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Computationally Efficient Multivariate
Spatio-Temporal Models for High-Dimensional

Count-Valued Data (with Discussion)

Jonathan R. Bradley∗, Scott H. Holan†,‡, and Christopher K. Wikle§

Abstract. We introduce a computationally efficient Bayesian model for predict-
ing high-dimensional dependent count-valued data. In this setting, the Poisson
data model with a latent Gaussian process model has become the de facto model.
However, this model can be difficult to use in high dimensional settings, where
the data may be tabulated over different variables, geographic regions, and times.
These computational difficulties are further exacerbated by acknowledging that
count-valued data are naturally non-Gaussian. Thus, many of the current ap-
proaches, in Bayesian inference, require one to carefully calibrate a Markov chain
Monte Carlo (MCMC) technique. We avoid MCMC methods that require tuning
by developing a new conjugate multivariate distribution. Specifically, we intro-
duce a multivariate log-gamma distribution and provide substantial methodolog-
ical development of independent interest including: results regarding conditional
distributions, marginal distributions, an asymptotic relationship with the multi-
variate normal distribution, and full-conditional distributions for a Gibbs sampler.
To incorporate dependence between variables, regions, and time points, a multi-
variate spatio-temporal mixed effects model (MSTM) is used. To demonstrate our
methodology we use data obtained from the US Census Bureau’s Longitudinal
Employer-Household Dynamics (LEHD) program. In particular, our approach is
motivated by the LEHD’s Quarterly Workforce Indicators (QWIs), which consti-
tute current estimates of important US economic variables.
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1 Introduction

Latent Gaussian process (LGP) models have become a standard tool for modeling de-
pendencies in count-valued and other non-Gaussian datasets; see Diggle et al. (1998),
Gelfand and Smith (2007), Rue et al. (2009), Sections 4.1.2 and 7.1.5 of Cressie and
Wikle (2011), Holan and Wikle (2016), Gelfand and Schliep (2016), and the references
therein. One standard LGP for modeling dependent count-data defines a Poisson data
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model (i.e., the data given latent processes), and a Gaussian process model. This strat-
egy allows one to combine a familiar model for counts (i.e., a Poisson distribution), and
a familiar model for dependent data (i.e., a Gaussian process). The LGP strategy is
extremely prevalent in the dependent data literature, and branches out to many other
subdisciplines in statistics (e.g., see Lee and Nelder (2000) and Lee and Nelder (2001)
in the generalized linear models literature, and Lawson (2006) in the disease mapping
literature).

Unfortunately, this pervasive strategy is becoming increasingly difficult to use, since
the size of modern datasets are typically extremely large (e.g., see Bradley et al.,
2014, for a discussion). In the Bayesian setting, this leads to all-too-common computa-
tional difficulties. Namely, defining proposal distributions for Markov chain Monte Carlo
(MCMC) algorithms can be extremely difficult in the high-dimensional setting (e.g., see
Rue et al., 2009, for a discussion on convergence issues of MCMC algorithms for LGPs).
Thus, the primary goal of this article is to introduce new multivariate distribution the-
ory for count-data that leads to a Gibbs sampler with full-conditional distributions that
are straightforward to simulate from.

Ideally, we would like to obtain convergence of the MCMC algorithm the first time
it is executed, low prediction error, and a wait-time that rivals the Gaussian data set-
ting. A multivariate spatio-temporal model for high-dimensional count-valued data that
achieves this wish-list requires significant methodological development to avoid the com-
putational issues that naturally arise when using various ad-hoc Metropolis-Hastings
algorithms. Specifically, we introduce a multivariate log-gamma distribution1 to use in
place of the multivariate normal distribution within the LGP paradigm. The main moti-
vating feature of this modeling framework is that it incorporates dependency and results
in full-conditional distributions (within a Gibbs sampler) that are easy to simulate from.

Tuning MCMC algorithms for implementing an LGP is a well-known and recurring
problem for applied Bayesian statisticians (e.g., see Rue et al., 2009). Consequently,
the computationally efficient distribution theory proposed here could have an impor-
tant impact on a number of different communities, and is therefore of independent
interest. For example, count-valued datasets are ubiquitous within the official statis-
tics setting. A clear majority of the US Census Bureau’s American Community Survey
(ACS) period estimates are count-valued (e.g., see http://factfinder.census.gov/).
High-dimensional count-valued data are also widespread in ecology (e.g., see Royle and
Wikle, 2005; Wu et al., 2013, among others) and climatology (e.g., see Wikle and An-
derson, 2003). Hence, the methodology presented here offers an exciting avenue that
makes new research for modeling correlated count-valued data practical for modern big
datasets.

There are other choices besides the LGP strategy available in the literature (e.g.,
see Nieto-Barajas and Huerta (2017) for an example model for pareto data). For count-
valued data, an important alternative to the LGP paradigm was proposed by Wolpert
and Ickstadt (1998), who introduced a (spatial) convolution of gamma random variables,

1To avoid confusion, we note that a “log-gamma” random variable is the natural log of a gamma
random variable, while a “log-normal” random variable represents the exponential of a normal random
variable.

http://factfinder.census.gov/
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and provide a data augmentation scheme for Gibbs sampling in the spatial-only setting.
In fact there are strong connections between our approach and the method in Wolpert
and Ickstadt (1998). In particular, Wolpert and Ickstadt (1998) convolve gamma random
variables using a spatial kernel, while we work on a transformed space and take a linear
combination of log-gamma random variables. However, their framework can only be
applied for smaller-dimensional spatial-only settings.

In the non-spatially referenced settings some have used different types of multi-
variate log-gamma (and gamma) distributions as an alternative to the multivariate
normal distribution (e.g., see Lee and Nelder, 1974; Kotz et al., 2000; Demirhan and
Hamurkaroglu, 2011). The common formulation of a multivariate log-gamma distribu-
tion, starts with defining a multivariate gamma distribution, which is then transformed
to the log-scale (Demirhan and Hamurkaroglu, 2011). Multivariate gamma distributions
have a rich history (e.g., see Johnson and Wichern, 1999), and are often formulated by
defining a multivariate moment generating function and using the inverse Laplace trans-
form to define a probability density function (for a commonly used multivariate gamma
moment generating function see Vere-Jones (1967), Moran and Vere-Jones (1969), and
Griffiths (1984), and see Bernardoff (2006) for a more general formulation). However,
we have found that transforming a multivariate gamma distribution leads to complica-
tions for Gibbs sampling. For example, in Demirhan and Hamurkaroglu (2011), their
full-conditional distributions only have a known form when performing component-wise
updating, and these component-wise full-conditional distributions are approximated.
Instead, we develop a multivariate log-gamma distribution by defining a discrete convo-
lution of independent log-gamma random variables. This approach leads to block-wise
full-conditional distributions that are easy to simulate from.

It is not our intent to hold Gibbs sampling as an ideal. There are several Bayesian
computation techniques that have shown to perform very well. For example, Hamilto-
nian MCMC (HMC; Neal, 2011) and Integrated nested Laplace approximations (INLA;
Rue et al., 2009) are two such techniques. The use of HMC can lead to a noticeable
increase in the efficiency. This is partially because HMC allows one to jointly update all
parameters, while the Gibbs sampler used in this paper imposes block updates. INLA is
not an MCMC approach, and involves fast numerical integration of a Laplace approxi-
mate. However, in this article we find the Gibbs sampler an attractive approach because
it is simple to implement. Furthermore, our proposed distribution theory allows us to
capitalize on this simplicity.

We use a motivating dataset to demonstrate the wide range of complex and mod-
ern problems that this new distribution theory can handle. Specifically, the Longitudi-
nal Employer Household Dynamics (LEHD) program’s Quarterly Workforce Indicators
(QWIs), which has become a key data source for understanding US economy (e.g., see
Abowd et al. (2009), Abowd et al. (2013), and Bradley et al. (2015), and the references
therein). Many of the QWIs are suppressed due to disclosure limitations and because
some states fail to sign the required Memorandum of Understanding (MOU) for a given
year (Abowd et al., 2009, Sections 5.5.1 and 5.6). Additionally, the QWIs currently do
not have measures of uncertainty associated with them, which limits their use. (By “un-
certainty,” we mean a margin of error or mean squared prediction error associated with
the predictions.) Thus, there is a need to estimate missing values and measures of error.
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Recently, Bradley et al. (2015) efficiently modeled 7,530,037 Gaussian QWIs jointly,
over 40 variables (20 industries and two genders), 92 time-points, and 3,145 different
counties. To do this, they developed a type of dynamic spatio-temporal model that
is referred to as the multivariate spatio-temporal mixed effects model (MSTM). The
MSTM has been used to produce estimates of continuous QWIs (e.g., average quarterly
income) that have complete spatio-temporal coverage and corresponding measures of
uncertainty. These advancements, although important for the LEHD community, have
limited utility on QWIs. This is because approximately 70% of the QWIs are count-
valued (e.g., county-level beginning of quarter employment), which implies that the
MSTM is applicable to a small portion of the entire scope of the QWIs.

There are many ways that one may use the multivariate log gamma distribution to
model the multivariate spatio-temporal dependencies within count-valued QWIs. For
example, a naive approach (for this particular dataset) would be to assume separability
between each variable, region, and time (Daniels et al., 2006). However, QWIs exhibit
complex dependencies that are non-separable, asymmetric, and non-stationary (Bradley
et al., 2015). Thus, we incorporate the Moran’s I (MI) basis functions, MI propagator
matrix, and MI prior distribution from Bradley et al. (2015) to better describe the
dependency of latent processes. The resulting hierarchical statistical model is called the
Poisson multivariate spatio-temoral mixed effects model (P-MSTM).

The remainder of this article is organized as follows. In Section 2 we introduce a
multivariate log-gamma distribution and provide the necessary technical development
for this distribution. In Section 3, we use this new distribution theory to define the P-
MSTM. Section 4 provides a simulation study, and an illustration where we efficiently
jointly analyze/model 4,089,755 count-valued QWIs obtained from the US Census Bu-
reau’s LEHD program. Finally, Section 5 contains discussion. For convenience of expo-
sition, proofs of the technical results are provided in Supplemental Materials (Bradley
et al., 2017).

2 Conjugate Distributions for Correlated Poisson Data

The rudimentary quantity in our development of the multivariate log-gamma distribu-
tion is the (univariate) log-gamma random variable q (Prentice, 1974; Kotz et al., 2000;
Crooks, 2015), where

q ≡ log(γ), (1)

and γ is a gamma random variable with shape parameter α > 0 and rate parameter
κ > 0. There are many relationships between the log-gamma distribution and other dis-
tributions including the Gumbel distribution, the Amoroso distribution, and the normal
distribution (e.g., see Crooks, 2015). These relationships are derived by considering spe-
cial cases of the probability density function (pdf) associated with q in (1). The mean
and variance of the log gamma random variables are well known (e.g., see Prentice,
1974, among others) and given by

E[q] = ω0(α) + log(κ)

V ar[q] = ω1(α).
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The function ωk, for non-negative integer k, is the polygamma function, and for a real

value z we have that ωk(z) ≡ dk+1

dzk+1 log(Γ(z)).

Straightforward change-of-variable techniques lead to the following expression for
the pdf of q,

f(q|α, κ) = κα

Γ(α)
exp {αq − κexp(q)} ; q ∈ R, (2)

where f will be used to denote a generic pdf and LG(α, κ) denotes a shorthand for the
pdf in (2). The importance of the log-gamma random variable for our purpose of model-
ing count-valued data is transparent in the univariate setting. Let Z|q ∼ Pois{exp(q)},
and notice that

f(Z|q) ∝ exp {Zq − exp(q)} . (3)

It is immediate from (2) and (3) that

q|Z,α, κ ∼ LG {Z + α, 1 + κ} . (4)

This conjugacy between the Poisson distribution and the log-gamma distribution mo-
tivates us to develop a multivariate version of the log-gamma distribution to model
multivariate spatio-temporal count-valued data.

2.1 The Multivariate Log-Gamma Distribution

Let the m-dimensional random vector w = (w1, . . . , wm)′ consist of m mutually inde-
pendent log-gamma random variables such that wi ∼ LG(αi, κi) for i = 1, . . . ,m. Then,
define

q = c+Vw, (5)

where the matrix V ∈ R
m × R

m and c = (c1, . . . , cm)′ ∈ R
m. Call q in (5) a multivari-

ate log-gamma (MLG) random vector. The linear combination in (5) is similar to the
derivation of the multivariate normal distribution; that is, if one replaces w with an m-
dimensional random vector consisting of independent and identically standard normal
random variables, one obtains the multivariate normal distribution (e.g., see Anderson,
1958; Johnson and Wichern, 1999, among others) with mean c and covariance VV′.
However, an important difference in our approach is that we have additional shape and
rate parameters associated with each component, which could possibly be different. This
suggests that the MLG distribution is more flexible than the Gaussian distribution.

Equation (5) is inspired by the method presented in Wolpert and Ickstadt (1998).
Specifically, if the integral in Wolpert and Ickstadt (1998)’s (3.1) is discretized then
you obtain v′w∗, where v is an n-dimensional vector that consists of spatial kernel
operators evaluated at a particular spatial location and w∗ consists of independent
gamma (not log-gamma) random variables. Our choice to define the linear combination
in log space is important because it will allow us to avoid computationally expensive
data augmentation steps within a Gibbs Sampler.

Now, to use the MLG distribution in a Bayesian context, we require its pdf, which
is formally stated in Theorem 1.



258 Multivariate Spatio-Temporal Models for Count Data

Theorem 1. Let q = c + Vw, where c ∈ R
m, the m × m real valued matrix V

is invertible, and the m-dimensional random vector w = (w1, . . . , wm)′ consists of m
mutually independent log-gamma random variables such that wi ∼ LG(αi, κi) for i =
1, . . . ,m.

i. Then q has the following pdf:

f(q|c,V,α,κ) =

1

det(VV′)1/2

(
m∏
i=1

καi

i

Γ(αi)

)
exp
[
α′V−1(q− c)− κ′exp

{
V−1(q− c)

}]
; q ∈ R

m,

(6)

where “det” represents the determinant function, α ≡ (α1, . . . , αm)′ and κ ≡
(κ1, . . . , κm)′.

ii. The mean and variance of q is given by,

E[q] = c+V(ω0(α)− log(κ))

cov[q] = V diag(ω1(α))V′, (7)

where for a generic m-dimensional real-valued vector k = (k1, . . . , km)′ let diag(k)
be an m×m dimensional diagonal matrix with main diagonal equal to k.

Proof. See Supplemental Appendix A in Bradley et al. (2017).

Let MLG(c,V,α,κ) be shorthand for the pdf in (6). When comparing (2), (3), and
(6) we see that the univariate log-gamma pdf, the Poisson pdf, and the multivariate
log-gamma pdf share a basic structure. Specifically, all three pdfs have an exponential
term and a double exponential term. This pattern is the main reason why conjugacy
exists between the Poisson distribution and the log gamma distribution, which we take
advantage of in subsequent sections.

