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Fractional Imputation in Survey Sampling:

A Comparative Review

Shu Yang and Jae Kwang Kim

Abstract.  Fractional imputation (FI) is a relatively new method of imputa-
tion for handling item nonresponse in survey sampling. In FI, several imputed
values with their fractional weights are created for each record with missing
items. Each fractional weight represents the conditional probability of the
imputed value given the observed data, and the parameters in the conditional
probabilities are often computed by an iterative method such as the EM algo-
rithm. The underlying model for FI can be fully parametric, semiparametric
or nonparametric, depending on the plausibility of assumptions and the data
structure.

In this paper, we give an overview of FI, introduce key ideas and methods
to readers who are new to the FI literature, and highlight some new develop-
ments. We also provide guidance on practical implementation of FI and valid
inferential tools after imputation. We demonstrate the empirical performance
of FI with respect to multiple imputation using a pseudo finite population
generated from a sample from the Monthly Retail Trade Survey conducted
by the US Census Bureau.

Key words and phrases: Item nonresponse, missing at random, Monte
Carlo EM, multiple imputation, synthetic imputation.

1. INTRODUCTION

In survey sampling, it is common practice to collect
data on a large number of items. Even when a sampled
unit responds to the survey, this unit may not respond
to some items. In this scenario, imputation can be used
to create a complete dataset by filling in missing values
with plausible values to facilitate data analyses. Impu-
tation achieves three goals. First, by providing com-
plete data, subsequent analyses are easy to implement
and results are consistent among different users. Sec-
ond, imputation reduces the selection bias associated
with only using the respondent set, which may not nec-
essarily represent the original sample. Third, the im-
puted data can incorporate extra information from out-
side of the sample so that the resulting analyses are
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statistically efficient and coherent. Combining infor-
mation from several surveys or creating synthetic data
from planned missingness are cases in point (Schenker
and Raghunathan, 2007).

When the imputed dataset is released to the pub-
lic, it should meet the goal of multiple uses for both
planned and unplanned parameters (Haziza, 2009).
Consequently, it is a best practice to include some
means of estimating the effect of missing data and
missing data treatment along with the public use
datasets, thus allowing data users to assess the data
utility for their analyses. Rubin (1976) proposed mul-
tiple imputation (MI) for this purpose. MI replaces
each missing data item with several plausible values
to reflect the full uncertainty in the prediction of miss-
ing data, creating M completed datasets. Several au-
thors (Rubin, 1987; Little and Rubin, 2002; Schafer,
1997) have promoted MI as a standard approach for
general-purpose estimation under item nonresponse in
survey sampling. MI requires special conditions, called
congeniality (Meng, 1994) and self-efficient estima-
tion (Meng and Romero, 2003). Otherwise, as dis-
cussed by Kott (1995), Fay (1992, 1996), Binder and
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Sun (1996), Wang and Robins (1998), Nielsen (2003)
and Kim et al. (2006), the MI variance estimator is
not always consistent. The inconsistency occurs even
when the imputation model is correctly specified. This
phenomenon occurs when the complete-sample anal-
yses are not self-efficient (Meng and Romero, 2003).
Beaumont, Haziza and Bocci (2011) studied the prob-
lem of variance estimation for MI and found that the
MI variance estimator is considerably biased when the
complete-sample estimator is not self-efficient. Yang
and Kim (2016b) also found that self-efficiency does
not hold for the method of moments estimator.

Fractional imputation (FI) is another effective impu-
tation tool for general-purpose estimation but has the
advantage of not requiring the self-efficiency condi-
tion. FI was originally proposed by Kalton and Kish
(1984) to reduce the variance of single imputation
methods by replacing each missing value with several
plausible values at differential probabilities reflected
through fractional weights. FI can provide a fully ef-
ficient estimator of the mean while preserving the dis-
tribution of the variable being imputed, therefore al-
lowing for efficient general-purpose estimation. For
a univariate y, balanced random imputation proposed
by Chauvet, Deville and Haziza (2011) also achieves
this goal. Fay (1996), Kim and Fuller (2004), Fuller
and Kim (2005), Durrant (2005), Durrant and Skin-
ner (2006) discussed FI as a nonparametric imputation
method for descriptive parameters in survey sampling.
Kim (2011) and Kim and Yang (2014) presented FI un-
der fully parametric model assumptions.

