, [[I(:),ud]v]; = T(u 4 v)s —ur 4 1(v);.
We are in a position to define G4,...,Gs. We write us = v + w and set

G1(v,w) = —vudiz,
Go(v,w) = —v{ud(Z — oW) + 2ugtiz(Z — vW)},
Gs(v,w) = —v{ug(QUvWW — 20WZ — 20W Z — 4VX§' - ﬁX¥)
+ U (VPW? - 20W Z — X F — 2VX¥)}
+ (v + 1)ua,
Gi(v,w) = —v{ = VDWW + V*W?Z + 200WW Z
+ 2w XY a2, x Y XY
+ 2P XY 4 272 R(W, XY, xV)
+ 2w x¥ 4 2RV, X ¥, xV)
+ oW X ¥ 4 vorow, x Y, x V)
“ox¥ o s x¥
—ox¥ _owsxV)
+ (v +1)(Z - vWV),
Gs(v,w) = —v{ — AwR(uz, XV, X¥) — 2wR(w, X7, xV)
_owR(ug, XY, XV) — vR(us, XY, XV) 1,
Ge(v,w) = —v{2com(v, w) x¥ 4 com (v, w) XV},
Gr(v,w) = —v{2w xV 4w XV}7
Gg(v,w) = —v{2u2 5 x¥+w:5 Xv}.

The map M = (M?!, M?) is defined on D;’”/ by
t
(MY (v,w)](t) = Plog + / Pl F(v,w)(s)ds, (4.8)
0
t
[M2(v,w)](t) = Plwg Jr/ Pl G(v,w)(s)ds (4.9)
0

for every (vg,wp) € C—3++ x C~272% We will use Proposition 4.9 to check that the map
is well-defined map from D" to itself and has good property.

Definition 4.13. For every (vy,wy) € C"5+% x C~372% and X € Xf, we consider the
system

{ v = M (v,w)](t), (4.10)

wy = [M? (v, w)](t).

If there exists (v,w) € D;’f’ for some T, > 0, then we call (v,w) the solution to (1.1)
on [0,T,].
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In Theorem 4.30, we see that the solution obtained in the sense of this definition
solves the renormalized equation (1.2) in the usual sense. Hence, this definition is
proper.

We interpret (4.10) as a fixed point problem M : (v, w) — (M (v, w), M?(v,w)). We
show that the map M is well-defined and a contraction in Section 4.3. Section 4.4
is devoted to the construction and the uniqueness of the solution. We show that the
solution to (1.1) satisfies a renormalized equation in Section 4.5. In that section, we see
the validity of the notion of the solution to CGL.

Before starting our discussion, we will remark on the function spaces we have just
introduced.

Remark 4.14. We make several comments on £:“ and EE}’O"‘S.

* The inclusion E%"s - E%’él holds for every 0 < ¢’ < 4. To prove this assertion, we
use Proposition 4.3. Set § = ¢'/. Then o — 26" = (o — 26)0 + a(1 — ). For every
W e £5°, we see

IWi = Willga-ar < [We = Welfuras [ Wy — Wi 527
) /] —6
St = 9 IW g oo} W5 %0
6/
< (6= )7 [W] -

~

* The inclusion £}*° C E%’“";/ holds for 0 < &' < 4. Indeed, for every v € £:*° and
0 <s<t<T,wehave

lve — vsllga—2s < st — 3|5||U|‘g;=5ca726a
[t = vsllea < |vtllea + |vsllea < t7vllgnca + 57" ||v][ence-
Hence, for 6 = §' /4, we see

lor = vsllga—2s < [|vr = vs||Ga-asllve — vslga”

< {57t = s|°||v] 5’;,5604—25}9{8_17”/0”5;(?&}1_9

S st — s Ivll gy

. . . n’a’ﬁl
which implies v € L77° .

» For every v € E%O"é and o — 27y < v < «a, we have v; € C” and

[veller < t2O@2M)|jy

n,a,8
‘CT

forany 0 < ¢ < T. Since v; € C*2"NC%, we take § such that v = (o —2n)(1—60) +af
and use Proposition 4.3 to obtain

—6 —0 - —
lveller < Mvellgalenllvelléa < N1vllG¢a 2ot 0llepeat’ < 77 0ll s
Combining this with nf = 1 (v — (o — 27))), we see the assertion.

1, 1_ 1 ’
Remark 4.15. We make several comments on £2. % >" and D/" . Recall that
L2TMTTE — 0pcER N O,
5

5_p1—k'1-1k’ 5_g! —r! _2 / 5_k'1-1ik' ,_
L3R _gi T elon oot N gs e,

1—k'+k,2—2r"1—K' K 3 _9./ _1_ 1—k' 1—k' 1
Ly " = Ep NI NCpCTETR N E T e
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, 11 1, 1_,1_ 1,/ 1 1_
* Forevery0 <k <x’,wehave L7 "* *"CL; 7* * =CpC27"NCt
This inclusion implies

”X:{.‘ - Xj.”c»e/—n S(t— s)ifén’HXTHc

1, .
2%0k/—n

N

¢ Note that

DK’R/ _ [’%7/{’,17/4,17%/{' % Elfnurm,%f?n',lfn'
T - ~T T
§7n’,17n’,%7n' ‘clfn'Jrn,%an’,%fn’

C L} x L
holds and, for every (v,w) € D;’”/, we have

(5 _x’ 1_ ./
o = vlloe < llve = vllew S s~ F)(t — 5)2 =~ e 1

—(1— 1_
e = wallzoe S o = wsllewr € 574D = )2 fol] vy ar i
T

* For every (v,w) € D", we have

K

_1 2
lollee <t oll g sy
_1 1
lwelles < 22 al] 4 rig s
T

where a and 8 satisfy —2 + x' <a<1-+x"and —§ — 2 < B < 3 —2¢/.
In particular, for « = § = k' — k, we have

_2-3k
ol < edlew o < £ 5B ol govraera
N
lwellzm < fwellew— < € FES ]l oy s,
T
(v, w)

[v: + willpoe < lvellpee + [lwillze St [P

In the last estimate, we used 0 < kK < £’ < 1/18 and 0 < ¢t < T'. We also see

_1 2_ 7
o+ willes S 20| (0, 0) | e
T

if—3 -2k <y<1-k.
4.3 Properties of the integration map
Let0 < k < Kk < 1/18and 0 < T < 1. We fix X, X, X® € XF and set Z = X|,
W = x¥ , 70 = X1 and WO = xO.Y for i = 1,2. We sometimes use the symbol Fy,
Gx and My wy),x = (M%vo,wo), o M?vmwo% ) to indicate the dependence on the driving
vector X and the initial data (v, wo).
4.3.1 Properties of M!

Let us start our discussion with F'.
Lemma 4.16. For any (v,w) € D;"‘/ and 0 <t < T, we have F(v,w)(t) € C"'~* and

_2-3k
1 (v, w)(B)lle-1-~ < CUIXag + 77 ([ (0, w)l| e X

where C is a positive constant depending only on k, «/, 1 and v.
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Proof. Set ® = —vW + v+ w. From W, € -l v € C* and wy € 22 we see that
@, € C27% and ||®4| e < ||Willpe + ||lvt]|pe + |lwe]| L~ hold for every (v, w) € DL" . Note
that |[Wy||p~ < ”WtHc%*“ < [|X||xx holds from Proposition 4.3. From Remark 4.15, we
see

2

_2-3s _2-3r
loellzee St 0l g owriammram g 870 (0,0,
T
_1(1_,/ _2-3
|| e < tm2(3F5 +n)||w||Ll,K,+N,%,2K,,1,K, <t G~”(v,w)||D;ﬁ/.
T

Combining this with Xt\ € C~'=* and using Proposition 4.4, we see ®; 4 Xt\ € C =% and

100 4 XF[lc1v S (194 oo | XY o1

2—3k
5|

< (X N + 775 {1 (0, W)l e )X -

The term ®; 4 XtV also has a similar bound. From the defintion of F'(v,w), we see the
assertion. 0

7,%’,17/{/,17%14

’ 5 ’
Proposition 4.17. The map M' : D" — L& is well-defined and, for any

(v,w) € Dq’?“/, we have

1—r'
M @, 0)| 5 s o < Coll o]l ) + CoT = [[(0,0) | e
T

Here, () and C; are positive constants depending only on k, +', j1, v and || X||x+. In
particular, they are given by at most second-order polynomials in || X || xy.

Proof. Applying the first assertion of Proposition 4.9 with o = —% + &/, 8=1-«"and
0=1-— %ff’ to vy € C—3+~, we see

[[(t PtlvO)tzo||L§f~u17~'~1—%~’ S ol -z 4

From Lemma 4.16, we see F(v,w) € &, ° C~'7" and its norm has an upper bound

Cy (14 (v, w) HD;“’ ). Here, C is positive and is given by a polynomial in || X || x~. Applying
the second assertion in Proposition 4.9 with v = —1—k, 3 =1—k/, 7y = —=2+K/, 6 = 1— 3+’

2—-3k
and n = 228 to F(v,w) € £,° C7'7%, we see

H(t > /Ot P! F(v,w)(s)ds)i>o

%—m/,l—fc/,l—%r@/
< 1w’ Can 1=r ,
ST ||F(v7w)||g;T3C7H ST Co(1+ [0, w) | e )-
The proof is completed. O

Next we show that M! is Lipschitz continuous.
Lemma 4.18. For any (v, w®), (v®,w®) € D and 0 < t < T, we have

1Fxen (0, wM)(#) = Fxa (@@, w®)(#)c-1-x
_2-3kK
< O+ ) {IXD = X + 00, 0®) = (0@, 0@ |

Here, C is a positive constant depending only on k, &', u, v, ||X(i)HX1m and

||(v(i),w(i))||D,¢,m/. In particular, it is given by a first-order polynomial in || X || xx and
T

(o), w®)]|

Kyk! .
DT
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Proof. Set ®®) = —y W) 44 4 4 for i =1,2. Then

1 .Y 2 2),¥
o 4 x(IV 0 4 x(*

jo-1-

1 1 2 0y 2).¥ 1 2 iRy 2).¥
= sl@ + o) 4 T - X2 (@) — o) 4 (VT + X lei

126 + o | XY = X ¥ oo+ 00 — 0 e [ X 4 XY

N

le-1-x.
The term ||<I>§1) + @)EQ)HLW is dominated as follows:
125" + (17

i — 23 i i
X g+ 2775 10, 0) O e X 25
i=1,2

=)+t Ty,

28" + 2P|

/AR ZAN

where C7 and C are positive constants given by
Cr = XD )% + 1X D)%,
Co = [, M) | e [ XDl + (03, 0| e | X P
T

o X

The term ||<I>§1) — <I>£2)|\Loo is dominated as follows:
1 2 _2-3k
1267 = @1 S 1XD = Xz + ¢ [0, 0M) = (0P, 0®) |
Setting C5 = [ XMW xx + [| X P || xx, we see
o) 4 xOY 0 4 XY
SO+t )XY - XO

_2-3k
{1 = X 40, 0) - (02,0 b

2—3k

S(CL+Cy+C3) (14t )
1) _ x(2) 1) (WY _ (2 ,,(2)
x LX) = Xz + 00, 0D) = (@@, 0) |

which implies the conclusion. O

Proposition 4.19. For any (v, w®), (v?,w®) € D*', we have

||Mév[<)1>’ (U(l)a w(l)) - M(lvém’w[()z))’x(z)( w!

