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Approximate Bayesian Inference
in Semiparametric Copula Models

Clara Grazian∗ and Brunero Liseo†

Abstract. We describe a simple method for making inference on a functional of
a multivariate distribution, based on its copula representation. We make use of an
approximate Bayesian Monte Carlo algorithm, where the proposed values of the
functional of interest are weighted in terms of their Bayesian exponentially tilted
empirical likelihood. This method is particularly useful when the “true” likelihood
function associated with the working model is too costly to evaluate or when the
working model is only partially specified.

Keywords: multivariate dependence, Bayesian exponentially tilted empirical
likelihood, Spearman’s ρ, tail dependence coefficients, partially specified models.

1 Introduction

Copula models are widely used in multivariate data analysis. Major areas of application
include econometrics (Huynh et al., 2014), geophysics (Schölzel and Friederichs, 2008),
climate prediction (Schefzik et al., 2013), actuarial science and finance (Cherubini et al.,
2004), among the others. A copula allows a useful representation of the joint distribution
of a random vector in two steps: the marginal distributions and a distribution function
which captures the dependence among the vector components.

From a statistical perspective, whereas it is generally simple to produce reliable
estimates of the parameters of the marginal distributions of the data, the problem of
estimating the dependence structure, however it is modelled, is crucial and complex,
especially in high dimensional situations. A list of important applications can be found
in the recent monograph by Joe (2015).

In a frequentist approach to copula models, there are no broadly satisfactory meth-
ods for the joint estimation of marginal and copula parameters. The most popular
method is the so called Inference Functions for Margins method, where the parameters
of the marginal distributions are estimated first, and then pseudo-data are obtained
by plugging-in the estimates of the marginal parameters. Then inference on the copula
parameters is performed using the pseudo-data: this approach does not account for the
uncertainty on the estimation of the marginal parameters. A nonparametric alternative
may be found in Kauermann et al. (2013), where a penalized hierarchical B-splines
approach is proposed.
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The literature on Bayesian alternatives is still limited, although they show a great
potential for inference in a number of cases, for example in the modelling of multivariate
discrete data (Smith and Khaled, 2012) and of conditional copulae (Craiu and Sabeti,
2012); see Smith (2013) for a review on parametric methods and Wu et al. (2014)
for a nonparametric approach. An instrumental use of copulas in Bayesian mixture
estimation may be found in Burda and Prokhorov (2014). An alternative and more
flexible copula construction is based on the so-called vines, where the joint dependence
structure of a multivariate random vector is decomposed into several marginal and
conditional bivariate copulas. A Bayesian use of this approach can be found in Min and
Czado (2010) and Gruber and Czado (2015).

In this work we consider the general problem of estimating a functional of interest of a
generic copula: practical illustrations will include the Spearman’s ρ and tail dependence
indices. Our method is based on the simulation of a posterior sample weighted in terms
of the Bayesian exponentially tilted empirical likelihood (Schennach, 2005). A similar
approach, in a frequentist fashion, has been proposed in Oh and Patton (2013), where
a simulated method of moments is discussed for copula estimation. The main difference
between the two approaches is that in our method the functional represents the actual
quantity of interest and no assumption is made on the copula structure, while in Oh and
Patton (2013) the functional is only instrumental, as a moment condition, to estimate
the parameter of a given parametric copula.

As already stated, the central tool in our approach is the empirical likelihood (Owen,
2001); we adopt an approximate Bayesian approach based on the use of a pseudo-
likelihood, along the lines of Mengersen et al. (2013). We use a partially specified model
where the prior distribution is explicitly elicited only on the quantity of interest. Its ap-
proximate posterior distribution is obtained via the use of the Bayesian exponentially
tilted empirical likelihood approximation of the marginal likelihood of the quantity of
interest, illustrated in Schennach (2005). This approximation of the true “unknown”
likelihood function hopefully reduces the potential bias for incorrect distributional as-
sumptions, very hard to check in complex dependence modeling. Our approach can be
adapted both to parametric and nonparametric modeling of the marginal distributions.

A brief review on copula models and empirical likelihood methods is given in Sec-
tion 2. The method used to approximate the posterior distribution for a functional of
the copula is presented in Section 3 and its asymptotic justification is discussed in Sec-
tion 4. The rest of the paper is devoted to the illustration of the empirical behavior
of the proposal on simulated and real data sets; in particular, Section 5 will apply the
method for the Bayesian estimation of the Spearman’s ρ in a bivariate setting, while
Section 6 is focused on tail dependence coefficients; multivariate extensions are consid-
ered in Section 7. Finally, Section 8 contains a real financial application. A discussion
concludes the work.

2 Preliminaries: Copulae and Empirical Likelihood

A copula represents an alternative way of writing the joint distribution of a random
vector X = (X1, . . . , Xd). Given a d-variate cumulative distribution function F which
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depends on some parameter θ, it is possible to show (Sklar, 2010) that there always
exists a d-variate function Cθ : [0, 1]d → [0, 1], such that

F (x1, . . . , xd;λ, θ) = Cθ(F1(x1;λ1), . . . , Fd(xd;λd)),

where λ = (λ1, . . . , λd) is a vector of parameters, Fj is the marginal distribution of
Xj depending on a parameter vector λj . In other terms, the copula C is a distribution
function with uniform margins on [0, 1]: it binds together the univariate F1, F2, . . . , Fd

in order to produce the d-variate distribution F . The copula C does not depend on
the marginal distributions, and it accounts for potential dependence among the compo-
nents of the random vector X. In the continuous case, the density of a random vector
(X1, . . . Xd) has a unique copula representation given by

f(x|λ, θ) = c(u; θ)

d∏
j=1

fj(xj |λj), (1)

where u = (u1, · · · , ud) = (F1(x1;λ1), · · · , Fd(xd;λd)), c(u; θ) is the derivative of Cθ

and θ and (λ1, · · · , λd) are the parameter of the copula and of the marginal density
functions respectively. Given a prior π(θ, λ1, · · · , λd) and a sample of size n of inde-
pendent multivariate observations (xi1, · · · , xid) for i = 1, · · · , n, the resulting posterior
distribution for the parameter vector is

π(θ, λ|x) ∝ π(θ, λ)
n∏

i=1

⎡⎣c(ui; θ)
d∏

j=1

f(xij ;λj)

⎤⎦ .

Notice that the likelihood function is not separable in λ1, · · · , λd and θ because the ui’s
depend on the marginal parameter λ.

In the parametric case, frequentist methods of estimation are generally based either
on the simultaneous maximization of the likelihood function in θ and λ or on the so-
called method of inference functions for margins (IFM) (Joe, 2015): here a maximum
likelihood estimate of λ is obtained using only the second factor of (1); then the estimate
is plugged into the first factor and an estimate of θ is based on pseudo-data ûij =

F (xij ; λ̂j). The two methods are not equivalent in general (Choroś et al., 2010).