More generally, FI can serve as a computational tool
for implementing the expectation step (E-step) in the
EM algorithm (Wei and Tanner, 1990; Kim, 2011).
When the conditional expectation in the E-step is not
available in a closed form, parametric FI (Kim, 2011)
simplifies computation by drawing on importance sam-
pling to obtain the fractional weights and reducing
the iterative computation burden over other simulation
methods such as Markov Chain Monte Carlo. Kim and
Hong (2012) extended parametric FI to a more general
class of incomplete data, including measurement error
models.

Despite these advantages, FI in applied research has
not been widely used perhaps due to the lack of a com-
prehensive reference and the availability of software.
The advantages of FI may come at the cost of an in-
crease in data storage space and computation complex-
ity, compared to MI, since FI may require replication
methods for valid variance estimation for general pa-
rameters. But if the goal is to achieve statistical effi-
ciency and validity, FI may be preferable. The goal of

this paper is to bring more attention to FI by review-
ing existing research on FI, introducing key ideas and
methods, and highlighting some new developments,
mainly in the context of survey sampling. This pa-
per also provides guidance on practical implementation
and application of FI.

This paper is organized as follows. Section 2 pro-
vides the basic setup, and Section 3 introduces FI un-
der parametric model assumptions. Section 4 discusses
a nonparametric approach to FI, specifically in the con-
text of hot deck imputation. Section 5 introduces syn-
thetic data imputation using FI in the context of two-
phase sampling. Section 6 deals with practical con-
siderations and variations of FI, including imputation
sizes, choices of proposal distributions and doubly ro-
bust FI. Section 7 compares FI with MI in terms of
statistical efficiency and ability to accommodate infor-
mative sampling. Section 8 presents a simulation study
based on survey data modeled from the Monthly Re-
tail Trade Survey conducted by the US Census Bureau.
Section 9 contains our concluding remarks.

2. BASIC SETUP

Consider a finite population of N units identified by
a set of indices U = {1, 2, ..., N} with N known. The
K -dimensional study variable y; = (y;1, ..., yix), as-
sociated with each unit i in the population is subject
to missingness. We assume that the finite population at
hand is a realization from an infinite population, called
a superpopulation. For the superpopulation, we often
postulate a parametric distribution, f(y;#), with the
parameter 6 € 2. We can express the density for the
joint distribution of y as

F:0)= fik;:01) (2 | y15602) -+

fkk I Y1, ..o, Ye—1:0K),

where 6y is the parameter in the conditional distribu-
tion of y; given yi, ..., yx—1. Let A denote the set of
indices for units in the sample selected by a probabil-
ity sampling mechanism. Each unit is associated with a
sampling weight, the inverse of the probability of being
selected into the sample, denoted by w;.

We are interested in estimating 7, defined as a
(unique) solution to the population estimating equation

1N=1 U (n; yi) = 0. For example, the population mean
of y can be obtained by letting U (n; y;) = n — y;, the
population proportion of y less than a threshold ¢ can
be obtained by letting U (; y;) = n — Iy, <}, where 1
is an indicator function, the population median of y can
be obtained by choosing U (n; y;) = 0.5 — Iy, <y}, and
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so on. Under complete response, a design-consistent
estimator of 1 is obtained by solving

(2.2) > wiU(gy) =0.

i€A
Godambe and Thompson (1986), Binder and Patak
(1994) and Rao, Yung and Hidiroglou (2002) have
done rigorous investigations of the estimator obtained
from (2.2) under complex sampling.

In the presence of missing data, first consider de-
composing y; = (Yobs,i» Ymis,i)» Where yobs,; and ymis,i
are the observed and missing parts of y;, respectively.
We assume that the response mechanism is missing at
random (MAR) in the sense of Rubin (1976). That is,
the probability of nonresponse only depends on the ob-
served part but not on the missing value itself. Under
MAR, a consistent estimator of n can be obtained by
solving the conditional estimating equation, given the
observed data yobs = (Yobs, 1, - - - » Yobs,n)>

(2.3) > wi E{U: y) | Yobs.i} =0,

icA
where the above conditional expectation is taken with
respect to the prediction model (also called the impu-
tation model),

S (Ymis,i | Yobs,i; 6)
(2.4)
f(yobs,i, Ymis, i 5 0)

B f f()’obs,iv Ymis,i s a)deis,i '

which depends on the unknown parameter 6. Imputa-
tion is therefore a computational tool for computing the
conditional expectation in (2.3) for arbitrary choices of
the estimating function U (7n; y). The resulting condi-
tional expectation using imputation can be called the
imputed estimating function.