2.2 Conditional Distributions for Multivariate Log-Gamma Random
Vectors

Gibbs sampling from full-conditional distributions will require simulating from condi-
tional distributions of multivariate log-gamma random vectors. Thus, we provide the
technical results needed to simulate from these conditional distributions.

Proposition 1. Let q ∼ MLG(c,V,α,κ), and let q = (q′1, q
′
2)

′, so that q1 is g-
dimensional and q2 is (m−g)-dimensional. In a similar manner, partition V−1 = [H B]
into an m × g matrix H and an m × (m − g) matrix B. Then, the conditional pdf of
q1|q2 = d, c,V,α,κ is given by

f(q1|q2 = d, c,V,α,κ) = f(q1|H,α,κ1.2) = M exp {α′Hq1 − κ′
1.2exp(Hq1)} , (8)
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where κ1.2 ≡ exp{Bd−V−1c− log(κ)} and the normalizing constant M is

M =
1

det(VV′)1/2

(
m∏
i=1

καi
i

Γ(αi)

)
exp
(
α′Bd−α′V−1c

)[∫
f(q|c,V,α,κ)dq1

]
q2=d

.

Proof. See Supplemental Appendix A in Bradley et al. (2017).

Let cMLG(H,α,κ1.2) be a shorthand for the pdf in (8), where “cMLG” stands for
“conditional multivariate log-gamma.” Proposition 1 shows that cMLG does not fall
within the same class of pdfs as the joint distribution given in (6). This is primarily
due to the fact that the m× g real-valued matrix H, within the expression of cMLG in
(8), is not square. This property is different from the multivariate normal distribution,
where both marginal and conditional distributions obtained from a multivariate normal
random vector, are multivariate normal (e.g., see Anderson, 1958; Johnson and Wichern,
1999, among others). The fact that cMLG in (8) is not MLG is especially important for
Gibbs sampling because we will need to simulate from cMLG, and we cannot use (5) to
do this. Thus, we require an additional result that allows us to simulate from cMLG.

Theorem 2. Let q ∼ MLG(0m,V,α,κ), and partition this m-dimensional random
vector so that q = (q′1, q

′
2)

′, where q1 is g-dimensional and q2 is (m − g)-dimensional.
Additionally, consider the class of MLG random vectors that satisfy the following:

V−1 =
[
Q1 Q2

] [ R1 0g,m−g

0m−g,g
1
σ2
Im−g,

]
, (9)

where in general 0k,b is a k × b matrix of zeros; Im−g is a (m − g) × (m − g) identity
matrix;

H =
[
Q1 Q2

] [ R1

0m−g,g,

]
is the QR decomposition of the m×g matrix H; the m×g matrix Q1 satisfies Q′

1Q1 = Ig,
the m× (m− g) matrix Q2 satisfies Q′

2Q2 = Im−g, and Q′
2Q1 = 0m−g,g; R1 is a g× g

upper triangular matrix; and σ2 > 0. Then, the following statements hold.

(i) The marginal distribution of the g-dimensional random vector q1 is given by

f(q1|H,α,κ) = M1 exp {α′Hq1 − κ′exp(Hq1)} , (10)

where the normalizing constant M1 is

M1 = det ([H Q2])

(
m∏
i=1

καi
i

Γ(αi)

)
1[∫

f(q|0m,V = [H Q2]
−1,α,κ)dq1

]
q2=0m−g

.

(ii) The g-dimensional random vector q1 is equal in distribution to (H′H)−1H′w,
where the m-dimensional random vector w ∼ MLG(0m, Im,α,κ).

Proof. See Supplemental Appendix A in Bradley et al. (2017).
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From Proposition 1 and Theorem 2(i) it is evident that this particular class of
marginal distributions (defined in Theorem 2) falls into the same class of distributions
as the conditional distribution of q1 given q2. That is, from Proposition 1 and Theo-
rem 2(i), cMLG(H,α,κ) is equal to the pdf in (10). This equality is important because
Theorem 2(ii) provides a way to simulate from cMLG. Furthermore, Theorem 2(ii)
shows that it is (computationally) easy to simulate from cMLG provided that g � m.
Recall that H is m × g, which implies that computing the g × g matrix (H′H)−1 is
computationally feasible when g is “small.”

It is important to emphasize that Theorem 2 gives an equivalence between the cMLG
and a very specific class of marginal distributions. That is, there are a number of re-
strictions (i.e., (9)) that defines the class of marginal distributions from the multivariate
log-gamma that are equivalent to a cMLG. The cMLG is equivalent to the marginal
distribution that can be interpreted as an orthogonal projection of the m-dimensional
vector of independent log-gamma random variables w onto the column space spanned
by the columns of H.

2.3 Multivariate Log Gamma Approximation of the Multivariate
Normal Distribution

An extremely common model to fit dependent count-valued data is the aforementioned
LGP. Recently, Gelfand and Schliep (2016) reviewed and discussed why LGPs have
become an industry standard in spatial statistics. This motivates us to investigate a
connection between the multivariate log-gamma distribution and the multivariate nor-
mal distribution.

Proposition 2. Let q ∼ MLG(c, α1/2V, α1, α1). Then q converges in distribution to a
multivariate normal random vector with mean c and covariance matrix VV′ as α goes
to infinity.

Proof. See Supplemental Appendix A in Bradley et al. (2017).

The asymptotic result in Proposition 2 is on the shape parameter, which can be
specified as any value that one would like. Thus, Proposition 1 provides motivation
for those who prefer to use the LGP, since the multivariate log-gamma distribution
can be specified to be “arbitrarily close” to the commonly used multivariate normal
distribution. In practice, we have found that α = 1000 to be sufficiently large; however,
one must verify an appropriate value of α for their specific setting. Specifically, a tuning
stage could be incorporated into the Gibbs sampler, and α can be increased until the
ratio of the Gaussian pdf to the MLG pdf is “close to 1.”

3 Modeling Dependent Count-Valued Data

We now introduce the use of the MLG distribution to model dependent count-valued
data. To demonstrate the wide use of the MLG we consider many sources of dependency
including space, time, and generic multivariate dependence.
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3.1 The Poisson Multivariate Spatio-Temporal Mixed Effects Model

Consider Poisson count-data that are recorded over � = 1, . . . , L different variables,

t = T
(�)
L , . . . , T

(�)
U different time points, and N

(�)
t areas from the set D

(�)
t,P ≡ {Ai :

i = 1, . . . , N
(�)
t }, where Ai ⊂ R

d is a region (e.g., a US county) and the subscript

“P” stands for “prediction regions.” Let D
(�)
t,P consist of disjoint areal units; that is,

Ai ∩ Aj = ∅ (i 
= j). In practice, all possible prediction regions are not observed, and

hence, we denote the set of n
(�)
t areal units that are associated with observed data with

D
(�)
t,O ⊂ D

(�)
t,P, where the subscript “O” stands for “observed regions.”

Denote a count-value located at areal unit A, time point t, and variable � with

Z
(�)
t (A). Here, Z

(�)
t (A) is assumed to have the following conditional distribution:

Z
(�)
t (A)|Y (�)

t (A)
ind∼ Pois

(
exp
{
Y

(�)
t (A)

})
; � = 1, . . . , L, t = T

(�)
L , . . . , T

(�)
U , A ∈ D

(�)
t,P,

(11)

where the canonical log-link is used. The latent process {Y (�)
t (A)} is assumed to have

the following mixed effects model representation:

Y
(�)
t (A) = x

(�)
t (A)′β +ψ

(�)
t (A)′ηt + ξ

(�)
t (A); � = 1, . . . , L, t = 1, . . . , T, A ∈ D

(�)
t,P,
(12)

where x
(�)
t is a p-dimensional vector of known multivariate spatio-temporal covariates,

and β ∈ R
p is an unknown vector-valued parameter specified to have a MLG prior with

mean zero, variance parameter σ2
β , shape parameter αβ > 0, and rate parameters κβ > 0.

The hyperparameters are chosen so that the prior on β is “flat,” and we have found
that results are robust to this specification. Specifically, in Section 4 we set σβ = αβ =
κβ = 1000. The r-dimensional MLG random vectors in the set {ηt} are assumed to be
mean-zero, have an unknown covariance parameters {σ2

K,tKt}, and unknown shape and

rate parameters {αt} and {κt}. The set {ξ(�)t (A)} consists of independent log-gamma
random variables with mean zero and unknown variance parameter σ2

ξ,t, and unknown
shape and rate parameters {τt} and {θt}.

The real-valued r-dimensional multivariate spatio-temporal basis functions (denoted
with ψ) has rank r (with r � n). In Section 4, we use the Moran’s I (MI) basis functions
(Griffith, 2000, 2002, 2004), which has useful properties related to spatial confounding
(Clayton et al., 1993; Reich et al., 2006; Hodges and Reich, 2011), dimension reduction,
and the Moran’s I statistic (Moran, 1950) (see the Supplemental Appendix B in Bradley
et al., 2017 for more details). Our use of the MI basis function is motivated primarily
in it’s use for dimension reduction (e.g., see Hughes and Haran, 2013; Bradley et al.,
2015, among others), since we are interested in big data problems.

The random effects {ηt} are specified to have a first-order vector autoregressive
structure. Bradley et al. (2015) has provided a class of real-valued propagator matrices
{Mt}. These propagator matrices lead to an extremely parsimonious model since they
can be assumed known and are specified based on the angle between covariates (see the
Supplemental Appendix B in Bradley et al., 2017 for more details). Additionally, the
covariance parameters {σ2

K,tKt} are highly structured, with {σK,t} as the only unknown
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parameters (e.g., see Bradley et al., 2015). Specifically, let σK,t > 0, and for each t let

K−1
t ≡ arg min

C
{||Qt−ΨP

t C
−1ΨP′

t ||2F}, whereΨP
t ≡ (ψ

(�)
t (A) : � = 1, . . . , L,A ∈ D

(�)
P,t)

′.

Here, Qt = INt −At is the precision associated with an intrinsic conditionally autore-
gressive model. Additionally, the minimization to obtain Kt is among r × r positive
semi-definite matrices C, and for a generic real-valued square matrix H the Frobenius
norm is defined as ||H||2F = trace(H′H). We let At be the adjacency matrix correspond-

ing to the edges formed by {D(�)
t,P : � = 1, . . . , L}.

Parameter models are required for σK,t and σξ,t. We show (in Section 3.2) that full-
conditionals are known for σK,t and σξ,t if the priors on 1/σK,t and 1/σξ,t are truncated
log-gamma distributions. (These priors are truncated below by zero to ensure that σK,t

and σξ,t are positive.) In general, let “TruncLG(ω, ρ, h)” be a shorthand for a log-
gamma distribution with shape ω > 0 and rate ρ > 0, truncated below by h. Similarly,
the gamma priors on κt and κξ,t results in gamma full-conditional distributions. Let
“Gamma(ζ, δ)” be a shorthand for a gamma distribution with shape ζ > 0 and rate
δ > 0. The hyperparameters are chosen so that the priors are “flat,” and we have found
that results are robust to this specification. Specifically, in Section 4 we set ω = ρ =
ζ = δ = 1000.

Finally, we consider discrete uniform priors for αt and τt. That is, it is assumed that

f(αt) =
1

U
; αt = a1, . . . , aU

f(τt) =
1

U
; τt = a1, . . . , aU ; 1 ≤ t ≤ T, (13)

where for our results in Section 4 many different choices for a1, . . . , aU were considered,
and we found that a1 = 200, a2 = 210, . . . , a200 = 10, 000 is appropriate for that applica-
tion. Any number of different parameter models may be considered, and we suggest that
one seriously considers alternatives to what we use in (13). However, for our purpose of
prediction, the simple discrete uniform prior is appropriate. Let “DU(a1, . . . , aB)” be
the discrete uniform distribution over the values a1, . . . , aB.

The culmination of (11) through (13) leads to what we call the Poisson multivariate
spatio-temporal mixed effects model (P-MSTM). To aid the reader an outline of the
P-MSTM is presented in Model 1.

3.2 Model Implementation

The P-MSTM is extremely general, and can be adapted in variety of ways. In particular,
the P-MSTM is flexible enough to handle different basis functions, propagator matrices,
and parameter models that may be more suitable in the context of different problems.
This includes point referenced basis functions, which are used to model geostatistical
data (e.g., see Wikle et al., 2001; Cressie and Johannesson, 2008, among others). Ad-

ditionally, Model 1 is well defined for the case when L = 1, T = 1, and/or |D(�)
t,P| = 1

for each t and �. This implies that our modeling framework can be readily applied to
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Model 1: Latent MLG Poisson Multivariate Spatio-Temporal Mixed Effects Model

Data Model :

Z
(�)
t (A)|β,ηt, ξ

(�)
t (A)

ind∼ Pois
[
exp
{
x
(�)
t (A)′β +ψ

(�)
t (A)′ηt + ξ

(�)
t (A)

}]
;

� = 1, . . . , L, t = T
(�)
L , . . . , T

(�)
U , A ∈ D

(�)
t,O

Process Model 1 : ηt|ηt−1, σK,t, αt, κt ∼ MLG
(
Mtηt−1, σK,tK

1/2
t , αt1r, κt1r

)
;

2 ≤ t ≤ T, T > 1

Process Model 2 : η1|σK,1, α1, κ1 ∼ MLG
(
0r,1, σK,1K

1/2
1 , α11r, κ11r

)
;

Process Model 3 : ξt|σξ,t, τt, θt ∼ MLG(0nt,1, σξ,tInt , τt1nt , θt1nt) ; 1 ≤ t ≤ T

Parameter Model 1 : β ∼ MLG(0p,1, σβ Ip, αβ 1p, κβ 1p) ;

Parameter Model 2 :
1

σK,t
∼ TruncLG (ω, ρ, 0) ; 1 ≤ t ≤ T

Parameter Model 3 :
1

σξ,t
∼ TruncLG (ω, ρ, 0) ; 1 ≤ t ≤ T, ω > 0, ρ > 0

Parameter Model 4 : αt ∼ DU(a1, . . . , aU ); 1 ≤ t ≤ T

Parameter Model 5 : τt ∼ DU(a1, . . . , aU ); 1 ≤ t ≤ T

Parameter Model 6 : κt ∼ Gamma(ζ, δ); 1 ≤ t ≤ T

Parameter Model 7 : θt ∼ Gamma(ζ, δ); 1 ≤ t ≤ T, ζ > 0, δ > 0 (14)

multivariate-only, spatial-only, times series, multivariate spatial, multivariate time se-
ries, and spatio-temporal datasets (in addition to multivariate spatio-temporal data).
This generality is especially notable because it is rather straightforward to simulate
from the full-conditional distributions implied by Model 1.