U(2), w(2)) Hz:?"‘"l”‘”l’

wlMy,x ™ 3

1—r'
Pl

1 2
< Collof? =0 |- gwr + CaTF (XD = XOp ]| (0D, 00) = (0@, 0 D) | o)

Here, C3 and C, are positive constants depending only on «, k', p, v, ||X(i)||X1n and
(0@, w)|| .wr. In particular, they are given by at most first-order polynomials in
T

1X O and [ (0, wO) |y
Proof. The assertion follows from Lemma 4.18 and the fact that
/\/6((1) (v(1), w(l)) - M§(<2> (”(2)7 w(z))
t
= P} (ug? — i) + / P {Fxw @D, wV)(s) = Fxe (0, w®)(s)} ds.
0

By a similar argument to the proof of Proposition 4.17, we see the conclusion. O
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4.3.2 Properties of M?

Here, we consider properties of M?2. Let 0 < T < 1. We fix X € X and write Z = X!
and W = X V. We denote by d,: the difference operator, that is, d5. f = f(¢) — f(s).

First of all, we study com(v, w) defined by (4.7). Let vy € C~ 3+ and (v, w) € D;’“/.
For notational simplicity, we set ®! = —2v(—vW + v + w), ®? = —v(—DW + 7 + W),
ol = x¥, 92 = xVand

t »
Uy = / P! [F(v,w)(s)]ds — & 4 XD —- 324 XtY.
0
Remark 4.20. The implicit constants which will appear in Lemma 4.21, 4.22 and 4.23

depend only on «, ', y, v and || X||x. In particular, the constants are given by an at
most first-order polynomials in || X[| xx.

Lemma 4.21. For every 0 < t <T, we have the following:

(1) We have

U = -3 4P'X) — 024 P x)

t t
+ ) {/0 5,9' 4 P Wi ds—/o [Pl @ 4]0 ds}.

i=1,2
(2) We have U, € C***' and
1Utllerw S 147 {1 + [|vg]l poo + lwe]| =}

t t
_ 342k _ 142k’
+/ (t—s)" 5 [Jvsll 14w ds + / (t=s)"" 2 |lwsllgrsan ds
0 0

t
_ 24rtr’
+ / (t — ) Z5 {bugol s + [8urew]] o } ds.
0

Proof. We show the first assertion. For (®, ¥) = (®!, ¥!), Proposition 4.10 implies

1
Ptfs

[® 4 U)(s) = P} [0, 4T,
=, 4P U, + [P, 0,40,
=3, 4P U, 6,04 PL U, + [P}

t—s»

3,4,

Hence
t
/ P [® 4 V](s)ds
0
¢ ¢ ¢
= ®, 4/ Pl V. ds— / 54 Pl U, ds+ / [PL,, ®.4]V, ds.
0 0 0
Substituting fot Pl V. ds= XD' — P} X(?' to the first term in the above, we see
t \
/ P! [® 4 T|(s)ds — ®; 4 X,
0
v t t
=-0,4P'Xx,) — / 5@ 4 P U, ds+ / [Pl 4]V ds. (4.11)
0 0
Since a similar equality holds for (®, ¥) = (®2, ¥?), we have verified the first assertion.
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For the second assertion, we estimate the terms in (4.11). For the first term in (4.11),

weusel+xk' =1—K+2- "””*2"”"/ and obtain

19} 4 PLXY o < 19X 1o | PIXY [lons

_x+»;/ -
S =W + 0+ w1 X
ST+ [Jvellnee + [Jwel[ Lo}
We estimate the second term in (4.11). From 1 +x' = —-1—k+2- “"TW, we have

106t® 4 P Wyllorinr S 166t®@|poe [P Wsllorinr

_ 2+4ktw’

S 105t ®llpoe - (8= 8)7 2 [[Wslle-1-x

2+rtr’

St=s) 2 [|6a @l

Note

1056l Lo S [10stvl[ e + [0stwl|zoe + (|05 W ][ Loe,
1_ 1,/
105t W llzoe S N10stWllgw—r < (8 = 8)37 =" W]

1, .
2" or' —k

N

For the latter estimate, see Remark 4.15. From them, we have

t
/ 5s:® 4 P W, ds
0

Ccl++w’

t
_24rtr’ 1_1,
s/u—@  (6urtll = + awll e + (t — 5) 53} ds
0

t
_ 24rtr’
S [t =9 F (vl + [l }ds+ 1,
0

The last inequality follows from [;(t — s)~'~*3"+i~3%'ds < co. The estimate of the

second term has finished.
Lastly, we estimate the third term. We consider the contribution of W, v and w
separably. In the proof, we use Proposition 4.10. Note

1 4k + 2K/
TP S I B P O L
2 4
1 2
1+ 2K

=(1-r+rK)+(-1—kK)+2- 5

We also use | Ug|lc-1-+ < 1. For W, we see

For v and w, we have
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t
/ [Pl ., w4V, ds
0

t ’
_ 142k
< / (t =) el ds
cl+r’ 0

|
s/otos—s)

The proof is completed. O

/ds.

Lemma 4.22. For any (v, w) € D’ " and 0 < t < T, we have com(v, w)(t) € C'**" and

l com(v,w)(t)lgraw S 1+ Hwoll_gmr + 7 (14 ez~ + foelz~)
C 3
t t
[ = g s 0=
0
t
+ / (t— )75 ([Surtll = + Sl ) ds
0

Proof. From definition (4.7), we have com(v,w)(t) = Plvg + Uy.
Noting 1 + +' = (=2 +«’) +2- 2 = L + ' + 2 ] and using Proposition 4.8, we see

t
/ Pl v.ds
0

Note that the last term smaller than or equal to fot (t—s)~ [vsll .3 +nr ds. Combining
these and Lemma 4.21, we see the conclusion. O

rds

_5
1P vollerr S ¢ E ol 3,

t t
_1
< [ IRt olersnrds S [ (= 5) Moy ds.
Ccl+r’ 0 0

+2n

Lemma 4.23. For any (v,w) € D’;J”/ and 0 <t < T, we have

1+2m+2n

lcom (v, w)(O)lgrn S CL+E[|vo]| =30+ 10y w) ] et )-

Proof. We estimate each term in the upper bound of || com(v, w)(t)||o1+~ in Lemma 4.22
by using Remark 4.15. The first three terms are estimated as follows:

_5 !
L+t7 8 |voll -z + 67 (LA Ju(E)[[ oo + [[w(®)]| o)

’ 2—3k
ST+t ogll,-g 4w + ¢TI @ (0, 0)] per)-
E T

To estimate other terms, we use the fact that the inequality
t
/ (t —s) 0570 ds < ¢r-0—02
0

holds for 0 < #1,6, < 1 and ¢t > 0. From Remark 4.15, we see

/Ot@ s

and

o ds

t
lepewrds+ [ (6=5)
0

(11,7 _(1 ’
<t Wz”>\\vl|£§w,1,,d,k%w+t (3+2n +'“~>\|wllﬁ;u,+m,g%,1,m,

ooy ()
/ (t = )~ () (6,00 e + G ) ds
0

_ 243k+3r’ _ 143k+r’
St E Hvllﬁjgﬂfnl,lfm’,l—%n’ +t 2 ||w||£;:m’+m,%72~’,1fn’~
Combining them, we see the estimate of || com(v, w)(t)|| 14 - O
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Lemma 4.24. For any (v,w) € D;’”/ and 0 <t <T, we have

(1w + 1)l ).

Here, C is a positive constant depending only on k, ', u, v and || X||x+ and it is given by
a third-order polynomial in || X|| xx.

2—3k
2

_5 —
1G@, W)l g2 < C(1+F 0]l 3100 +¢

Proof. We write uy, = v 4+ w. It follows from Remark 4.15 that

2

_2-3k
1G1 (0, w) ()= S lloe +wiell 2 S M0, w) 1

To estimate G5 (v, w)(t), we use the Bony decomposition. Applying the decomposition
to us(t) € 21, we see

[ua(®)?[l, 500 = lluz(t)  ua(t) + 2uz(t) 4 ua(t)ll, g 40

2
S ”uQ(t)”c%(%*‘/) + 2||uz(t)|| L= ||u2(t)||c%+,d

_11-6x' _2-3k _ T

ST )2 +267 5 [[(0,0)]| e T2 (0,W) | s

T T T
—6r’ —0K

= T (0, w) 20 + 27T || (0, w) 12,

T T
11—6kK

SJ [ (U,UJ)HQ rowl

T

In these estimate, we used 0 < x < k'’ < 1/18 (see Remark 4.15). The term
||uQ(t)u2(t)||C%M, has the same bound. Since Ga(v,w)(t) = ajuz(t)? + aguz(t)us(t) for

1 1 ’
some ai,as € C727% and us(t) € C27*, we have

1G2(v, W) ()l - 3w S Nu2(®)?ll 310 + Nuz(@)uz ()]l 310

11-6x
=l

<

2
v, w . .
( ) )“D;’K/

Noting ||(v, w)|[2, ., <
T

Since Gs(v, w)(t) = byuy(t) + baua(t) + (v + 1)uy(t) for some by, by € C~ 2%, we have

< |(w,w)||3,. .. + ||(v,w)||D;,~r, we see the estimate.
T

1Gi3 (v, w)(t) S lue @) gy S 2 (0, 0)

[ ll o, -
-1« ,
c 2 Dy

The estimates of G4(v,w)(t) and G5(v,w)(t) are obtained easily. The terms which
admits the lowest regularity in the defintions of G4 (v, w)(t) are W; 5 X¥ and W, 5 XV
and their regularity is —% — 2x. Therefore we obtain |\G4(v,w)(t)||c,%,2~ < 1. From
Proposition 4.6, we see

1Gs (v, w)(t)

_ T
||C%+”/72H 5 HuQHC%JrN’ St 12 ||<’U7w)||D;.K/.

From the definition of Gg(v, w)(t), we have

1G6 (v, w)(B)llgw— S [leom(v,w)(t) X llgrsnrs 1 + [lcom(w)(®) XY erewrsi1-m

< [l com(v, w)(£)] crvw

142r42k"

SO+t luoll g+ 7 (W, 0)l| )

In the last line, we used Lemma 4.23.
For 7 = V,V, we see

342k+r’
1

lwe X llearsnscrion S lwellersw | X7 le=1-x < 87 (ICAD)] PV

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
Page 38/68


http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/

Stochastic complex Ginzburg-Landau equation

T
lu2(®) S X/ (3anryscamm S 2Ol opan X lle-1on S 70, w) ] v

In these estimates, we used Remark 4.15 . We obtain

34+4r+2r’

1G7 (v, w)(B)llew -~ ST (0, W)l e

I
1Gs (v, W) (Ol - g wr—ne S 72 ][(0, w)

”D;'H/'

The proof is completed. O
’ . ! 37 ! . !

