
Bayesian Analysis (2017) 12, Number 4, pp. 1039–1067

Bayesian Variable Selection Regression of
Multivariate Responses for Group Data

B. Liquet∗,†, K. Mengersen‡, A. N. Pettitt§, and M. Sutton¶,

Abstract. We propose two multivariate extensions of the Bayesian group lasso
for variable selection and estimation for data with high dimensional predictors
and multi-dimensional response variables. The methods utilize spike and slab pri-
ors to yield solutions which are sparse at either a group level or both a group
and individual feature level. The incorporation of group structure in a predictor
matrix is a key factor in obtaining better estimators and identifying associations
between multiple responses and predictors. The approach is suited to many bi-
ological studies where the response is multivariate and each predictor is embed-
ded in some biological grouping structure such as gene pathways. Our Bayesian
models are connected with penalized regression, and we prove both oracle and
asymptotic distribution properties under an orthogonal design. We derive efficient
Gibbs sampling algorithms for our models and provide the implementation in a
comprehensive R package called MBSGS available on the Comprehensive R Archive
Network (CRAN). The performance of the proposed approaches is compared to
state-of-the-art variable selection strategies on simulated data sets. The proposed
methodology is illustrated on a genetic dataset in order to identify markers group-
ing across chromosomes that explain the joint variability of gene expression in
multiple tissues.

Keywords: Bayesian variable selection, multivariate regression, sparsity, spike
and slab.

1 Introduction

In this article, we consider the challenging task of developing a fully Bayesian sparse
regression analysis for the situation when the numbers of predictors is larger than obser-
vations for a multivariate response and covariates grouped by blocks with the sparsity
for blocks and within blocks. It is well established that the incorporation of prior knowl-
edge on the structure existing in the data for potential grouping of the covariates is key
to more accurate prediction and improved interpretability. In genomics, genes within
the same pathway have similar functions and act together in regulating a biological
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system. These genes can add up to have a larger effect and therefore can be detected as
a group (i.e., at a pathway or gene set level). Incorporation of this grouping structure
is becoming increasingly common due to the success of geneset enrichment analysis ap-
proaches (Subramanian et al., 2005). For instance, the incorporation of group structure
in regression analysis has been found to be effective for biomarker identification (Yuan
and Lin, 2006; Meier et al., 2008; Puig et al., 2009; Simon and Tibshirani, 2012). Penal-
ized regression methods are a popular approach for incorporating group structure and
performing variable selection. Among these methods, Yuan and Lin (2006) proposed
the group lasso by placing an L2 penalty on the size of the regression coefficients. This
method has drawn attention due to its ability to simultaneously perform group variable
selection and estimate regression coefficients. The method was later extended by Meier
et al. (2008) to logistic regression and modified by Puig et al. (2009) and Simon (2013)
to consider non-orthonormal predictor matrices. Although the group lasso penalty can
improve the quality of the variable selection, it requires a strong group-sparsity (Huang
and Zhang, 2010), and cannot yield sparsity within a group. Ma et al. (2007) proposed
a supervised group lasso which selects both significant gene clusters and significant
genes within clusters for logistic binary classification and Cox survival analysis. Simon
(2013) proposed a sparse group lasso penalty by combining an L1 penalty with a group
lasso to yield sparsity at both the group and individual feature level. Zhou (2010) ap-
plied this approach to genomic feature identification. Garcia et al. (2014) developed
a sparse group-subgroup lasso to accommodate selecting important groups, subgroups
and individual predictors. In a regression context, with a multivariate response variable,
Li et al. (2015) have recently proposed a multivariate sparse group lasso. A review of
group variable selection methods is presented by Huang et al. (2012). Recently, Liquet
et al. (2016b) proposed a sparse group partial least squares approach for dealing with
structured data in a genomic context.

In a Bayesian framework Xu and Ghosh (2015) proposed a Bayesian group lasso
using spike and slab priors for group variable selection. Rockova and Lesaffre (2014)
have recently developed rapid computational procedures based on the expectation max-
imization (EM) algorithm for a hierarchical model incorporating grouping information.
Recently, Stingo et al. (2011) proposed a partial least squares approach for pathway and
gene selection using variable selection priors and Markov chain Monte Carlo (MCMC)
for computation. However, these Bayesian procedures only deal with a univariate re-
sponse variable.

In some cases, the outcome can be complex and may consist of several correlated
measures of continuous variables (e.g., metabolic syndrome). Figure 1 illustrates the
most general situation of p predictors (typically OMICs measures) belonging toG groups
being analyzed in relation to q correlated outcomes based on n observations.

The matrix X can be divided into G sub-matrices (groups) Xg : n × mg where
mg is the number of covariates in group g. For example, in gene expression data this
sub-matrix may represent gene pathways or be factor level indicators for categorical
data. The aim is to select only a few groups of X which are related to the multi-
variate response Y. Further, sometimes we would like sparsity with respect to which
groups are selected and which coefficients are nonzero within each group. For exam-
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Figure 1: General representation of data for modeling multivariate outcomes given a
group structure of the covariates.

ple, we might be interested in identifying important genes within selected gene path-
ways.

The multivariate response and predictor combination can be modelled using the
multivariate Gaussian linear model:

Y−
G∑

g=1

XgBg ∼ MNn×q (0p×q, In,Σ) , (1)

where Y is a n×q matrix of responses, and Bg is amg×q matrix of regression coefficients
associated to the sub-matrix predictors Xg. MN(·, ·, ·) indicates the normal matrix-
variate as defined in Dawid (1981) where Σ (q × q) controls the responses’ residual

correlation (the variance-covariance matrix of Y −
∑G

g=1 XgBg) and the observations
are treated as independent (e.g., no familial structure is assumed in the data, with In
denoting the n×n identity matrix). Setting q = 1, the Gaussian linear model simplifies to

Y −
G∑

g=1

Xgβg ∼ Nn

(
0, σ2

In

)
, (2)

where Y is a n × 1 vector, βg is a pg × 1 vector of regression coefficients associated
with the group g, and σ2 corresponds to the variance of the error term. We denote with
Nn(·, ·) the n−variate normal distribution.

One way to analyze the multivariate Gaussian model (1) is to consider a collection
of q regression problems in R

p. Using this framework, we could fit q different univariate
regression problems using any of the previous variable selection methods. However, in
many applications the response matrix Y contains variables that are strongly corre-
lated. As such, one would expect that the underlying covariates would be related. One
approach for this type of problem would be to posit that there is some underlying subset
of the coefficients in X which is related to all components of the response Y.
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A frequentist way to tackle this problem is offered by Friedman et al. (2010) who
suggest using a group lasso penalty to select variables which are related to all compo-
nents of the response Y. Extensions of this approach have been proposed to provide
simultaneous estimation of the precision matrix (inverse of Σ) and of the regression
coefficients (see e.g., Rothman et al. (2010), Lee and Liu (2012), Cai et al. (2013)).
However, these methods do not take into account the group structure of the predictors.

In the context of multivariate multiple regression, different approaches have been
developed to account for the biological group structure within the predictor matrix (see
e.g., Wen (2014), Zhu et al. (2014)). For imaging genomics data, Greenlaw et al. (2016)
have recently proposed a Bayesian hierarchical modeling formulation where the posterior
mode corresponds to the estimator proposed by Wang et al. (2012). However, their ap-
proach is limited to the case of Σ = σ2

Iq corresponding to the independent phenotypes.