Proposition 3. Suppose the n-dimensional data vector Z follows the P-MSTM distri-
bution given in Model 1. Then, we have the following full conditional distribution for
the unknown latent random vectors, and unknown parameters.

f(β|·) = cMLG(Hβ ,αβ ,κβ)

f(ηt|·) = cMLG(Hη,t,αη,t,κη,t); 2 ≤ t ≤ T − 1 (provided T > 1)

f(η1|·) = cMLG(Hη,1,αη,1,κη,1) (provided T > 1)

f(ηT |·) = cMLG(Hη,T ,αη,T ,κη,T )

f(ξt|·) = cMLG(Hξ,t,αξ,t,κξ,t); 1 ≤ t ≤ T

f (1/σK,t|·) ∝ cMLG(HK,t,ωt,ρt)I(σK,t > 0); 1 ≤ t ≤ T

f (1/σξ,t|·) ∝ cMLG(Hσ,t,ωξ,t,ρξ,t)I(σξ,t > 0); 1 ≤ t ≤ T

f (κt|·) = Gamma(ζt, δt); 1 ≤ t ≤ T
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f (θt|·) = Gamma(ζξ,t, δξ,t); 1 ≤ t ≤ T

f(αt = ai|·) =
f
(
ηt|c = Mtηt−1,V = σK,tK

1/2
t ,α = ai1r,κ = κt1r

)
∑U

b=1 f
(
ηt|c = Mtηt−1,V = σK,tK

1/2
t ,α = ab1r,κ = κt1r

) ;
1 ≤ t ≤ T, i = 1, . . . U,

f(τt = ai|·) =
f (ξt|c = 0nt,1,V = σξ,tInt ,α = ai1nt ,κ = θt1nt)∑U
b=1 f (ξt|c = 0nt,1,V = σξ,tInt ,α = ab1nt ,κ = θt1nt)

;

1 ≤ t ≤ T, i = 1, . . . U, (15)

where f(β|·) represents the pdf of β given all other process variables, parameters, and
the data. For each t, we define f(ηt|·), f(ξt|·), f(1/σK,t|·), f(1/σξ,t|·), f(κt|·), f(κξ,t|·),
f(αt|·), and f(τt|·) in a similar manner. For ease of exposition, in Table 1 we provide
the definitions of each quantity in (15).

Proof. See Supplemental Appendix A in Bradley et al. (2017).

The proof of Proposition 3 is given in Bradley et al. (2017). Additionally, the step-
by-step instructions outlining the implementation of the Gibbs sampler based on (15)
is given in Algorithm 1. Notice that it is relatively easy to simulate from the cMLG
distributions in (15) using Theorem 2(ii); provided that r � n and p � n. That is, from
Theorem 2(ii) simulating from the cMLG full-conditionals in (15) involves computing
the inverse of p× p and r× r matrices, which involves computations on the order of p3

and r3, respectively. Thus, joint samples are taken from the cMLG distributions stated
in Proposition 3 using Theorem 2(ii). This is a particularly important point because
there exists other multivariate log-gamma approaches that result in component-wise
updating (Demirhan and Hamurkaroglu, 2011).

Proposition 3 can be applied to the aforementioned special cases of multivariate
spatio-temporal data (i.e., spatial-only, times series, multivariate-only, spatio-temporal,
multivariate spatial, and multivariate times series datasets). Thus, the implications of
Proposition 3 are enormous, as it provides a way to efficiently model a wide range of
less general but interesting special cases not explicitly considered in this manuscript.
As an example, the full conditional distributions for the multivariate-only setting (i.e.,

when L > 1, T = 1, and D
(�)
1 ≡ 1) are presented in Supplemental Appendix D (Bradley

et al., 2017). Additionally, the full conditional distributions for the spatial-only setting

(i.e., when L = 1, T = 1, and when |D(1)
1 | > 1) and a demonstration using spatially-

referenced US Census estimates obtained from the American Community Survey are
presented in Supplemental Appendix E (Bradley et al., 2017).

The P-MSTM captures a balance between modeling complex dependencies, and the
computational needs required to jointly model datasets. In particular, many datasets
express non-stationarity in both space and time, and space-time interactions. Allow-
ing for non-stationarity and space-time interactions eliminates the possibility of using
computationally advantageous methodologies based on the linear models for coregion-
alization and separability (e.g., see Gelfand and Vounatsou, 2003; Daniels et al., 2006;
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6
5

Definition Additional Notes

Hβ = (X′
1, . . . ,X

′
T , σ

−1
β Ip)

′

Hη,t = (Ψ′
t, σ

−1
K,tK

−1/2
t ,−σ−1

K,t+1K
−1/2
t+1 Mt+1)

′ 1 ≤ t < T

Hη,T = (Ψ′
T , σ

−1
K,TK

−1/2
T )′

Hξ,t = (Int , σ
−1
ξ,t Int)

′ 1 ≤ t ≤ T

HK,t = (η′
tK

1/2′
t − η′

t−1MtK
1/2′
t , 1)′ 1 < t ≤ T

HK,1 = (η′
1K

1/2′
1 , 1)′ 1 < t ≤ T

Hσ,t = (ξt, 1)
′ 1 ≤ t ≤ T

Hξ,t = (Int , σ
−1
ξ,t Int)

′ 1 ≤ t ≤ T

κβ =
{
exp(Ψ1η1 + ξ1)

′, . . . , exp(ΨTηT + ξT )
′, κβ1

′
p

}′
κη,t =

{
exp(Xtβ + ξt)

′, κt exp(−σ−1
K,tK

−1/2
t Mtηt−1)

′, κt+1 exp(σ
−1
K,t+1K

−1/2
t+1 ηt+1)

′
}′

1 < t < T

κη,1 =
{
exp(X1β + ξ1)

′, κ11
′
r, κ2 exp(σ

−1
K,tK

−1/2
2 η2)

′
}′

Provided T > 1

κη,T =
{
exp(XTβ + ξT )

′, κT exp(−σ−1
K,TK

−1/2
T MTηT−1)

′
}′

If T = 1 then replace MT and
ηT−1 with 0r,r and 0r, respec-
tively.

κξ,t =
{
exp(Xtβ +Ψtηt)

′, θt1
′
nt

}′
1 ≤ t ≤ T

ρt = (κt1
′
r, ρ)

′
1 ≤ t ≤ T

ρξ,t =
(
θt1

′
nt
, ρ
)′

1 ≤ t ≤ T

δt = δ + 1′
rexp

{
σ−1
K,tK

−1/2
t (ηt −Mtηt−1)

}
1 < t ≤ T

δ1 = δ + 1′
rexp

(
σ−1
K,1K

−1/2
1 η1

)
Table 1: A comprehensive list of matrices, vectors, and constants used within the Proposition 3. If there are no zero counts
within the dataset, then set dβ = dη,1 = · · · = dη,T = dξ,1 = · · · = dξ,T = 0.
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δξ,t = δ + 1′
nt
exp
(
σ−1
ξ,t ξt

)
1 ≤ t ≤ T

αβ =
{
Z′

1 + dβ1
′
n1
, . . . , Z ′

T + dβ1
′
nT

, αβ1
′
p − dβσβ

∑T
t=1 1

′
nt
Xt

}′

αη,t =
{
Z′

t + dη,t1
′
nt
, αt1

′
r −

dη,tσK,t

2 1′
nt
ΨtK

1/2
t , αt+11

′
r +

dη,tσK,t+1

2 1′
nt
ΨtM

′
t+1K

1/2
t+1

}′
1 < t < T

αη,1 =
{
Z′

1 + dη,11
′
n1
, α11

′
r −

dη,1σK,1

2 1′
n1
Ψ1K

1/2
1 , α21

′
r +

dη,1σK,2

2 1′
n1
Ψ1M

′
2K

1/2
2

}′
Provided T > 1

αη,T =
{
Z′

T + dη,T1
′
nT

, αT1
′
r − dη,1σK,T1

′
nT

ΨTK
1/2
T

}′

αξ,t =
{
Z′

t + dξ,t1
′
nT

, τt1
′
nt

− dξ,tσξ,t1
′
nt

}′
1 ≤ t ≤ T

ωt = (αt1
′
r, ω)

′
1 ≤ t ≤ T

ωξ,t =
(
τt1

′
nt
, ω
)′

1 ≤ t ≤ T
ζξ,t = ζ + ntτt 1 ≤ t ≤ T
ζt = ζ + rαt 1 ≤ t ≤ T

dβ = α/
[
1 + max

{
abs
(
σβ

∑T
t=1 1

′
nt
Xt

)}]
dη,t = α/

(
1 + max

[
abs
{
(σK,t1

′
nt
ΨtK

1/2
t ,−σK,t+11

′
nt
ΨtM

′
t+1K

1/2
t+1)
}])

1 ≤ t < T

dη,T = α/
(
1 + max

[
abs
{
σK,T1

′
nt
ΨtK

1/2
t

}])
dξ,t = α/ (1 + σξ,t) 1 ≤ t ≤ T

Table 1: (Continued).
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Algorithm 1: The Gibbs Sampler for the P-MSTM

1. Initialize β, σ2
K,t, σ

2
ξ,t, and ξt and ηt for each t. Denote these initializations with

β[0], σ
2[0]
K,t , σ

2[0]
ξ,t , σ

2[0]
β , and ξ

[0]
t and η

[0]
t for each t. Set b = 1.

2. Set β[b] equal to a draw from cMLG(Hβ ,αβ ,κβ) using Theorem 2(ii).

3. If t < T , then set η
[b]
t equal to a draw from cMLG(Hη,t,αη,t,κη,t) using Theo-

rem 2(ii).

4. Set η
[b]
T equal to a draw from cMLG(Hη,T ,αη,T ,κη,T ) using Theorem 2(ii).

5. For each t let ξ
[b]
t be a draw from cMLG(Hξ,t,αξ,t,κξ,t) using Theorem 2(ii).

6. For each t, repeatedly simulate 1

σ
[b]
K,t

from cMLG(HK,t,ωt,ρt) until
1

σ
[b]
K,t

is positive.

7. For each t, repeatedly simulate 1

σ
[b]
ξ,t

from cMLG(Hσ,t,ωξ,t,ρξ,t) until
1

σ
[b]
ξ,,t

is pos-

itive.
8. For each t, draw α

[b]
t = ai with probability,

f
(
η
[b]
t |c = Mtη

[b]
t−1,V = σ

[b]
K,tK

1/2
t ,α = ai1r,κ = κ

[b−1]
t 1r

)
∑U

b=1 f
(
η
[b]
t |c = Mtη

[b]
t−1,V = σ

[b]
K,tK

1/2
t ,α = ab1r,κ = κ

[b−1]
t 1r

) ; i = 1, . . . U,

where recall that f is defined in Theorem 1(i), and let 1r be an r-dimensional
vector of ones.

9. For each t, draw τ
[b]
t = ai with probability,

f
(
ξ
[b]
t |c = 0nt,1,V = σ

[b]
ξ,tInt ,α = ai1nt ,κ = θ

[b−1]
t 1nt

)
∑U

b=1 f
(
ξ
[b]
t |c = 0nt,1,V = σ

[b]
ξ,tInt ,α = ab1nt ,κ = θ

[b−1]
t 1nt

) ; i = 1, . . . U,

where recall that f is defined in Theorem 1(i).

10. For each t, simulate κ
[b]
t from Gamma(ζt, δt).

11. For each t, simulate θ
[b]
t from Gamma(ζξ,t, δξ,t).

12. Set b = b+ 1.
13. Repeat steps 2 through 12 until b is equal to the desired value (i.e., convergence

is achieved).

Jin et al., 2007). Thus, other features of the P-MSTM are specified to allow for high-

dimensional data. In particular, a reduced rank approach (Cressie and Johannesson,

2008) is assumed (i.e., r � n) and confounded random effects are removed (Hughes

and Haran, 2013). The literature on non-stationarity in both space and time is rela-

tively new (e.g., see Ma, 2002; Huang and Hsu, 2004; Sigrist et al., 2011; Garg et al.,

2012; Bradley et al., 2015), and the P-MSTM provides a viable approach for modeling

non-stationarity in count-valued data.
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3.3 Overdispersion Properties of the P-MSTM

A reoccurring modeling question involved with Poisson spatial models is the charac-
terization of overdispersion (e.g., see De Oliveira, 2003, 2013). Following the notation
of (De Oliveira, 2013) we define the relative overdispersion at time t, variable �, and

location A ∈ D
(�)
P,t with

OD
(�)
t (A) =

var
{
Z

(�)
t (A)

}
− E

{
Z

(�)
t (A)

}
E
{
Z

(�)
t (A)

} .

In Proposition 4, we state the expression of OD
(�)
t (A) for the P-MSTM.

Proposition 4. Suppose the n-dimensional data vector Z follows the P-MSTM dis-

tribution given in Model 1. For a given time t, variable �, and location A ∈ D
(�)
P,t, let

(k1, . . . , kr) = σKψ
(�)
t (A)′K

−1/2
t . Suppose αβ is strictly larger than the absolute value

of the smallest negative element in the p-dimensional vector X
(�)
t (A) = (X

(�)
t,1 (A), . . . ,

X
(�)
t,p (A))

′. Likewise, let αt be strictly larger than the absolute value of the smallest neg-
ative element in the r-dimensional vector (k1, . . . , kr)

′. Then, we have the following

expression for the relative overdispersion at time t, variable �, and location A ∈ D
(�)
P,t

OD
(�)
t (A) =

⎛⎝ 1

κ
∑p

i=1 X
(�)
t,i (A)σβ

β κ
∑ r

i=1 ki

t κξ,t

⎞⎠
×
[{

p∏
i=1

Γ(αβ + 2X
(�)
t,i (A)σβ)

Γ(αβ +X
(�)
t,i (A)σβ)

}{
r∏

i=1

Γ(αt + 2 ki)

Γ(αt + ki)

}{
Γ(αξ,t + 2)

Γ(αξ,t + 1)

}

−
{

p∏
i=1

Γ(αβ +X
(�)
t,i (A)σβ)

Γ(αβ)

}{
r∏

i=1

Γ(αt + ki)

Γ(αt)

}{
Γ(αξ,t + 1)

Γ(αξ,t)

]]
. (16)

Proof. See Supplemental Appendix A in Bradley et al. (2017).

It is immediately apparent from (16) that the shape and rate parameters of the
P-MSTM (along with the covariates, basis functions, and covariances) are important
for understanding the relative overdispersion of a count-valued observation from Model
1. As we see below, this connection between the relative overdispersion and the shape
and rate parameters, also provides a connection between the shape and rate parameters
and the correlations induced by the P-MSTM.