Proposition 4.25. The map M? : D" — ,C; R RTINS well-defined and, for

any (v,w) € D;’“/, we have

||M2(/U’w)llclfmurn,%f?rv’,lfh" < Cl(]‘ + HUOHCf%JrN’ + HwOHC—%—Zn)
T

+ T (0, 0) o+ 1 (0,0) e )

KoK
Dr

Here, Cy and C; are positive constants depending only on k, +’, j1, v and || X||xx. They
are given by at most third-order polynomials in || X || xy.

Proof. Recall (4.9). It follows from Proposition 4.9 that
||(t = Ptlwo)tzo|‘£;—n’+n,%—2hﬂ’,l—n' S ||w0HC—%—2K'

2-3k

3K
Lemma 4.24 implies G(v,w) € £, 2 C~ 272" and

G0, w) oo S (14 0l 30 + 100 + 100 )-
c 3 o

| 2-8x ,
2 — 4 -2k
2 CT2

Proposition 4.9 implies

3
S Tzﬁ\|G(v,w)||g%C%72n.

e [P a1

L;fﬁ/#»n,%me/,lfH,
Combining these, we have shown the assertion. O

We also have local Lipschitz continuity of M.

Proposition 4.26. For any (v(V), w®), (02, w®) € D5*', we have

||M?U(()1),wél)) X(l)(v(l)’w(l)) o M?véz) w(()2>) X2 (U(Z)’w(2)>HL%_“/*1_"/>1_%"/
) ) ) S

1 2 1 2
< Cy (11§ = o6 goer + N = Ny )

T (XD = X+ 00 u®) — 0, w®) 0 )
T

Here, C5 and C, are positive constants depending only on k, /, u, v, | X@|| xr and
|(v®,w®)|| ... In particular, they are given by at most second-order polynomials in

o

1X O and [0, wO) | e
Proof. We can show the assertion by a similar way as Proposition 4.25. O
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4.4 Local existence and uniqueness

We show local well-posedness of CGL (1.1). This is the most important theorem in
this section.

Theorem 4.27. Let 0 < k < k' < 1/18. There exists a continuous function T, : C~ 3" x
C—372% x X[ — (0,1] such that the following (1) and (2) hold:
(1) For every (vg,wq) € C—3++ xC 3 2% and X € P, setT, = T*(vo,wO,X). Then, the

system (4.10) admits a unique solution (v, w) € D'}’f/ and there is a positive constant
C depending only on u, v, k, ', T, and || X || x» such that

1@, 0) gy < € (1 ol 300 + lwoll—y s ) -

2) Let {(v{"™,w)}>2, and {X™}>, converge to (vy,wo) in C~3%" x C~3~2% and X
in X7, respectively. Set T\ = T, (v{”, w{™, X)) and let (v, w™) be a unique
solution on [0, 7\™] to the system (4.10) with the initial condition (v\", w{"™) driven
by X("). Then, for every 0 < t < T,, we have

Tim ([0, 0) = (0, 0) | e

=0.

In the proof the function 7, is concretely given by T*(vo, wp, X) = T, where T, is
defined by (4.13) and (4.14). We prove the theorem by using the properties of M we
have just shown.

Forevery 0 < T <1 and M > 0, we define

Bry = {(v,w) € Dy ; [[ (v, w)| s < M}
Propositions 4.17 and 4.25 imply
1M, 0l penr < CrL A+ [[voll - g0 + 1wl - g -2)
3 :
+ CoT> (Il(v,w)lld;,m/ + (v )| e )

Here, C; and Cs are positive constants depending only on s, «/, u, v and \|X||X1n In
particular, they are given by at most third-order polynomials in ||.X || x». Propositions 4.19
and 4.26 imply

||M(v(()l),wél)),X(1)(U(l)’w(l)) — M(u82>,w82)),X(2> (’U(Q)’w@))HD;’m

1 2 1 2
< Cs([0§” = 0§ N -3 + [l — w32

+ CATH (XD = X Pl + |0, 0) = (0, 0 @)

) (412)

Here, C3 and C, are positive constants depending only on «, x/, u, v,
[CCRmC) -

IX ]|z and | (v, w )

X(Z) H/Yf and
/. In particular, they are given by at most second-order polynomials in

[P
DT

Proof of Theorem 4.27. For the proof of existence, we use Propositions 4.17 and 4.25.
We will show the map M is contraction from By ), to itself for small T' > 0 and suitable
M > 0 and obtain the existence of solution by the fixed point theorem. Let M > 1. For
any (v, w) € D", we have

[M(v, w)]|

< (Ca+ Co)(1+ ol 3emr + lwoll,y e+ THAL%)

’ 2
D;’N c—3+n
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< (C1+ Co)(1+ [[voll - 300 + [0l -y - ) (1 + T M),

In a similar way, we see

IM@D, wD) = M®, w®)||,
< C)x ) T3 (14 M) (0, 0 D) = (0@, @) | s
T

Here C) x| xp > 0 is given by a second-order polynomial with respect to || X||xx. Set

(01 + Co) (L + [lvoll ,- 240 + lJwoll -1 -20) V1, (4.13)
T =M% A {20)x, (LM AL (4.14)
Then
1M (0, w)ll v < M, (4.15)
M@, w®) - M(v(2),w(2))||D;f, < 5\\(0 M) My - (”(2)’1"(2))”1);;“" (4.16)

We see that the map M is contraction on Br, 5, Therefore there exists a unique fixed
point (v,w) € Br, a, of M, which is a solution on [0, T].

Next we show that the solution on [0, 7] is unique. Let (v, w), (v, w®)) € D -
are solutions with a common initial condition (vg,wo). We show that (v(}),w{ ))
(v®, w®). Taking M > 0 such that

(COINEY , @) @ ;<
0w e V0D, 0 0 < M,

the similar arguments as above ensure that M is a contraction on By, y, where
T..(< T.) depends on M. Hence (v(Y),w™)) and (v(?,w?)) coincide on [0, T\.]. We can
continue this procedure on [Ty, 2T4.], [2T%x, 3Tk«], - . .. However, in these steps, we need
to check that (09, w®)(¢) = (v, w®)(t + T,,) satisfies

1D, &) e < M,

Ty —Tux

since for example

5 _ ! i
15 || = sup (t—Tw)e™" [0 (#)] 1w
Cl I3
T*—T** T <t<T,

< sup 5 0O () o1
0<t<T,

= ||v()|| S

Obviously (9(Y,%(*) is a solution with the initial condition (v, wM)(T,,) =
(v® w?)(T,,). Therefore we can iterate the above arguments on [k7%, (k + 1)T.. A T
for k =1,2,... and thus (v(¥),w®) and (v?,w?) coincide on [0, T.].

We show the last assertion. From (4.13) and (4.14), we see that 7, continuously
depends on the initial condition (vg, wp) and the driving vector X. Since Cy depends on
the driving vector X continuously, M., is a continuous map from (vg, wy) and X. From
this fact and the continuity of C)x we see the continuity of 7,. Hence we have

T*(") — T,. Without loss of generality, for fixed t < T,, we assume that Tf”) > t for

every n. From (4.15) and the continuity of M, with respect to (vg, wp) and X, we see

r s
X1
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sup,, ||(v(n)7 w(n))
that

| p.er < co. From this fact and (4.12), we can choose (3 and C} such
T

,w) = @, 0 s < Ch(llv0 = vl +Tho =167l -y )
QN n n n
+ it (X = X+ (1w, w) = (0,0 ™) | s ).

Hence we have (v(™,w(™) — (v,w) in [0,t,] for some ¢, < t depending on C4 and CY.
Iterating this argument, we have the convergence in [0, t]. The proof is completed. O

Remark 4.28. If (vg, wy) € C1* x €272+, we obtain the local well-posedness on the
K 1—5 % E,;%ﬂfn',lf
Proposition 4.29. For every (vg,wy) € C~ 3+ x C272% and X € X7, there exists

Tsur € (0,00] such that the system (4.10) has a unique solution (v,w) € Df”“/ for every
t < Tyur, and

space £1T7 " without explosion at ¢t = 0 by similar arguments.

lim ({Jo]] r+ ] ) = o0

244 1 oy
o CoCT3Y Ciem27?

unless Ty,; = oo. Furthermore, the mapping from (vy, wo, X) to the maximal solution
(v, w) is continuous in the sense that, for a sequence {(vén), w(()n), X))} which converges
to (vo, wo, X), we have Ty < liminf,_,. T and

10,0 ™) = (0, 0)] e = 0

||D:,n/
for every t < Tyy;.

Proof. Let (v,w) € D;’f/ be a unique solution on [0, 7,] shown in Theorem 4.27 Because
of Remark 4.28, we can start from (v, w)(T}) € C'=+" x 272" and construct a solution
(v,w) € D" with (0,)(0) = (v, w)(T%). Obviously the extended function

(v, w)(t) tel0,T]
(O, w)(t —T%) t€[Te, T + Tus]

belongs to D;LliT** and solves the system (4.13). Uniqueness on [0, T, + T..] also holds.
We can iterate this argument until the time 7T,,, which is a supremum up to when the
existence and uniqueness hold.

The lower semi-continuity of 7Tg, follows from the continuity of 7. Let
(v(()"),w(()"),X(”)) — (vp,wp, X). For any fixed ¢t < Ty,,, we can construct a unique so-
lution in [0, ] by gluing finite number of local solutions as above. In this procedure, each
of length of time interval converges, so that the solution (v(™) w(™) exists in [0, ] for
sufficiently large n. This implies ¢ < liminf,,_, Ts(lﬁ).

Now assume that Ty, < oco. If

lim (]| r =+ [wll

_2 < 00
Ty CeCTBTR ’

th*%”*‘)

we can start from (v, w)(Taw — 8) € C™37% x C~272¢ for small § > 0 and construct a
solution on [0, 7,], where T, is uniform over §. This implies that for sufficiently small
0 > 0, we can construct a solution on [Ty, — g, Tour + g] without explosion at the starting
time. This is a contradiction, so we obtain the existence and uniqueness up to survival
time with respect to the weaker norms. O
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4.5 Renormalized equation

In this subsection, we show that a solution in the sense of Theorem 4.27 to the
equation with a driving vector constructed from a driving force ¢ € CrC? for f > —2 and
renormalization constants solves the renormalized equation.