Following the ideas of Xu and Ghosh (2015), we develop more general Bayesian
hierarchical models for variable selection with a group structure in the context of corre-
lated multivariate response variables. For the univariate response model (2), a Bayesian
group lasso model with spike and slab priors has been developed by Xu and Ghosh
(2015) providing variable selection at the group level. The authors have also proposed a
hierarchical spike and slab prior structure to select variables both at the group level and
within each group. The posterior mode of their models was shown to provide shrinkage
similar to the group lasso and sparse group lasso. Using this formulation, all groups were
shrunk equally. Inspired by the adaptive group lasso (Wang and Leng, 2008; Nardi and
Rinaldo, 2008) and the Bayesian adaptive lasso (Leng et al., 2014) we generalize their
approach to allow for different amounts of shrinkage for different groups and coefficients.

For the multivariate response model (1), we define in Section 2 a Multivariate
Bayesian Group Lasso with Spike and Slab prior (hereafter referred to as MBGL-
SS) which enables only variable selection at the group level. Our Bayesian model is
connected with penalized regression. We highlight properties of the posterior median
estimator such as an Oracle property for group variable selection. We also derive asymp-
totic distributions under orthogonal designs. Then, we derive efficient Gibbs sampling
algorithms for our group Bayesian lasso models with spike and slab priors. In order to
select variables at both the group level and the individual level, we define a Multivari-
ate Bayesian Sparse Group Selection with Spike and Slab priors (hereafter referred to
as MBSGS-SS) in Section 3. Section 4 presents simulation studies to evaluate the per-
formance of our approaches in terms of variable selection and prediction performance
compared to frequentist approaches such as lasso, group lasso, and sparse group lasso.
We illustrate the method in Section 5, with a challenging genetic data set where SNPs
are used to predict the gene expression data in four tissue types. The final section
concludes with a brief discussion.

2 Multivariate group lasso with spike and slab prior
(MBGL-SS)

In this section, we consider the problem of Bayesian shrinkage estimation with group
variables. The group Bayesian lasso was first proposed for a univariate response, by
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Kyung et al. (2010) who showed that a scale mixture of Normals with Gamma hyper
priors for βg enables shrinkage of coefficients at the group level. While this method was
shown to have shrinkage properties similar to the group lasso, Xu and Ghosh (2015)
have stressed that the posterior mean and median do not produce exact zero estimates.
To obtain sparsity at the group level, they proposed a hierarchical Bayesian group lasso
model with an independent spike and slab type prior. We exploit and extend their
approach for multivariate responses and propose the following hierarchical multivariate
Bayesian group lasso model with an independent spike and slab prior for each group
variable Bg:

Y|X,B,Σ ∼ MNn×q(XB,Σ, In), (3)

V ec(BT
g |Σ, τg, π0)

ind∼ (1− π0)Nmgq(0, Img ⊗ τ2gΣ) + π0δ0(V ec(BT
g )), g = 1, . . . , G,

(4)

τ2g
ind∼ Gamma

(
mgq + 1

2
,
λ2
g

2

)
, g = 1, . . . , G, (5)

Σ ∼ IW(d,Q), (6)

π0 ∼ Beta(a, b), (7)

where δ0(V ec(BT
g )) denotes a point mass at 0 ∈ R

mgq, Bg is the mg × q regression
coefficient matrix for the group g and denote βg

ij (i = 1, . . . ,mg and j = 1, . . . , q) as the
elements of this matrix. The prior density of Σ is assumed to follow an inverse Wishart
distribution (denoted IW) where d and Q are respectively the degrees of freedom and
a positive finite scale matrix such that E(Σ) = Q/(d − 2). The matrix Q is defined
as Q = kIq with the hyper parameter k being comparable in size with the likely error
variance of Y given X and d = 3 representing the smallest integer value ensuring the
existence of E(Σ).

Fixing π at 1
2 is often recommended since it assigns equal probabilities to all sub-

models in the regression. Instead of fixing π0 at 1
2 , we use a conjugate beta prior on π0,

π0 ∼ Beta(a, b) to incorporate potential prior knowledge on the sparsity of the model.
This choice has been adopted by Scheipl et al. (2012) and Xu and Ghosh (2015). By
setting a = b = 1, it gives a uniform prior for π0 with mean 0.5 but allows for spread in
the prior. However, one can choose an informative prior such as π0 ∼ Beta(20, 40) (see
Scheipl et al. (2012)) to encourage a sparser model for high dimensional data.

The value of λg controls the amount of shrinkage for the gth group of coefficients.
This parameter needs to be carefully tuned to provide the correct amount of shrinkage
for the estimation. A large value of λg will result in parameters that are extremely biased
towards zero, whilst small values of λg will lead to poor variable selection properties.

In Xu and Ghosh (2015), the shrinkage for each group is controlled by a single
parameter. Consequently, larger groups of variables will be less affected by the shrinkage
and more likely to be selected. In the original group lasso, Yuan and Lin (2006) propose
weighting the shrinkage parameters by the size of their group to reduce the effect of
different group sizes. We propose a global shrinkage parameterization of λg by setting
λg =

√
mgλ where λ is a global shrinkage parameter, and mg is the size of the group.
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We take an empirical Bayes approach to estimate the value of λ from the data using
marginal maximum likelihood (Park and Casella, 2008; Xu and Ghosh, 2015). Since the
marginal likelihood function and marginal posterior for λ are intractable, a Monte Carlo
EM algorithm is used. The kth EM update for λ is:

λ(k) =

√
G+ qp∑G

g=1 mgEλ(k−1)

[
τ2g |Y

] ,
in which the posterior expectation of τ2g is replaced by the Monte Carlo sample average

of τ2g generated in the Gibbs sample based on λ(k−1). We name this choice of λ the
“global shrinkage parameter”.

Inspired by the adaptive group lasso (Wang and Leng, 2008; Nardi and Rinaldo,
2008) and the Bayesian adaptive lasso (Leng et al., 2014) we propose an “adaptive
shrinkage parameter” λg for each group. The adaptive shrinkage parameter can be
estimated using a Monte Carlo EM algorithm where the kth update for λg is:

λ(k)
g =

√
1 + qmg

mgEλ(k−1)

[
τ2g |Y

] .
2.1 Connection to penalized regression and alternate reformulation

of the model

To place our method in a context with the existing Bayesian group lasso and the penal-
ized multivariate regression, we observe the marginal prior for Bg. Integrating out the
term τ2g in (4) using prior (5), the marginal prior distribution is a mixture of a point
mass at 0 ∈ R

mgq and a mgq-dimensional K-distribution:

V ec(BT
g ) | Σ, π0 ∼ (1− π0)MK

(
mgq − 1

2
,
λ2
g

2
, 0, Img ⊗ Σ

)
+ π0δoV ec(BT

g ), (8)

where MK(α, β,μ,Γ) denotes the Multivariate K-distribution as defined by Eltoft et al.
(2006) with parameter set {α, β,μ,Γ}. In general the multivariate K-distribution does
not have a closed form; however, for the parameters specified in (8) the density function
is given by

MK

(
mgq − 1

2
,
λ2
g

2
, 0, Img ⊗ Σ

)
∝
(
λg

|Σ|

)mgq

exp(−λg‖V ec(BT
g )‖Img⊗Σ), (9)

where ‖z‖Γ =
√
zTΓ−1z.

For a single response, the correlation matrix Σ will be a scalar denoted by σ and the
MK distribution from (9) will reduce to the mg-dimensional Multi-Laplace distribution,

M-Laplace

(
0,

σ

λg

)
∝
(
λg

σ

)mg

exp

(
−λg

σ
‖V ec(BT

g )‖2
)
. (10)
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From (8) and (10), we can observe that the marginal prior for V ect(Bg) with a single
response variable reduces to a point mass at 0 ∈ R

mg , and a term that matches the
Bayesian group lasso with shrinkage parameter λg (Raman et al., 2009; Kyung et al.,
2010; Leng et al., 2014).