Proposition 5. Suppose that for a given time t, variable �, and location A ∈ D
(�)
P,t,

Z
(�)
t (A) ∼ Pois[exp{Y (�)

t (A)}]. Assume that Z
(�)
t (A) is conditionally independent of

Z
(m)
h (B) for t, h = 1, . . . , T , �,m = 1, . . . , L, A ∈ D

(�)
P,t, B ∈ D

(m)
P,h , and t 
= h, � 
= m,

or A 
= B. Let Y
(�)
t (A) be a measurable random variable for every t = 1, . . . , T , � =
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1, . . . , L, A ∈ D
(�)
P,t where the mean and variance of exp{Y (�)

t (A)} are finite, and the

covariogram of exp{Y (�)
t (A)} is positive semi-definite. Then,

corr
{
Z

(�)
t (A), Z

(m)
h (B)

}
= corr

[
exp
{
Y

(�)
t (A)

}
, exp

{
Y

(m)
h (B)

}]
H

(�,m)
t,h (A,B),

where

H
(�,m)
t,h (A,B) =

[{
1 +

1

OD
(�)
t (A)

}{
1 +

1

OD
(m)
h (B)

}]−1/2

,

“corr” is the correlation function, t, h = 1, . . . , T , �,m = 1, . . . , L, A ∈ D
(�)
P,t, B ∈ D

(m)
P,h ,

and t 
= h, � 
= m, or A 
= B.

Proof. See Supplemental Appendix A in Bradley et al. (2017).

Proposition 5 shows that corr{Z(�)
t (A), Z

(m)
h (B)} is bounded between −H

(�,m)
t,h (A,B)

and H
(�,m)
t,h (A,B). Furthermore, Proposition 5 shows that as the relative overdispersion

decreases the closer to zero H
(�,m)
t,h (A,B) becomes. Thus, low overdispersion implies a

very strong restriction on the range of possible values for corr{Z(�)
t (A), Z

(m)
h (B)}. This

is true for every choice of correlation function for exp{Y (�)
t (A)}. (Note that we are not

assuming the P-MSTM is true in Proposition 5.) This suggests that Parameter Models
4 − 7 are valuable, since the resulting posterior distributions will allow the data to

inform the appropriate range of values for corr{Z(�)
t (A), Z

(m)
h (B)}.

The implications of Propositions 4 and 5, suggest that we should investigate which
values of the shape and rate produce low and high relative overdispersion

Proposition 6. Suppose the n-dimensional data vector Z follows the P-MSTM dis-

tribution given in Model 1. For a given time t, variable �, and location A ∈ D
(�)
P,t, let

(k1, . . . , kr) = σKψ
(�)
t (A)′K

−1/2
t . Suppose αβ is strictly larger than the absolute value

of the smallest negative element in the p-dimensional vector X
(�)
t (A) = (X

(�)
t,1 (A), . . . ,

X
(�)
t,p (A))

′. Likewise, let αβ be strictly larger than the absolute value of the smallest nega-
tive element in the r-dimensional vector (k1, . . . , kr)

′. Then, for a given time t, variable

�, and location A ∈ D
(�)
P,t

(i) If αβ → ∞, αt → ∞, and αξ,t → ∞ then OD
(�)
t (A) → 0.

(ii) If κ
∑p

i=1 X
(�)
t,i (A)σβ

β κ
∑ r

i=1 ki

t κξ,t → ∞ then OD
(�)
t (A) → 0.

(iii) If κ
∑p

i=1 X
(�)
t,i (A)σβ

β κ
∑ r

i=1 ki

t κξ,t → 0 then OD
(�)
t (A) → ∞.

Proof. Proposition 6(i) follows immediately from Stirling’s formula (shown in Bradley
et al., 2017). Proposition 6(ii) and Proposition 6(iii) follow immediately from Proposi-
tion 4.
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Propositions 5 and 6 show that the value of the correlation between two different
counts can be controlled by either inflating or deflating the shape and rate parameters.
This suggests that the P-MSTM can model the correlation between two different Poisson
counts in a very flexible manner.

4 Results: LEHD Simulations and Analysis

The QWIs, which can be accessed at http://www.census.gov/, are extremely com-
prehensive including important economic indicators over 96 quarters, every US county,
and every industry as defined by the North Atlantic Classification System (NAICS). To
date, there are no alternative data sources that measure US economic variables on as
fine a spatio-temporal resolution for each NAICS industry. Thus, the extent of the QWIs
coupled with the lack of alternative data sources makes the QWIs especially valuable
for US economists. Furthermore, these factors motivate the need to obtain high-quality
predictions of QWIs at every county along with measures of error.

The P-MSTM provides a way to estimate missing QWIs and provide measures of
uncertainty. Nevertheless, there are several features of the QWIs that have not been
incorporated into the P-MSTM, which could potentially be used to improve upon our
analyses. In particular, similar to survey statistics there may be issues surrounding cen-
soring and modifications due to non-response and disclosure (e.g., see Lohr (1999) for
a standard reference, and Quick et al. (2015) for a recent paper with spatial data).
In principle, incorporating these types of features into the P-MSTM would more real-
istically represent the QWIs; however, in general, this information is not available to
data users. Although there is potential to develop the P-MSTM in this direction, these
extensions are outside the scope of this paper. Consequently, the results in Section 4.2
should be interpreted as an illustration of the use of the P-MSTM to model a large de-
pendent dataset. In what follows, we evaluate the performance of the P-MSTM through
an empirical simulation study (Section 4.1) using a subset of the QWI dataset, and an
analysis of the beginning of the quarter employment QWI (Section 4.2).

All computations were computed using Matlab (Version 8.0) on a dual 10 core 2.8
GHz Intel Xeon E5-2680 v2 processor, with 256 GB of RAM.

4.1 A Simulation Study

We choose to calibrate our simulation model towards QWIs. That is, we set the mean
of a Poisson random variable equal to a count-valued QWI and use this distribution to
generate a “pseudo data-value.” Then, the pseudo data and the P-MSTM are used to
predict the QWIs. This empirical simulation study design is similar to what is done in
Bradley et al. (2015), and is motivated as a way to produce simulated data that behave
similar to what one might observe in practice.

Let Z
(�)
t (A) represent the number of individuals employed at the beginning of the

quarter, for industry �, Minnesota county A, and quarter t. Then, simulate pseudo-data

http://www.census.gov/
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Figure 1: (a), The LEHD estimated number of individuals employed in the beginning of

the 4-th quarter of 2013 within the information industry (i.e., {Z(1)
96 (A)}) in Minnesota.

For comparison, a map of the pseudo-data is {R(1)
96 (A)} computed using (17) is given in

(b). The white areas indicate “suppressed” QWIs. In (c), we provide the predictions of

{Ẑ(1)
96 (A)} that are computed using P-MSTM and the pseudo-data {R(�)

t (A)} from (17).

as follows,

R
(�)
t ∼ Pois(Z

(�)
t (A) + 1); � = 1, 2, t = 76, . . . , 96, A ∈ D

(�)
MN,t, (17)

whereD
(�)
MN,t represents the set of counties in Minnesota (MN) that have available QWIs,

� = 1 denotes the information industry, and � = 2 represents the professional, scientific
and technical services industry. These two industries were chosen for this simulation
study since they are highly correlated. Notice that we add 1 in (17) so that the mean
of the Poisson random variables are also greater than 0.

Randomly select 65% of the areal units in D
(�)
MN,t to be “observed,” and denote

this new set with D
(�)
MN,O,t. For illustration, we use the following covariates x

(�)
t (A) =

(1, I(� = 1), . . . , I(� = 19), |A|, I(t = 1), . . . , I(t = 1, . . . , 95), population(A))′, where
population(A) is the 2010 decennial Census value of the population of county A and
I(·) is the indicator function. Following Hughes and Haran (2013)’s rule of thumb for
specifying r (i.e., set r equal to approximately the top 10% of the available basis func-
tions), we set r = 42 (see the Supplemental Appendix B in Bradley et al., 2017). Thus,
L = 2, T = 20, and Kt is 42× 42.

In Figure 1, we present the QWIs (panel a), the pseudo data (panel b), and the
predictor (panel c) given by

E
[
Z

(�)
t (A)|{R(�)

t (A) : � = 1, 2, t = 76, . . . , 96, A ∈ D
(�)
MN,O,t}

]
;

� = 1, 2, t = 96, A ∈ D
(�)
MN,t,

where the expectation is obtained using the P-MSTM and Algorithm 1. In general,
the predictions reflect the overall pattern of the data. This is further supported in
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Figure 2: In (a), we plot the LEHD estimated number of individuals employed in the
beginning of the 4-th quarter of 2013 within the information industry in Minnesota, and
the predicted values. In (b), we produce scatterplots of the LEHD estimated number of
individuals employed in the beginning of the 4-th quarter of 2013 within the information
industry in Minnesota, versus the predicted values.

Figure 2(a), where we plot the log QWIs and the log predictions over an arbitrary
ordering of the regions. Again we see that the predictions tend to track the truth
fairly closely. In Figure 2(b) we provide a scatter-plot of the log QWIs versus the log
predictions. Here, the predictions are similar to the truth (the correlation is 0.69).

Now, consider 100 independent replications of the set {R(�)
t,j (A) : � = 1, 2, t =

76, . . . , 96, A ∈ D
(�)
MN,O,t}, where j = 1, . . . , 100 and for each j we have that R

(�)
t,j (A) is

simulated according to (17). The results (not shown) indicate that the P-MSTM has a
high predictive performance similar to the results based on a single replicate presented
in Figures 1 and 2.

The computational performance of the P-MSTM is of particular interest. To eval-
uate the Markov chain we use the effective sample size (ESS). Specifically, for each

A, �, and t we compute the effective sample size, denoted by ESS
(�)
t (A). The ESS is

computed as the number of MCMC replicates times the ratio of the within chain vari-
ance and the between chain variance (e.g., see Kass et al. (2016), Liu (2008), Robert
and Casella (2013), and Gong and Flegal (2016) for component-wise ESS, and Vats
et al. (2016) for a multivariate ESS). If the ESS is smaller (larger) than the number
of replicates, this suggests that the MCMC chain has positive (negative) correlations
between values in the chain. Thus, ESS close to the total number of MCMC replicates
computed implies an efficient MCMC. In Figure 3, we show a boxplot, over the 100

replicates of the median ESS
(�)
t (A) across all t = 76, . . . , 96, � = 1, 2 and A ∈ D

(�)
MN,t.

Here, the Markov chain involved 10,000 iterations and we see that the component-wise
ESS tends to be 7,800 indicating a computationally efficient Markov chains. To further
evaluate the computational performance, we compare to the ESS from a LGP version of
Model 1. Specifically, consider the model that replaces the truncated log-gamma priors
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Figure 3: Boxplots of the median ESS, where the median is taken across all t =

76, . . . , 96, � = 1, 2 and A ∈ D
(�)
MN,t. The boxplot is plotted over the 100 replicate

simulations. The left panel gives the boxplot associated with the P-MSTM, and the
right panel gives the boxplot associated with the LGP (details are left to Supplemental
Appendix C).

with inverse-gamma priors, removes parameter models 4−7 and replaces MLG distri-
butions with Gaussian distributions. The proposal distribution for the Metropolis step
was derived using a Taylor series expansion on the Poisson likelihood. This Taylor series
expansion leads to a Gaussian likelihood that is used as the proposal distribution (see
Supplemental Appendix C in Bradley et al., 2017, for more details). The ESS is also
presented in Figure 3. Here, the ESS is consistently lower than 10,000 (the median is
approximately 340) suggesting that the Metropolis-within-Gibbs sampler used for this
LGP is inefficient.

4.2 Predicting the Mean Beginning of the Quarter Employment

We now show that one can obtain reasonable predictions of the mean number of in-
dividuals employed at the beginning of a quarter, over all 3,145 US counties, L = 20
NAICS sectors, and T = 96 quarters, using the high-dimensional QWI dataset of size
4,089,755 (partially presented in Figure 4(a)). The P-MSTM should be used in settings
where there appears to be dependence. As an informal analysis, Moran’s I statistics
(Moran, 1950) were computed for each spatial field in this dataset. A clear majority of
these statistics suggested that spatial dependence is present.

For illustration, we again use the following covariates x
(�)
t (A)= (1, I(� = 1), |A|, I(t =

1), . . . , I(t = 95), population(A))′ and set r = 42. This choice was also supported using
Spiegelhalter et al. (2002)’s deviance information criterion (DIC), where we considered
r = 38, . . . , 46, computed the DIC associated with each choice of r, and found that
r = 42 performs the best in this range of values of r. Thus, there are a total of p = 99
large-scale parameters (i.e., β), 96× 42 = 4, 032 small-scale random effects (i.e., {ηt}),
a total of 4,089,755 fine-scale random effects (i.e., {ξt}), and 96 × 6 = 576 additional
parameters (i.e., {σK,t}, {σξ,t}, {αt}, {τt}, {κt}, and {θt}). The analogous LGP poste-
rior distribution is of a similar dimension as the posterior distribution associated with
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Figure 4: (a), Map of the LEHD estimated number of individuals employed in the begin-

ning of the 4-th quarter of 2013, within the information industry (i.e., {Z(1)
96 (A)}), and

counties within the Northeast US. The state borders are highlighted as a reference. In
(b) and (c), we present the predictions and standard deviations, respectively. Note that
(a,b,c) are only a subset of the available QWIs, predictions, and posterior standard devi-
ations. Specifically, there are QWIs available over the 20 NAICS sectors, all US counties,
and 96 quarters. Additionally, the predictions and posterior standard deviations have
complete coverage over all 20 sectors, 3,145 US counties, and 96 quarters.

the P-MSTM (i.e., see Model 2 in Supplemental Appendix C and compare to Model 1

in the Main-Text). The primary difference is that the LGP does not have shape and

rate parameters (i.e., {αt}, {τt}, {κt}, and {θt}), and hence has 96× 4 = 384 fewer pa-
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rameters. As discussed in Section 3.3, the shape and rate parameters allow for greater
flexibility in modeling multivariate spatio-temporal overdispersion.

It consistently takes approximately 5 seconds to compute 1 MCMC iteration from
the P-MSTM. Furthermore, the entire chain (of 10,000 iterations) took approximately
14.5 hours to compute, and the preprocessing time (i.e., computing the basis functions,
propagator matrices, etc.) took approximately 7 hours to compute. The median ESS
for this illustration is approximately 8,121, which indicates that we are obtaining an
efficient Markov chain. Moreover, we check batch mean estimates of Monte Carlo error
(with batch size 50) (e.g., see Roberts, 1996; Jones et al., 2006), and compute Gelman–
Rubin diagnostics based on three independent chains initialized at draws from the prior
distribution (e.g., see Gelman and Rubin, 1992). These Gelman–Rubin diagnostics were
consistently less than 1.03. All of these diagnostics provide evidence to suggest that
there is no lack of convergence of the MCMC algorithm.