The first-step estimation may be performed both parametrically and nonparamet-
rically: Genest et al. (1995) propose a semiparametric approach where nonparametric
estimates are contemplated for the marginals and a specific copula function is used. The
proposed estimator is shown to be consistent and asymptotically normal.

It is possible to modify the two-step procedure of Joe (2005) within a Bayesian frame-
work, where the joint posterior distribution π(θ, λ1, · · · , λd|x) is evaluated through a
Monte Carlo Markov chain (MCMC) algorithm, with θ and (λ1, · · · , λd) generated sep-
arately in a Gibbs sampling scheme; see Pitt et al. (2006) for a discussion. Smith (2013)
provides a review on sampling schemes and possible prior distributions, in particular in
the case of Gaussian copula models, both in a continuous and in a discrete setting.

A Bayesian nonparametric approach is followed by Wu et al. (2014), who model and
estimate only the copula density function by using infinite mixture models and treat the
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marginals as given. In particular, they focus on a mixture of multivariate skew-normal
copulas, in order to circumvent the symmetry limitation of the Gaussian copula and
to preserve the simplicity of the estimation, which is not the case with the skewed t
copula. The MCMC implementation follows Kalli et al. (2011).

In all these cases, the goal of the analysis is about the complete dependence structure.
The aim of this work is different. First, we allow the marginal distributions Fj ’s to follow
either a parametric or a non parametric model. Secondly, we do not make any parametric
assumption for the copula function C. Rather, we limit our goal to the estimation of a
given functional of interest of C, say φ(C). In this respect, we adopt a semiparametric
Bayesian strategy for estimating φ(C) where the parameter of interest is the particular
functional φ for which we derive an approximated posterior distribution

π(φ|x) ∝ π(φ)L̂(φ;x),

where L̂(φ;x) is a nonparametric approximation of the likelihood function for φ. In par-
ticular here we use the Bayesian exponentially tilted empirical likelihood of Schennach
(2005).

We also propose a modified version of the algorithm of Mengersen et al. (2013) in a
situation where the statistical model is only partially specified and the main goal is the
estimation of a finite dimensional quantity of interest. In practice this represents the
prototypical semiparametric set-up, where one is mainly interested in some characteris-
tics of the population, although the statistical model may contain nuisance parameters
which are introduced in order to produce more flexible models that might better fit the
data at hand. In order to make robust inference on the quantity of interest, a reason-
able model should account for the uncertainty on the nuisance parameters, in some way.
Even if some of these additional parameters are not particularly important in terms of
estimation – they often lack of a precise physical meaning – their estimates can dra-
matically affect inference on the parameter of interest. In these circumstances it might
be more reasonable and robust to partially specify the model. Empirical likelihood has
been introduced by Owen (2001); it is a way of producing a nonparametric likelihood
for a quantity of interest in an otherwise unspecified statistical model. Schennach (2005)
proposed an exponentially tilted empirical likelihood which can also be interpreted as
a semiparametric Bayesian procedure. Assume that our dataset is composed of n in-
dependent replicates (x1, . . . , xd) of some random vector X with distribution F and
corresponding density f . Rather than defining the usual likelihood function in terms
of f , the Bayesian exponentially tilted empirical likelihood is constructed with respect
to a given quantity of interest, say φ, expressed as a functional of F , i.e. φ(F ), and then
a sort of profile likelihood of φ is computed in a nonparametric way. More precisely,
consider a given set of generalized moment conditions of the form

EF (h(X,φ)) = 0, (2)

where h(·) is a known function, and φ is the quantity of interest. The resulting Bayesian
exponentially tilted empirical likelihood LBEL(φ;x) is defined as

LBEL(φ, x) =
n∏

i=1

p∗i (φ), (3)
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where (p∗1(φ), · · · , p∗n(φ)) is the solution of

max
(p1,...,pn)

n∑
i=1

(−pi log pi) ,

under the constraints 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1, and
∑n

i=1 h(xi, φ)pi = 0. The third con-
dition induces a profiling of the information towards the quantity of interest, through
an unbiasedness condition. Mengersen et al. (2013) proposed a sort of “sampling im-
portance re-sampling” (Rubin et al., 1988) method for dealing with situations where
the “true likelihood” evaluation is out of reach and parameter values are “weighted” by
the empirical likelihood proposed by Owen (2001). Here we replace the empirical likeli-
hood with the exponentially tilted empirical likelihood proposed by Schennach (2005),
in order to guarantee a solid Bayesian justification of the procedure.

3 The Bayesian Use of Exponentially Tilted Empirical
Likelihood

We describe in detail our method. First we illustrate the role played by the two steps,
then we present the general algorithm in a pseudo-code style and we finally comment
on the main issues.

3.1 Step 1: Marginal Estimation

We assume that a data set is available in the form of a n×d matrix x = (x1, x2, . . . , xd),
where n is the sample size and d is the number of variables. Given that the object of
interest is a functional of the copula structure, inference for the marginals is not central
in this description: one can either use a parametric or a nonparametric model for the
marginals. In the first case, for each j = 1, . . . , d, we use data available for Xj to derive

an estimate of π(λj |xj); for example, we can generate a sample λj = (λ
(1)
j , λ

(2)
j , . . . λ

(Sj)
j )

which is an approximation of the posterior distribution for λj . We allow Sj to vary for
j = 1, · · · , d in order to take into account particular features of the marginal models or
the information available for each variable Xj . Alternatively, Bayesian nonparametric
estimates of the marginal distributions may be obtained, see Hjort et al. (2010) for a
general review. In Section 4 we will argue that the nonparametric choice may lead to
better convergence results of the estimation procedure for the functional φ.

3.2 Step 2: Joint Estimation

We also assume that the main focus of the analysis is the estimation of a specific function
φ of C; because of this, we avoid to choose the complete copula structure, in order to
prevent estimation biases due to model misspecification, as we will see in Section 5. This
is particularly useful and meaningful in those situations where there is no theoretical
or empirical evidence that a given parametric copula should be preferred and we are
mainly interested in a synthetic measure of dependence, like for example, the upper
tail dependence index between two components of X, discussed in Section 6. Another
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popular quantity, which we will consider in Section 5, is the Spearman’s ρ between
two components of X, and its extensions to the multivariate case (Section 7). From
this perspective, the problems analyzed in this paper belong to the class of Bayesian
semiparametric problems, where the posterior distribution of a quantity of interest,
φ, is investigated, whereas the complete form of the model is considered a nuisance
parameter, for which a nonparametric approach seems more cautious and reasonable.

Then, after the estimation of the marginal distributions, performed in Step 1, we
now use a copula representation of the multivariate distribution in order to approximate
the posterior distribution π(φ|x) of φ, a single measure of the multivariate dependence
structure of X. The posterior distribution of φ is approximated by combining its prior
distribution with the Bayesian Exponentially tilted Empirical Likelihood (3),

π(φ|x) ∝ π(φ)LBEL(φ;x).