In the multivariate setting, the distribution for the slab part (9) can be interpreted
as a generalization of the regular Bayesian group lasso that accounts for the correlations
between the response variables. We note that there are many possible ways to extend the
Laplace distribution for multivariate random variables. A general class of multivariate
priors has been considered for group-sparse modeling by Babacan et al. (2014). While
they do not consider correlated multivariate responses, they note that the multivariate
Laplace distribution is part of a rich family of heavy tailed distributions. Importantly,
it has been shown that for spike and slab priors using a heavy tailed distribution for
the slab part results in optimal estimation risk with the posterior median estimator
(Johnstone and Silverman, 2004).

To see the connection between our method and penalized regression we re-parameter-
ize the regression coefficients: V ec(BT ) = γgbg where γg is an indicator taking a value

0 or 1 and bg = (b
(1,1)
g , b

(1,2)
g , . . . , b

(mg,q)
g )T . Guided by the marginal prior distribution

(8) we place an MK distribution on bg using the parameters from (9) and a Bernoulli
prior on γg,

bg | Σ ∼ MK
(

mgq−1
2 ,

λ2
g

2 , 0, Img ⊗ Σ
)
, (11)

γg | π0 ∼ Ber(1− π0), (12)

for g = 1, 2, . . . , G.

Using the formulation V ec(BT ) = γgbg, the marginal prior for V ec(BT
g ) will match

the marginal prior (8). The negative log likelihood of the model and the prior defined
by the above formulation is:

−1

2
‖V ec(YT )− V ec(BT

X
T )‖2

In⊗Σ +
G∑

g=1

λg‖bg‖Img⊗Σ + log

(
1− π0

π0

) G∑
g=1

γg + const.

In the case where the matrix Σ is set to σ2
Iq we have ‖bg‖Img⊗Iqσ2 = σ−1‖bg‖2. In this

setting the likelihood becomes

− 1

2σ2
‖Y− XB‖2F +

1

σ

G∑
g=1

λg‖bg‖2 + log

(
1− π0

π0

) G∑
g=1

γg + const.

Thus the posterior mode of the regression model is equivalent to a penalized regression
problem where groups are penalized with an 
2 norm (see Li et al. (2015)) and the
number of nonzero groups is penalized in an 
0-like penalty. Setting q = 1 we obtain
an expression similar to the likelihood found by Xu and Ghosh (2015). Once again
our expression differs because we introduced a group spesific λg to allow for different
shrinkage across groups.
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2.2 Median thresholding estimator

A key point of this section is to highlight the benefits of using the posterior median
estimator in spike and slab type models for both selection and estimation at the same
time. We generalize to a multivariate response variable the thresholding results of the
posterior median estimator proposed by Xu and Ghosh (2015), who have also generalized
the thresholding results of Johnstone and Silverman (2004). We first show that the
posterior median estimator enables one to perform group variable selection by obtaining
a zero coefficient for some groups. Then, we express the posterior median as a soft
thresholding estimator. Finally, we show that the median thresholding estimator is
consistent in model selection and has optimal asymptotic estimation rate.

Posterior median estimator

Consider one group:

Zm×1 ∼ f(z − μ),

μ ∼ π0δ0(μ) + (1− π0)γ(μ),

where Z is an m-dimensional random variable, and γ(·) and f(·) are both density func-
tions for m-dimensional random vectors. Assume the density function f(t) is maximized
at t = 0. Let Med(μi|z) denote the marginal posterior median of μi given data. By defin-
ing

c =

∫
f(−v)γ(v)dv

f(0)
≤
∫
f(0)γ(v)dv

f(0)
= 1,

Xu and Ghosh (2015) stated the following theorem:

Theorem 1. Suppose π0 > c
1+c , then there exists a threshold t(π0) > 0, such that when

||z||2 < t,

Med(μi|z) = 0, for any 1 ≤ i ≤ m.

In the case of a block orthogonal design matrix X (i.e., XT
i Xj = 0 for i 	= j), we have

for 1 ≤ g ≤ G

V ec(B̂T
g ) = V ec

(
((XT

g Xg)
−1

X
T
g Y)

T
)
∼ Nmgq

(
V ec(BT

g ), (X
T
g Xg)

−1 ⊗ Σ
)
.

By Theorem 1, assuming π0 > c
1+c , then there exists t(π0) > 0, such that the

marginal posterior median of βg
ij under the prior (4) satisfies

Med(βg
ij |B̂g) = 0 for any 1 ≤ i ≤ mg and 1 ≤ j ≤ q,

when ||V ec(B̂T
g )||2 < t. As noted by Xu and Ghosh (2015), the marginal posterior

median estimator of the gth group of regression coefficients is zero when the norm of
the corresponding block least square estimator is less than a certain threshold.
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Posterior median as a soft thresholding estimator

We assume now that the design matrix X is orthogonal, i.e., XT
X = nIp and consider

the model defined by (3) and (4) with fixed τ2g (1 ≤ g ≤ G). Under this model the
posterior distribution of Bg is a spike and slab,

V ec(BT
g )|X,Y ∼ (1− lg)Nmgq

(
(1−Dg)V ec(BT

LS,g),
1−Dg

n
Img ⊗ Σ

)
+ lgδ0(V ec(BT

g )),

where BLS,g is the least squares estimator of Bg, Dg = 1
1+nτ2

g
, and

lg = p(Bg = 0|rest)

=
π0

π0 + (1− π0)(τ2g )
−mg(q−1)

2 (1 + nτ2g )
−mg

2 exp
{
(1−Dg)nTr[Σ−1BT

LS,gBLS,g]
} .

Thus the marginal posterior distribution of βg
ij (1 ≤ i ≤ mg and 1 ≤ j ≤ q)

conditional on the observed data is also a spike and slab distribution,

βg
ij |X,Y ∼ (1− lg)N

(
(1−Dg)β̂

g
LS,ij ,

1−Dg

n
Σjj

)
+ lgδ0(β

g
ij),

where Σjj is the j-th diagonal element of Σ. The resulting median is a soft thresholding
estimator defined by

β̂Med,g
ij = Med(βg

ij |X,Y) = sgn
(
β̂g
LS,ij

)(
(1−Dg)|β̂g

LS,ij | −
√
Σjj√
n

Qg

√
1−Dg

)
+

,

where z+ denotes the positive part of z and Qg = φ−1( 1
2(1−min( 1

2 ,lg))
). For a univariate

response (q = 1) the matrix Σ reduces to the scalar σ2, and our result matches the
previous work of Xu and Ghosh (2015). In the multivariate frequentist setting, Li et al.
(2015) have proposed an iterative algorithm which utilizes a similar soft thresholding
function to incorporate group structure in estimating the regression estimates.

Oracle property

Let B0,B0
g, β

0,g
ij denote the true values of B,Bg, β

g
ij , respectively. Define the index vector

of the true model as A = (I(||V ec(Bg)||2 	= 0), g = 1, . . . , G), and the index vector of the

model selected by a certain thresholding estimator B̂g as An = (I(||V ec(B̂g)||2 	= 0), g =
1, . . . , G). Model selection consistency is attained if and only if limn P (An→∞ = A).

Under an orthogonal design, the median thresholding estimator has the oracle prop-
erty.

Theorem 2. Assume an orthogonal design matrix, i.e., XT
X = nIp. Suppose

√
nτ2g,n →

∞ and log(τ2g,n)/n → 0 as n → ∞, for g = 1, . . . , G, then the median thresholding
estimator has the oracle property, that is, variable selection consistent estimation,

lim
n→∞

P(AMed
n = A) = 1
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and asymptotic normality,

√
n
(
V ec(B̂Med

A )− V ec(B0
A)
)

d→ N(0,Σ⊗ I).