In Figures 4(a,b,c), we plot the beginning of quarter employment, the corresponding
predictions, and the associated posterior standard deviation. The maps in Figure 4 are
for the 4-th quarter of 2013, the education industry, and for counties in Northeast US.
It should be emphasized that predictions have been made over all 3,145 US counties,
20 NAICS sectors, and 96 quarters. Upon comparison of Figure 4(a) to Figure 4(b)
we see that the predictions reflect the general patterns of the data. Furthermore, the
posterior standard deviations in Figure 4(c) are very small (the median is approximately
515) considering that Poisson random variables have their mean equal to their variance.
These patterns are consistent across different industries and times. Thus, we see that
the in-sample error of the predictors based on the P-MSTM tends to be small and have
relatively little bias.

5 Discussion

In this article, we propose a fully Bayesian approach to efficiently model count-valued
data jointly over different variables, regions, and/or time-points. To do this, we have
introduced a comprehensive framework for jointly modeling Poisson data that could
possibly be referenced over different variables, regions, and times. This methodology is
rooted in the development of new distribution theory that makes Gibbs sampling for
correlated count-valued data computationally feasible. Specifically, we propose a multi-
variate log-gamma distribution. The MLG distribution leads to computationally efficient
sampling of full conditional distributions within a Gibbs sampler. Also, this MLG speci-
fication is used within a multivariate spatio-temporal mixed effects model specification,
which incorporates non-separable asymmetric non-stationary dependencies.

There are many implications of a general (easy to fit) model for multivariate spatio-
temporal count-valued data. First, it is well-known that it is generally more difficult
to fit correlated Poisson data than correlated Gaussian data, since Poisson generalized
linear mixed models often involve computational expensive Metropolis-Hasting updates
within a Gibbs sampler. However, this is no longer the case as Proposition 3 shows that
the multivariate log-gamma distribution leads to full-conditional distributions that are
easy to simulate from. Moreover, we show that the MLG distribution offers flexibility
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in modeling overdispersion through shape and rate parameters and the MLG can ap-
proximate a Gaussian distribution. Another important implication of the P-MSTM is
that it can be used in a wide range of special cases including: spatial-only, times series,
multivariate-only, spatio-temporal, multivariate spatial, and multivariate times series
datasets.

The generality of the P-MSTM is especially notable considering that the P-MSTM
can be applied to “big datasets.” It is absolutely crucial that modern statistical method-
ology be computationally feasible, since “big data” has become the norm with sizes that
are ever-increasing. Thus, in this article we demonstrated that the P-MSTM is computa-
tionally feasible for a big dataset (of 4,089,755 observations) consisting of count-valued
QWIs obtained from US Census Bureau’s LEHD program. Furthermore, the P-MSTM
was shown to give small in-sample errors. Using an empirically motivated simulation
study, we also show that the P-MSTM leads to small out-of-sample errors, and is com-
putationally efficient (in terms of median component-wise ESS).

The P-MSTM is flexible enough to allow for many different specifications. For ex-
ample, one could use a different class of areal basis functions, point referenced basis
functions for lattice data defined on a continuous spatial domain, a different class of
propagator matrices, and different parameter models (or even estimates) for covari-
ances. Thus, there are many exciting open research directions, that build on this new
distributional framework for count-valued data.

It is important to note that the latent random variables are defined on a lattice (i.e.,
not in continuous space). This places restrictions on our model. Specifically, questions of
spatial coherence (on continuous spatial domains) and relationships to a Poisson process
can not be developed for our model (e.g., see Wolpert and Ickstadt, 1998, where they
develop these properties for a Poisson-gamma random field). Thus, an important area
of future research will be to consider a continuous (i.e., not on a lattice) version of our
model, so that these properties of the log-gamma distribution can be investigated.

Supplementary Material

Supplemental Materials: Computationally Efficient Multivariate Spatio-Temporal Mod-
els for High-Dimensional Count-Valued Data (DOI: 10.1214/17-BA1069SUPP; .pdf).
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Stefano Castruccio∗

Discussion

It is both a pleasure and an honor to be called to discuss a work with such far-reaching
implications in spatio-temporal modeling. This paper can indeed set a new (theoretical
and applied) standard for modeling dependent counts, so I share the authors’ enthusi-
asm and hopes to propose a considerable more efficient alternative to Gaussian latent
processes.

My discussion is divided into two parts, in the first I will discuss modeling aspects
that could be implemented as future directions of research to expand this work, while
in the second I will focus on general practical issues to allow a wide dissemination of
this approach across the statistical community.

1 Modeling considerations

My first comment is about nonstationarity and nonseparability. While the Poisson Mul-
tivariate Spatio-Temporal Mixed Effects Model (P-MSTM) is not constrained by sta-
tionarity and/or separability, its dependence structure is implied, and not explicitly
defined, from the distributional assumptions of the model and the prior. So would it
be possible to find particular subclasses of Multivariate Log-Gamma that would allow
to capture (more or less abrupt) changes in the dependence structure as dictated by
external factors such as (static or dynamic) geographical descriptors? The structure
of some count processes from physical science are indeed influenced by sharp natural
boundaries such as mountain regions or land/ocean domains.

Secondly, there are applications where inference on a temporal scale smaller than
the sampling frequency, or on the gradient might be of interest. While this is an area
of spatio-temporal Statistics that is relatively unexplored compared to the continuous
space/discrete time, there are some recent examples in the Gaussian setting, e.g. Quick
et al. (2013), that prompts me to ask the authors if and how the P-MSTM could
be generalized in this direction, and to what extent scalability for massive data sets
can be preserved. Could the first order autoregressive structure predicated here for
ηt, encapsulated in the propagator matrix Mt, be generalized to a continuous state
process without resorting to linear models of coregionalizations, which would disrupt
the scalability?
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A final and related point is about embedding the lattice into a continuous process.
I do agree with the authors on the importance of this, and I believe this is going to be
one key point to convince the broad community to use this methodology extensively.
The existence of a continuous Gaussian measure in space and time has allowed the de-
velopment of many theoretical results for both infill and increasing domain asymptotics
that would be very valuable to investigate in this setting as well.

2 Inference and dissemination

Inference is efficient, 5 seconds per Markov Chain Monte Carlo (MCMC) iteration for
a data set of 4 million observation is noticeable, but 14.5 hours for an analysis is still a
long time. So I wonder how and to what extent the algorithm can be parallelized, and
if yes, how can this be implemented in a software package (see my next comment), and
for which data sets and computer architectures (many fast cores vs fewer slow cores)
distributed computing could be beneficial. In the long term, Graphics Processing Unit
(GPU) computing could also be explored (and will likely be more beneficial), but I
suspect the software is not mature and flexible enough to be able to implement the
algorithm in this work.

As a final note, among the fundamental novelties in spatio-temporal Statistics over
the last decades, Integrated Nested Laplace Approximation (INLA, Rue et al. (2009)),
has played a key role. While the methodological innovation was sizable, a key factor
driving its success is the proposal of a comprehensive R package with an ever-increasing
set of case studies and automatic tools for inference (Lindgren and Rue, 2015), which
fundamentally changed the practice of modeling latent Gaussian processes in space and
time, and allowed dissemination far beyond the topical boundaries. In the same spirit,
I believe the availability of an R (and possibly MATLAB) package would be a neces-
sary condition for the success of such approach, with a set of appropriate case studies
for all settings (multivariate, space, space/time, etc.) and, perhaps most importantly,
automatic methods for prior calibration for practitioners with limited Statistics training.
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William Weimin Yoo∗

Abstract. I begin my discussion by summarizing the methodology proposed and
new distributional results on multivariate log-Gamma derived in the paper. Then,
I draw an interesting connection between their work with mean field variational
Bayes. Lastly, I make some comments on the simulation results and the perfor-
mance of the proposed Poisson multivariate spatio-temporal mixed effects model
(P-MSTM).

Keywords: multivariate log-Gamma, spatio-temporal, variational Bayes, mean
field, Latent Gaussian Process.

I would like to congratulate the authors for such an interesting and important work
in spatio-temporal statistics. Indeed, high-dimensional count-valued data is a norm in
large-scale census studies across the world, and the authors proposed an efficient and
innovative procedure to model this complex data that scales well with its size. Let me
briefly summarize their methodology before I begin my discussion. At the highest hierar-
chy, counts are modelled using a Poisson distribution and the log-link is used to link its
mean with the underlying latent process. This latent process in turn has a mixed effects
model representation, where the fixed effect is a linear combination of spatio-temporal
covariates and the random effect part consisting of spatio-temporal basis functions. The
authors took a departure from the Latent Gaussian Process approach (widely regarded
as the industry standard), by modeling the fixed and random effects coefficients with
multivariate log-Gamma (MLG) priors.

As its name suggests, the log-Gamma is simply the logarithm of a Gamma dis-
tributed random variable. The authors then took the opportunity to develop new dis-
tributional theory for MLG’s. In particular, they derived probability density function
of MLG under affine transformation and also their conditional distributions. The most
striking result here is Theorem 2, where they established equivalence between the con-
ditional MLG to certain classes of marginal MLG. This then enables them to sample
efficiently from conditional MLG’s and they designed a fast Gibbs sampler based on
this new sampling scheme.

The strategy of reducing the simulation of a complicated conditional MLG to sim-
ulation using its equivalent marginal distribution, is reminiscence to another class of
methods called Variational Bayes (VB) used especially in the machine learning commu-
nity for massive data problems. As opposed to Markov Chain Monte Carlo (MCMC)
algorithms, VB seeks an analytic approximation to the posterior such that this approx-
imation is close to the posterior in Kullback–Leibler divergence. A widely used strategy
in VB is to assume that the approximating multivariate distribution has a factorised
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form (mean field VB), e.g., product of marginals across parameters and latent variables.
It is conceivable that for a Poisson likelihood and MLG priors as considered in this pa-
per, the resulting best approximating marginals for the parameters will also be a MLG
due to conjugacy and I think they will have the same form as in (10) of Theorem 2
in Bradley et al. (2018). As a result, the mean field VB will also produce an iterative
procedure much like the Gibbs sampler algorithm proposed by the authors, but it will
be a set of circular equations updating the hyperparameters (scale and rate) of the MLG
marginal approximations. Although there are not much theory on VB, but empirical
studies in real-world massive data applications seem to show that VB has comparable
estimation performance as MCMC and is several magnitudes faster (Giordano et al.
(2017)).

My other comment centers around the out-of-sample simulation experiment. In Fig-
ure 1, the proposed model captures the global spatial pattern well but seems to under-
estimate regions with high employment, and I was wondering how could one fine-tune
the model to better capture these local county-level characteristics. A very natural
idea is to include economic indicators for a county (if available) or some seasonality
correction term in the fixed effect covariates, since employment numbers depend on
economic/commercial activities of a county and they tend to follow job market seasons.
My last point is about the performance between the proposed P-MSTM model and the
“industry standard” LGP (Latent Gaussian Process). It was discussed in the paper that
LGP is inefficient compared to P-MSTM, but I am also curious about the predictive
performance of P-MSTM in comparison to LGP for the simulation and the actual data
analysis considered in this paper. In particular, whether P-MSTM achieves the same
accuracy as LGP using much less computer running time.

Massive and high-dimensional data is now a norm in spatio-temporal statistics, and
this paper, through the development of new distributional theory, opens up a way to
model and compute these complex datasets. Interesting future work might include gen-
eralizing the proposed modeling strategy to encompass both count (discrete) and contin-
uous data. I envision that this paper will inspire new research activities by encouraging
statisticians to explore models beyond Gaussian Process and stationarity.
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Andrew Hoegh∗, Kenneth Flagg†, and Christian Stratton‡

Abstract. Bradley, Holan, and Wikle detail a novel approach for jointly mod-
eling correlated, high-dimensional multivariate count data. The development of
the multivariate log-gamma distribution enables conjugate prior specification and
efficient Gibbs sampling for a variety of high-dimensional multivariate count data
settings. We discuss one small addition that would enable this method to be used
with sparse counts in a multivariate zero-inflated Poisson setting.

Keywords: multivariate count data, zero inflated Poisson.

1 Introduction

Bradley, Holan, and Wikle implement and detail a novel methodological approach for
jointly modeling correlated, high-dimensional multivariate count data using a Poisson
multivariate spatio-temporal mixed effects model (P-MSTM). The development of the
multivariate log-gamma distribution in combination with Moran‘s – I basis functions and
propagator matrices enable conjugate prior specification and efficient Gibbs sampling.
The P-MSTM model is useful for a variety of multivariate count data settings including
spatio-temporal structures and more general high-dimensional count data frameworks.
This work is a large step forward for dealing with high-dimensional data and we look
forward to incorporating it into our future work.

A Poisson sampling model is a convenient option for count data; however, two issues
typically require more complicated modeling: overdispersion and excess zeros. The P-
MSTM is well equipped to handle overdispersion as detailed in Section 3.3, but the
framework cannot directly handle excess zeros. We highlight an extension to the P-
MSTM framework that can handle an excess of zeros.

2 Modeling Sparse Counts

Consider a dataset, presented in Hoegh et al. (2015, 2016), containing daily counts
of civil unrest protest events in Central and South America. Protests are grouped by
the following categories: type of protest (6 levels), violent protest (2 levels) and group
protesting (11 levels), which result in a 132-dimensional count vector for protests at
each areal location and date. There are 219 distinct areal units composed of states or
provinces across the region of interest. Using counts from June 2013 results in a total
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of 867,240 values of which less than 1,000 are non-zero. An abundance of zeros are still
present when aggregating data, as the monthly count of protests at each state/province
contains roughly 1/3 zeros. The zeros are not directly a problem; however, the proportion
of zeros can be incompatible with a Poisson distribution with a specified mean.

A common solution for modeling excess zeros is a mixture distribution of a point mass
at zero and a Poisson distribution known as a zero-inflated Poisson (ZIP) (Lambert,
1992). The underlying log-gamma framework can easily be adapted for this model.
Consider a univariate setting where yj = x̃T β̃ + εj is a latent log-gamma random
variable from a simplified version of the P-MSTM. Then Z comes from a ZIP if

P (Z = k) =

{
p0 + (1− p0) exp(− exp(y)) if k = 0

(1− p0)
exp(ky−exp(y))

k! if k > 1

where p0 is the probability of the excess zeros. The probability p0 can be modeled as a
function of covariates, using a generalized linear model framework.

g(p0) = x̃∗T γ̃

Using log-gamma priors on β̃ and εj and normal priors on γ̃ coupled with the inverse
Cumulative Distribution Function (CDF) of a normal model as a link function, as in
Albert and Chib (1993), permits Gibbs sampling for all parameters in the model. Note
this model assumes a different parameter vector is used in the point mass probability
and the Poisson mean term; otherwise, Gibbs samples would no longer be possible.