Table 1 presents a summary of Bayesian and fre-
quentist approaches to statistical inference with miss-
ing data. In the Bayesian approach, 6 is treated as a ran-
dom variable and the reference distribution is the joint
distribution of 6 and the latent (missing) data, given
the observed data. On the other hand, in the frequentist
approach, 0 is treated as fixed and the reference distri-
bution is the likelihood distribution of the latent data
of a given parameter 6, conditional on the observed
data. The learning algorithm for updating parameter
estimates from the observed data is based on data aug-
mentation (Tanner and Wong, 1987) in the Bayesian
approach, whereas the frequentist approach is usually
based on the EM algorithm. MI is a Bayesian impu-
tation method and the imputed estimating function is

TABLE 1
Comparison of two approaches of inference with missing data

Bayesian Frequentist

Prediction model
f(latent | Obs., 6)
EM algorithm
Expectation(E)-step
Maximization(M)-step

Model Posterior distribution
f (latent, 8 | Obs.)
Learning algorithm  Data augmentation
Prediction Imputation(I)-step
Parameter update Posterior(P)-step

Imputation Multiple imputation Fractional imputation
Linearization

or replication

Variance estimation  Rubin’s formula

Obs. indicates the observed data.

computed with respect to the posterior predictive dis-
tribution,

f(Ymis,i | Yobs) = / f(ymis,i | Yobs,is ) (0 | yobs) db,

which is the average of the predictive distribution
S mis.i | Yobs.i; 8) over the posterior distribution of 6.
On the other hand, in the frequentist approach, the con-
ditional expectation in (2.3) is taken WithArespect to the
prediction model (2.4) evaluated at & = 6, a consistent
estimator of 6. For example, one can use the pseudo
maximum likelihood estimator (MLE) 6 obtained by
solving the pseudo mean score equation (Louis, 1982;
Pfeffermann et al., 1998),

2.5)  S©O)=)_ wiE{S®;y) | yiobs; 0} =0,
icA
where S(0; y;) = dlog f(y;;0)/06.

The Bayesian approach to imputation, especially in
the context of MI, is well studied in the literature; how-
ever, to our best knowledge, there does not exist a com-
prehensive reference for FI, which is developed under
the fully frequentist framework. In FI, the conditional
expectation in (2.3) is computed by a weighted average
of the imputed estimating functions

E{U; yi) | Yobs.i}

(2.6) u
~ )
=3 " whU(: Yobs.i» Ymins)-
j=1
where {y;(ils?i, ...,y;(ifi)} are M imputed values for

Ymis,i> and {w|, ..., wf,} are the fractional weights
that satisfy the conditions of wy; > 0, Z?’IZI wi; =1
and

M .
Z w; Z w;kjS(G; Yobs,i s y;(li)l) =0.
ieA  j=1
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Once the FI data are constructed, the FI estimator of n
is obtained by solving

2.7) Zwl Zw U 77 yObSl’ymlsz) 0.

i€eA j=1

Note that, by (2.6), (2.7) approximates the conditional
estimating equation in (2.3).

In general, the FI method augments the original
dataset as

08 S = {8i (wi, yi) + (1 = &) (wiwjy, )
' j=1,...,M,icA},

where §; is the indicator of full response for y;, and

yi*j = (Yobs,i» ymlg) ). That is, FI produces one single
imputed dataset with size {np +n(1 — p)M}, where
n is the sample size, p is the proportion of full re-
sponse, and M is the imputation size. In the fraction-
ally imputed dataset, each unit with missing items is
now represented by M copies and each copy is as-
sociated with an imputed value y* and a fractional
weight w . Since (2.6) holds for arbltrary U func-
tions, the resultlng estimator is approximately unbiased
for a fairly large class of parameters, for example, do-
main means, percentages, quantiles, regression coeffi-
cients and correlations, which makes FI attractive for
general-purpose estimation. Kim (2011) used the im-
portance sampling technique to achieve (2.6) for gen-
eral U functions, which will be presented in the next
section.