The proof follows the same steps as the proof of Theorem 4 in Xu and Ghosh (2015).

For asymptotic normality, the result comes from the fact that
√
n(β̂Med,g

ij − β̂LS,g
ij )

p→ 0,

and
√
n(V ec(B̂LS)− V ec(B0))

d→ N(0,Σ⊗ I).

2.3 Gibbs sampler

An efficient block Gibbs sampler (Hobert and Geyer, 1998) is used for simulating from
the posterior distribution. The full posterior distribution of all the unknown parameters
conditional on the data is

p(B, τ 2,Σ, π0|Y,X) ∝ p(Y|B, τ 2,Σ, π0)× p(B|τ 2,Σ, π0)× p(τ 2)× p(Σ)× p(π0), (13)

where

p(Y|B, τ 2,Σ, π0) ∝ |Σ|−n/2 exp

{
−1

2
Tr

[
(Y− XB)Σ−1(Y− XB)T

]}
,

p(B|τ 2,Σ, π0) =

G∏
g=1

p(Bg|τ2g ,Σ, π0),

p(Bg|τ2g ,Σ, π0) ∝ (1− π0)(2π)
− qmg

2 (τ2g )
− qmg

2 |Σ|−
mg
2 exp

−
{

1

2τ2g
Tr

[
BgΣ

−1
B
T
g

]}
I[Bg 	= 0] + π0δ0(V ec(BT

g )),

p(τ1, . . . , τg) ∝
G∏

g=1

(λ2
g)

qmg+1

2 (τ2g )
qmg+1

2 −1 exp

(
−
λ2
g

2
τ2g

)
,

p(π0) ∝ πa−1
0 (1− π0)

b−1,

p(Σ) ∝ |Σ|−
d+q+1

2 exp

{
−1

2
Tr(QΣ−1)

}
.

Conditional posterior distribution

Let B(g) denote the B matrix without the gth group, and X(g) denote the covariate
matrix corresponding to B(g), that is,

X(g) = (X1, . . . ,Xg−1,Xg+1, . . . ,XG),

where Xg is the design matrix corresponding to Bg.

• The conditional posterior distribution of Bg
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Let Mg = ΣgX
T
g (Y − X(g)B(g)), Σg = ( 1

τ2
g
Img + X

T
g Xg)

−1, then the conditional

posterior distribution of Bg is a spike and slab distribution

V ec(BT
g )|rest ∼ (1−lg)Nmgq

(
V ec(MT

g ),Σg ⊗ Σ
)
+lgδ0(V ec(BT

g )), g = 1, . . . , G, (14)

where

lg = p(Bg = 0|rest) = π0

π0 + (1− π0)(τ2g )
− qmg

2 |Σg|
q
2 exp

{
1
2Tr[Σ

−1MT
g Σ

−1
g Mg]

} .
• The conditional posterior distribution of α2

g = 1
τ2
g

α2
g|rest ∼

⎧⎨⎩Inverse Gamma
(
shape =

mgq+1
2 , scale =

λ2
g

2

)
, if Bg = 0,

Inverse Gaussian
(

λg

(Tr[BgΣ−1BT
g ])−1/2 , λ

2
g

)
, if Bg 	= 0,

where the inverse Gaussian distribution is defined in Folks and Chhikara (1978) and the
inverse Gamma distribution in Gelman et al. (2014).

• The conditional posterior distribution of Σ

Σ|rest ∼ IW

(
d+ n+

G∑
g=1

mgZg, (Y− XB)T (Y− XB) + B
T
DτB+Q

)
,

where

Zg =

{
1 if Bg 	= 0,

0 if Bg = 0
and Dτ = diag(

1

τ21
Im1 , . . . ,

1

τ2mG

ImG
).

• The conditional posterior distribution of π0

π0|rest ∼ Beta

(
a+G−

G∑
g=1

Zg, b+

G∑
g=1

Zg

)
.

Remark. From the Gibbs sampler, different strategies are used to select models and
predictors. The highest posterior probability model (denoted here after HPPM) is esti-
mated by recording at each simulation (iteration of the Gibbs sampler) the generated
model. Then, the generated models are tabulated to find the model that has the highest
frequency. Thus HPPM defines the selected relevant groups. An alternative choice is
the median estimator which is found by taking the element wise median of the samples
of Bg generated by the Gibbs sampler.

3 Multivariate sparse group selection with spike and
slab prior (MBSGS-SS)

The MBGL-SS is tailored for problems that only require group level sparsity. However,
sometimes we would like to combine both sparsity of groups and within each group. For
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example, if the predictor matrix contains genes, we might be interested in identifying
particularly important genes in pathways of interest. For a univariate response, Xu and
Ghosh (2015) defined a Bayesian sparse group lasso which offers shrinkage effects at
both the group level and also within a group. However, the authors stressed that the
model does not produce a sparse model since the posterior mean/median estimators are
never exactly set to zero. To overcome this drawback, the authors defined a hierarchical
Bayesian sparse group selection with spike and slab prior using spike and slab type priors
(named BSGS-SS) for both group variable selection and individual variable selection.
We exploit the same idea for a multivariate response variable.

Model specification

First, we reparametrize the coefficient matrices to tackle the two kinds of sparsity sep-
arately:

Bg = V
1
2

g B̃g, where V
1
2

g = diag{τg1 , . . . , τgmg}, τgj ≥ 0, g = 1, . . . , G; j = 1, . . . ,mg,
(15)

where B̃g, when nonzero, follows the distribution V ec(B̃T
g ) ∼ Nmgq(0, Img ⊗ Σ). Thus

the diagonal element of V
1
2

g control the magnitude of the elements of Bg. To select
variables at the group level, we assume the multivariate spike and slab prior for each
V ec(B̃T

g ):

V ec(B̃T
g |Σ, τg, π0)

ind∼ (1− π0)Nmgq(0, Img ⊗Σ) + π0δ0(V ec(B̃T
g )), g = 1, . . . , G. (16)

We denote the j-th row of Bg by B
j
g and the j-th row of B̃g by B̃

j
g. Note that when

τgj = 0, the row B
j
g is set to zero, even when the corresponding row B̃

j
g is nonzero. In

order to choose variables within each relevant group, we assume the following spike and
slab prior for each τgj :

τgj
ind∼ (1− π1)N

+(0, s2) + π1δ0(τgj), g = 1, . . . , G; j = 1, . . . ,mg, (17)

where N+(0, s2) denotes a normal N(0, s2) distribution truncated below at 0. Note that

this truncated normal distribution has mean
√

2
π s and variance s2.

Prior specification

• We assume an Inverse Wishart prior for Σ ∼ IW(d,Q)

• We assume conjugate beta hyper-priors for π0 and π1:

π0 ∼ Beta(a1, a2), π1 ∼ Beta(c1, c2). (18)

• We use a conjugate inverse gamma prior for s2 ∼ Inverse Gamma(1, t), and esti-
mate t with the Monte Carlo EM algorithm. For the k-th EM update,

t(k) =
1

Et(k−1)

[
1
s2 |Y

] ,
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where the posterior expectation of 1
s2 is estimated from the Gibbs samples based

on t(k−1).