We fix complex constants ¢, ¢, ; and ¢, , and define functions X" as in Table 1 for

every graphical symbols 7 and construct the driving vector X = (X ', o X }i') The Y/N in
the Driver column in Table 1 indicates whether the term X7 is included in the definition
of a driving vector or not. The term X7 with Driver column N is going to be used to
define other terms. For the definition of I(x,e), see (4.3). Note that we can interpret
the product in Table 1 in the usual sense because X lis a C-valued continuous function
by the assumption ¢ € CC? for § > —2. The number in Regularity column denotes the
exponent «. of the Holder-Besov space C“~ which the term X7 takes values in. Precisely,
ar means a, — k for any x > 0 small enough.

Driver Symbol Definition Regularity o
Yy | X(=2) 1(x,) ~1/2
N X X! ~1/2
Y xV (xT)2 ~1
Y xV XXt — ¢ -1
N X¥ (x)? -1
N xV¥ xVxi—2¢, X! —3/2
Y xY rxy, xV +1
Y xY 1xy), x%) +1
y | xYe=w) 1xy, x¥) +1/2
Y XV xV X 0
Y x¥ x¥V xi 0
Y x¥ xY  xV¥ 0
Y x¥ xY  x¥ -2, 0
Y XV XY x¥oo,, 0
Y XV XY x¥ 0
Y ¥ [ xT XV gy ~1/2
Y F | xV x¥ oo, X ~1/2

Table 1: Definition of a driving vectors

The next theorem is about the renormalized equation.

Theorem 4.30. Let 0 < x < ' < 1/18. Let £ € CrCP and XL,X(T,X(}',X;{' € Ch+2
for § > —2. Construct X € Xf as in Table 1. Let (v,w) € Dq’?”l be the solution to
(4.10) with the initial condition (vg,wq) € C—3Tr x C~272 for the driving vector X. Set
u=2Z7—-vW +v+wandc=2(c; — Uy — 2vcy ). Then u solves

owu = (i+ p)Au+ vl — |ul*)u+ veu + €, t>0, =eT>

with the initial condition uqg = Zg — vWy + vg + wg in the usual mild sense.

The next lemma plays a key role to prove Theorem 4.30.
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Lemma 4.31. Let (v, w) be the solution to (4.10). Set us = v + w. Then, we have

F(v,w)+ G(v,w)
= —v{(—vW + w)*(Z — oW + @) + 2(—vW + u) (—0W + )2
+2(—W + ug) XY + (=W + 1) XV
+2(Tey; + 206y 5)(Z —vW + ug) }
+ W+ 1)(Z — vW + ua).

(4.17)

Proof. It follows from the definition that

Gi(v,w) + Ga(v,w) = —v{u3(Z — W) + W (u3 + 2ua(Z — vW))}. (4.18)

We will show

G3(v,w) + G4(v,w) + G5 (v, w) (4.19)
= —v{wQupWW —20WZ — 20W Z) + i (vV*W? — 20W Z)

— V2OWAW + V2 W2Z 4+ 200WW Z

(oW ) axY)  xV
(oW +w) 4 xY)  xV

—w((—W +m) 4xY) x¥

(oW us) 4 XY) XV

—wW( +5)XY-—oW( +5)xV

+2(TC | + 2wey o) (Z —vW +ug) }

+ W+ 1)(Z = oW + up)

and

Ge(v,w) + G7(v,w) + Gs(v,w) (4.20)
= —v{2us( + 5)XV +u( + 5)Xv
(oW ) 4 XT) XY
4 o(—IW +w5) 4 X)XV
cou(—TW w5 xY)  x¥
+H(—oW +uz) 4 xY) XYY
Summing them up, we obtain
Gi(v,w) 4+ -+ + Gg(v,w)
= —v{{uj + 2ux(Z —vW) + V*W? — W Z }u3
+ {uj — 20Wuy + 2Zus + V*W? = 20W Z } (—0W
+ {u% — 2uWusy + 1/2W2}7
+2(—vW +up)( +B)XY + (oW + 1) ( +5)XV
+2(Vey 1 +2ve ) (Z —vW + us)}
+ W+ 1)(Z—vWHuy)+cv—w
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= —v{(—vW + w)*(Z — oW + @) + 2(—vW + u) (—0W + )2
+2(—W tu)( +5)XY + (—oW +m)( +5)XV
+2(Tey, + 206y 5)(Z —vW +ug) }
+ W+ 1)(Z — vW + ua),

which implies the conclusion.
For the rest of this proof, we prove (4.19) and (4.20). To show (4.19), we use the

definition of X i and Proposition 4.6. From them, we see
wx¥ 4y aro, xY xH = w(xY xH - prmwaxY) x¥owxY xY
—waxY) x¥oc,w

A similar argument implies

WX§+RWX\ = @waxY) xV
wx¥ 4 rw, xY x¥) = WaxY) x¥

WXY+R w,xY, xVy = w4 xY) xV 2w

Applying these identities and the definitions of X § and X ‘i: we obtain
Gi(v,w) = —v{ = VDWW + V*W?Z + 200WW Z
+a{wax)) x¥—o Wi+ Waxy) xV
+arWaxY) x¥ius(wax¥) xV_ogw)
—w(W XY —26,,X") —20W 5 XV
—o(W XY -2, X}) — oW 5 XV}
+ w4+ 1)(Z —-vIV)
= —1/{ — VP TWW + v W?Z + 200WW Z

rawewaxY) x¥rwewaxY) xV
rouewaxY) x¥ioewaxY) xV
—wW( +5)X¥—oW( +5)XxV
+ 2(?@ + 2Vc2’2)(Z - VW)}

W) (Z = o).

We use the similar argument to obtain
Gs(v,w) + G5(v,w) = —v{uQUVWW — 20WZ — 20W Z) + w3 (v*W? — 20W Z)
—dvusaxT) x¥_wmmaxY) xV

oumaxT) x¥opuwaxY) xV
+ 2(Ut, | + 2vey 5 )us |

+ (v + Dus.
Combining them, we see (4.19). From the definition of com(v,w), we obtain (4.20). The
proof is completed. O
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Proof of Theorem 4.30. Set us = v+ w, u; = —vW + us and u = Z + u;. Note that us
solves Llus = F(v,w) + G(v,w). Substituting X¥ = ZZ — ¢ and XV = Z2 to (4.17), we
have

F(v,w) + Gv,w) = —v(Z +u1)*(Z +77) + v(Z +u1) + 2ve(Z + uy)
+u(Z%Z — 20, 2) + Z +wy
= —vu*u + vu+ 2ueu + V(227 — 2¢,Z) +u

where ¢ = ¢; — V¢, | + 2v¢y 5. Hence

{0y — (i+ W) AYu =L —u
=LYZ —vW +u) —u
=¢6—v(Z°Z -2, Z) + {F(v,w) + G(v,w)} —u
= —vu®T + vu + 2ueu + €.

The proof is completed. O

5 Proof of convergence of driving vectors

This section is a probabilistic part of proof of Theorem 4.1. In this section, we
construct a driving vector X € X7 associated to the white noise { (Theorem 5.9).
After that we derive the expression of renormalization constants ¢, ¢5,; and ¢5 , used
in the construction of X (Proposition 5.21) and obtain the divergence rate of them
(Proposition 5.22).

First of all, we define Ornstein-Uhlenbeck like process Z = Z(t, x), which is a seed
of the driving vector. The process Z is defined as a stationary solution to the following
equation:

WZ ={(i+ A —-1}Z+¢.

The solution has a formal expression

Zy = I(g)t = / Ptl—sfs ds = Z (/ Ptl—sekés(kl) dS) .

- keZ3

Here, I is defined by (4.4). Since Z is a distribution-valued process, we cannot define
processes such as Z2 and Z2Z a priori. To define such processes, we consider an
approximation {Z¢}o<.<1 of Z and define Z2? and Z2Z as renormalized limits of (Z¢)?
and Z2Z in an appreciate topology, respectively. To this end, we recall the smeared noise
{€}o<e<1 defined by (4.1) approximates the white noise £. Using the approximation, we
define

zi= [ rigas= St ([ phedms). 5.1)

keZ3 >

We recall that the Fourier transform {é (k)}rezs of € has the same law of the white
noise associated to (E, B,dm). Here, E = R x Z3, B is the product o-field of B(R) and
2Z° and dm = dsdk, where ds and dk are the Lebesgue measure on R and the counting
measure Z3, respectively. Note that dm is given by

m(A):/ElA(s,k)dsdk: Z/R1A(s,k)ds.

keZ3
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We denote by B* the set of all elements A € B such that m(A) < oo. Let M(A4) =
> owezs Jr 1a(s, k)és(k) ds for A € B*. Since {M(A); A € B*} is a jointly isotropic complex
normal such that E[M(A)M(B)] = m(A N B), we can define complex multiple It6-Wiener
integrals J), , to calculate (Z¢)? and (Z¢)?>Z¢; see Section A. By using them, we show
their convergence after renormalization and construct the driving vector X.
Throughout this section, we use the notations in Section A and the following:

* Weusem = (s,k), n=(t,1), p = (0,k) and v = (7,1) to denote a generic element in
E.

» Forv; = (13,1;), we write v_; = (1;, —1;).
» Forpy,...,pn € Z\{0}, we write kp, ., = (kp,,... kp,)and kpy, o poy = kp, +-- -+
kp,, for shorthand. We use the same abbreviation for s, ¢, [, m, n, o, 7, p and v.

« We define |k|, = 1 + |k| = 1 + \/k? + k3 + k3 for k = (k1, ko, k3) € Z> and |m|, =
|(s, k)|« = 1+ |s|'/2 + |k|. The same notations are used for I, n, u and v.

Let f : EPT4 — C satisfy

forevery ki,..., kp, li,..., 15 € Z3. For such f, we can define the Fourier transform Fiime f
with respect to time parameters. In particular, if f is integrable and square-integrable
with respect to the time parameters, then Fiine f is given by

[Frime [1((0, k)1, ps (T, D)1...q) = / N dsy---dspdty - - - dtg
Rp+a
> 6727ri(0151+...+(rpsp+‘r1151+...Jr7-qi§q)f'((s7 k)l,...JH (t, 1)17.“7(1).

5.1 Convergence criteria

In this subsection, we establish convergence criteria of It6-Wiener integrals.