3. PARAMETRIC FRACTIONAL IMPUTATION

Parametric Fractional Imputation (PFI), proposed
by Kim (2011), features a parametric model approach
to fractional imputation, and parameters in the imputa-
tion model are estimated by a computationally efficient
EM algorithm.

To approximate the conditional estimating equation

in (2.3) by PFI, for each missing value ymis ;, we first
(1)

generate M imputed values, denoted by {y ;.-
ymls l)} from a proposal distribution A (ymis,; | Yobs.i)-
Section 6.2 provides some guidance for choosing a pro-
posal distribution. Once the imputed values are gener-

ated from h(-), we compute

" f(y:;(lé), | Yobs.i; 0)

RS | Yobs.i)

subject to ZI/V:] w;; = 1, as the fractional weight as-

J

signed to yi*j = (Yobs.i> ymIS l) where 0 is the pseudo

MLE of 6 to be determined by the EM algorithm be-
low. Since Z = 1, the above fractional weight

is the same as wl = wij (9), where

J
S Yobs,i s yltl(ié,)ﬁ 0)
h(}’:l(é)l | Yobs,i)
which only requires knowledge of the joint distribution
f(y; ) and the proposal distribution /.
The pseudo MLE of 6 can be computed by solving
the imputed mean score equation

3.1 w;kj(ﬁ) x

M
G2 Y wi Y wiO)S(8: Yovs.is ywrs) =0,
ieA  j=1
where wl*J (0) is defined in (3.1). To solve (3.2), we can
either use the Newton method or the following EM al-
gorithm:

I-step. For each missing value ymis i, M imputed
values are generated from a proposal distribution
h(ymis,i | YObs,i)-

W-step. Using the current parameter value é(,),
compute the fractional weights as w?‘j(t) x

f(yobsl,ymm,@(f))/h(ymls, | Yobs,i), subject to

M
=1 Wi = L.

M -step. Update the parameter é(,+1) by solving the
imputed score equation,

M
(3.3) Y owi Yy wiyS0: ) =0,

icA  j=1

where y/i = (yobs,i, ymls)l)

C-step. Monitor the weight distribution using his-
tograms or summary statistics. If there are extreme
fractional weights that dominate other fractional
weights, go to the I-step and modify the proposal
distribution to a more plausible distribution, such as
S Omis.i | Yobs.i; @) evaluated at the current parameter
value é(,).

Iteration. Sett =1t + 1 and go to the W-step. Stop if
0+ 1) meets the convergence criterion.

Here, the I-step is the imputation step, the W-step is
the weighting step, and the M-step is the maximiza-
tion step. The I- and W-steps can be combined to im-
plement the E-step of the EM algorithm. Unlike the
Monte Carlo EM (MCEM) method, imputed values are
not changed for each EM iteration—only the fractional
weights are changed. Thus, the FI method has compu-
tational advantages over the MCEM method. Conver-
gence of the EM sequence of parameter estimates is
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achieved because the imputed values are not changed
unless the C-step has an effect. Kim (2011) showed

that given the M imputed values, y*(l) (M)

mis, i’ ""ymlsz ’
the sequence of estimates {0(0), 0(1), ...} from the W-
and M-steps converges to a stationary point éj{‘,l for
fixed M. The stationary point GA;{‘,I converges to the
pseudo MLE of 6 as M — oo. The resulting weight

f“. after convergence is the fractional weight assigned

to yl = (Yobs.i ymIS l) The C-step is used to assess the
dlstrlbutlon of fractional weights. If several extremely
large weights dominate other weights, it indicates that
the proposal distribution is not well specified. A simple
remedy is to update the imputation model with é(,) and
go to the I-step. Also, the C-step assists with conver-
gence for finite M.

Once the fractionally imputed dataset is constructed,
it can be used to estimate other parameters of inter-
est. That is, we can use (2.7) to estimate n from the FI
dataset.

We first consider a simple example to illustrate the
idea of FI, which resembles regression imputation.