The formulation for a multivariate ZIP is considerably more complicated, but the
P-MSTM can be used to improve the computational efficiency to make this model more
feasible in higher dimensions. Consider a setting with p = 3, then the response for each
individual component can come from a point mass at zero or from a Poisson distribution
using the P-MSTM framework. With p = 3, eight mixture components are necessary to
enumerate all of the combinations of point mass terms and Poisson distributions. Each
mixture component contains a mixture probability and potentially a P-MSTM term.
For instance in the case where the z = {0, 0, 1}, each zero could come from a point
mass term or a Poisson distribution so this response could come from four possible
components shown below.⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0{Pois(exp(y1)), Pois(exp(y2)), Pois(exp(y3))}
p11{δ(z1 = 0), Pois(exp(y2)), Pois(exp(y3))}
p12{Pois(exp(y1)), δ(z2 = 0), Pois(exp(y3))}
p212{δ(z1 = 0), δ(z2 = 0), Pois(exp(y3))}

Similar to the univariate case, the set of mixture probabilities could be computed as a
function of covariates. A computationally efficient approach using a multivariate probit
model is described in more detail in Hoegh and Leman (2017).

In dimensions higher than 3, this approach would be much more computationally
expensive, but the efficiency provided by the multivariate log-gamma distribution and
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the P-MSTM is a big step forward for modeling data of this type. Another avenue to
explore would be using the random effect vector to model the mixture probabilities and
the latent process in the multivariate log-gamma framework. The priors specified above
would not permit Gibbs sampling, but perhaps the CDF of the multivariate log-gamma
could be used in a creative way as the link function to enable efficient computing similar
to multivariate probit model in Chib and Greenberg (1998).
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Kevin He∗ and Jian Kang†

We congratulate the authors on their excellent work. Our comments will focus on the
following three aspects: model flexibility, computation efficiency and a potential appli-
cation.

Model flexibility The proposed multivariate log-gamma distribution is a useful method
that generates the dependence among multiple gamma random variables which can
be used to specify the prior for the Poisson models. It is also a general multivariate
continuous distribution, which may provide extra flexibility compare to the multivariate
Gaussian distribution. A natural question is that how flexible the mean and covariance
structure of this model can be. Let R

m be an Euclidean vector space of dimension m
and SPDm represents an m × m symmetric positive definite matrix. It is well known
that for any μ ∈ R

m and Σ ∈ SPDm, we can uniquely determine a m-variate Gaussian
distribution with the mean μ and covariance Σ. According to Theorem 1, for q ∼
MLG(c,V,α,κ), we may re-parameterize the distribution of q based on its mean and
covariance structure. We need to find the log-gamma distribution parameters c,V,α
and κ such that E(q) = μ and Cov(q) = Σ, We describe one approach here. We first
perform the eigen decomposition of covariance matrix Σ = UΛUT, where Λ = diag{λ}
and λ = (λ1, . . . , λm)T with λi being the ith largest eigenvalue for i = 1, . . .m. Then
for any κ ∈ R

+m, we have

V = U, α = ω−1
1 (λ), c = μ−U[ω0{ω−1

1 (λ)} − log(κ)]. (1)

Obviously, the mean and covariance structure do not uniquely determine all the param-
eters in the multivariate log-gamma distribution. What is the gain of the extra flexibility
of the log-gamma distribution compared to the multivariate Gaussian distribution? In
some applications, we would like to specify a particular correlation structure for the
spatial and/or temporal random effects for the model simplicity and interpretability.
For example, if we would like to assume the covariance of q is compound symmetry,
that is, Cov(q) = σ2{(1 − ρ)Im + ρ1m1T

m}. In this case, we may use (1) to specify
MLG(c,V,α,κ) and write c,V,α,κ as a function of ρ and σ2, while it is worth learn-
ing if there exists an easier or more intuitive way to perform structural covariance
specifications.

Computational efficiency As mentioned by the authors, the latent Gaussian processes
(LGP) and Poisson gamma random fields (PGRF) (Wolpert and Ickstadt, 1998) have
been widely used for modeling the dependence of count-value data using a Poisson
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model from the Bayesian perspective. However, the posterior computations of LGP and
PGRF can be quite challenging. The main reason is that the full conditionals of the
posterior distributions are intractable for both models; and thus the Metropolis-Hasting
type algorithms such as the Hamiltonian Monte Carlo (HMC) and its variations (Giro-
lami and Calderhead, 2011) can be adopted. The convergence of Markov chain Monte
Carlo (MCMC) algorithms for the count-value Bayesian models can still be slow in
some cases, especially for high-dimensional problems (Ge et al., 2014; Kang et al., 2014;
Kang and Johnson, 2014). For the proposed Poisson multivariate spatio-temporal mixed
effects model (PMSTM) with the multivariate log-gamma priors, the full conditionals
are available, which makes the implementations of the posterior computation straight-
forward. What about the convergence of this Gibbs sampler? It is well known that the
Gibbs sampler does not converge faster than a simple random walk when the target
distribution is a highly correlated bivariate Gaussian distribution (Liu, 2008). For the
proposed PMSTM with log-gamma priors, is the convergence of the Gibbs samplers
faster than an HMC algorithm? To answer this question, it may be helpful to study the
effective sample size (Gelman et al., 2014) that the two algorithms can generate during
a fixed computing time period.

Applications The proposed PMSTM framework is general and can have many differ-
ent applications. We focus here on a study of Chronic Kidney Disease (CKD), which has
emerged as a major non-communicable disease (NCD) with public health importance,
affecting more than 5% of population around the world (Couser et al., 2011). In rapidly
developing nations such as China, risk factor profiles of the population are constantly
evolving, resulting in increasing likelihood of rising burden of multiple comorbid condi-
tions such as obesity, diabetes, hypertension, cardiovascular diseases, cancer and kidney
disease (Zhang et al., 2012). In an effort to control and manage the kidney disease, many
nations including both the United States (US) and China have initiated comprehensive
CKD Surveillance. The number of CKD cases with different stages (ranging from 1 to
4) are commonly collected for many small regions in those nations. Compared with data
from developed countries, the spectrum of CKD in China shows an interesting pattern.
Although the overall prevalence is similar, the prevalence of stage 3 and stage 4 CKD
in China are lower than those in developed countries. For example, the prevalence of
stage 3 CKD was 1.6%, compared with 7.7% in the US. Furthermore, despite that half
of dialysis patients were diagnosed as glomerulonephritis, population-based studies re-
vealed that risk factors for CKD were hypertension and diabetes, which are similar to
studies from developed countries. One hypothesis is that rapidly increased prevalence of
hypertension and diabetes during the last 20 years has led to larger numbers of patients
with early stage CKD in China, and it will take a longer time to observe their effect
on later stages of CKD. One question of interest is to apply the PMSTM to assess the
change in risk factor pattern and distribution of prevalence of CKD (by stage) in the US,
and predict the future of CKD burden in China, given potential change in risk factor
burden in that country. The model can be fairly complex and may include hierarchical
random effects at the patient level, at the region level as well as at the nation level. The
efficiency of the posterior computation becomes really important for the practical use of
those models. The prior specifications and posterior computation algorithms proposed
in this article will provide a promising solution.
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Conclusion The computational and theoretical results of the PMSTM shed new light
on modeling large-scale multivariate spatial-temporal count-valued data. We believe
that this method is useful and applicable in many settings. We hope our discussion
convey this message successfully.
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Abstract. We provide a discussion of the article “Computationally Efficient Mul-
tivariate Spatio-Temporal Models for High-Dimensional Count-Valued Data” by
Bradley, Holan, and Wikle. In our opinion, this work constitutes a major contri-
bution to the field of spatio-temporal statistics and contains distribution theory
that should be broadly applicable. In this note, we reflect on modeling decisions
made by the authors. We include a small set of simulation results to illustrate the
effect of one aspect of the proposed model.

MSC 2010 subject classifications: Primary 62H11.

Keywords: convolution prior, parameter identifiability, model approximation,
spatial statistics.

In their article “Computationally Efficient Multivariate Spatio-Temporal Models for
High-Dimensional Count-Valued Data,” Bradley, Holan, and Wikle (BHW) tackle a
collection of statistical challenges that are at the forefront of research on spatio-temporal
modeling: efficient computation in high-dimensional data settings, non-Gaussian data,
multivariate responses, and spatial confounding. While contributions in any one of these
areas are valuable, this paper simultaneously advances the field in each of these key
directions making it a real tour de force. Beyond the importance to the field of spatio-
temporal statistics, the distribution theory presented in the paper is important in its own
right. We hope this paper reaches a broad audience as there is much food-for-thought
for statisticians.

In the sections below, we comment on several aspects of this paper. None of these
comments are intended to be critical. Rather they summarize our reflections on a few of
the paper’s many contributions and reflect on modeling decisions of interest to us and,
perhaps, suggest directions for future research.

1 Uncorrelated heterogeneity?

A longstanding debate in the disease mapping literature – arguably, the setting that
has served as the testbed for the development of spatio-temporal generalized linear
mixed models for count data for the last 25 years – is whether to include both spatially-
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structured and non-spatial (i.e., exchangable) random effects in the model for the log
relative risk (LRR). In their seminal paper, Besag et al. (1991) advocate for a “convo-
lution prior” for the component of the LRR capturing unobserved heterogeneity: this
component for region i is modeled as the sum of ui and vi, where the uis (spatial com-
ponents) follow an intrinsic autoregression model and the vis (non-spatial components)
are assumed to be independent and identically distributed, conditional on an unknown
variance parameter. The uis capture unobserved spatially-structured factors influencing
the LRR, while the vis capture remaining unobserved sources of uncorrelated hetero-
geneity.

Besag et al. (1991) acknowledge, “In practice, it will often be the case that either
u or v dominates the other but which one will not usually be known in advance.”
Hence, the convolution prior, in theory, allows the data to decide the relative importance
of the two sources of heterogeneity. It has long been recognized, however, that the
hyperparameters in convolution priors are only weakly identifiable. Numerous solutions
to this identifiability issue have been proposed. For example, Bernardinelli et al. (1995)
suggest taking the marginal standard deviation of vi to be equal to the conditional
standard deviation of ui|uj �=i divided by 0.7. Alternatively, Rue and Held (2005) propose
a strategy based on calculating the marginal variances of the uis implied by a conditional
autoregressive prior for the uis.

In BHW’s paper, they too propose a convolution-style prior. For example, consider
the purely spatial version of the Poisson multivariate spatio-temoral mixed effects model
(P-MSTM) presented in Appendix E. In this case, the random component of the log
expected count for area A is

ψ
(1)′
1 (A)η1︸ ︷︷ ︸
(spatial)

+ ξ
(1)
1 (A)︸ ︷︷ ︸ .

(non-spatial)

(1)

Note that this special case differs from the count-data version of Hughes and Haran
(2013)’s dimension-reduced Spatial Generalized Linear Mixed Model (SGLMM; de-
scribed in their Section 6.2). In Hughes and Haran (2013)’s model, where dimension
reduction via truncated Moran basis functions was first introduced, a term allowing
for uncorrelated (i.e., non-spatial) heterogeneity is not included. Instead of a random
component in the form of a sum as in (1), Hughes and Haran (2013)’s model includes
only a spatial random effect, MδS , defined in more detail below.

To explore the implications of including the non-spatial component in the model
described in BHW’s Appendix E, we simulated data from Hughes and Haran (2013)’s
Gaussian SGLMM for count data and an analogous log gamma model. To establish a
unified notation for these models, we let Zi|λi ∼ Pois(λi), independently for i = 1, . . . , n,
where the Zis are count-valued random variables associated with the nodes of a square
grid graph, G, wrapped onto a torus so that every node in G has four neighbors. Let
A denote the adjacency matrix corresponding to G. The elements of A, Aij , are equal
to zero unless nodes i and j are first-order neighbors in which case they equal one. We
consider the following four models for λ = (λ1, λ2, . . . , λn)

′:
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Spatial + Non-Spatial Spatial Only

Gaussian λ = exp
(
Xβ +M (r)δ + ε

)
λ = exp

(
Xβ +M (r)δ

)
Log Gamma λ = exp

(
Xβ∗ +M (r)δ∗ + ε∗

)
λ = exp

(
Xβ∗ +M (r)δ∗

)
where exp() here denotes the element-wise exponent of its vector argument, X is an
n× p fixed design matrix with corresponding coefficient β or β∗, and M (r) is a matrix
consisting of the first r eigenvectors of the Moran operator for X with respect to G
(as defined in Hughes and Haran, 2013). The random term in the spatial component
of the Gaussian models, δ, is an r-dimensional normally distributed random vector
with mean zero and covariance matrix (3QS)

−1, where QS = M (r)′QM (r), Q is the
Laplacian of G and equals diag(A1n) − A, 1n is the n-dimensional vector consisting
of all ones, and diag() denotes the diagonal matrix with main diagonal equal to its
argument. For the log gamma models, δ∗ is an r-dimensional random vector assumed
to follow the multivariate log gamma distribution MLG(0r,V , αδ∗1r, ωδ∗1r), as defined
in BHW’s Section 2.1, V is the lower Cholesky factor of the matrix (3Q)−1, and αδ∗

and ωδ∗ are scalars. In the Gaussian spatial+non-spatial model, ε is an n-dimensional
random vector with mean zero and covariance matrix σ2

εIr, where σ2
ε is a scalar and Ir

is the r × r identity matrix. In the log gamma spatial+non-spatial model, ε∗ is an n-
dimensional random vector assumed to follow the multivariate log gamma distribution
MLG(0n,1n, In, αε∗1m, ωε∗1r), where αε∗ , and ωε∗ , are scalars.

Setting n = 400 (equivalently, a 20 × 20 grid), we simulated 10 realizations of λ
from both the Gaussian and log gamma models, with and without the non-spatial
components. X was taken to be a column of ones, β = 1 and β∗ = 1, σ2

δ = 1, αδ∗ = 1.5
and ωδ∗ = 1 (making E[δ∗u] ≈ 0 and var[δ∗u] ≈ 1, for u = 1, . . . , r)1, σ2

ε = 0.01, and
αε∗ = 100 and ωε∗ = 100 (making E[ε∗i ] ≈ 0 and var[ε∗i ] ≈ 0.01, for i = 1, . . . , n). These
choices imply a roughly one order of magnitude difference in the standard deviation
of the spatial signal (δu and δ∗u, for u = 1, . . . r) and non-spatial signal (εi and ε∗i , for
i = 1, . . . , n). We then calculated cor[λi, λj ] for all pairs i, j that are mth order spatial
neighbors, where m = 1, . . . , 10 is the “spatial lag.”