5.1.1 (C%-valued random variables

We want to define a random field of the form

X(x) = Tp.q(f(2))

for a kernel f € C(T? L) even if f(x) ¢ L2 . Here L, is the space of the es-

sentially bounded measurable functions defined on EP*T%. Assume now that (f,¢) =
Jos f(z)o(x) dx € L2, for every ¢ € D and define the family of random variables

X(d)) = jp,q(<f7 (15))

If there exists a D’-valued random variable X such that
(X,0) = X(¢),

then we write X (z) = J, (f(2)).
Now we define X;(z) = X((F 1p;)(z — ). If X = >_j>_1 X, converges in 7, it

satisfies (X, ¢) = X (¢) for every ¢ € D, so we can write X (z) = J, (f(z)).
Proposition 5.1. Leta € R and p € (1,00). If

p
Cop= 3 22er+0i (sup E[|Xj<w>|2]) < o0,

i>—1 z€T?
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then X =3 .. | X; converges in L?7(Q,C%) and we have
E[|X|¢8] S Caup-

Proof. Since (f,(F~1p;)(x —)) = A;f(z), we have FX;(k) = J,,(p;Ff(k)), which
implies that the support of FXj(k) contained in an annulus. Hence we can apply
[BCD11, Lemma 2.69] to X. By a similar argument as [Hos17a, Lemma 5.3], we see
the assertion. (There, the following well-known property of Gaussian measures are
used: on each fixed inhomogeneous Wiener chaos, all the LP-norms, 1 < p < oo, are
equivalent.) O

5.1.2 Good kernels

We consider a random field of the form

X(t7 :,C) = jp#l(f(t,r))

for a kernel f(t,-) € C(T?, Ly°,) which satisfies the conditions as above for each fixed ¢.
We are interested in the case that f satisfies the following good conditions.

Definition 5.2. We say that a family { f(; ») }+>0.«e1s is good if it has the form

fetey(ma, pyna,.q) = €k p =l .q (x)He(ma,..p.n1,...q)

for some H; € Lp, which is in L? with respect to (si1... p,ti...4) for each fixed

(k1,...p, .. q) and Q¢ = FumeH; satisfies
Qi(pr,. pyVi,..q) = 672”“”““"’#7[1“"1])th(,ul,..i,p, Vl,.q)-
For a function f : EPT¢ — C, we set
pifma,. . pini..q) = pilkn. p = ln.q)f(mi. p,na,. q)
We define
R(01,..p:T1,0000) = O11.p] + T[1.q)-

In order to estimate the Besov norm of X, it is enough to estimate Q.

Proposition 5.3. Let {f(t,gc)}tzo’weqm be a good kernel. Assume that there exist § € R,
6o € (0,2] and C > 0 such that

IIRI% 3;Qollrz,, < €2+
for every j > —1 and 0 € [0,6). Then we have

B[l X2 ca-2e] S C*, (5.2)

foreveryp € (1,00), a« < —f and k € |0, %0) Here COC* = CrC*.

Proof. Let 1 < p < oo satisfy 2(a+ 8)p+ 1 < 0. For every ¢ € [0,00), we have X; € C*
from

E[|lX:]¢h] < co.

We will show this inequality. Set X;(t,z) = Jp.q((fe,): (F 'p;j)(x — -))). Since
(ft, ), (F o) =) = [Aj feu.)](@) = pj f1.0), we have

E(\X;(60)) = 153 f 03z, = | Fimeds fiem) 32, = 576" Qoll3s . = 155Qol35 .
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Using the assumption with 6 = 0, we obtain E[| X, (t,z)|?] < (C2%7)2. Hence

2(2ap+1)j(c2/3j)2p <2 Z 2Q2(e+B)p+1)i
1 j=—1

Cap=

\‘|' Mg

J

From Proposition 5.1, we see the inequality.

We show X € C£C* 2% and (5.2) for k € (0,600/2). Set o/ = a—2x and take 2k < 6 < 6,
such that o/ ++6 < 0. Forany 1 < p < oo such that 2(¢/++0)p+1 < 0and (#—2k)p > 1,
we can show that

E[|X: - Xsllgh] < Olt — s,

where C is a positive constant independent of s, t. Note (pf—1)/2p > x. These inequalities
and the Kolmogorov continuity theorem [Kun90, Theorem 1.4.1] implies X € C5C2~
and (5.2). Next we show the assertions for k = 0. Let o < o’ < —f8. Then we see
X e ¢g'c™" =2 for r' € (0,0/2) by the above discussion. Choosing ' = (¢’ — a)/2, we
obtain X € CQEICO‘, which implies the conclusion. O

For a function f : EPT? — C and u = (0, k), we write

/ fQu, pyv1,q)
K pl TY[(=1)...(—)]=H

for the integration over the “hyperplane” {y1. p) + V[(—1)..(—q)] = 14}

Proposition 5.4. Let {f(t,:c)}tZO,xET3 be a good kernel. Assume that there exist v > 1,
6 > 0 and C > 0 such that

/ |Qo(p1,...ps v1,...0)1F < Clpl 7RI (5.3)
K1 pl TV[(~1)... ()] =H

Then we have
IR 6;Qoll 2, < C2B =040
for every 0 € [0,v — 1). As a consequence, we have

< C?,

~

2
B(|X|%,c0o.]

for everyp € (1,00), a < =3 +y+é andk € [O,”T_l/\l).

Proof. Since

IR 26,Qull, = 3 pil0? [ ol ( / |Qo<m,...,p,vl,...,q>|2> o
’ R B TV(=1) () =

keZ3
_ —2(y—06
<C Y piPK [ 0 do
keZ3 R
ifv—6 > 1, we have

- — 2(1—~+6
IIRI25;Qol172 S C Y py (k)2 el 2 ef2 7
keZ3

< C(Qj)3(2j)2(177+976)
— 02(5727726+20)j.

The proof is completed. O
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5.2 Definitions of driving vectors

Since 7 is a distribution-valued process, we cannot define a process such as Z2, ZZ
and Z2Z a priori. To define such processes, we consider an approximation {Z¢}o-.<; of
Z and define Z2, ZZ and Z>?Z as renormalized limits of (Z¢)2, Z¢Z¢ and (Z¢)?Z¢.

5.2.1 Ornstein-Uhlenbeck like process and its approximations

We give an expression of Z¢ defined by (5.1) in terms of It6-Wiener integral. Since we
2/ 2
have Ple, = h(s, k)er, where h(s, k) = e~ 147 (Tm)kl"+1}s e see

t
Zi= 3 x () / h(t — s, k)exs(k) ds. (5.4)
kez3 >

Hence, we can write Z(, | = J1,0(f(;, ) With

[y (5:F) = ex(@)Hi (s, k), Hi(s,k) = x"(k)Hi(s, k),
Hi(s,k) = 1j0,00)(t — 8)h(t — 5, k).

Note that Q); = FiimeH; is given by

e—27r|at

—2mio + 4m2(i + p) k]2 +1°

Qt (Ja k) =
In particular, we see Q;(u) = e~2™7*Qy (). We simply write Qp = Q.

5.2.2 Definition of driving vectors

For every 0 < € < 1 and graphical symbols 7, we define distributions X7 as in Table 2.
The operator [ is defined by (4.4) and the constants ¢{, ¢5 ; and 5 , in Table 2 are defined
by

LG = B, XY

€ el €
g =E[X X (t,2) (t,2)

€ ]‘ E»Y 67."."-
(t,x) (t,z)]a C21 = iE[X X

(t,2) (t,z) . (5.5)

The other symbols and regularities have the same meanings as in Table 1. We set

xe = (xef xeV xeo¥ xe¥ xe¥ xe¥
xV xe¥ xe¥ xo¥ x¥ x ¥y ¥ ye¥)

The constants cf, ¢5 ; and ¢5 , look dependent on (¢, z) and the dyadic partition {p,, }7__;
of unity. However, we will show that they are not in Proposition 5.21.

5.2.3 Ito-Wiener integral expressions of driving vectors

We give expressions of X7 by It6-Wiener integrals.
We start to discuss with 7 =1, 4 V, ¥, ¥, ¥, Y, Y, Y. We denote by p(7) and ¢(7) the
number of circles and squares in 7, respectively. We write

Proposition 5.5. Let 7 =13 V, V. %, ¥, Y. Y, Y, p = p(r) and ¢ = q(r). Then X", =

Tpa(f(i5), where fi7 = fi7 (ma,..p,n1,..q) Is a good kernel with functions H;"" and
Qg7 defined as follows.
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Driver | Distribution X7 Definition Regularity o,
Y xel ze ~1/2
N xe Xxel ~1/2
Y x<V (x<ly2 -1
Y xeV Xelxed - of ~1
N xe¥ (X2 -1
N x¥ xeVxet e xel —3/2
Y xeY 1(x<V) +1
Y xeY 1(x<Y) +1
Y xe¥ 1(xeV¥) +1/2
Y XE"b! XE-,\{'. xel 0
Y xo¥ xo¥  xel 0
Y XV xeY  xe¥ 0
v x¥ xeY  xe¥ _oc, 0
Y x¥ xeY  xe¥ oo, 0
Y x<¥ xoY  xe¥ 0
Y xe¥ xe¥ o xe¥ o, xel ~1/2
Y x<¥ xe¥ xe¥ o xed —1/2

Table 2: List of distributions

(l) We have H?T(ml....,p; nl,...,q) = Xé(kl,...,pa ll,...,q)HZ—(ml,...,pynl,...,q)/ where {HtT}fZO €

2 . .
L3 , is given as follows.

e Hl(my) = Hy(my) and Hi(n1) = H,(ny).
e ForT=V,V,%,V,

e Letto=V,\,Y forr =Y,Y, Y, respectively.
Hg-(ml,...,pynl,...,q) = / Ht(u7k[1...p] - l[l...q])HZL-O(ml,...,p;nl,...,q) du.
R

(2) We have Qp" (111,....p,v1,....q) = X (k1. ps 11, .0) Q0 (111, ps11,...q), Where Qf € L7 is
given as follows.

« Qh(m) = Q) and Qh (1) = Qo(—v1).
e Fort =V,\,%V,

q -
Q5 (11, prneg) = [T Qo) TT @ )-

i=1 j=1
e Letto=V,\,Y form =Y.,Y, Y, respectively.
Qo(H1,...prV1,q) = QUi p) F V[(=1).. (=) Q0 (H1,....py V1, q)-

In the above, we regard H] as a function with respect toni,.. 4, and my,. , forp =0
and q = 0, respectively. In particular, H] is a constant for p = q = 0. We use the same
convention for Q.
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Proof. The assertion follows from Proposition A.1. O

From this proposition, we can guess the limit X7 of {X“" }g<.<; as follows:
Definition 5.6. Let 7 € {1}, V,V,¥, V¥, Y, Y, Y}, p = p(r) and q = q(7). We define

and X7, . = Jp.q(f(;2))-

Next, we consider X7 for 7 = ¥, ¥ ¥ ¥ §* ¥ ¥ ¥ For these 7, we define
(r1,m2) = (Y0, (V,9), (Y,¥), (.5, (,¥), ,%), (Y,¥), (V,¥), respectively. We simply
write p; = p(r;) and ¢; = ¢q(7;) fori = 1,2. We set p = p1 + p2 and ¢ = ¢1 + qo.

We define the function ¢, : Z> x Z? — R by

Yok ) = > pilk)o;(0). (5.6)

li—j]<1

Proposition 5.7. For above (71, 72), it holds that
XpT™ o XPT(a) = Zjp—#g,q—#g(f(et’,(g:)l7727g))v
g

where g runs over all of the graphs consisting of disjoint edges
GHe{l,....;m}x{ga+1,....,¢;U{pr+1,...;p} x{1,...,¢1},

and f(et”(;)l’”’g) is a good kernel with functions Hf’(Tl’TZ’g) and Qg’(“m’) defined as follows.