EXAMPLE 1. Suppose a probability sample con-
sists of n units of z; = (x;, y;) with sampling weight
w;j, where x; is always observed and y; is subject to
missingness. Suppose the joint distribution in (2.1) is
fx,y;0) = f(x)f(y | x;0). Under MAR, the MLE
of 6 can be obtained from the full respondent sam-
ple. After obtaining the MLE 6, M imputed values
are generated for each missing y; from f(y; | x;; é).

The imputed values Vi (1) ey yl* M) are assigned frac-

tional weights a)ij(e) = l/M since h(y; | xi)=f(yi |

Xi; é). Then we can use (2.7) to estimate 1 from the FI
dataset.

We now consider a bivariate missing data example to
illustrate the use of the EM algorithm in FIL.

EXAMPLE 2. Suppose a probability sample con-
sists of n units of z; = (x;, y1;, y2;) with sampling
weight w;, where x; is always observed and y; =
(y1i, y2i) is subject to missingness. Let A1y, A1g, Aol
and Agg be the partitions of the sample based on the
missing pattern, where the subscript 1/0 in the ith po-
sition denotes that the ith y item is observed/missing,
respectively. For example, A is the set of the sample
with yj; observed and y; missing.

The conditional expectation in (2.3) involves eval-
uating the conditional distribution of yn;s; given the
observed data x; and yops; for each missing pattern,

which is then decomposed into

Yk

i€eA

= Z w; U (; Xi, Y1is ¥2i)

U(77 zi) | xi, yobsz}

€A

+ Z w; E U(’? Xi, Y1i, YZI)l-xl}
i€Ago

+ Z w; E U(naxu Yii, y2i) |x1,y21}
i€Ao;

+ Z w; E U(nsxz»ylzaYZI) |x1,)71t}
IEA10

Suppose the joint distribution in (2.1) is
f e, 1, 32:0)

3.4)
= fa(x:60) fi(y1 | x;01) f2(y2 | x, y15 62).

From the full respondent sample in Ajj, obtain 51(0)

and ég(o), which are initial parameter estimates for 9
and 6.

In the I-step, for each missing value yp;s;, we gen-
erate M imputed values from 7 (Ymis,i | Xi, Yobs.i) =

F mis.i | Xi Yobs.is 00))» where

f(ymis,i | Xi, Yobs,is é(O))

35 )
H i 1 xi, y1i5 620)),  ifi € Ao,
=1 O1i | xi, y2i; 60)), ifi € Aor,
FOtis y2i | xi3 00))s if i € Ago
and

FOui 1 xi2 y2i: 0(0))
3.6) R R
F1Oni 1 xi50100) F2(v2i | X3, y1i5 02(0))

[ il | xis él(O))f2()’2i | Xi, yiis éZ(O))dyli‘

Note that the marginal distribution of x, fy(x;6p),
is not used in (3.6). Except for some special cases
such as when both f1 and f> are normal distributions,
the conditional distribution in (3.6) is not in a known
form. Thus, a computational tool such as Metropolis—
Hastings (Hastings, 1970) or Sampling Importance Re-
sampling (SIR; Rubin, 1987) is needed to generate
samples from (3.6) for i € Ag;. For example, the SIR
consists of the following steps:

1. Generate B (say B = 100) values, denoted by

1 B
y*l( )»---7)’1( ) from fl(yll |xl591(0))‘
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2. Among the B values obtained from Step 1, se-
lect one value with the selection probability propor-
tional to f2(y2; | xi, yll 02(0)) where yl(k) is the
kth value from Step 1 (k=1,..., B).

3. Repeat Step 1 and Step 2 independently M times to
obtain M imputed values.

Once we obtain M imputed values of yy; for i € Ay,
we can use

h(yi | xi, y2i)
o f1(yi | xi5 010) 2021 | xi5 V15 62(0))

as the proposal density in (3.5). Since Z?’Izl wl*J =1,
we do not need to compute the normalizing constant
in (3.6). For i € Ajg, M imputed values of y; are
generated from f>(yz; | xi, y1i; éz(o)). Fori € Agg, M
imputed values of y;; can be generated from f1(y1; |
Xi; él(o)), and then M imputed values of yy; can be
generated from f2(y2; | i, ¥{;; 62(0))-

In the W-step, the fractional weights are computed
by

. A0 ks él(o)fz(y;‘f“ | %, 15 Oa )
Wij (1)
h(ymls i I xl’ yObS l)

with ZJ | Wi = 1, where yiki(j)

served and J’2(] ) = = yp; if yp; is observed. Using the
fractional weights, the parameter estimates are updated
by the M-step in (3.3).