As already stated, the Bayesian exponentially tilted empirically likelihood has been
introduced by Schennach (2005), however its use has been limited so far, with the
remarkable exceptions of Lancaster and Jae Jun (2010) and Yang and He (2012) for
quantile regression. This approach also implies the introduction of a nonparametric prior
distribution on the nuisance aspects of the model, as detailed in Schennach (2005) and
discussed in Section 4. LBEL(·) is computed for a given choice of moment conditions
of the form (2), based on a nonparametric estimator of the functional of interest, for

which there must exist an (at least, asymptotically) unbiased estimator φ̂n, i.e. such

that EF (φ̂n − φ) = 0. The existence of an unbiased estimator is a caveat on the use of
empirical likelihoods: the problem might be partially circumvented through the use of
a bootstrap likelihood as in Zhu et al. (2016).

3.3 The Algorithm

Here we present the pseudo-code of the proposed algorithm, which we briefly indicate as
ABSCop (Approximate Bayesian semiparametric copula). In Algorithm 1 the method
is described in the case when parametric models are assumed for the marginals. Nev-
ertheless it could be easily modified to manage the case of nonparametric estimation
of the marginal densities, or to a mix of the two cases. The final output is a posterior
sample drawn from an approximation of the posterior distribution of the quantity of
interest φ. There are several critical issues both in the practical implementation of the
method and in its theoretical properties, which we will now discuss.

1. Marginal estimation. As we will see in the real data application in Section 8,
as long as one uses a reasonable parametric model for the marginals, the posterior
distribution of φ will not be seriously affected by this part of model choice.

2. Weighting the prior sample. An interesting point to discuss is that the pos-
terior sample sizes used to approximate the marginal parameter posterior distribution
may be different, maybe because estimation of some of them need to be more accu-
rate. Therefore values Sj ’s are allowed to change across j = 1, · · · , d. If, instead, all the
Sj = S for j = 1, · · · , d, it would be ideally possible to run the second step (for each
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Algorithm 1 ABSCop algorithm

1. STEP 1: Marginal estimation
Given a sample X = (X1, X2, · · · , Xd) where Xj = (X1j , · · · , Xnj) for j =
(1, · · · , d) with joint cdf FX(x) and marginal cdf’s F1(x1;λ1), · · · , Fd(xd;λd)

1: for j = 1, · · · , d do

2: Derive a posterior sample for λj : (λ
1
j , · · · , λ

Sj

j ) approximating the marginal
posterior π(λj |xj)

3: end for

2. STEP 2: Joint estimation

1: for b = 1, · · · , B do
2: Draw φ(b) ∼ π(φ)
3: Sample one value λsj from each marginal posterior sample: λ′ =

(λ
(s1)
1 , · · · , λ(sd)

d )

4: Derive a matrix of uniformly distributed pseudo-data uij = Fj(xij ;λ
(sj)
j )

u′ =

⎛⎜⎜⎜⎝
u
(s1)
11 u

(s2)
12 . . . u

(sd)
1d

u
(s1)
21 u

(s2)
22 . . . u

(sd)
2d

. . . . . . u
(sj)
ij . . .

u
(s1)
n1 u

(s2)
n2 . . . u

(sd)
nd

⎞⎟⎟⎟⎠ .

5: Compute LBEL(φ
(b);u′) = ωb

6: end for
7: return A weighted sample of size B of values for φ, where the weights are

defined as the LBEL, given the nonparametric estimate φ̂n.
8: Sample with replacement (φ(b)ωb), b = 1, · · · , B.

Output: a sample of size B of values approximately from the posterior distribution of
φ.

b = 1, · · · , B) for vector λT = (λ
(s)
1 , · · · , λ(s)

d ) without sampling for each b = 1, · · · , B
only a single value from each sample of the marginal posterior distributions. In this
case Point 4 of Step 2 in Algorithm 1 will consist of S matrices us, s = 1, · · · , S; con-
sequently, LBEL will provide a set of weights ωbs, b = 1, · · · , B and s = 1, · · · , S. In
this case, the posterior distribution of φ may be approximated by simply combining the
sample from the prior distribution, say (φ1, · · · , φB) with an average of the weights, say

ω̄b = n−1
∑S

i=1 ωbs for b = 1, · · · , B. This version of the algorithm will be used in Sec-
tion 8 and the relative Algorithm is available in the Appendix C of the Supplementary
Material (Grazian and Liseo, 2017). This last version of the algorithm is of course more
accurate since it considers, at each iteration, the global uncertainty in the marginal dis-
tributions. However, its computational burden may be heavy. Algorithm 1, therefore,
is presented in a more manageable version, where, at each simulation b = 1, · · · , B the
marginal posterior distributions are considered as approximated with a sample of size
one, randomly selected among the entire marginal posterior sample.
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3. Choice of priors. Prior elicitation is necessary for the marginal parameters
λ and for the quantity of interest φ. While the marginal estimation does not present
peculiar issues, the elicitation of the prior on φ could be potentially important. However,
the most common functional of interest are, in general, defined on a compact space; as
a consequence, a default objective choice, in the absence of specific information, is the
uniform distribution. Other choices are clearly possible; our simulation studies, not
reported here, suggests that the resulting posterior distribution seems to be robust
in terms of prior choices. The prior on the nonparametric component of the copula
is implicitly provided by the use of the exponentially tilted empirical likelihood, as
proved in Schennach (2005), and discussed in Section 4: this aspect, of course, has pros
and cons. The main advantage is the ease of elicitation: one need not to elicit about
complex aspects of the multivariate dependence structure. This is mainly in the spirit
of the so called partially specified models, quite popular in the econometric literature.
Another obvious advantage is the implied robustness of the method, with respect to
different prior opinions about non-essential aspects of the dependence structure. The
most important disadvantage is its inefficiency when compared to a parametric copula,
under the assumption that the parametric copula is the true model. On the other hand,
we will see in Section 5 that the parametric approach may lead to completely wrong
results in case of misspecification. Another aspect to consider is that model selection
procedures are not yet fully developed in the copula literature: this is mainly due to
the fact that most of the differences among the various copula models refer to the tail
behavior, and it is rare to have enough data on the tails to perform reliable model
comparison.

4. Existence of an unbiased estimator. The Bayesian exponentially tilted em-
pirical likelihood is based on moment conditions of the form (2). As already sketched
in § 3.2, this kind of conditions implies, at least implicitly, the existence of an unbi-
ased estimator for the quantity of interest. In practical applications, there are often
available only asymptotically unbiased estimators. This is the case, for example, of the
Spearman’s ρ: its sample counterpart ρ̂n is only asymptotically unbiased so the moment
condition E[ρ̂n−ρ] = 0 is only valid for large samples. Finally, a note on computational
issues: the most demanding step of Algorithm 1 is the evaluation of LBEL. This entails
an optimization procedure over the hypercube [0, 1]n−1, based on Lagrange multipli-
ers, however this may be easily and fastly implemented in R using the generic function
optim.