(1) Hf’(ﬁ’””@) is given by
€,\T1,T 7@
HY 0 (myonag) = ok pn) = g ki1 0] — U+ 1)a)

€,T1 €,T2
X Hy™M(ma, o pyy g ) Hy (m(p1+1).,---,p7”(q1+1),...,q)-

€,(T1,72,9)

For general g, H, is given by

HE 0 ot \9) = [ HP T g, g) dlm, ),
E2#9

where (ma,.. p,M1,... 4 \ g) means that variables (m;,n;) are removed for all (i,j) € g
and d(m,n)g = [1(; j)e, 0(mi — nj)dmidn;.

(2) QS’(TI’TQ’Q) is given by

e,(11,72,0
Q5T (v, g) = Yo(ki1..pi) = ltean) Klpr+1)ep) = Ui 41).q1)

X Q(E)ﬁ‘r1 (/’l’la-“vpl ) VL---JIl)Q(E)’Tl (M(m-ﬁ-l),“.,pa V(q1+1),...,q)'

,(T1,72,9)

For general g, Q) is given by

(71,72, (71,72,0
Q(E) (rum2:0) (11, ps V1, \ 9) = o QS (o )(N17..~,p7 Vi) d(p,v)g,
E2#9

where (p1,. p,11,... 4 \ g) means that variables (u;,v;) are removed for all (i,5) € g
and d(p,v)g = [1; jye, 6 (1 + v—j)dpidy;.
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For example,

QS’(\{.’]’Q)(M1,2,3, v1) = Yok — l1, k3)x (K1, k2, ks, l1)
x Q(ppz +v-1)Q(11)Q(12)Q(—v-1)Q(u3),

QS’(‘{' ’l’(g’l))(ﬂ17u2) =/ Vo (kpa — l, k3) X (k1, ka, k3, 11)
E2

X Q(upz) +v-1)Q(p1)Q(k2)Q(—v_1)
x Q(p3) 6(ps + v—1) dusdvy.

Proof. Contraction formula of H{' (™%

chaoses. For example, we see

I A
Xio =Xt X )
= (A X V)@ 20 X0 )
- Z \.72,1(/77711 f(i;:i))jl,O(me f(€t7 m))
(fd(*{)l@)) (f(ﬂ 1.(3,1) ),

where the summation runs over 1ntegers my,mg > —1 with |m; — ms| < 1. In order to
7'1 7727‘7)

is trivial from the product formula of Wiener

obtain contraction formula of Qg , we use Plancherel’s formula

/RZ F(s)a(t)3(s —t)dsit = | f(o)ilr)io +7) dodr

Note that p; +v_; = 0 if and only if o; + 7; = 0,k; = [;. This formula is obtained as
follows.

F00®3(s ~ st = [ fs)aas = | fe)ite)do
RZ
- [ f@norae = [ fo)(rito +7)dodr

The proof is completed. O

In Table 3, we give a list of all contractions g for each (71, 72) and define the corre-
sponding symbols (71, 72, g). Note that the graphs in the same line gives the same kernel
felmm.9) 5o we write (11,72, g) by the same symbol. By taking the renormalization into
account, we have the following decompositions:

x-¥ Ts, 1(f6\i’)+~720 (fe ¥>

x¥ = 7,00 121 (¢ 1*‘

X€’¥:L731(f6¥)+2u720 (f° Q”

x¥ = Zo(r) + 47 (1), (5.7)
XV = T (V) + 1 () +Jl,1<f€"§*’>» |
x¥ = 7405 W) + 2002 (FP),

Xﬁv\\fizjgg(fe\\{)wjm (f ‘1*’ +Jon fﬁ% )+ 2J1,0(RfE ’L"

x¥_ To.3(f© }i’) + 4.7 2( f“}" +2J0,1 (RS ‘{1\”)
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where
e = o gl mped = o g gl

T T2 g (11,72,9)

Sl 0 ¥

' {1} )4

$h 3 0 ¥

: {(1,2)},{(2,2)} ¥

12 ii 0 ¥

' {1} {2, 1)} I

1 2 12 @ ¥

Y v {GDE{E24 {21} {(22)} I

{(1,1),(2,2)},{(1,2),(2, 1)} Q>

0 ¥

{(1,2)] RS

Yol (@1} )

{(1,2),(2,1)} 4

1\3 s 0 Ay

{(1,2)}{(1,3)} T

] ¥

L if {(1,2)},{(2,2)} N\

{B 1)} %

{(132)»(371)}7{(2a2)7(371)} Of&

121 23 Q) }i:

2 Y {(1’2)}7{(173)}7{(272)}1{(233)} q;

{(112)7(273)}7{(173)7(272)} >

Table 3: List of graphical symbols for contractions

Finally, we define a process X7, which is a candidate of the limit of {X %" }occcq. It
may be natural to define Hle’T2’g) by the same way as in Proposition 5.7 by replacing
H;™ by H] for i = 1,2. This definition makes sense if #g = 0, 1, however, does not if
#g = 2. In Section 5.3.3, we will show that there exist kernels R f7 for 7 = (j),, (lxp such
that

%fe"b“a%f“{?’, mf€7<i?°—>mf°fi"

ase— 0.
Definition 5.8. For 7 € {{, Y. ¥, %, Y% ¥}, we define

X(Tt,z): Z jp—#qu—#g(f(te,m))

#9=0,1
For 7 = ¥, ¥, we define
X§ = L73,2(f$) + 272,1(f¥°) + jz,l(f%) + 231,0(9%f°{}})7
X}i; = jz,s(f}‘i;) + 4«71,2(f'¥°) + 2\70,1(9{f°{1'\>)~
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The following is the main theorem in this section:

Theorem 5.9. Let x > 0 and T > 0. Then, we have
lim E[| X — X)|%.] =0
el0 T

forevery 1 < p < oo.

Remark 5.10. The limit process X in Theorem 5.9 is given explicitly by generalized
It6-Wiener integrals. Since the expression of kernels are independent of y, so is X.

The proof of this theorem will be given in the next section.

5.3 Proof of convergence of driving vectors

In this section, we show the convergence X“7 — X7 for all 7. As stated above, they
have the good kernels. Hence, it is sufficient to estimate Qf and Qj — Qg", due to
Proposition 5.4.

5.3.1 Useful estimates

67

In order to estimate Q] and Qf — Qp", we use the following lemmas many times.
Lemma 5.11. Ifa, 8 € (0,5) and o + 3 > 5, we have

ol = P 5 e,
E
Proof. We modify [GP17, Lemma 9.8] to the three dimensional case. O

Lemma 5.12. The function 1, defined by (5.6) is bounded and supported in the set
{(k,1); C7Ll|. < |k|+« < C|l|+} for some C > 0. Moreover, we have

[ (k, D] < [k +1°J1I7
for every 6 > 0.
Proof. The properties |1, (k,1)| < 1 and 1,(k,1) > 0 imply |k|. ~ |I|. are trivial. We show

the last property. Since if (k,1) € supp(¢,) then |l|./|k|« = 1 and |k+1]. < |kl +]|l]« S |k
we have

* 7

[0 (k, D S [KIZONL S o+ U2

for every 6 > 0. O

5.3.2 Lower order terms

Now we consider X" for 7 =15V, V. % ¥ Y. Y, Y.
Proposition 5.13. For7 =13V, V, ¥, ¥, Y, Y, ¥, we have

/ Q5 (1, pr V1,012 S 27,
Hi1..p] TV[(=1)...(—q)] =H
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Proof. For T = 1.}, the required estimates is trivial from |Q(p)| < |u|; 2. Indeed,

Qb () ? = 1Q(u) % < I |74, Q)2 = [Q_1)? S [ ™.

For 7 =V, from Lemma 5.11 we have

/ QY ()2 < / a4l < Ll
Hli2)=H

H2]=H

The case 7 = ¥, ¥ are parallel. For 7 = {", we have
/ Q¥ mamP s [ ol el a0 S i
P12 tr—1=p P2 tr—1=p

Forr=Y.,Y, V¥, we have

/ QB (11,9 1,0
Hi1p) TY[(=1)... ()] =H

_ n " =YY,
S luls 4/ |Qg° (Nl,...,myl,»..?q)lQ S { *—6 s
Bl p) FV(=1)..(—q) | =H ‘,U|* , T = ¥
Here, we used Proposition 5.5 (2). The required estimates of Qf — Q" is obtained by
similar computations by using Qf — Q" = (1 — x)Qj and the inequality

P q P q
1= X Rt b )l S S DM+ S| Dol + > w2 ] (5.8)
i=1 j=1 i=1 j=1

for every A € (0, 1]. O

Proof of Theorem 5.9 for1, V, ¥, Y, Y, ¥. Propositions 5.4 and 5.13 imply the conclusion.
Note that we need to prove X ¥ is Holder continuous in time. O

5.3.3 Higher order terms

Now we consider X7 for = §, ¥, ¥ ¥ ¥ ¥ ¥ ¥ We define (r1, ) for each 7 as
in Proposition 5.7. We note that X7 is written as a sum of It0-Wiener integrals which
have good kernels f(7:72:9) for #¢g = 0,1 and R f(7:™2:9) for #¢ = 2 such as (5.7). We will
estimate these functions for the case #g = 0, 1, 2 separately.

(m1,7m2,0

First we consider the functions Qf = Q)
Proposition 5.14. For r = ‘b ‘1’ ¥ ¥ A § ‘i we have

/ Q0 (11,...p» VLm,q)‘z S |/“*_2%+K‘k|;26f_ﬁ’

H1..pl TV[(=1)...(—) | =H

/ Q5 = Q7)1 V1) 2 S a7 ]2 42,
H1..p) TV[(=1)...(—q)]=H

for every small k > 0 and A > 0, where
('77'7 67’) = (
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Proof. We have

X / |Q82(M(p1+1) ..... p7y(q1+1) ..... q)‘2

Hl(p1+1) .0 TY(—a1 = 1) ()] THY
2 —27r —27-
S [ el R gl
By =p
We estimate them by using Proposition 5.13 and Lemma 5.12. In the case 7 = ‘1;, ‘f

Proposition 5.13 implies (v, vr,) = (3,2). Applying Lemma 5.12, we have

Vo (K1, k)| |7 pal o SRS 4 K T R e O |
< RIS | )

for any pf + 5 = p. Hence

/ R AL AR AR R i / a5+ o
pytpy=p ph b =p

< K]l
For 7 =¥, % ¥ ¥ (v, 7~) = (3, 3) implies

/ ok K21 [T 1) 2 S [RIZ2 / AR
By HHs=p HiFHs=p
< K2l

For 7 =¥ ¥ (v,,7) = (3, 2) implies

[l kPl sl SR [l el
nytps=p Ky tus=p
Sl 17
By noting (5.8), we can estimate Qf — Q" in a similar way. O

Next we consider the functions Qf for 7 =Y., Yo, 3 S e Yo aper Yor s f. We show
three propositions; Propositions 5.15, 5.16 and 5.17.