= y1; if y1; is ob-

The above example covers a broad range of appli-
cations in the missing data literature, such as missing
covariate problems, measurement error models, gener-
alized linear mixed models, and so on. Yang and Kim
(2016) considered regression analyses with missing co-
variates in survey data using FI, where in the current
notation, f(y2 | x, y1) is a regression model with y,
and x fully observed and y; subject to missingness. In
generalized linear mixed models, f(y2 | x, y1) is a gen-
eralized linear mixed model where y; is the latent ran-
dom effect. See Yang, Kim and Zhu (2013) for using
FI to estimate parameters in generalized linear mixed
models.

For variance estimation, note that the imputed esti-
mator 7y obtained from the imputed estimating equa-
tion (2.7) depends on 6 obtained from (3.2). To reflect
this dependence, we can write Np; = 1py (6). To account
for the sampling variability of 6 in the imputed estima-
tor npy, either the linearization method or replication
methods can be used. In the linearization method, the
imputation model is needed in order to compute partial

derivatives of the score functions. In some situations,
disclosing the imputation model may not be desirable
for confidentiality reasons. To avoid disclosing the im-
putation model, replication methods are often preferred
(Rao and Shao, 1992). To implement replication vari-
ance estimation in FI, we first obtain the kth replicate
pseudo MLE 6% of § by solving

M
G7) §MEe) =3 wl > wk©)860:y5) =0,

icA j=1

where wl[k] is the kth replicate sampling weight and

w#; (6) is defined in (3.1). To obtain 6] from (3.7), we
can use either the EM algorithm as before or the one-
step Newton method to ease the computational burden.
For the one-step Newton method, we have

A

1
l=g - S*[kl(e)}

{397

M
> wlﬂd Y wh©O)S(0: y7),

icA j=1
where

s> @

M
= > w Y wh©)$(0: y};)

ieA j=1

+> w Zwu(e){ 6: %)

i€eA

M ®2
— > wi(0)S(6; y;“j)} ,
j=1
with $0:y) =08(6;y)/36T and B®2 = BBT. Once
0!kl is obtained, we obtain the kth replicate 7'*! of Agy
by solving

M
S wl Y wifu(m: v =0

i€A j=1

for n, where w*,[k] w}; (0 JIK1). The replicates 77}[:1] are

used to compute the estlmator of the variance of 7gy,

L
it A A k A 2
Vrep(nFl) = Z Ck(nl[il] - 77Fl) s
k=1
where L is the number of replicates, and ¢ is the repli-
cation factor associated with replicate k.
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4. NONPARAMETRIC FRACTIONAL IMPUTATION
4.1 Fractional Hot Deck Imputation

Hot deck imputation uses observed responses from
the sample as imputed values. The unit with missing
values is called the recipient and the unit providing
the value for imputation is called the donor. Durrant
(2009), Haziza (2009) and Andridge and Little (2010)
provided comprehensive overviews of hot deck impu-
tation in survey sampling. Hot deck imputation is very
popular in household surveys.

Fractional hot deck imputation (FHDI) combines the
ideas of FI and hot deck imputation. Kim and Fuller
(2004), Fuller and Kim (2005), and Kim and Yang
(2014) considered FHDI for univariate missing data.
We now describe FHDI for multivariate missing data
with an arbitrary missing pattern.

We first consider categorical data. Let z=1(21,---,
zx) be the vector of study variables that take cate-
gorical values, and z; = (z;1,...,zikx) be the ith re-
alization of z. Let §;; be the response indicator vari-
able for z;;. That is, §;; = 1 if z;; is observed and
3;j = 0 otherwise. Assume that the response mecha-
nism is MAR. Based on §; = (§;1,...,8;x), z; can be
decomposed into (Zobs.i, Zmis,i)» Which are the miss-
ing and observed parts of z;, respectively. Let D; =

{ *(1) *(Mz
Zmis,i’ ce mls i

) } be the set of all possible values of

Zmis.i» that is, (zobs,i, mls l) is one of the actually ob-

served values in the respondents. If all of M; possible

values in D; are taken as the imputed values for zps.;,

the fractional weight assigned to the jth imputed value
*(J)