3.1 Gibbs sampler

The full posterior distribution of all the unknown parameters conditional on data is

Joint posterior

p(B̃, τ 2,Σ, π0, π1, s
2|Y,X)

∝ |Σ|−n/2 exp

⎧⎨⎩−1

2
Tr

⎡⎣(Y−
G∑

g=1

XgV
1
2

g B̃g

)
Σ−1

(
Y−

G∑
g=1

XgV
1
2

g B̃g

)T
⎤⎦⎫⎬⎭

×
G∏

g=1

(1− π0)(2π)
− qmg

2 |Σ|−
mg
2 exp

{
−1

2
Tr

[
B̃gΣ

−1
B̃
T
g

]}
I[B̃g 	= 0] + π0δ0(V ec(B̃T

g ))

×
G∏

g=1

mg∏
j=1

[
(1− π1)2(2πs

2)−
1
2 exp

{
−
τ2gj
2s2

}
I[τgj > 0] + π1δ0(τgj)

]

× |Σ|−
d+q+1

2 exp

{
−1

2
Tr(QΣ−1)

}
× πa1−1

0 (1− π0)
a2−1

× πc1−1
1 (1− π1)

c2−1

× t(s2)−2 exp

{
− t

s2

}
.

Let B(gj) denote the B without the jth row vector in the gth group, and X(gj) denote
the covariate matrix corresponding to B(gj), that is,

X(gj) = (x1,1, . . . , x1,m1 , . . . , xg,1 . . . , xg,j−1, xg,j+1, . . . , xg,mg , . . . , xG,mG
).

The posterior distribution of B̃g

Let Mg = ΣgV
1
2

g X
T
g (Y − X(g)V

1
2

(g)B̃(g)), Σg = (Img + V
1
2

g X
T
g XgV

1
2

g )−1, then the condi-

tional posterior distribution of B̃g is a spike and slab distribution

V ec(B̃T
g )|rest ∼ (1−lg)Nmgq

(
V ec(MT

g ),Σg ⊗ Σ
)
+lgδ0(V ec(B̃T

g )), g = 1, . . . , G, (19)

where

lg = p(B̃g = 0|rest) = π0

π0 + (1− π0)|Σg|
q
2 exp

{
1
2Tr[Σ

−1MT
g Σ

−1
g Mg]

} . (20)
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The conditional posterior distribution of τgj

The conditional posterior distribution of τgj is a spike and slab distribution:

τgj |rest ∼ (1− qgj)N
+(ugj , v

2
gj) + qgjδ0(τgj), g = 1, . . . , G; j = 1, . . . ,mG, (21)

where ugj = Tr[Σ−1(YT − B
T
(gj)X

T
(gj))XgjB̃gj ]/{Tr[Σ−1

B̃
T
gjX

T
gjXgjB̃gj ] +

1
s2 }, v2gj =

(Tr[Σ−1
B̃
T
gjX

T
gjXgjB̃gj ] +

1
s2 )

−1

qgj = p(τgj = 0|rest) = π1

π1 + 2(1− π1)(s2)−
1
2 (v2gj)

1
2 exp

{
1
2

u2
gj

v2
gj

}[
Φ
(

ugj

vgj

)] .
The conditional posterior distribution of Σ

The conditional posterior distribution of Σ is an inverse Wishart distribution:

Σ|rest ∼ IW

(
d+ n+

G∑
g=1

mgZg, (Y− XB)T (Y− XB) + B̃
T
B̃+Q

)
,

where

Zg =

{
1 if B̃g 	= 0,

0 if B̃g = 0.

The conditional posterior distribution of π0 and π1

π0|rest ∼ Beta

(
a1 +G−

G∑
g=1

Zg, a2 +

G∑
g=1

Zg

)
,

π1|rest ∼ Beta (#(τgj = 0) + c1,#(τgj 	= 0) + c2) .

The conditional posterior distribution of s2

s2|rest ∼ Inverse Gamma

⎛⎝1 +
1

2
#(τgj 	= 0), t+

1

2

∑
g,j

τ2gj

⎞⎠ .

Remark. The MBGL-SS and MBSGS-SS methods have been designed to tackle the
situation where a subset of predictors in X are related to all components of the response
Y. Meaning, that our models have not been designed to allow for sparseness within a
regressor across the response variables. However, the median estimator does do this, as
it were, for free. This nice feature of the median estimator is highlighted in both the
simulation study and the case study application.
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4 Simulation studies

To investigate the properties of our approach, our first simulation study was conducted
in the univariate setting to show the behavior of the BGL-SS (Bayesian Group Lasso
with Spike and Slab prior) proposed by Xu and Ghosh (2015) compared to the proposed
extension including the group size effect related to the shrinkage part of our model. We
compared different approaches (such as lasso, group lasso, sparse group lasso) in terms of
prediction and variable selection accuracy performance. Then, a second simulation study
was performed with a multivariate response to demonstrate the good prediction and
variable selection accuracy performance of MBGL-SS and MBSGS-SS when compared
with BGL-SS, BSGS-SS (Bayesian Sparse Group selection with spike and slab priors
defined in Xu and Ghosh (2015)) and two lasso methods (denoted mlasso and MRCE)
for a multivariate response. The mlasso method has been implemented in the glmnet

R package and assumes that there is some underlying subset of the coefficients in X

which are related to all components of the response Y. The multivariate lasso (mlasso)
problem is stated as:

B̂mlasso = argmin
B∈Rp×q

⎧⎨⎩‖Y− XB‖2F + λ

q∑
j=1

‖BjT ‖2

⎫⎬⎭ ,

where ‖ · ‖F denotes the Frobenius norm, and B
jT denotes the jth row of B. The

MRCE method proposed by Rothman et al. (2010) has been implemented in the MRCE

R package (Rothman, 2017). The multivariate regression with covariance estimation
(MRCE) method producing a sparse estimator of B which depends on the inverse of the
covariance matrix Ω = Σ−1 is stated as:

(B̂, Ω̂) = argmin
B∈Rp×q,Ω∈Rq×q

⎧⎨⎩L(B,Ω) + λ1

∑
j �=j′

|wj′j |+ λ2

q∑
j=1

q∑
k=1

|βjk|

⎫⎬⎭ , (22)

where L(B,Ω) is the negative log-likelihood function and Ω = [wj′j ].

Note that BGL-SS and BSGS-SS are designed for univariate response but are also
used in the multivariate response simulation (viewed as q univariate regressions) and
the results are pooled to obtain prediction performance. The different Bayesian methods
used have been implemented in our R package MBSGS (Liquet and Sutton, 2017) available
on CRAN.

The posterior mean and posterior median are both used as our Bayes estimators and
we compare their variable selection and prediction performance.

For our Bayesian methods, we generate data from the full posterior distribution with
a Gibbs Sampler, running 20000 iterations in which the first 10000 are burn-ins. For
MBGL-SS and BGL-SS, we set a = b = 1 for the hyperparameters relating to π0. For
MBSGS-SS and BSGS-SS, hyperparameters relating to the Beta distributions of π0 and
π1 are chosen to be a1 = a2 = c1 = c2 = 1. As suggested by Brown et al. (1998), a weak
prior information requires a small value for the hyperparameter d. We set d = 3 which
is just a convenient small value, the smallest integer value for which the expectation of
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Σ exists. Instead of an arbitrary setting of the hyperparameter k for the expectation
of the error variance (E(Σ) = kIq), we propose a practical way to fix it in the spirit of
an Empirical Bayes approach. As adopted by Petretto et al. (2010) and Liquet et al.
(2016a), we perform q univariate regressions which enable us to derive an estimate of
the error variances. We fix k to be the average of the q residual error variance from the
univariate models. In the case of p > n, q univariate forward regressions are performed
to derive an estimate of the error variance.