Proposition 5.15. For 7 = Y,, ., we have
/ Q5 (s 1, )2 S 11,
H1..p)TV[(~1)...(—)]=H

/ Q5 — Q57 ) (k.. prvr )P S Ml
K1 p] TY[(=1)... (—q) ] =H

for every small A > 0.

Proof. We consider the case 7 = m, Note
Q%(,um) = /E‘2 VYo (ko) — 11, k3)Q(ppg) + v-1)
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X Q(p1)Q(p2)Q(—v-1)Q(u3) 0(p3 + v_1) dusdry
:mMmmqé%@m—mwmmmwww@mm%%

By using the estimate [, (k[12) — k3, k3)| < 1, we have

\Q}(Hm)\ S \Ml\;2|ﬁt2|;2/ gy — psly sl dps S Jpal 2 el 2 ppe
E

Hence

/ \Q}(ul,zﬂz < Iu\f/ L |4 el S Il
H12)=H

H12)=H

We will show the second inequality for 7 = i, The inequality (5.8) implies

0P (u12) = QP (ua)l S lnl 2l - /20 + Jusl + a2 s

Hence we obtain the second inequality for 7 = &
The assertion for Y, is verified in the same way. O

Proposition 5.16. For 7 = s, v, {», <} «J» We have
/ Q5 (Bt V1) S Dl TR,
B p)HY (1) (—a)) =H

/ |(Q6 - (G)yT)(,uLw,paVl,...,q)‘g < €A|N|:4+K+A|k|;1_n’
HL...p] TV[(=1)...(—q)]=H

for every small k > 0 and A > 0.

Proof. We give a proof for the case 7 = Q\, only, because we can show the other cases in
the same way. Note

QOQ?D(/JL?)) = /E2 Yo (kg k3 — 11)Q(pp12)
X Q1) Q(p2)Q(13)Q(—v-1) 6 (2 + v_1) duodr
:@mWWQL%Mer@*@WWmMMMW@@

Lemma 5.12 implies

14k

_ 1tk _ 1tk 1tk
Vo(ky + ko, ks — ko) S|k +Esl« > Jkr + kol <|ki+ksls * |ppgl® -
Combining them, we have
_14n .
O () £ sl 2k ol 5 [ sl 5 il
E
_9 _9 _ 1tk _l-x
Sl sl 7k + ksl 2 |l 2

Hence

/ @meVSWJH/ 2 7 |7 S (R
H[13]= H[13]=H

=u
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In a similar way, we see
R €,q
Q¥ .0) — @y ¥ ()
_ 1tk _1
Sl 2 sl 2k + Kl 2 - 2|l + ol + lppz 2Pl 2,
which implies the second assertion. The proof has been completed. O

Proposition 5.17. For 7 = {5, +f,, s}, we have
/ (@5 = Q5 0m . ) S Ml kL
B p) HY (1) (—g)) =H

for every small k > 0 and A > 0.
Proof. Here, we will show the assertion for 7 = Q\, only. Note

Qo: (H1,3,v1) = /E? VYo (kpiz) — I, ks — 12)Q(up2) +v-1)Q(p1)Q(12)Q(—v_1)
X Q(u3)Q(—v—2) d(p2 + v_2) dpadvs

= Q(p1)Q(p3)Q(—v-1)
X /El/)o(k[u] — Iy, ks — k2)Q(p12) + v-1)|Q(p2) |* dps.

We use Lemma 5.12 to obtain
Volkpz — i, ks — ko) S |kpsy — lls 2 [kpgy — L2 S Jkpsy — hle ? lupg) +v-al2

.
—1+%
* I

Hence
.. _ _ _ j— —24+- £ _
Q0" (1,3, v1)| S g7 2 sl 2 v—1 |7 [kps) — s 2 / 2y + v-tls 2 pali* dps
E

Sl 2 sl 2 v 2 ks — s 2 o + v

which implies
NS
/ Q0 (1,3, 11)* \kﬁﬁ/ 72 V7 1 72 el PSS V20
B tHr—1=p Mz Fr—1=p

S kIl

In addition, we have
- 5 - - - - e
|Q$\7(M1,3,V1) - Qo%(ﬂl,&mﬂ S a2 sl 2 v |2 k) — s 2
e [T A N TR IV PR [ S /YA VY
O

which implies the conclusion. The proof is completed.
Finally we consider the functions RQ)j for 7 = Q{];,, (1\, First of all, we have to define

the renormalized kernels R f7. Since
onﬂfjf = Qon{Lu - QO’Q{I}Q(?R

http://www.imstat.org/ejp/
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1y T = Qi - Qs Ty,

we have

mQS’Q{L‘!(M) =X (B)QUn) | X (k2)*1QUu2) Qs

X 80 {00 (- + ko — ks, ks — k2)Q(- + o — pa) } dpadps,
R0 () = < (k)T /E X (r2)* Q)P Qk2)

X 8o,y (o (- + kg, —kp2))Q( + ppigg) } dpdps,

where §,,, ., f = f(p2) — f(u1) is the difference operator. We set

2 () = Qm) [ 100 PIQtm

X 80,1 {0 (- + k2 — ka, k3 — ko) Q(- + o — p3)} dpadps,
Q) = Q) [ 1) PIQ)

X 60,—v_ 1% (- + k), —kp2))Q(- + w2y} dpadps,

if they are well-defined. The required kernels Rf” is defined by good kernels with
RH] = F; ! (e ?"FQr). The following proposition implies that these kernels are

time

well-defined and SR f<” converges to Rf".
Proposition 5.18. For 7 = {;, 4», we have

IRQF (W) < |ulTHH,
(RQF — RQF) (W) < Xl

for every small k > 0 and A > 0.

In order to prove this proposition, we extend the domains of ¥, = ¥.(k,1) and
Q = Q(o, k) into R® and R* in a natural way, respectively. We write k = (k', k2, k%) € R3.
Then, we have the following estimate of their derivatives:

Lemma 5.19. For every 0 < k < 1, it holds that

|Oe o (k1) S L [BI T, 105Q(1)] < |ul2?, |0k Q)| S [l

Proof. The latter two inequality can be shown easily. We show the first inequality. Note
that (k,1) € supp ¢, implies |k| ~ |I|. We see

Opatpo (k1) = > 27 0kapo (27" K)ps(1) = D 27 Okapo(27'k) D> p;(0).

li—jl<1 i2-1 Jili—gl<1

In this calculation, we abused the symbols p_; and p;. We see that the compact-
ness of supp po implies |Oa po(27°k)| < [27%k| 1 < 2790 =%)|k| 1% and the summation
>_j.ji—j|<1 i (1) has an upper bound independent of . Hence,

Opeta (ks DI S D 27 T S [T

li—j|<1

The proof is completed. O
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Proof of Proposition 5.18. We focus on 7 = (L,

First we esimate the difference operator part in ZRQEI). We write 75 = (720, 7k) for
w € E and 7 € [0,1]. The fundamental theorem of calculus and Lemma 5.19 imply

o (e b k) QU+ ) = | [ (0 —) QU + )

1
S \k1|/ Ly bl kol | TR+ B2l ST |75 10 + o] 2 dr
0

1 1
tloal [ et + el ar ] [ o+ el dr
0 0
Hence we have
/ 1Q(12)1?|Q(123) 1?60, 11 {tho (- + ko — ks, ks — k2)Q(- + pio — p3) }| dpodps
E2

S A+ As + As,

where
1
A= /2 dpadpis |M2|I4\M3\;4|k1\/ Lrky ko —ks| | ko — ks
E 0
X |Thy + ka — k|, T + pe — ps|; dr,
1
Ap = dpadps |pol sl Hoa| | 7T + po — psl* dr,
2
E 0
1
Ay = [ dpads ol ] [+ i gl
E2 0
We estimate the terms A;, A, and Az. Note that Lemma 5.11 holds even if v € R*.
We start the estimates with A;. By changing variables with pf = po and pf = pg — s
and the Fubini theorem, we have
Ay = Ikll/Ez dpydpy || |y — w5l
1
) (/0 Lok kg ey | Th + R 7o+ ué|§2d7>

1
S |k1|/EdN:/3 | 2 (/0 Ly ey oy | [ TR + Ryl T+ ) dT)

1
= |k1|/ dr / Ay ey kg iy | TR + K510 4 ] P |
0 E
The Young inequality implies
[ dokirin + a2l < [ dog (17 + il 1))
= |Th1 + ks[ 7 + [R5
Hence
/ Aty Uiy e oty | [TRY A+ K| 75 + g 2
E

S DR T O A e (L S A A
ks
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/1 —4+k /1 —4+k —1+kK
S Aty g B S L P [ R
ks kL: |k | SIkS|

Here, we used that |7k1| < |7k1 + k5| + |K5] < |k%| in the case that |7k; + k5| =~ |k5).
Combining them and using that |7°u|,. > 7|u|. for every 7 € [0, 1], we obtain

1
A3 ““'/ dr(rlkal) " < k<
0

The estimate of A; has finished.
The estimates of A; and Aj is easy. Indeed, we have

1 1
A2§|01|/ ||, % dr, A3§|k1|/ [T dr
0 0

Since |7°ul. > 7|p|« for every 7 € [0, 1], we have
1 1
Ay S oy / Tl a2 dr < o a5 / o Ldr < |l
0 0

1 1
Al [ il S s [ S s
0 0

for every k € (0,1).
Hence
IRQG(W)* < [pl*

We obtain the estimate of |(RQ7 — RQy")(1)|? in a similar way. We can see the assertion
is valid for 7 = (1\, in the same way. O

Proof of Theorem 5.9 for §, ¥, ¥, %, ¥ ¥ ¥ ¥. We will use Proposition 5.4. The con-
stant (v, d,) in Proposition 5.14 satisfies

’Y‘r"‘(sT:

l\')w\mw\m
S ~1 S

V¥
AR 69
V¥

The assertions for the case ‘f, and ‘f follow from (5.9) and Proposition 5.15. For ¥ Y i"
and \; we see the assertion from (5.9) and Proposition 5.16. For % and ‘i we use (5.9),
Propositions 5.17 and 5.18. O

Remark 5.20. We can construct another sequence {)N(S} of driving vectors from the
space-time smeared noise gﬁ defined by (4.2). As stated in Remark 4.2, the limit driving
vector does not change. In order to show this fact, for simplicity, we consider the
case that temporal and spatial variables are separated: o°(t,x) = o§(¢)o5(x). Here,
05(t) = e 2po(e72t) and o (x) = e 301 (e 'x) for even functions gy and g;. Since the noise
is smeared in time, the solution Z¢ of 9,Z¢ = {(i + p)A — l}ZE + £¢ is given by the same
formula as (5.4), with &,(k) replaced by the convolution Ik €u (k)05 (s — u) du. By shifting
the mollifier to the heat kernel, we have the formula

ZE = Z/ HE (s, k)erts(k) ds
keZ3

where Hf(s,k) = x“(k) [ H(u,k)o§(s —u)du and x = Fo;. Then the corresponding
Fourier transform @; = FiimeH; is given by

Qi (0,k) = po(€®a)x“ (k)Qu(0, k),
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where ¢y = Fiime0o- This implies Qg — Qg has the good estimate as in Proposition 5.13,
so that Z¢ converges to the same limit Z as that of Z¢. In the proof, we replace x¢(k) in
Proposition 5.13 by g (e?0)x(k). By similar arguments, we can see the invariance of
the limit for all other elements of X¢. Since Z€ is stationary in time, we can define the
new renormalization constants cf, ¢5 ; and ¢5 , in the same way as (5.5) and see the new
constants depend only on e. However, they may not coincide with ¢j, ¢§; and ¢5 5.