Zmis,i 1s

V)]
@1 w;-kj _ 7T (Zobs,i» 2 Zmis, ,)

*(k)
ZkED[ 7T(ZObS,ls mlS l)

where 7(z) is the joint probability of z. Empirically,
the joint probability can be approximated by

m(z)
(4.2)

ZieA wj ZjeD,- w;}I{(Zobs,i, Z;kn(ijs?i) = é}
DieA Wi .
The EM algorithm by weighting (Ibrahim, 1990) can
be used to compute (4.1) and (4.2), starting with the ini-
tial values of fractional weights wl*j 0 = Mi_l. Equa-
tions (4.1) and (4.2) correspond to the E-step and

M-step of the EM algorithm, respectively. The M-step
(4.2) can be changed if we assume a parametric model

for the joint probability 7 (z). For example, if the joint
probability is a parsimonious multinomial distribution
7(z; @), then the M-step replaces (4.2) with solving
the imputed score equation of « to update the estimate
of a.

We now consider continuous data. Let y = (y, ...,
vk ) be the vector of study variables that~take contin-
uous values, and y; = (yi1,..., yikx) be the ith real-
ization of y. We can first discretize each continuous
variable by~dividing its range into a small finite num-
ber of segments. Let z;; denote the discrete version of
vik. Note that z;; is observed only if y;; is observed.
The support of z, denoted by {z1, ..., zg}, is the same
as the sample support of z from the full respondents
and specifies donor cells. The joint probability of z,
denoted by 7 (zg), for g =1,..., G, can be obtained

by the EM algorithm for categorical missing data as

described above.
*(1)

As in the categorical case, let D; = {z ;i s---»
zfn(i];[;)} be the set of all possible values of zp;s ;. Using

a finite mixture model, a nonparametric approximation
of f(¥mis,i | Yobs,i) 18

f(ymis,i | )’obs,i)
“4.3)

~ Z P(é = Zj*(j) | )’Obs,i)f(ymis,i |Z~i*(j))’

where each Zi () = = (Zobs,i> 2 mis. l) defines an imputa-

tion cell. The approximation in (4.3) is based on the
assumption that

(4.4) S (Ymis | Yobs> §) = f (Ymis | %)7

which means (approximate) conditional independence
between ymis and yobs given z. Thus, we assume that
the covariance structure between items are captured
by the discrete approximation and the within-cell er-
rors can be safely assumed to be independent. Once
the imputation cells are formed to satisfy (4.4), we se-
lect mg imputed values for yn;s,;, denoted by yi ¥ =

(Yobs, i s ymls) ), for j =1,...,mg, randomly from the
full respondents in the same cell, with the selection
probability proportional to the sampling weights. The
final fractional weight assigned to y;*() is wl’.“j =

P(Zj*(j) | yobs,i)m;1
This FHDI procedure resembles a two-phase strat-

ified sampling (Rao, 1973, Kim, Navarro and Fuller,
2006), where forming imputation cells corresponds
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to stratification (Phase one) and conducting hot deck
imputation corresponds to stratified sampling (Phase
two).

If we select all possible donors in the same cell, the
resulting FI estimator is fully efficient in the sense that
it does not introduce additional randomness due to hot
deck imputation. Such fractional hot deck imputation
is called fully efficient fractional imputation (FEFI).
FEFI is implemented at Proc Surveyimpute in SAS
(SAS Institute Inc, 2015).

4.2 Nonparametric Fractional Imputation Using
Kernels

In real-data applications, nonparametric methods are
preferred if less is known about the true underlying
data distribution. Hot deck imputation makes less or
no parametric distributional assumptions and, there-
fore, is more robust than fully parametric methods.
In this section, we discuss another way of calculat-
ing the fractional weights that links the FI estimator
to some well-known nonparametric estimators, such
as the Nadaraya—Watson kernel regression estimator
(Nadaraya, 1964).