Figure 1 summarizes the empirical spatially-lagged correlations between the elements
of λ as a function of the spatial lag, m. The columns in Figure 1 indicate whether ε
or ε∗ are included in the models and the rows correspond to the amount of dimension
reduction. Here, r = 200 implies that all Moran basis functions with a corresponding
non-negative eigenvalue are retained, while r = 100 and r = 20 correspond to more ex-
tensive amounts of dimension reduction. For the spatial-only simulations (right column
plots), the correlation as a function of spatial lag appear similar for the Gaussian and
log gamma models. That is, the variability across simulated datasets is similar to the
variability across models. The only discernible difference across the rows in the right col-
umn is in the slope of the empirical spatially-lagged correlation function, which appears
to die off more slowly for smaller values of r. On the other hand, for each value of r, the
Gaussian and log gamma models that include a non-spatial component are apparently

1We note that the expression for the expected value of q, a log gamma random variable, should be
E[q] = ω0(α)− log(κ), instead of E[q] = ω0(α) + log(κ) as it appears in Section 2 of BHW’s paper.
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Figure 1: Empirical correlation between pairs of λi and λj as a function of the spatial
lag for spatial+non-spatial and spatial-only versions of Gaussian and log gamma models
for various amounts of dimension reduction indicated by the value of r.

different in that the correlations at smaller lags are larger for the log gamma model
than they are for the Gaussian model. Unlike the spatial-only models, the variability
across simulated data is smaller than the variability across the models.

What do our model comparisons imply? For the spatial-only models, the log gamma
model appears to be able to capture the same spatial-dependence structure implied
by the Gaussian model. This is not the case in the spatial+non-spatial models. Of
course, it is conceivable that different choices of model hyperparameters could render
the spatially-lagged correlation functions to be nearly identical. The point, however, is
that the convolution-style specification of the log gamma model requires some thought.
Unlike the corresponding Gaussian model where the sum of the spatial and non-spatial
components follows a multivariate normal distribution, the distribution of the sum of
these terms in the log gamma model are not multivariate log gamma. This complicates
the study of identifiability of the log gamma hyperparameters. Furthermore, it is not
immediately clear that E[ε∗i ] can equal zero under BHW’s specification for ε∗ ≡ ξ1:

ξ1|σξ,1 ∼ MLG

(
0, α1/2σξ,1I, α1,

1

α
1

)
,

since for θ ∼ Ga(α, 1/α), log(E[θ]) = 0 but, of course, log(E[θ]) 
= E[log(θ)] in general.
In any case, before the “spatial-only” version of the P-MSTM is rolled-out as a general
framework for spatial modeling of count data, additional thought is needed about the
specification of process models and prior distributions for the hyperparameters in them.
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2 Further thoughts

In the spatial statistics literature, there has been an ongoing discussion about whether
it is preferable to approximate a model to facilitate inference or, alternatively, per-
form approximate inference for the exact (i.e., not approximated) model. If the Poisson
STGLMM (temporal extension of the Poisson SGLMM) is thought to be the exact
model and BHW’s log gamma model is thought to approximate it, then avoiding “ad
hoc Metropolis-Hastings algorithms” – a stated goal of BHW – can be viewed as favor-
ing exact inference for an approximate model over approximate inference for the exact
model. Of course, Metropolis-Hastings algorithms are not “approximate” in the same
sense as other methods for fitting Bayesian models that are generally referred to as ap-
proximate (e.g., variational Bayes, integrated nested Laplace approximations (INLA)).
But, perhaps, a poorly mixing Metropolis-Hastings algorithm could be viewed as pro-
viding approximate inference, albeit not in a rigorous sense. Such approximate inference
for the exact model can certainly be avoided by specifying a P-MSTM instead of a tra-
ditional Gaussian process model. Alternatively, like Kaufman et al. (2011)’s argument
for the model they propose for cosmology computer experiments, the P-MSTM can be
viewed simply as a different model, as opposed to an approximate model, which hap-
pens to allow for inference via a Gibbs sampler. BHW’s paper does not spell out this
argument explicitly, leading us to question whether the authors view P-MSTM as an
approximate model or whether in certain situations it is the preferred exact model.

Lastly, we note the many robustness checks and modeling decisions BHW make in
their analysis of Quarterly Workforce Indicators (QWIs). These include the use of a
discrete uniform prior distribution with a known upper bound for certain parameters
and the need to fit multiple versions of their model to assess the sensitivity of the results
to fixed hyperparameters. It appears that more of these types of decisions are needed for
the P-MSTM than for the Poisson STGLMM. Based on BHW’s experience performing
these sensitivity checks in their analysis of QWI data, we wonder if they view the extra
flexibility of their model as an advantage or as a nuisance in that using it requires more
extensive robustness checks.
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D. Gamerman

1 Introduction

The paper presents an approach for inference on spatio-temporal data that is alterna-
tive to the usual approach based on latent Gaussian processes (LGP). Their approach
is based on the multivariate Gamma distribution (MGD) that conjugates with Poisson
distribution with logarithmic link. The convenience of conjugacy is explored and high-
lighted in terms of easily specified full conditional distributions and hence easy sampling
for use with Markov chain Monte Carlo (MCMC). The authors make it clear that their
approach is restricted to Poisson data and is geared towards highly dimensional data
sets.

My contribution to the discussion is organized in sections for modelling, computation
and application. The sections are obviously not mutually exclusive but I will try to
separate them as much as possible for the sake of clarity.

2 Modelling

The introduction of the MGD as prior distribution for analysis is a welcomed addition
for the tool set of practitioners. The fact that they might be more useful than LGP
because they introduce additional shape and scale parameters could be more clearly
identified. I suspect that some Poisson data will confirm that and some won’t. It would
be nice to identify situations were each is more advantageous.

In terms of the additional parameters (with respect to LGP) it seems clear that
shape parameters play a different role but the picture does not seem so clear for the
scale parameters. The expressions of the density and the mean of MGD suggest that
there may be identification issues between κ and c (or between logκ and V−1c).

The authors apply dimension reduction to their spatial component possibly due to
very large dimension of the applications they have in mind. An alternative, more basic
formulation for this component is with random terms whose correlation matrix is defined
via a correlation function depending on the distance or neighborhood structure between
observation sites. Would it be possible to accommodate the above specification in their
framework?

The authors proposed the use of discrete uniform distributions for the shape pa-
rameters of the Gamma distributions, albeit with some cautionary remarks. It would
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be nice to have an explanation for this choice. I suspect it is due to the difficulties
associated with estimation of these quantities but I prefer the authors to register their
more knowledged experience on the subject, specially with their evaluation on other
(continuous) distribution they may have tried. The smaller value they consider for the
shape parameter in their application is 200. Any guidance on why can one safely start
at such a (high?) value and why do we have to proceed up until the value 10,000?
Even more generally, is there information in the data for these parameters? Plots and
other summaries of (marginal) posterior densities for some of them could also be use-
ful.

The similarity between many features of Poisson data and point pattern data begs for
an extension to handle Poisson process data. In that context, LGP are particularly useful
for their characterization in such infinite-dimension settings. Gonçalves and Gamerman
(2018) explore this possibility in the realm of Bayesian inference for Poisson process
data via MCMC. I wonder if the authors can envisage the extension of their approach
towards point pattern analysis (via Poisson processes) and/or an infinite dimension
extension of their multivariate Gamma distributions into stochastic processes.

3 Computation

The authors indicate the use of Gibbs sampling as an advantage in terms of simplicity
of their sampling scheme as opposed to the need for tuning of other MCMC schemes
and the elaboration required for Hamiltonian Monte Carlo. It is useful to point out that
there are other simple, model-based MCMC schemes based on proposals that do not
require tuning. Gamerman (1997) is an example in a similar setting of this paper.

The discretised prior adopted for the shape parameters introduces tuning problems
associated with the choice of number and values of points considered. Although different
in nature, this discretisation brings back the tuning problems they seem to have avoided
with the closed-form expressions for all full conditional distributions of their unknowns.

The models of the paper handle temporal dependence via the state-space formulation
for the time dependent parameters ηt. These components are sampled separately for
each time point considered. There is a well documented literature about the difficulty in
achieving efficient MCMC schemes when sampling each time parameter separately for
Gaussian (see Carter and Kohn, 1996; Frühwirth-Schnatter, 1994) and for non-Gaussian
(Gamerman, 1998) data. In fact, the difficulties are not associated with the nature of the
likelihood but with the strength of the association in the latent state-space component.
So, I would expect that the same troubles would have appeared here.

Nevertheless, the results of Figure 1 seem to indicate an efficient MCMC scheme.
Reasons for it may be a weak temporal correlation or a relatively small number of
time points for their specific application. Even so, these features may not stand for
all other Poisson applications. So I wonder whether it is possible to devise alternative
sampling schemes based on block sampling and/or reparametrisation (see De Jong and
Shephard, 1995; Gamerman, 1998). Plots of the autocorrelation function of ηt’s or
related quantities would be useful additions for the assessment of the efficiency of the
MCMC scheme they proposed.
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The approach proposed in the paper is contrasted against the currently prevailing
approach of LGP only in terms of the computations. They concentrate on computing
performance evaluated via effective sample sizes (ESS). It was not surprising to see
the preference for the MGD-based approach but for the order of magnitude of the
difference. Any explanation for such a strong advantage for the criteria used? A more
directly interpretable definition of ESS is based on the (estimated) variance of mean
trajectories of Markov chains (see Gamerman and Lopes, 2006), taking into account
the (estimated) chain autocorrelations. It would be interesting to see the results of this
comparison via this statistic and other statistics related to efficiency evaluation of the
sampling scheme.

4 Application

Predictive assessment is crucial for evaluation of any modeling strategy. The authors
use visual assessment to check the adequacy of their approach. There are many tools
developed for this task, starting from aggregated values of the point predictions but in
any case going beyond visual inspections (e.g. Gneiting et al., 2007). These would allow
for a more comprehensive evaluation of the relative merits of each assessed model. Also,
it would be important to compare their predictions against those for competing models,
eg LGP-based.

In that sense, Figure 1 and 2 could incorporate results of the corresponding LGP
model. This would be a useful addition, providing hints of the relative merits of both
approaches. This comparison could shed some light on why/where one approach is
performing better than the other one. By doing that, the authors could not only inform
the readers on whether they consider their prediction adequate but also whether their
prediction are better than existing approaches.

It would be nice to see more results (such as fig 2 and other predictive summaries)
for the real-data application, specially estimation of some model parameters: regression
coefficients, variance components and shape parameters. Once again and even more
so for the large scale application, comparison against results obtained for LGP-based
would be useful.

Finally, time-varying regression coefficients could have been introduced following the
same temporal evolution adopted for the random effects. This extension seem a natural
approach for such econometric applications (see Min and Zellner, 1993).

5 Conclusion

The paper is a useful addition to the literature and I congratulate the authors on their
efforts in terms of modelling, computation and application of their proposal. I thank the
Editor for allowing me the opportunity to contribute to the discussion. I enjoyed reading
the paper, specially the distributional properties of their proposed MGD. My comments
were basically associated with my lack of knowledge of some aspects of their work. My
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request for additional theoretical and empirical evidence is addressed at making the
material more accessible to a wider audience.

In that respect, making their software user-friendly and available for general use
with some guidance on the choices they make may boost their reach towards the end
users.
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1 Introduction

We would like to thank the discussants: Stefano Castruccio (C); Dani Gamerman (G);
Catherine A. Calder and Candace Berrett (CB); William Weimin Yoo (Y); Andrew
Hoegh, Kenneth Flagg, and Christian Stratton (HFS); and Kevin He and Jian Kang
(HK). Their time and insight has given us opportunities to both build-on and clar-
ify the Poisson multivariate spatio-temporal mixed effects (P-MSTM) model, and has
highlighted key issues to consider in future work.

Bradley et al. (2017b, BHW) provided an extension of the multivariate spatio-
temporal mixed effects model (MSTM; Bradley et al., 2015) to Poisson data. Our start-
ing point to solve this problem was to replace the Gaussian data model in Bradley et al.
(2015) with a Poisson data model using the log-link. This model is explicitly written as
“Model 2” and is stated in the Supplemental Appendix of BHW. The MSTM matched
the correlation structure we were seeing in our exploratory analysis of the Quarterly
Workforce Indicators (QWI) and was flexible enough for other practitioners to adapt
to their setting. For example, in Table 1 of the Supplemental Appendix one can define
the target covariance matrix with a covariance that includes marked changes; i.e., the
scenario posed by C.

We were interested in predicting the mean number of people employed at the begin-
ning of a quarter, over all 3,145 US counties, 20 industries, and 96 quarters using Model 2
and a dataset consisting of 4,089,755 QWIs. We used a Gibbs sampler with Metropolis-
Hastings updates when necessary. There are many choices that one can use to tune this
MCMC algorithm, and we used the Metropolis Adjusted Langevin (MALA) (Roberts
and Tweedie, 1996) algorithm, adaptive proposals based on the Robbins-Monroe pro-
cess (Garthwaite et al., 2010), and Log-Adaptive Proposals (LAP) (Shaby and Wells,
2011). The acceptance rates were extremely small and convergence was not obtained
using any of these tuning strategies. G and HK asked why the effective sample sizes in
Section 4.1 of BHW were so small for the LGP model. In our experience, the acceptance
rates tend to be extremely small when fitting Model 2, which induces strong positive
autocorrelation in the Markov chain, and hence, small effective sample sizes.

Motivated by convergence issues we pursued the development of a multivariate log-
gamma (MLG) distribution. Specifically, in BHW we derived the MLG distribution
which results in full-conditional distributions that are of the same form as a conditional
MLG distribution. Importantly, there is a particular class of marginal distributions that
has a density proportional to the conditional MLG, which can be easily simulated from.

∗Corresponding author. Department of Statistics, Florida State University, 117 N. Woodward Ave.,
Tallahassee, FL 32306-4330, bradley@stat.fsu.edu

†Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, MO 65211-6100
‡U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C., 20233-9100
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Thus, the MLG allows for exact sampling from the full-conditional distributions (i.e., no
Metropolis Hastings steps), and we were finally able to produce reasonable predictions
that use the complex structure of the MSTM.

There were consequences of restricting ourselves to the high-dimensional setting.
Namely, the LGP was extremely difficult to fit, and consequently, our comparisons to
the LGP were primarily methodological (see Section 3 of BHW) and computational (see
Section 4.1 of BHW) in nature. Consequently, we refer G, HK, Y, and the reader to
Bradley et al. (2018a) for additional empirical comparisons between a latent MLG model
and the LGP in lower-dimensional settings. Similarly, the computational motivations
of BHW were driven by the difficulties in fitting an LGP using a Gibbs sampler with
Metropolis updates. Thus, in Section 2, we provide an additional discussion on the
computational performance of the MLG/P-MSTM beyond its comparison to the LGP.