We use the glmnet R package (Friedman et al., 2010) to perform the lasso method
for univariate and multivariate responses. The SGL R package (Simon et al., 2013) is used
to perform the group and sparse group lasso methods for the univariate setting. The
MRCE R package (Rothman, 2017) is used to perform the multivariate regression with
covariance estimation. The tuning parameters for the frequentist methods are calibrated
using 5-fold cross-validation.

4.1 Univariate setting

In this simulation setting, we investigate both the effect of correlation between predictors
and the group size effect.

True models

The data have been generated from the following univariate model:

y = Xβ + ε where ε ∼ Nn(0, σIn),

where each row of the predictor matrix X is generated from a multivariate Normal
distribution with zero mean and covariance matrix ΣX = (1− ρ)Ip + ρ1p1

T
p where the

correlation ρ is given according the simulation setting, 1m is the m-length vector of
ones. We consider the following two simulation settings:

• Model 1. We simulated data sets with n = 120 observations and p = 20 covariates
divided into 4 groups with 5 covariates each. We randomly sampled 80 observa-
tions to train the model and used the remaining 40 for comparing performance
prediction. Let βT = ((0.3,−1, 0, 0.5, 0.01),05,0.85,05), where the notation xl

denotes a vector of length l with x values. We varied the pairwise correlation
ρ ∈ {0, 0.5, 0.75} between covariates. We specify σ = 3.

• Model 2. We simulated a data set with n = 120 observations and p = 130 covari-
ates divided into 5 groups with respectively 5, 5, 20, 50 and 50 covariates. We ran-
domly sampled 80 observations to train the model and used the remaining 40 for
comparing performance prediction. Let βT = ((0.3,−1, 0, 0.5, 0.01),05,0.85,050,
050). We vary the pairwise correlation ρ ∈ {0, 0.5, 0.75} between covariates. We
specify σ = 3. This model enables us to investigate both the effect of correlation
between predictors and the group size effect. For this model we also investigate the
behavior of our methods when the sample size increases (200 and 300 observations
for training and 40 observations for comparing prediction performance).
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For the simulated data for model 1, Table 1 of the Supplementary Material (Liquet
et al., 2017) presents the model selection accuracy over 50 replications for the different
methods designed for univariate response variables. The models are compared with true
and false positive rates and with Matthews correlation coefficient.

For both BGL-SS and BSGS-SS, the median thresholding model (MTM) outper-
forms all other methods including the highest posterior probability model (HPPM)
whatever the values of the pairwise correlation. Lasso, group lasso (gLasso) and sparse
group lasso (sgLasso) tend to select more variables than the spike and slab methods.
A similar pattern for the simulations was noted in Xu and Ghosh (2015). Our extension
of the BGL-SS model incorporating the group size effect gives similar results to the
traditional one if we use the global shrinkage parameterization of λg while the adaptive
shrinkage parameterization tends to select more variables.

The results regarding the prediction performance (mean square error of prediction)
are presented in Table 2 of the Supplementary Material. The medians of the mean
squared prediction error are compared for the 12 methods. The bootstrapped standard
errors of the medians are given in the parentheses. BSGS-SS and BGL-SS methods gave
similar results and outperform the frequentist lasso approaches which are adversely
impacted by the correlation between predictors. Note that in this case the posterior
mean estimator and posterior median estimator have similar performances.

Tables 3 and 4 of the Supplementary Material present performance results for
Model 2, where the number of predictors in each group varies. This structure of the
data clearly affects the BGL-SS model proposed by Xu and Ghosh (2015) especially
when the predictors are correlated and with small sample size. Our modifications of the
model (including the group size effect to the shrinkage parameter) combined with the
“adaptive shrinkage parameter” give better results, especially with the Median Thresh-
olding Model. We can note that the BSGS-SS model is not affected by this structure of
the data and out performs all the other methods. Only for high correlation and small
sample size are the frequentist approaches competitive in terms of variable selection
compared with the BGL-SS model with “adaptive shrinkage parameter”. However, re-
gardless of the pairwise correlations between the predictors, the frequentist methods
have worse prediction performances.

4.2 Multivariate setting

True models

The data have been generated from the following multivariate model:

Y = XB+ E where E ∼ MNn×q(0,Σ, In), B = [B1,B2,B3] and q = 3.

For all models, we assumed strong levels of correlation between the first and second
outcomes, and weaker levels for the other pairwise correlations. Specifically, we defined

Σ =

⎛⎝ 1 0.95 0.5
0.95 1 0.3
0.5 0.3 1

⎞⎠ . (23)
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We considered the following nine simulations setting:

• Model 1. We simulated data sets with n = 100 observations and p = 20 covariates
divided into four groups with five covariates each. We randomly sampled 60 obser-
vations to train the model and used the remaining 40 for comparing performance
prediction. Let

B
T =

⎛⎝ 0.3 −1 0 0.5 0.01 05 0.85 05

0.2 −1.1 0 0.6 0.02 05 0.75 05

0.1 −1.2 0 0.7 0.03 05 0.65 05

⎞⎠ . (24)

The pairwise correlation between covariates is set equal to 0.5.

• Model 2. The simulation setting is the same as for the previous model except for
the true B. Let

B
T =

⎛⎝ 0.3 −1 0 0.5 0.01 05 0.85 05

0 0 0 0 0.0 05 0.75 05

0.1 −1.2 0 0.7 0.03 05 0.65 05

⎞⎠ . (25)

In this simulation, some relevant predictors (1,2, 3 and 4) are not associated for
the second response variables.

• Model 3. We consider the situation where n < p. We simulated data set with
n = 60 and p = 80 covariates divided into 16 groups with 5 covariates each. We
use 40 observations to train the model and used the remaining 20 for comparing
performance prediction. Let

B
T =

⎛⎝ 0.5 1 1.5 2 2.5 05 0.1 0.2 0.3 0.4 0.5 05 . . . 05

0.25 0.5 0.75 1 1.25 05 0.05 0.1 0.15 0.2 0.25 05 . . . 05

0.2 0.4 0.6 0.8 1 05
1
30

2
30

3
30

4
30

5
30 05 . . . 05

⎞⎠ .

(26)
We define the jth predictor in group g as Xgj = zg + zgj , where zg and zgj
are independent standard normal variates, g = 1, . . . , 16; j = 1, 2, . . . , 5. Thus
predictors within a group are correlated with pairwise correlation 1

2 while the
predictors in different groups are independent.

• Model 4. The simulation setting is the same as for the previous model except for
the true B. Let

B
T =

⎛⎝ 0.5 1 1.5 2 2.5 05 0.1 0.2 0.3 0.4 0.5 05 . . . 05

0 0 0 0 0 05 0.05 0.1 0.15 0.2 0.25 05 . . . 05

0.2 0.4 0.6 0.8 1 05 0 0 0 0 0 05 . . . 05

⎞⎠ .

(27)
As in model 2, some relevant covariates are non-zero for two responses and zero
for the other one.



B. Liquet, K. Mengersen, A. N. Pettitt, and M. Sutton 1057

• Model 5. We simulated data with n = 100 and p = 40 covariates divided into 4
groups with 10 covariates each. We randomly sampled 60 observations to train
the model and used the remaining 40 for comparing performance prediction. Let

B
T =

⎛⎝ 010 210 010, 210

010 110 010, 110

010 0.510 010, 0.510

⎞⎠ . (28)

Predictors have been simulated in the same way as in model 2.