4 Theoretical Background

The method described in the previous section is based on several different theoretical
results. In this section we collect some more theoretical considerations, in order to better
clarify advantages and limitations of the proposal.

Two-Step Estimation The inferential step has been split into two parts: first, the
marginal distributions of the multivariate random variable are estimated; then, pseudo-
data are created in order to provide a semiparametric estimate of the quantity of interest.
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The “two-step” issue is at the core of the often unsatisfactory behaviour of estimation
procedures based on the Inference From the Margins method, see for a review Joe
(2015), Section 10.1: the main drawback of that approach is that it fails to properly
account for the uncertainty on the parameter estimates of the marginal distributions.

However this problem is much less serious in our setting; in fact, we produce, for each
coordinate of the multivariate distribution, a sample from the joint posterior distribution
of the parameters which appear in that marginal. So the actual level of information on
those parameters is completely transferred to the second step of the procedure, which
creates, for each run of the posterior simulation, a different set of pseudo-data and then
takes averages on them. Provided that the estimation procedure for the marginals is
consistent, we are consistently creating multiple “pseudo-data”.

Bayesian Semi-Parametric Interpretation In Schennach (2005) it is argued and proved
that the Bayesian exponentially tilted empirical likelihood has a precise Bayesian inter-
pretation, which we now describe in our context. The infinite dimensional parameter
space for a copula model can be written as (C,F1, · · · , Fd); however, the interest of the
analysis is in a low-dimensional function φ(C). Then the copula C can be represented
as C = (φ,C∗), where C∗ belongs to an infinite dimensional metric space (H, dH) and
represents all those aspects of the dependence structure not related to φ. The global nui-
sance parameter for the model is ξ = (C∗, F1, · · · , Fd). At each iteration of Algorithm 1,
i.e. for fixed values of the marginal parameters λ, the computation of the Bayesian ex-
ponentially tilted empirical likelihood may be read as the evaluation of the integrated
likelihood of φ, say

L
(λ)
BEL(φ;u) =

∫
Ξ

L(φ, ξ;u)dΠ(ξ),

where u = {[uij ]ij , i = 1, · · · , n, j = 1, · · · , d}, uij = Fj(xij ;λj) and Π(ξ) is the non-
parametric prior process implicitly induced by the use of the Bayesian exponentially
tilted empirical likelihood and specified by Theorem 1 in Schennach (2005). In brief,
Π(ξ) is a prior process which tends to favor distributions with a high level of entropy.

Algorithm 1 takes an average of L
(λ)
BEL(φ;u) with respect to the posterior distributions

of the parameters of the marginals F1, · · · , Fd. Consequently, it produces an approxi-
mation of the integrated likelihood L(φ;x) which is combined with the genuine prior
for φ in order to obtain π(φ | x).

Partial Specification of the Model Our model is, in some sense, only partially speci-
fied, since we are interested in a specific aspect of the copula. In order to make Bayes’
theorem applicable, we again invoke Theorem 1 in Schennach (2005), which gives a fully
Bayesian interpretation of the model. It is true however, that the Bayesian exponentially
tilted empirical likelihood is a valid approximation of the integrated likelihood for the
parameter of interest φ only when the moment conditions (2) are valid. It may happen,
as already noticed, that available estimators of φ are only asymptotically unbiased; as a
consequence, the moment conditions (and the entire method as well) are valid only for
large samples. Moreover, the quantities of interest considered in this paper (Spearman’s
ρ and tail dependence indices λL and λU ) are defined in terms of the copula and the
corresponding estimators are based on the empirical copula
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Ĉn(u) =
1

n

n∑
i=1

d∏
j=1

I{Ûij≤uj}, u = (u1, u2, · · · , ud) ∈ [0, 1]d, (4)

where Ûij are the pseudo-data obtained after the first step of the procedure (the esti-
mation of the marginals). It is then clear that, in order to use the Bayesian exponen-
tially tilted empirical likelihood, the empirical copula must be a consistent estimator
of the copula. In order to check this condition, suppose we have obtained some esti-
mates of F1, . . . , Fd. For the moment we assume that they come from a Bayesian non-
parametric procedure, which is asymptotically equivalent to a procedure based on the
empirical marginal cumulative distribution functions. Pseudo-data are obtained from
this first step of the procedure uij = F̂j(xij) and they are used for deriving non-
parametric estimates of φ; the joint use of a nonparametric procedure for the estima-
tion of the marginals and of an asymptotically unbiased estimator in (2) provides a
global procedure which is clearly asymptotically equivalent to an estimate based on
the empirical copula Ĉn. On the other hand, it is known (Fermanian et al., 2004)
that (Ĉn − C) is weakly convergent to a Gaussian process in 	∞[0, 1]; more precisely,
suppose (X11, X21, · · · , Xd1), · · · , (X1n, X2n, · · · , Xdn) are independent random vectors
with distribution function F and marginals F1, F2, · · · , Fd. The empirical estimator of
the copula function C(u1, u2, · · · , un) = F (F−1

1 (u1), F
−1
2 (u2), · · · , F−1

d (ud)) is

Ĉn(u1, u2, · · · , ud) = F̂n(F̂
−1
1n (u1), F̂

−1
2n (u2), · · · , F̂−1

dn (ud)),

where F̂n, F̂1n, F̂2n, · · · , F̂dn are the joint and marginal empirical distribution functions
of the observations. The empirical copula process is defined as Cn =

√
n(Ĉn − C) and

if the j-th first order partial derivative exists and is continous on Vd,j = {u ∈ [0, 1]d :
0 < uj < 1}, then Cn converges weakly to a Gaussian process {GC(u1, u2, · · · , ud), 0 <
u1, u2, · · · , ud < 1} in 	∞([0, 1]d); for details, see Theorem 3 in Fermanian et al. (2004).
If a Bayesian nonparametric procedure which is asymptotically equivalent to the em-
pirical distribution function is used, we may still advocate Theorem 3 in Fermanian
et al. (2004) and the obtained empirical copula is again consistent. A similar, but less
general, argument may be used if the marginals are estimated parametrically. In this
case, the Bayesian procedure will be asymptotically equivalent to a maximum likeli-
hood approach and Joe (2005) shows that the two-step procedure based on maximum
likelihood estimates is consistent. However, for finite sample sizes, there may still be a
problem: if we are using a wrong model on the marginals, the entire posterior sample
may be misleading and the subsequent step might be biased. This problem is, of course,
common to any parametric statistical procedure for copula estimation.