We are encouraged and excited by the discussants exploration into the properties of
the MLG distribution and on promising extensions of the MLG/P-MSTM. For example,
HFS provided the beginnings of a zero-inflated Poisson (ZIP) extension of the P-MSTM,
which is especially prudent in our setting since we know that small counts with high
spatial dependence can create difficulty for the P-MSTM (De Oliveira, 2013; Hoegh
et al., 2016). A majority of the ideas posed by the discussants involved defining a
spatial random process, and thus, we focus more on issues related to these extensions.
Thus, in Section 3 we add some discussion surrounding a process definition of the MLG.
Then, in Section 4 we discuss the role of the shape and rate parameters in determining
the properties of the MLG distribution.

2 Computational Considerations

We start this section with a question posed by CB: Is the P-MSTM an approximation of
Model 2, or is it an “exact model?” We can see a case for either interpretation because of
the Taylor series argument (i.e., Proposition 2) that provides a relationship between the
multivariate normal distribution and the MLG. However, from our point-of-view, the
MLG distribution is an “exact model,” and Proposition 2 provides an argument that the
MLG distribution is a more general model than the multivariate normal distribution.

This point is important when considering many of the computational considerations
brought up by Y, G, and C. That is, the MLG distribution is more than a choice that
aids in Gibbs sampling, but it is also a flexible multivariate distribution. As discussed in
Section 1 of BHW (and discussed by G) Gibbs sampling should not be held as an ideal
because there are many other computational tools available in the literature. However,
the flexibility of the MLG makes it a reasonable consideration even when one chooses
other computational tools (e.g., see Gamerman, 1997; Lindgren et al., 2011; Neal, 2011;
Giordano et al., 2013, among others). This is worth emphasizing because many of these
computational tools are preferable to Gibbs sampling. For example, HK was curious
on whether HMC provides faster convergence than Gibbs sampling. We suspect that it
does, however, in high-dimensional settings it is difficult to implement HMC. Also, as G
discusses, updating each random effect ηt separately over time t, may lead to problems
with mixing of the MCMC. Thus, a joint update of all {ηt : t = 1, . . . , T} would be
preferable when T is large.
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We are excited about the potential variational Bayes extension of the P-MSTM. A
variational Bayes implementation of the P-MSTM with C’s suggestion of parallelization
has the potential to allow one to analyze much higher-dimensional multivariate spatio-
temporal count data than what is presented in BHW. Y’s discussion on the relationship
between our Gibbs sampler and variational Bayes is intriguing. To better understand
this relationship, one would need to develop the variational Bayes algorithm for the
multivariate version of the P-MSTM. This is subject of current research.

3 A Spatial Random Process Definition of the MLG

A clear majority of the extensions proposed by the discussants involved a random process
definition of the MLG. For example, G and C inquired about using a MLG distribution
with a stationary covariance. G asked a question about using the MLG as a prior
for Poisson point patterns. C also discussed a continuous propagator version of the
MSTM, our need for an embedded lattice, and modeling gradients similar to Quick
et al. (2013). However, whenever a new multivariate distribution is proposed there is
a certain property that should be checked before this distribution is used for processes
(say, q(s) for s ∈ D ⊂ R

d). The property we are referring to is Kolmogorov Consistency,
which ensures that {q(s1), . . . , q(sK)} has a “well defined” probability measure for any
collection of locations {s1, . . . , sK} ⊂ D (Kolmogorov, 1933). The spatial domain in
BHW is defined to be a finite lattice, and hence our response is a random vector and
not a random process defined on a possibly uncountably infinite spatial domain.

To assess Kolmogorov Consistency in this setting a careful understanding of Theorem
2 in BHW is needed. To aid in this effort, we find it necessary to give some clarification
surrounding Theorem 2, and in Section 5 of this Rejoinder we give a re-statement of
Theorem 2 to avoid any potential confusion. Specifically, the marginal distribution of q1

not only has a specific form of V, but also is a limiting case of an unnormalized MLG
distribution. Specifically, let ρ be an unnormalized MLG distribution with mean zero
and covariance parameter V−1 = [H, 1

σ2
Q2], where Q2 is the basis for the null space of

H. Then,

lim
σ2→∞

ρ(q1,q2|c = 0m,V,α,κ) = exp {α′Hq1 − κ′exp(Hq1)}

= f(q1|c = 0m,V,α,κ)f(q2|c = 0m,V,α,κ),

where

f(q1|c = 0m,V,α,κ) = exp {α′Hq1 − κ′exp(Hq1)} (1)

f(q2|c = 0m,V,α,κ) = 1. (2)

This implies that q1 is independent of q2 as σ2 approaches infinity, and hence, the
marginal distribution of q1 = (H′H)−1H′w (in the limit) is given by (1). Although the
pdf in (1) is proper (see Proposition 2 in BHW), it is crucial that we recognize that q1 is
extended by an improper q2. This improper extension leads to issues with Kolmogorov
Consistency.
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Kolmogorov Consistency requires two properties. The first is permutation invariance;
that is if we change the order of the elements within q1, we obtain the same density.
The second criteria for Kolmogorov Consistency is extension. That is, if we extend q1

by any vector q2 the marginal distribution stays the same regardless of the choice of q2.
This may appear to hold trivially, but in many settings this is not the case. For example,
Minozzo and Ferracuti (2012) show that the marginal distribution of the multivariate
skew normal distribution from Kim and Mallick (2004) is different from the marginal
distribution based on the direct transformation.

To check for Kolmogorov Consistency, we consider a similar argument to Minozzo
and Ferracuti (2012). Consider the special case where H = (1, 1)

′
. The transforma-

tion (H′H)−1H′w = 1
2w1 +

1
2w2. Denote the independent gamma random variables,

exp(wi) = γi for i = 1, 2. Then (H′H)−1H′w =
√
γ1γ2, which has a K-distribution

(e.g., see Jakeman and Pusey, 1978, among others). Now, extend q1 by our q2 accord-
ing to (1) and (2). Letting α = α(1, 1)′, and κ = κ(1, 1)′. We have from Theorem
2(ii) that the marginal distribution is a log-gamma distribution with shape and rate
equal to 2. Transforming to the exponential scale, we have that exp(q1) is gamma with
shape and rate parameters equal to 2. Now, since the gamma distribution differs from
the K-distribution, we do not have extension, and hence, we do not have Kolmogorov
Consistency in the setting of a fixed shape and scale parameter. 1

Note that Kolmogorov Consistency holds under proper extensions of q1 (see Bradley
et al., 2018a, for a proof). This point is especially important when one considers placing
a prior distribution on the rate parameter. To see this, let g be used to denote proper
densities, V−1 = [H,B] be invertible, g(κ) be the density for κ = (κ1, . . . , κM )′, and
let κ1 = (κ11, . . . , κM1)

′ be independent and identically distributed as κ. For a given
q3 ∈ R

m,

g(q1|q2 = 0m,μ = 0m,V,α)

∝
∫

g(κ1) (
∏m

i=1 κ
αi
i ) exp {−1′

mBq3 +α′Hq1 − κ′exp (Hq1)}
(
∏m

i=1 κ
αi
i1 )M(H,α,κ1)gκ(κ = exp(Bq3 + log(κ1)))

g(κ)dκ,

where M(H,α,κ1) is the marginalizing constant of a conditional MLG with param-
eters H, α, and κ1 and the integrand is proportional (as a function of q1) to a con-
ditional MLG with parameters H, α, and κ. Now, consider the change of variables
κ = exp(Bq3 + log(κ1)). The Jacobian for a given q3 is given by exp(−1′

mBq3). Thus,

=

∫
1

M(H,α,κ1)
exp
{
α′V−1q− κ′

1exp
(
V−1q

)}
g(κ1)dκ1

∝ g(q1|q2 = q3,μ = 0m,V,α).

Hence, for every q3, g(q1|q2 = 0m,μ = 0m,V,α) ∝ g(q1|q2 = q3,μ = 0m,V,α),
where notice that we marginalize across κ. Since g(q1|q2 = 0m,μ = 0m,V,α) is not a
function of q3,

g(q1|q2 = 0m,μ = 0m,V,α)

1We would like to thank Antonio Linero at Florida State University for alerting us to this counter-
example to Kolmogorov Consistency.



306 Rejoinder

= E[g(q1|q2 = 0m,μ = 0m,V,α)]

= E[g(q1|q2,μ = 0m,V,α)]

= g(q1|μ = 0m,V,α), (3)

where the expectation is with respect to the joint q3, and q3 is assumed to follow
g(q3|μ = 0m,V,α,κ).

Thus, after marginalizing across the rate parameter, the cMLG is equal in distri-
bution to q1|μ = 0m,V,α. A composite sampling approach can be used to simulate
from a cMLG distribution after marginalizing out κ. That is, first simulate κ and then
simulate from q1|μ = 0m,V−1 = [H,Q2],α,κ using the transformation (H′H)−1H′w,
where w ∼ MLG(0m, Im,α,κ). This result is possible since Bq2 is confounded with
log(κ) (as similarly noted by G). This small technical result, leads one to simulate q1 in
the same way as in BHW (since we place a prior on κ in BHW), but does not require an
improper extension of q1. Thus, the result on Kolmogorov Consistency in Bradley et al.
(2018a) and (3), suggests that our implementation satisfies Kolmogorov Consistency
provided that κ has a prior distribution and is marginalized. That is, one can use our
implementation (i.e., the transformation (H′H)−1H′w), and develop process versions
of the MLG, provided that κ is marginalized.

4 The Shape and Rate Parameters of the MLG

CB provided an interesting discussion on whether or not to include uncorrelated random
effects in a Poisson spatial GLM. In their simulation study they found an example where
the spatial model with uncorrelated LG random effects had different autocorrelations
from the spatial model with uncorrelated normal random effects. We suspect that if
you use HK’s parameterization that you would obtain similar autocorrelations between
the two models (a realization also suggested by CB). However, CB’s simulation results
showed that the role of the shape and rate parameters needs to be developed before
implementing a spatial-only special case of the P-MSTM. Section 2 of this rejoinder
is especially pertinent to CB’s exploration into the use of uncorrelated random effects
within the P-MSTM, since the uncorrelated random effects (ξt) are confounded with
log(κt). Since we can not separate ξt and log(κt), we implicitly have two sources of
uncorrelated random effects. This might explain why CB’s results show extra variability
at spatial lags near zero. The consequence of this confounding issue provides additional
motivation for treating the rate parameter as a nuisance by marginalizing it.

In Section 3 of BHW, we offered some guidance on when it matters that the presence
of the shape parameter makes the MLG more flexible than the multivariate normal (also
see questions posed by G and HK). Specifically, when the relative overdispersion is small
then any multivariate spatio-temporal correlation function is severely restricted. Both
CB and G commented on the choice of the discrete uniform prior for the shape param-
eters. In general, the shape parameters appear weakly identified and can be difficult to
update. In Bradley et al. (2018a), we have found that the Diaconis and Ylvishaker prior
(Diaconis and Ylvisaker, 1979) is less restrictive than the discrete uniform distribution,
and can perform well in practice.
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5 A Re-Statement of Theorem 2

Re-Statement of Theorem 2: Partition the m-dimensional random vector so that q =
(q′1, q

′
2)

′, where q1 is g-dimensional and q2 is (m−g)-dimensional. Define the following
matrix:

V−1 =
[
Q1 Q2

] [ R1 0g,m−g

0m−g,g
1
σ2
Im−g,

]
, (4)

where in general 0k,b is a k × b matrix of zeros; Im−g is a (m − g) × (m − g) identity
matrix;

H =
[
Q1 Q2

] [ R1

0m−g,g,

]
is the QR decomposition of the m×g matrix H; the m×g matrix Q1 satisfies Q′

1Q1 = Ig,
the m× (m− g) matrix Q2 satisfies Q′

2Q2 = Im−g, and Q′
2Q1 = 0m−g,g; R1 is a g× g

upper triangular matrix; and σ2 > 0. Let, q be distributed as

ρ(q1, q2|V,α,κ) = exp

{
α′Hq1 +

1

σ2
α′Q2q2 − κ′exp

(
Hq1 +

1

σ2
Q2q2

)}
(5)

which is the unnormalized MLG(0m,V,α,κ). Then, the following statements hold.

(i) The marginal distribution of q1 from lim
σ2→∞

ρ(q1, q2,V,α,κ) is given by

f(q1|H,α,κ) = exp {α′Hq1 − κ′exp(Hq1)} , (6)

which has a normalizing constant,

1∫
exp {α′Hq1 − κ′exp(Hq1)} dq1

.

(ii) The g-dimensional random vector q1 obtained from Theorem 2(i) is equal in distri-
bution to (H′H)−1H′w, where the m-dimensional random vector w ∼ MLG(0m,
Im,α,κ).

Proof of Theorem 2 Much of this proof is the same as the proof stated in Bradley
et al. (2017c). We simply add statements to clarify steps of this proof.

Theorem 2(ii): Notice that

V =

[
(H′H)−1H′

σ2Q
′
2

]
.

From (2.5) of the main text we see that[
q1

q2

]
=

[
(H′H)−1H′w

σ2Q
′
2w

]
, (7)
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where the m-dimensional random vector w ∼ MLG(0m, Im,α,κ). Multiplying both
sides of (7) by [Ig,0g,m−g] we have

q1 = (H′H)−1H′w.

This is true regardless of the value of σ2.

Theorem 2(i): We have

lim
σ2→∞

ρ(q1,q2|c = 0m,V,α,κ1.2) = exp {α′Hq1 − κ′exp(Hq1)} , (8)

where from Proposition 1, is proper. Let M1 be the normalizing constant defined in the
restatement of Theorem 2(ii). Notice that the limit in (8) does not depend on q2. In
general, for two random variables q and X, if f(q,X) = f(q)f(X) then q is independent
of X and the marginal distribution of q is f(q). Furthermore, it follows from (8) that, in
the limit, the marginal distribution for q2 is f(q2|c = 0m,V,α,κ) = 1. This completes
the result. However, we show that q2 can be marginalized.

The proof of Theorem 2 in Bradley et al. (2017c) suppressed limits and marginaliza-
tion constants for simplicity. To avoid any potential confusion we include these terms.
This implies that

f(q1|c = 0m,V,α,κ) = lim
σ2→∞

1

M1

∫
1dq2

∫
lim

σ2→∞
ρ(q1,q2|c = 0m,V,α,κ)dq2

=
1

M1

∫
1dq2

∫
f(q1|H,α,κ)dq2

=
1

M1

∫
1dq2

f(q1|H,α,κ)

∫
1dq2

=
1

M1
f(q1|H,α,κ),

which is the desired result.

6 Discussion

We would like to express our appreciation to the discussants, two anonymous reviewers,
the anonymous associate editor, and Bruno Sansó for their time and input on BHW.
This has been an extremely productive discussion. In particular, the comments from
the discussants has led us to several motivations for marginalizing κ. We are excited
and humbled by the discussants ideas for future work in this area, and we currently are
in the process of producing public use code to help promote extensions of BHW.
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