• Model 6. The simulation setting is the same as for the previous model except for
the true B. Let

B
T =

⎛⎝ 010 (25,05) 010, (25,05)
010 (15,05) 010, (15,05)
010 (0.55,05) 010, (0.55,05)

⎞⎠ . (29)

• Model 7. We simulated data with n = 240 and p = 500 covariates divided into 50
groups with 10 covariates each. We randomly sampled 200 observations to train
the model and used the remaining 40 for comparing performance prediction. Let

B
T =

⎛⎝ 010 210 010, 210 010 . . . 010

010 110 010, 110 010 . . . 010

010 0.510 010, 0.510 010 . . . 010

⎞⎠ . (30)

Predictors have been simulated in the same way as in model 2.

• Model 8. We simulated data with n = 240 and p = 1000 covariates divided into 50
groups with 20 covariates each. We randomly sampled 200 observations to train
the model and used the remaining 40 for comparing performance prediction. Let

B
T =

⎛⎝ 020 220 020, 220 020 . . . 020

020 120 020, 120 020 . . . 020

020 0.520 020, 0.520 020 . . . 020

⎞⎠ . (31)

Predictors have been simulated in the same way as in model 2.

• Model 9. We simulated data with n = 120 observations and p = 130 covariates
divided into 5 groups with respectively 5, 5, 20, 50 and 50 covariates. We ran-
domly sampled 80 observations to train the model and used the remaining 40 for
comparing performance prediction. Let

B
T =

⎛⎝ 0.3 −1 0 0.5 0.01 05 0.820 050 050

0.2 −1.1 0 0.6 0.02 05 0.720 050 050

0.1 −1.2 0 0.7 0.03 05 0.620 050 050

⎞⎠ . (32)

We vary the pairwise correlation ρ ∈ {0, 0.5, 0.75} between covariates. This
model enables us to investigate both the effect of correlation between predictors
and the group size effect. For this model we can also investigate the behavior of
our methods when the sample size increases (200 and 300 observations for training
and 40 observations for comparing performance prediction).
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Note that models 1, 2, 6 and 9 have sparsity at the group level and also sparsity
within nonzero groups while models 3, 7 and 8 have only sparsity at the group level.
Models 2, 4 and 5 present the case where some relevant covariates are not related to all
the responses variables.

For the first 8 models we used the “global shrinkage parameter” version of our MBGL-
SS which has better performance in the univariate setting when all the groups have the
same size. For model 9, we performed both the “adaptive” and “global” parameteriza-
tions of λg for our MBGL-SS model.

Numerical results

Table 5 of the Supplementary Material presents the model selection accuracy over 50
replications for methods designed for multivariate response variables. The models are
compared with true and false positive rates and with Matthews correlation coefficient.
For the MBGL-SS and the MBSGS-SS, both the median thresholding model (MTM) and
the highest posterior probability model (HPPM) are compared. Both median thresh-
olding model (MTM) and the highest posterior probability model (HPPM) outperform
lasso methods for multivariate responses (implemented in glmnet and MRCE R packages)
which does not take into account the information of the data (group) structure. As ex-
pected, the MTM model which is more parsimonious has a lower false positive rate than
the HPPM model. However, the HPPM model gives better result for the true positive
rate when a multivariate sparse group selection model is applied.

Models 2 and 4, correspond to the scenario where some relevant covariates are not
associated with all response variables, MBGL-SS has a higher false positive rate since
the method produces an estimator which gives non-zero estimates for all coefficients
within a selected group regardless of the response variables. However, MBSGS-SS is not
impacted by this situation because the method produces an estimator which can give
zero estimates for some coefficients within a selected group. This result is highlighted
in the application section.

For a large number of predictors (Models 7 and 8) compared to the number of obser-
vations, MBGL-SS has poor performance while MBSGS-SS attains very good results.
In these simulations, MBGL-SS gives good results for larger sample sizes (n = 500
for Model 7 and n = 900 for Model 8). Note that MRCE methods failed dramatically
in these situations and give the worst performances of all simulated models. For the
current version of the MRCE optimization problem (22), the diagonal elements of the
optimization variable corresponding to the error precision matrix are not penalized.
Consequently, when p > n a global minimizer of the penalized likelihood optimization
can fail to exist. For this reason, it is not recommended to use the current MRCE
approach when p > n.

Table 6 of the Supplementary Material presents the median mean squared prediction
error for all simulation settings based on 50 replications.

The bootstrapped standard errors of the medians are given in the parentheses. BGL-
SS and BSGS-SS have been performed on each response variable and we have derived
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and reported the median mean squared error of prediction corresponding to the multi-
variate response. As expected the multivariate models MBGL-SS and MBSGS-SS out-
perform the univariate model applied to each response variable. The MSBGS-SS also
outperforms the lasso models for all simulation settings. Finally, we remark that the
MSBGS-SS always performs better than the MBGL-SS and shows very good behavior
when there is strong within-group sparsity (Model 6).

Results from Model 9 (corresponding to a model with different group size effect)
for different pairwise correlations between predictors and different sample sizes are pre-
sented in Tables 7 and 8 of the Supplementary Material. From these tables we observe
that:

• When the predictors are independent, MBGL-SS performs well both for variable
selection and prediction. As expected the results improve when the sample size
increases. These approaches always outperform the lasso models in this indepen-
dent setting. However, the MBGL-SS methods (both the “adaptive” and “global”
parameterizations of λg) are impacted by moderate and high correlations between
predictors especially for small sample size (n = 80). For a larger sample size
(n = 200), the “global shrinkage parameter” mostly gives better results for the
prediction performance, but the large standard error of the median of the mean
squared error of prediction indicates that some of the runs over the 50 replica-
tions gave poor results. For larger sample sizes, the models are competitive with
the other approaches. We can note that the “global shrinkage parameter” always
gives better results than the “adaptive shrinkage parameter” which only gives
good results for the large sample size (n = 900, not shown in these tables).

• MBSGS-SS models outperform all the other approaches except in the case of
independent predictors and small sample size. For this setting only, the method
failed to select the signal of the model which is also the case for lasso models.

• As previously observed the median thresholding model (MTM) which is more
parsimonious has slightly lower false positive rate than the HPPM model.

5 Application to real data

In this section, we present the results of the application of our approaches to investigate
genetic regulation. To discover the genetic causes of variation in the expression (i.e.
transcription) of genes, gene expression data are treated as a quantitative phenotype
while genotype data (SNPs) are used as predictors, a type of analysis known as ex-
pression Quantitative Trait Loci (eQTL). Here, we use a dataset which comes from a
larger study (Heinig et al. (2010)) from which we selected the Hopx genes, as in Petretto
et al. (2010). This dataset has been also analyzed by Liquet et al. (2016a) who used
a Bayesian model to identify a parsimonious set of predictors that explains the joint
variability of gene expression in four tissues (adrenal gland, fat, heart, and kidney).
However, their model does not take into account the group structure of the predictors.
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Correlation Summary statistics

ADR Fat Heart Kidney Mean Variance

ADR 1.00 0.46 0.44 0.70 4.72 0.07
Fat 1.00 0.24 0.42 8.23 0.09

Heart 1.00 0.44 8.79 1.61
Kidney 1.00 6.65 0.07

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Group size 74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

Table 1: Top: pairwise correlations among the four tissues (ADR: adrenal gland, fat,
heart and kidney). Bottom: repartition of the SNPs along the chromosomes.

The dataset consists of 770 SNPs in 29 inbred rats as a predictor matrix (n = 29,
p = 770), and the 29 measured expression levels in the 4 tissues as the outcome (q = 4).
A full description of the dataset is provided in Petretto et al. (2010) and available from
the R package R2GUESS (Liquet et al. (2016a)). Table 1 presents the means, variances,
and pairwise correlation structure among the four tissues, noting similar means and
variances except for heart, which is larger, and moderate positive correlation. The table
also shows the partitioning of the SNPs among the 20 chromosomes of the rats. Thus,
the chromosome information defines the group structure of the predictor matrix.