5 Monotonic Dependence

We first illustrate the method in the simple situation d = 2, and assuming that the two
marginal distributions of the data are known: without loss of generality we assume that
they are both uniform in [0, 1]. The Spearman’s ρ between X and Y is the correlation
coefficient among the transformed variables U = FX(X) and V = FY (Y ) or, in a copula
language,



C. Grazian and B. Liseo 1001

Algorithm 2 ABSCop algorithm – Spearman’s ρ

Given a sample of n pseudo-observations assumed from an unknown copula function

u =

⎛⎜⎜⎝
u11 u12

u21 u22

· · · · · ·
un1 un2

⎞⎟⎟⎠ ,

1: for b = 1, · · · , B do
2: Draw ρ(b) from its prior distribution, for example ρ(b) ∼ Unif(−1, 1)
3: Compute a nonparametric estimate of the Spearman’s ρ:

ρ̂n =
1

n

n∑
i=1

(
12

n2 − 1
RiQi

)
− 3

n+ 1

n− 1
,

where Ri =
∑n

k=1 I(u1k ≤ u1i), Qi =
∑n

k=1 I(u2k ≤ u2i), i = 1, . . . , n.
4: Compute LBEL(ρ

(b);u) = ωb

5: end for
6: return A weighted sample of size B of values for ρ, where the weights are defined

as the LBEL, given the nonparametric estimate ρ̂n.
7: Sample with replacement (ρ(b)ωb), b = 1, · · · , B.

Output: a sample of size B of values approximately from the posterior distribution of
ρ.

ρ = 12

∫ 1

0

∫ 1

0

(
C(u, v)− uv

)
dudv = 12

∫ 1

0

∫ 1

0

C(u, v)duduv − 3. (5)

Starting from a sample of size n from a bivariate distribution, say (xi, yi), i = 1, . . . , n,
a possible estimator of ρ, say ρ̂n, obtained by substituting the empirical copula Ĉn in
expression 5, is the correlation among ranks and it can be written as

ρ̂n =
1

n

n∑
i=1

(
12

n2 − 1
RiQi

)
− 3

n+ 1

n− 1
, (6)

where

Ri = rank(xi) =
n∑

k=1

I(xk ≤ xi), Qi = rank(yi) =
n∑

k=1

I(yk ≤ yi), i = 1, . . . , n.

We use Algorithm 1 to produce a posterior sample for ρ, with π(ρ) = U(−1, 1): a full
description of the application of Algorithm 1 in the specific case of the Spearman’s ρ
in dimension two is described in Algorithm 2; step 1 of Algorithm 1 is avoided in this
simulated studies, since the simulation are already in the copula space.

The frequentist properties of estimator (6) have been considered in Borkowf (2002),
who shows that the asymptotic variance of ρn is

σ2(ρ̂n) = 144(−9ψ2
1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5), (7)
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where the ψi’s are terms linked with the moments of the marginal and joint distributions
of (X1, Y1) and (X2, Y2), two independent random vectors with distribution F (x, y) and
marginals F1(X) and F2(Y ) respectively. In particular

ψ1 = E[F1(X1)F2(Y1)],

ψ2 = E[(1− F1(X1))
2(1− F2(Y1))

2],

ψ3 = E[(1− F (X1, Y2))(1− F (X2))(1− F (Y1))],

ψ4 = E[(1− F1(max{X1, X2}))(1− F2(Y1))(1− F2(Y2))],

ψ5 = E[(1− F1(X1))(1− F1(X2))(1− F2(max{Y1, Y2}))].

Consistent estimates of the above quantities are available in Genest and Favre (2007).
However, in the case of perfect rank agreement, when plugging-in the sample estimates
of the ψj ’s into expression (7), one gets a negative number. This phenomenon also
occurred in our simulations when data were generated from copulae with a value of
ρ close to 1. As an illustration we have simulated 500 samples of size n = 1000 from
a bivariate Clayton copula with ρ = 0.50, a Frank copula with ρ = 0.50, a Gumbel
copula with ρ = 0.683 and a Gaussian copula with ρ = 0.8. For comparative purposes
we have also implemented the nonparametric frequentist procedure described in Genest
and Favre (2007), where a confidence interval for the Spearman’s ρ is computed based
on the asymptotic distribution of ρn. Table 1 compares the frequentist behavior of the
confidence procedure and our proposal, in the case of Clayton, Frank, Gumbel and
Gaussian copulae in the case of intermidiate and strong positive dependence. One can
notice that, for large values of ρ (i.e. close to 1), the frequentist estimate of the variance is
negative in most cases. As a consequence, confidence intervals can not be produced. For
a graphical comparison, one may refer to Appendix A in the Supplementary Material.

Table 1 shows that our method produces shorter interval estimates of ρ, compared
to the frequentist approach, while maintaining the correct coverage. Notice that in this
simulation study, we have used uniform marginals; this implies that this improvement
is only due to the different way of dealing with the dependence structure and not on the
accounting for uncertainty in the marginal estimation. The posterior median is always
very close to the empirical value ρ̂n, however Table 1 shows that the average length

Ave. Length Coverage
Clayton (ρ = 0.50) Freq. 0.2664 0.998

Bayes. 0.2597 1.000
Frank (ρ = 0.50) Freq. 0.3172 1.000

Bayes. 0.2735 1.000
Gumbel (ρ = 0.68) Freq. - -

Bayes. 0.2966 1.000
Gaussian (ρ = 0.80) Freq. - -

Bayes. 0.2931 1.000

Table 1: Simulations from different copulae: average length and empirical coverage of the
intervals obtained both via frequentist and Bayesian methods, based on 500 repetitions
of the experiment.
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of the frequentist intervals is larger than the corresponding Bayesian credible intervals
when the frequentist procedure is valid, i.e. the estimated variance is non-negative.
As the true value of ρ increases, the frequentist estimate of the variance tends to be
negative (98.4% of the experiments for the Gumbel copula with ρ = 0.68 and 100%
of the experiments for the Gaussian copula with ρ = 0.80); on the other hand, our
procedure performs equally well. The proportion of frequentist intervals with length
larger than the corresponding Bayesian interval is 0.564 for the Clayton copula (with
ρ = 0.5) and 0.892 for the Frank copula (with ρ = 0.5); the coverage in the other two
cases cannot be evaluated because of the negative frequentist estimate of the variance.

Another advantage of using a semiparametric approach is its robustness with re-
spect to model misspecification. To see this, we have compared our results with a fully
parametric approach based on standard MCMC algorithms. In particular, we have re-
used the previously simulated data under the following assumptions: Clayton copula
and θ ∼ T N (0, 10,−1,∞), Gumbel copula and θ ∼ T N (1, 10, 1,∞), Frank copula
and θ ∼ N (0, 10), where T N (μ, σ, a, b) is a truncated normal distribution with mean
μ, standard deviation σ and truncation in [a, b]. Finally, the approximated posterior
distributions for the copula parameters are transformed in the corresponding posterior
distributions for the Spearman’s ρ relative to that particular copula. Figures 1 and
Table 2 show the results of the simulations. It is evident that, although a parametric
model produces shorter credible intervals, the choice of the particular parametric copula
is crucial. The semiparametric method is clearly the most robust. Graphical comparison
of parametric and nonparametric methods for the Clayton and the Gumbel copula are
available in the Supplementary Material.