5.4 Properties of renormalization constants

In this subsection, we study the renormalization constants c{, ¢5; and ¢ , defined
by (5.5). We use Propositions 5.5 and 5.7 to show that they are independent of (¢, x)
and the choice of the dyadic partition {p,,}5°__; of unity (Proposition 5.21) and obtain
the divergence rate (Proposition 5.22). Proposition 5.21 and Theorem 4.30 imply the
renormalized equation (1.2) does not depend on the choice of the dyadic partition of
unity. Hence the solution to (1.2) is independent of the partition.

5.4.1 Expression of renormalization constants

We obtain explicit expressions of ¢, ¢5 ; and ¢5 , as follows:

Proposition 5.21. We have the following:

] X (k)?
= A (5.10)
ot 2(4m2|k|2 + 1)
Xe(kth)z
S 511
e kzezﬂ4w2u|k1|2+1><47r2u|k2|2+1><a1+w1>’ &0
Xe(klﬂll)z
€50 = - , 5.12
0= 2 T+ ) (s T 1) 6-12)

where
ay =47 p(lkr + kol + k| + [k2) + 3, B1 =47 (|ky + kaof? — |k | — |K2[?),
ag = Amu(lky — L * + [k * + |1]?) + 3, B2 = 4m*(|ky — L) — |ka* + [ [?).
Proof. From Proposition 5.5, we have
2 X€(k’)2
cl—Z/f(m) skds—Z/ )2|Hy (s, k)| ds—272(4ﬂz|k|2+1),
keZ3 keZ3 kez3

which is (5.10).
We show (5.11). From Propositions 5.5 and 5.7, we have

€ (Y, ¥.{(1,1),(2,2
¢\ = H V¥, 22))

= ¢o(k1 + ko, — (k1 + ko)) H, Y(ml 2)Ht£(m12) dmydms.

By using o (k1 + k2, —(k1 + k2)) =1 and

. 1 .
ds HI s,k)H;(s,k) = ———————H(u, k),
[ s s Hi 6 8) = G B b
: 1
dt H: (t,1 H t, 1) = S u,l),
[ = sl
we obtain the assertion. We can show (5.12) in the same way. O
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5.4.2 Divergence rate of renormalization constants

Here, we show the following proposition concerning divergence rate of the the renor-
malization constants:

Proposition 5.22. There exists a positive constant C' such that

Clel < < et (5.13)
Clloge™! < e 4] < Cloge™ !, (5.14)
Ctoge ! < |¢5 0] < Cloge™! (5.15)

forany 0 <e< 1.

Since the estimate (5.13) follows easily from (5.10), we show (5.14) and (5.15) for
the rest of this subsection.

Lemma 5.23. Let oy, (51, as and (2 be as in Proposition 5.21. There exist positive
constants C and Cy such that

1
— > (k] + k)P + DT 7<0k2k21
a1+iﬁ1_1(\1|+|2|+) PN S|k + ko> + 1)1
1
e (|1 > + |l1)> + 1 < Cy(Jkr)* + 0P +1)71,
i 2 OB P P4 )7 || < i P+ -

for any ki, ko and [;.

Proof. We show the assertion for 1/(a +i1). Since |k1|? + k2> +1 < ag < |kr]? 4 | ko2 +1
and |81| S k1> + |k2|* + 1, we see

1 o Otlfiﬂl - a1 > |]€1|2+“€2|2+1
ar+ift ai+Bf af+ 87T (ki + (ka2 +1)2
and
1 o —ip ka” + [ko|* + 1
o + 1B oF + 67| (|k1]? + |k2)? +1)%

The assertion is verified. We can show the assertion for 1/(as + i82) in the same way. O

Proof of Proposition 5.22. We first prove of the lower estimate. We show that there
exists a constant C; such that

%Cg,l’ %c§72 Z Cl ].Og 6_17

forany 0 < e < 1.
We consider only ¢5,; and estimate the real part of summands in (5.11). Proposi-
tion 5.21 and Lemma 5.23 imply

Resi 2 Y X (k)X (k) (Ika® + )7 (ko + 1) 7 (K o+ [Ref* + 1)

k1,ko€Z3

> 3 X (k) X (ko) ([ka | + [of* + 1)
k1,k2€Z3

>1 —|—loge_1,

which implies the lower estimate of %ic5 ;. We can obtain that of $¢c5 , by the same way.

Next we prove the upper estimate. We show that there exists a constant C'; such that
le5 1], [¢5 5] < Calog !

forany 0 < e < 1.

EJP 22 (2017), paper 104. http://www.imstat.org/ejp/
Page 64/68


http://dx.doi.org/10.1214/17-EJP125
http://www.imstat.org/ejp/

Stochastic complex Ginzburg-Landau equation

We consider only ¢5 ;. Proposition 5.21 and Lemma 5.23 imply

50l S D0 X (k) X (ko) (ka1 7 (K2l + 1) 7 ([ + [l + 1)

k1,ka€Z3
< > (RPHDT (R )T (R R+ 1)
[k1l,|k2|<e—?

In this estimate, we used suppx C B(0,1). We divide the region of the summation
{(k1,ka); |k1| < e 1 and |ko| < e} C Z3 x Z3 into

Ay = {(k1,k2); [k1| < 2 or |ko| <2},
Ag = {(k1,k2);2 < |k1| < |ko| < 7'},
Az = {(k1,k2);2 < [ko| < [ka| < e '}

The summation over A; is estimated as follows:

Yo (P )T kP + )T (R P+ DTS Y (R 1) < oo
(k1,k2)€AL keZ3

For the summation over A5, we have

D (T D (1 e D (U R 5 o D S S 1l o

(k1,k2)€A2 (k1,k2)€A2
—2 —4 —4 -1
< ) > a2 | kol ™S D0 kol ™t Sloge™.
kQ:ZS‘k2‘§€71 k1:2§\k1\§|k2| 2S‘k2|§£71

The summation over A3 has the same upper bound. Hence we see [¢5 | < log el We
can prove |c5 ,| < loge™! by the same way. The proof is completed. O

A Complex multiple It6-Wiener integral

We recall some notations and properties of complex multiple Wiener integrals from
[1t652].

A complex random variable Z is called isotropic complex normal if ®Z and $Z are
independent, has the same law with mean 0 and (RZ,37) is jointly normal. A system of
complex random variables {Z,} is called jointly isotropic complex normal if "7 | ¢;Zy,
is isotropic complex normal for any n, any ci,...,c, € C, and any indices Aq,..., \,.
Note that the isotropic complex normal {Z,} satisfies E[Z,Z,] = 0 = E[Z,Z,]. The
distribution of jointly isotropic complex normal system {Z,} is uniquely determined by
the positive-definite matrix V, = E[Z AZTJ ([1td652, Theorem 2.3]).

Let (E, B,m) be a o-finite, atomless measure space, and B* be the set of all elements
A € B such that m(A) < co. Then there exists a jointly isotropic complex normal system
{M(A); A € B*} defined on a probability space (2, F, P) such that

E[M(A)M(B)] = m(An B),

and its distribution is uniquely determined ([I1t652, Theorem 3.1]).
Now the complex multiple It6-Wiener integral of f € Lg_’q = L?(EP x E1) is defined as
follows. Let S, , be the set of L? | functions of the form

f: 5 ail...ipjl...quEil><~~~><Eip><E_71><~~><qu
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with n € Z,, where E1, ..., E, are any disjoint sets of B* and {a;,..i,j,..j,} is a set of
complex numbers such that = 0 unless 41,...,%,,71,. .., jq are all different. For f of this
form, we define

n

Tpa(f) = > Wiy .iigjr g M (Eiy) - - M(E3, ) M(Ej,) - - M(Ej, ).

il""$ip7j15“'7jq:1

This functional has the property E[|J,4(f)|?] < pl¢![|f||2. . We defined the It6-Wiener
pP,q
integral for non-symmetric functions, hence, we cannot expect the equality in this in-

equality. Since S, , is dense in L? , the integral .7, , is uniquely extended into continuous

linear map from L? , to L?(P). We set Lg , = C and Jo(c) = c. From [It652, Theorem 7],
we have

E(|Tpq(HIP] < P! fllzz
E[Jpq(f)Trs(9)] =0 for (p,q) # (r,s).

The product formula is important. For 0 < r; < p; Age and 0 < r; < g1 Apo, we denote
by F(p1,q1; p2, q2; 71, 72) the set of graphs consisting of disjoint 1 + 5 edges

(p/aq/) 6{17"'7p1} X {Q1+1a-~-791+QQ}U{]71+1’-~-7P1 +p2} X{la"'7q1}~

For (f,g) € L;%l,ql X L12)2,q2 and v € F(p1,q1;p1,q2;71,72), we define f ®, g €

2
Lpl +p2—(r1+7r2),q1+q2—(r1+rz2) by

(f ®7 g)(tla s 7tp1+;02751a <y 8q1+q2 \ {(tp” sq’)}(p’,q’)€7>

:/ET . h({(tp’vsq’)}(p’,q’Ew) H dm(ty, sq),

(r'.q")ev

where h : E"1t2 — C is defined by

h({(tp/a Sq’)}(p’,q/)E'y) - f(tla s atpmsh sy 541)

X g(tp1+17 s ﬂtp1+p278q1+1ﬂ R stthqz)|tp/:sq/,(p’,q/)€’y‘
Theorem A.1 ([1t652, Theorem 9], [Nua06, Proposition 1.1.2]). For every f € L12>1,q1 and
gelL?, .. wehave

P1/\q2 p2/Aq1

TIpr.ar () Tpsax(9) = Z Z Z Tpr+pa—(ri4r2)sq1+as—(r4r2) (f @y 9)-

r1=0 r2=0 yE€F(p1,q1;p2,q2;T1,72)

For example, we have

J2,1(f)J0.2(9) = T2.3(f @9 g) + T12(f @¢1,0)3 9) + T12(f @q1,2)3 9)
+ T12(f @22y 9) + Tr2(f @23} 9)
+ Jo1(f @(1,2),2:3)1 9) + Jo1(f @(1,3),2,2)} 9)-
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