We ran our MBGL-SS and MBSGS-SS models using this group structure and the
multivariate lasso which does not take into account the group structure. The multivari-
ate lasso selects 69 SNPs which come from the 20 chromosomes. The MBGL-SS selects
only the two first groups corresponding to the SNPs from chromosomes 1 and 2. How-
ever, the simulation study showed that MBGL-SS methods are impacted by moderate
and high correlations between predictors, especially for small sample sizes. Therefore,
we focus our analysis on the MBSGS-SS model. Using the thresholding median estima-
tor, the method selects 32 SNPs which belong to only 8 groups/chromosomes. Table 2
presents the posterior median estimators of the selected SNPs (meaning that the median
estimator produced an estimate exactly equal to 0 for all others SNPs). Note that some
SNPs in the selected chromosomes are not associated (median estimator exactly equal
to 0) with all the four tissue types. Although the model does not allow for sparseness
within the SNP across tissue types, that is, setting some regression parameters to 0,
the median estimator does do this, as it were, for free. We note this in Table 2 for
chromosomes 14, 15 and 19 in particular.

The SNP D14Mit3 (from chromosome 10), which has been previously identified by
Liquet et al. (2016a) as the most associated with the four levels of expression, is also
selected by our method with the highest estimate (0.334) for the heart tissue. The
four estimates for SNP D14Mit3 for the four tissue types are substantially larger than
estimates for any other SNPs. We can consider the statistical significance, estimate
(posterior mean, median) compared with the posterior standard deviation for the SNP
regression parameters. We note that the posterior standard deviation of the regression
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parameter for each selected non-zero median estimate was in the range 0.11 to 0.64. In
particular, the SNP D14Mit3 estimate was 0.334 with posterior standard deviation 0.639,
a “Z-value” of about 0.5. All other SNPs with non-zero estimates have “Z-values” close
to 0.0. Here the study size was small, n = 29, explaining to some extent the lack of power
of the analysis but nevertheless when the SNP D14Mit3 estimates are compared with
the other SNPs’ estimates they are substantially larger. In terms of choosing important
chromosomes in addition to chromosome 10, on which SNP D14Mit3 lies, chromosomes
2 and 7 have a larger number of non-zero SNP estimates than other chromosomes. The
importance of chromosomes was investigated using an estimate of the probability of
inclusion (EPI) presented in Table 3. The EPI is defined as an empirical version of lg
defined in (20) and shows the importance of chromosomes 2, 3, 4, 7, 10, and 14, all with
EPI equal to 1.0.

6 Concluding remarks

In this paper, we have proposed Bayesian methods for group-sparse modeling in the
context of a multivariate correlated response variable. Our models are based on spike
and slab type priors which facilitate variable selection. In the case of the group variable
selection, we have shown the importance of including the group size information in the
shrinkage part of our model. We have shown that the posterior median estimator could
both select and estimate the regression coefficients. Simulation results showed excellent
performance of the posterior median estimator for variable selection and prediction
error. This estimator obtains similar results as the highest probability model in terms
of true and false positive rates. Moreover, this estimator can produce sparseness within
the regression coefficient across the response variables even though our models have not
been specifically designed for this purpose.

Simulation results also suggest that the multivariate Bayesian group lasso with spike
and slab prior is strongly influenced by a combination of different group size structures
and high correlation between predictors. The multivariate Bayesian sparse group selec-
tion with spike and slab prior does not suffer in this situation. This approach seems to
be the most powerful method for variable selection and prediction performance in the
presence of group structure data except in the extreme case of independent predictors
and small sample size. All numerical results from this article can be reproduced using
our R package MBSGS (Liquet and Sutton, 2017) available on CRAN.

We have illustrated our methods on a challenging dataset involving gene expression
data (q = 4, n = 29) and SNP explanatory variables (p = 770) with the group structure
(G = 20) defined by chromosomes. Our approach effectively found a significant SNP
and chromosome while suggesting five other chromosomes could possibly be of interest.
We noted the small sample size, (n = 29), indicating a lack of power for this study.

Our current development is restricted to non-overlapping groups. To use the present
approaches with overlapping groups, such as groups of genes (like in Gene Ontology),
an extension in the spirit of Stingo et al. (2011) who uses two sets of binary indicators
for group and individual level selection would be required.



1062 Sparse Group Bayesian Multivariate Model

Chromosome SNP Name ADR Fat Heart Kidney

2 D2Rat147 0.00553 0.00238 - 0.00329
2 D2Rat222 0.00442 0.00116 - 0.00305
2 D2CebrP476s2 0.00123 - - -
2 D2Rat69 0.00715 0.01748 0.00730 0.00620
2 D4Ucsf2 0.00054 - - -
2 D7Cebr205s3 0.00246 - 0.00950 0.00461

3 D7Cebr14C16s2 0.00209 0.00326 - 0.00049

4 D7Rat112 0.00035 0.00001 - -
4 D7Rat19 0.01113 0.01800 0.03680 0.01828
4 Cyp11b2 0.00075 0.00374 - 0.00394

7 D10Ntr32 0.00123 - 0.01112 0.00143
7 D10Rat31 0.00031 0.00573 0.00442 0.00316
7 D10Cebr39s2 0.00280 0.00490 0.00821 0.00586
7 Es13 0.00539 - 0.00924 0.00419
7 D10Rat226 0.00415 0.00006 0.00987 0.00372
7 D14Rat36 0.00036 - 0.03076 -
7 D14Cebrp312s2 0.00004 - 0.05427 -

10 D14Mit3 0.04963 0.05415 0.33434 0.07491
10 D15Rat21 0.00937 0.00569 0.03140 0.01704
10 D19Utr1 0.00149 0.00297 0.00251 0.00487
10 Ednra 0.00026 - - -
10 D2Mit16 - 0.00077 - -
10 D2Rat70 - 0.00190 - -
10 D3Cebr204s4 - 0.00042 - -

14 D4Rat49 - 0.00102 0.00092 0.00401
14 D7Mit6 - 0.00002 - -
14 D10Rat102 - 0.00112 - -
14 D4Rat252 - - -0.00184 -
14 Myc - - 0.00669 -

15 D10Mit3 - - 0.00104 -

19 D14Rat8 - - 0.00058 -
19 D14Rat52 - - 0.00361 -

Table 2: Posterior median estimators of the selected SNPs by MBSGS-SS model on the
real dataset.

In terms of computation, these methods are very practical. The current version of our
package runs, for example, an MBSG-SS model in around two minutes and an MBGL-
SS model in around one minute for the simulated Model 1 (Section 4.2) for a sample size
(n = 900) with 20000 iterations including 10000 for the burnin. Further improvements
of the code, such as parallelization over the group structure, are in progress to speed
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Chromosome 1 2 3 4 5 6 7 8 9 10

EPI 0.00 1.00 1.00 1.00 0.72 0.00 1.00 0.00 0.00 1.00

Chromosome 11 12 13 14 15 16 17 18 19 20

EPI 0.83 0.12 0.46 1.00 0.93 0.88 0.79 0.59 0.89 0.40

Table 3: Empirical estimation of the Probability of Inclusion of each chromosome (EPI).

up the computational time for tackling Big Data sets which are common for genomics
studies where predictors are embedded in a grouping structure such as gene pathways.
In this context of genetics studies, some further extensions of our model are under
investigation such as integrating different group penalties given a biological prior of the
pathways or different distribution priors for each group.

Supplementary Material

Supplementary Material of the “Bayesian Variable Selection Regression of Multivariate
Responses for Group Data” (DOI: 10.1214/17-BA1081SUPP; .pdf).
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