Figure 1: Bayesian point estimates (points) and credible intervals for 20 out of 500
experiments with data from a Frank copula with θ = 3.45, obtained by specifying a
Clayton model (orange), a Frank model (blue) and a Gumbel model (green) or by using
our semiparametric approach (black). The solid red line represent the true value.

6 Tail Dependence

Multivariate dependence may be a complicated object. Popular measures like the Spear-
man’s ρ or the Kendall’s τ can only capture some aspects of it. For example, dependen-
cies between extreme negative stock returns or large portfolio losses are better explained
by tail dependence indices (Sibuya, 1959). Several studies show that, in particular in
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True Clayton True Frank True Gumbel
Assumption θ = 1.076 θ = 3.45 θ = 2

Clayton 0.852 0.000 0.000
Frank 0.920 0.938 0.838
Gumbel 0.052 0.082 0.878
ABSCop 0.999 0.999 0.999

Table 2: Simulations from different copulae: average coverage of the 0.95 equal tails
Bayesian credible intervals obtained in 500 repetitions of the experiment.

volatile markets, tail dependence is a useful tool to study the behavior of extremal data
in finance. See, for example, Ané and Kharoubi (2003). Unfortunately the tail depen-
dence is delicate to estimate, mostly because of the limited amount of available data in
the tails of the distribution.

The concept of tail dependence describes the idea of concordance in the tails of the
bivariate distribution, i.e. the amount of dependence in the lower-left quadrant tail or
upper-right quadrant tail. The upper and lower tail dependence indices are defined in
terms of the survival function:

λU = lim
v→1−

Pr {FX(X) > v|FY (Y ) > v} , λL = lim
v→0+

Pr {FX(X) ≤ v|FY (Y ) ≤ v} , (8)

provided the limits exist. (X,Y ) are said to be upper tail dependent if λU > 0 and upper
tail independent if λU = 0. Similar definitions apply for λL. The above definitions clarify
the concept of tail concordance: the upper (lower) tail dependence index is close to one
if the probability that the marginal distribution of one variable exceeds a high (low)
threshold given that the marginal distribution of the other variable exceeds a high (low)
threshold is close to one.

However, the tail dependence indices, as defined in (8), only depend on the copula
structure:

λU = lim
v→1

1− 2v + C(v, v)

1− v
, λL = lim

v→0

C(v, v)

v
, (9)

and, therefore, they may be estimated by using the Bayesian approach proposed in
Section 3. It is necessary to choose a nonparametric estimator of λU and λL in order
to apply Algorithm 1. For a review on the parametric and nonparametric estimation of
the tail dependence indices, see Frahm et al. (2005). Among the many proposals, here
we consider, as a benchmark, the estimator given in Frahm et al. (2005) as a special
case of the one proposed in Joe et al. (1992):

λ̂L =
Ĉn

(
k
n ,

k
n

)
k
n

, λ̂U = 2−
1− Ĉn

(
n−k
n , n−k

n

)
1− n−k

n

,

where Ĉn is the empirical copula, and 0 < k ≤ n is a parameter tuned by the ex-
perimenter. A typical choice, motivated in Joe et al. (1992), is k =

√
n. Schmidt and

Stadtmüller (2006) prove strong consistency and asymptotic normality for these esti-
mators: the moment conditions for the application of the empirical likelihood approach
are, therefore, (asymptotically) valid.
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Figure 2: Comparison between frequentist (blue) and Bayesian (green) estimates for λU

(left) and λL (right). 20 out of 500 simulations from a Clayton copula with θ = 1.076
(n = 1000); the circles represent the frequentist point estimates, the lines represent the

approximated posterior distributions. The true values are λtrue
U = 0 and λtrue

L = 2−
1
θ

(red lines).

Schmidt and Stadtmüller (2006) have also derived the asymptotic variance of λ̂L

and λ̂U . However, these expressions are of limited use since they depend on unknown
quantities. To circumvent this problem, they propose to use the variance of the tail
dependence coefficient of a copula for which the same quantities are easy to compute.
Nevertheless this method does not provide any quantification of the potential error,
which is essential in the particular case of tail dependence coefficients, for which the
estimation procedure is, in general, based on a small proportion of the available data.
In contrast, with our approach, we are able to provide an approximation of the entire
posterior distribution of the index, which can then be summarized in different ways.
Figure 2 shows the approximated intervals for the frequentist (obtained via a bootstrap
estimation of the variance) and the Bayesian procedure for simulations from a Clayton
copula with θ = 1.076 (λL = 2−1/θ = 0.525 and λU = 0). Bayesian intervals are always
wider than the corresponding frequentist ones. Nevertheless, the coverage of the frequen-
tist intervals is, on average, around 0.10, far from the nominal 0.95, which is reached
by the Bayesian estimates. See also the Supplementary Material for other examples.

7 Multivariate Analysis

The extension of the proposed procedure to the multivariate case is straightforward, and
no further theoretical issues arise. On the other hand, a broadly satisfactory solution in
the frequentist approach has not yet been fully developed. It is important to notice that
the way to describe the multivariate dependence with low-dimensional measures is still
an open problem, since the number of combinations among variables increases with the
dimension; as a consequence, there are several ways to define a multivariate measure
of dependence. This partially explains why multivariate functionals of dependence are
less used, in practice, than their bivariate counterparts. Formula (5) provides one of
the possible ways to express the Spearman’s ρ and it suggests to interpret it as a
measure of expected distance between the actual copula and the independence copula
Π(u1, · · · , ud) = u1×· · ·×ud. In this sense, the extension to the d-dimensional setting is:
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ρ1 =

∫
[0,1]d

(C(u)−Π(u)) du∫
[0,1]d

(M(u)−Π(u)) du
= h(d)

{
2d
∫
[0,1]d

C(u)du− 1

}
, (10)

where M(u) = min(u1, u2, . . . , ud) is the upper Fréchet–Hoeffding bound, and h(d) =
(d + 1)/{2d − (d + 1)}. Other definitions of the Spearman’s ρ exist in the literature
(Schmid and Schmidt, 2007), for instance:

ρ2 = h(d)

{
2d
∫
[0,1]d

Π(u)dC(u)− 1

}
. (11)

Finally, a third generalization of ρ can be obtained as the average of all the bivariate
ρ’s. This expression appears in Joe (1990); its rationale is different from those of (10)
and (11), and we will not consider it. If d = 2, then ρ1 = ρ2, but this relation does not
necessarily hold in general. Nonparametric estimators of the multivariate ρk for k = 1, 2
to be used in Algorithm 1 are again based on the use of the empirical copula (4) in
expressions (10) and (11):

ρ̂1n = h(d)

{
2d
∫
[0,1]d

Ĉn(u)du− 1

}
= h(d)

⎧⎨⎩2d

n

n∑
i=1

d∏
j=1

(1− Ûij)− 1

⎫⎬⎭ ,

ρ̂2n = h(d)

{
2d
∫
[0,1]d

Π(u)dĈn(u)− 1

}
= h(d)

⎧⎨⎩2d

n

n∑
i=1

d∏
j=1

Ûij − 1

⎫⎬⎭ .

Asymptotic properties of these estimators are explored and assessed in Schmid and
Schmidt (2007). In particular it is known that

√
n(ρ̂kn − ρk)

·∼ N (0, σ2
k), k = 1, 2.

The expressions for σ2
k, k = 1, 2 are given in Schmid and Schmidt (2007). The variances

of the above estimators can be analytically computed only in very few cases. In general,
they depend on unknown quantities which must be estimated, for example via bootstrap
methods. Bootstrap estimators of ρ1 and ρ2 have been proved to be consistent (Schmid
and Schmidt, 2006): on the other hand, the bootstrap estimators of the variances tend to
dramatically underestimate the variability of ρ̂kn, k = 1, 2. We have performed several
simulation experiments and our results always indicate that the coverage of the resulting
confidence intervals for both ρ1 and ρ2 may be quite far from the nominal value and that
the severity of the problem typically depends on the specific copula we sampled from.
On our approximate Bayesian side, once an estimator of the multivariate version of ρ
is available, it is easy to apply the procedure presented in Section 3, with no particular
modifications.

Figure 3 shows the results of a simulation study with a Clayton copula with ρ1 =
0.514 and ρ2 = 0.346. Frequentist intervals obtained via a bootstrap estimate of the
variance of ρ̂k, k = 1, 2 are always very narrow; the estimated coverage is about 5.8%
and it tends to further decrease as the degree of the dependence increases. It must be
said that, at least for reasonably large sample sizes, the frequentist point estimates of ρ1
and ρ2 are always very precise: however, the methods for evaluating their standard errors
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Figure 3: Comparison between frequentist (blue) and Bayesian (green) estimates of ρ1
(left) and ρ2 (right) as defined in equations (10) and (11). 20 out of 500 experiments
with simulation from a Clayton copula with θ = 1.076 (n = 1000); the true values are
the red vertical lines, the blue points represent the frequentist point estimates and the
green lines represent the approximated posterior distributions.

ρ̂1
freq ρ̂2

freq ρ̂1
Bayes ρ̂2

Bayes

d = 2 0.0032 0.0032 1.1933 1.1801
d = 3 0.0026 0.0026 1.0844 1.0853
d = 4 0.0026 0.0026 0.9495 0.9594
d = 5 0.0027 0.0027 0.8728 0.8914
d = 6 0.0027 0.0027 0.8211 0.8224
d = 7 0.0030 0.0030 0.8022 0.7882
d = 8 0.0031 0.0031 0.7828 0.7541
d = 9 0.0032 0.0032 0.7680 0.7492
d = 10 0.0035 0.0035 0.7558 0.7439
d = 25 0.0047 0.0047 0.7462 0.7480
d = 50 0.0073 0.0073 0.7299 0.7634

Table 3: Average lengths of the confidence intervals (based on a bootstrap estimator of
the variance of the estimates) and of the corresponding Bayesian 95% credible intervals
obtained in 50 repetitions of each experiment of dimension d by simulating data from
a Clayton copula with θ = 1.076.

seem to be seriously biased downward. We discuss examples of other copula families in
the Supplementary Material, where the coverage can be even worse than in the case
studied here.

We notice that the average length of the confidence intervals for ρ1 and ρ2 does not
change significantly as the dimension d of the data increases. Table 3 shows the average
length of the estimated confidence intervals for ρ1 and ρ2 and the average length of
the corresponding (approximated) Bayesian equal tailed 95% credible intervals. One
can notice that the average length of the Bayesian intervals shows a decreasing pattern
as d increases. Our conjecture is that, for fixed n, the amount of information on a
scalar quantity of interest tends to increase with the dimension of the data; the same
phenomenon is less significant on the frequentist side because the length of intervals is
always very small.
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Multivariate extensions of tail dependence indices are not yet fully developed. An
interesting proposal for Archimedean copulae is discussed in Di Bernardino and Rullière
(2016); consider a random vector X = (X1, X2, · · · , Xd), more precisely its version lying
in the copula space U = (U1, U2, · · · , Ud) and denote by I the set {1, 2, . . . , d}. Consider
two non-empty subset of I, Ih ⊂ I and Īh = I \ Ih of cardinality h ≥ 1 and d− h ≥ 1.
Provided that the limits exist, the multivariate tail dependence coefficients are given by

λIh,Īh
U = lim

u→1−
Pr{Ui ≥ u, i ∈ Ih|Ui ≥ u, i ∈ Īh},

λIh,Īh
L = lim

u→0+
Pr{Ui ≤ u, i ∈ Ih|Ui ≤ u, i ∈ Īh},

which describe the relative deviation of upper or lower tail probabilities of a random
vector from similar tail probabilities of a subset its component. These coefficients are
not uniquely defined, except that in the case of dimension d = 2, since they depend on
the choice of subsets Ih and Īh (in the case d = 2, h = d− h = 1 necessarily). De Luca
and Rivieccio (2012) make a specific choice of the subsets Ih and Īh and define the tail
dependence coefficients as:

λU = lim
u→1−

Pr{F1(X1) ≥ u|F2(X2) ≥ u, · · · , Fd(Xd) ≥ u},

λL = lim
u→0+

Pr{F1(X1) ≤ u|F2(X2) ≤ u, · · · , Fd(Xd) ≤ u}

by allowing for a simple copula representation

λU = lim
u→1−

C(1− u, · · · , 1− u)

(1− u)
; λL = lim

u→0+

C(u, · · · , u)
(u)

,

which is also used in Salazar and Ng (2015). These definitions will be used throughout
the paper. We have applied Algorithm 1 to the particular problem of nonparametrically
estimating the tail dependence indices for data simulated from a Clayton, a Frank and
a Gumbel copula. We have also derived the analytical formulas for λU and λL for these
copulae, which are available in the Supplementary Material.

As an alternative, Di Bernardino and Rullière (2016) propose to estimate the multi-
variate tail dependence indices through estimation of the copula generator; however, if
we assume to have no information about the shape of the copula function, it is difficult
to assess the estimation error in this way. On the other hand, our approach may be
easily extended to this multivariate setting.

Figure 4 shows the approximated posterior distributions for λU and λL obtained
with Algorithm 1 for 20 out of 500 experiments with simulations from a Clayton copula
with θ = 1.076. While the frequentist procedure seems very precise in the case of no tail
dependence, there is more variability in the estimates when there is tail dependence.
In particular, the lack of reliable methods of evaluating the uncertainty linked to the
estimates is a crucial problem: in 500 repetitions of the experiment the range of variation
of the point estimates for λL is [0.000, 0.379]. Simulations from other types of copulas
are available in the Supplementary Material.
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Figure 4: Approximated posterior distributions (green lines) of λU (left) and λL (right)
for simulations from a six-dimension Clayton copula with θ = 1.076 in 20 out 500
experiments. The blue points are the frequentist point estimates, the red lines are the
true values, λtrue

U = 0 and λtrue
L = 6−1/θ.

Figure 5: Log-returns of Monte dei Paschi di Siena (BMPS), Banco Popolare (BP), Uni-
credit (UCG), Intesa-Sanpaolo (ISP), Mediobanca (MB) for weekdays from 01/07/2013
to 30/06/2014.

8 Example: Dependence Among Financial Log-Returns

We now analyze a real dataset containing the log-returns of five Italian financial in-
stitutes (Monte dei Paschi di Siena, Banco Popolare, Unicredit, Intesa-Sanpaolo and
Mediobanca), as defined by the benchmark stock market index for the Borsa Italiana,
the Financial Times Stock Exchange Milano Indice di Borsa (FTSE-MIB). We assume
that the log-returns for each bank may be modeled as a generalized autoregressive con-
ditional heteroscedastic model with parameters (1, 1) and Student-t innovations. Data
refers to weekdays from 01/07/2013 to 30/06/2014; they are available on the web-page
https://it.finance.yahoo.com and are summarized in Figure 5. This example shows
the possibility, given by a copula representation of the multivariate distributions of
the log-returns, to model the univariate distributions in a flexible and realistic way by
considering fat tails, without concern on the existence or easiness of estimation of the
multivariate version. GARCH models are known to suffer of the curse of dimensionality
(McAleer et al., 2011), however with the copula representation it is possible to sepa-

https://it.finance.yahoo.com
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rately model the marginal distributions in this way and then separately estimate the
copula function. We will see in the following that the marginal modeling may have a
limited impact on the estimation of the posterior distribution of the functional of inter-
est of the dependence. The GARCH-t model may be expressed via data augmentation
(Geweke, 1993) as, for t = 1, . . . , T,

yt = εt

√
ν − 2

ν
ωtht; ht = α0 + α1y

2
t−1 + βht−1; (12)

εt ∼ N (0, 1); ωt ∼ IG
(ν
2
,
ν

2

)
,

where α0 > 0, α1, β >= 0, ν > 2 and IG(a, b) denotes the inverse gamma distribu-
tion with shape parameter a and scale parameter b. For each institute the posterior
distribution of the model parameters (α0, α1, β, ν) may be approximated by using the
R package bayesGARCH (Ardia and Hoogerheide, 2010).

There are several other models which may be used in this setting; for a comparison,
we use the quantile distributions, which are defined in terms of their inverse cumula-
tive distribution functions, which are functions of the quantiles of a standard normal
distribution (Rayner and MacGillivray, 2002). In particular, we use a g-and-k, given by

Q(z;A,B, g, k) = A+B ∗
(
1 +

1− exp (−gz)

1 + exp (−gz)

)(
1 + z2

)k
z,

where A, B, g and k are the parameter of location, scale, skewness and kurtosis re-
spectively and z ∼ N (0, 1). Here, we use the extension to time series data proposed by
Drovandi and Pettitt (2011), where zi follows a MA(1) model

zi = ηi + αηi−1, i = 1, · · · , n, (13)

where n is the number of observations and ηi
iid∼N(0, 1). Each zi is then divided by√

1 + α2 to ensure it is marginally distribution as a standard normal. The most used
approach to deal with this model, which is characterized by an intractable likelihood,
is through approximate Bayesian computation (Allingham et al., 2009), that is the
approach we are using here.

Once the marginal distributions are estimated, it is necessary to derive the pseudo-
data to construct the copula. In this particular situation, the density function is ana-
lytically unavailable and so the distribution function. It is, therefore, possible to use a
nonparametric approach to derive the pseudo-data, by using, for instance, a Pitman–Yor
process prior as described in Nieto-Barajas and Contreras-Cristán (2014). This example
shows the possibility to perform a separate analysis for the marginal distributions and
the joint distribution.

Once the pseudo-data have been derived, it is possible to apply Algorithm 1. Ap-
pendix C of the Supplementary Material describes the several steps of implementation
for the particular case of marginal GARCH-t models, for the approximation of the poste-
rior distribution of the first version of the multivariate Spearman’s ρ, say ρ1; for the tail
dependence indices, it is possible to use a Unif(0, 1) prior instead of the Unif(−1, 1).



C. Grazian and B. Liseo 1011

Figure 6: Approximation of the posterior distribution of the multivariate Spearman’s ρ1
(left) and ρ2 (right) for the log-returns of the investments of five Italian institutes based
on 10, 000 simulations. On the top, there are the approximation obtained by assuming
a GARCH-t(1,1) model, while at the bottom there are the approximation obtained by
using a nonparametric procedure in the marginal estimation. The blue vertical lines
represent the frequentist estimates.

Without loss of generality, we have decided to describe the case where an equal number
of simulations is chosen in the first step, in such a way that the posterior distributions
of all the univariate marginals are approximated by samples of equal size.

Figure 6 shows the results of the Bayesian procedure based on Algorithm 1 for ρ1
and ρ2 as defined in Section 7. The approximated Bayesian posterior means are 0.604
and 0.600 for ρ1 with the parametric and the nonparametric procedure respectively and
0.559 and 0.561 for ρ2; the posterior distribution are centered around the frequentist
estimates, however they provide a quantification of the uncertainty that is not available
with the frequentist procedure (as already shown in Section 7). The impact of the
choice of the estimation procedure at the marginal step does not seem to have a great
impact on the results. Figure 7 shows the corresponding results for the multivariate tail
dependence indices as defined in Section 7. In this case, the posterior distributions are
strongly concentrated around small values, the posterior for λU is strongly concentrated
around 0 and the posterior for λL is concentrated around 0.12. The gist of this example
is to emphasize the role of the Bayesian approach and the copula representation in the
quantification process of tail codependence among different series which would be very
hard by simply looking at Figure 5.

9 Discussion

This paper describes a novel method for obtaining the posterior distribution of a quan-
tity of interest in cases where either the model is only partially specified or the compu-
tation or the evaluation of the complete likelihood is too costly. In particular, we have
considered the case of copula models, although extensions to the general semiparametric
approach in a Bayesian framework are easy to consider. The proposed method is delib-
erately approximated, since it avoids a complete specification of the statistical model.
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Figure 7: Approximation of the posterior distribution of the multivariate tail dependence
indices, λU (left) and λL (right) for the log-returns of the investments of five Italian
institutes based on 10000 simulations. The blue lines are the frequentist estimates.

This may be extremely useful in applications where the user is only interested in a
particular aspect of the data, for example in particular summaries of the dependence
structure. In these situations, the introduction of any further parametric assumption
would generally be difficult to verify and defend and it would presumably introduce a
lack of robustness. Finally, our approach provides a natural quantification of the uncer-
tainty of the estimates of common measures of dependence in copula theory, in contrast
with standard available methods.

Supplementary Material

Approximate Bayesian Inference in Semiparametric Copula Models – Supplementary
Material (DOI: 10.1214/17-BA1080SUPP; .pdf).
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