For simplicity, suppose we have bivariate data
(x;, yi) where x; is completely observed and y; is sub-
ject to missingness. Assume the missing data mech-
anism is MAR. Let §; be the response indicator that
takes value one if y; is observed and zero otherwise.
We are interested in estimating 1, which is defined
through E{U(n; X,Y)} =0.Let Ag ={i € A;6; =1}
be the index set of respondents, and r = |Ag| be the
size of Ar. To calculate the conditional estimating
equation (2.3) nonparametrically, we use the follow-
ing FI algorithm: for each unit i with §; =0, we take
r values from Ag as imputed values of y;, denoted
by y;k (1), e, yl-* (r), and compute the kernel-based frac-
tional weight w;kj = Kp(x; — xf(J))/ZkeAR Kn(x; —
xl-* (k)), where Kj(-) is the kernel function with band-
width /& and xi* ) is the covariate associated with yi* W,
The nonparametric fractional weight measures the de-
gree of similarity of y; and y;k “) based on the distance
between x; and x;k ) The resulting FI estimating equa-
tion can be written as

Zwi{SiU(ﬂ;xi,)’i)
icA

4.5)
HA=8) Y wiUlx. )] =0,
JEAR

The FI estimator uses (}(n;xi) = Y jeAx w?‘jU(n;
x,-,y;k(")) to approximate E{U(n; x;,y;) | xi} non-
parametrically. For fixed 7, U (n; x;) is often called
the Nadaraya—Watson kernel regression estimator of
E{U; xi,yi) | x;} in the nonparametric estimation
literature. Note that this FI estimator does not rely
on any parametric model assumptions and so is non-
parametric; however, it is not assumption free because
it makes an implicit assumption of the continuity of
E{U(n; x,y) | x;} through the choice of kernels to de-
fine the “similarity” (Nadaraya, 1964). Notably, while
the convergence of 0(17;x,-) to E{U; xi, yi) | xi}
does not achieve the order of O, (1/4/n), the solution
71 to (4.5) satisfies g1 — n = 0, (1/4/n) under some
regularity conditions, which was proved by Wang and
Chen (2009) in the classical setup of independent and
identically distributed observations.

Such kernel-based nonparametric fractional impu-
tation is directly applicable to complex survey sam-
pling. More developments are expected by coupling
FI with other nonparametric methods such as those us-
ing nearest neighbor imputation (Chen and Shao, 2001;
Beaumont and Bocci, 2009; Kitamura, Tripathi and
Ahn, 2004; Kim, Fuller and Bell, 2011) or predictive
mean matching (Vink et al., 2014).

5. SYNTHETIC DATA IMPUTATION

Synthetic imputation is a technique of creating im-
puted values for items not observed in the current sur-
vey by incorporating information from other surveys.
For example, suppose that there are two independent
surveys, called Survey 1 and Survey 2, and we observe
x; from Survey 1 and observe (x;, y;) from Survey 2.
In this case, we may want to create synthetic values
of y; in Survey 1 by incorporating information from
Survey 2, so that inference about y can be made even
in Survey 1. Synthetic imputation is particularly use-
ful when Survey 1 is a large scale survey and item y is
very expensive to measure. Schenker and Raghunathan
(2007) reported several applications of combining in-
formation from multiple surveys. In one application,
they discussed synthetic imputation that combined in-
formation from two surveys conducted by the National
Center for Health Statistics to improve on analyses of
self-reported data on health conditions: in one survey,
both self-reported health measurements and clinical
measurements from physical examinations were avail-
able, and in the much larger survey, only self-reported
health measurements were available.
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The setup of two independent samples with common
items can also be called non-nested two-phase sam-
pling. Analyzing data from two-phase sampling can be
treated as a missing data problem, where the missing-
ness is planned and the response probability is known.
In two-phase sampling, suppose we observe x; in the
first-phase sample and observe (x;, y;) in the second-
phase sample, where the second-phase sample is not
necessarily nested within the first-phase sample. Let
A1 and {w;1;i € A} be the sets of indices and sam-
pling weights for the first-phase sample, respectively.
Let Ay and {wj>;i € Ay} be the corresponding sets
for the second-phase sample. Assume a working model
m(x;; 0) for E(y | x;). For estimation of the population
total of y, the two-phase regression estimator can be
written as

Yip= ) wiim(x;; 0)
€A
(5.1) N
;= m(xi; 0)},

+ Z wiZ{yt

i€Ay

where 6 is estimated from the second-phase sample.
The two-phase regression estimator is efficient if the
working model is well specified. The first term of (5.1)
is called the projection estimator. Kim and Rao (2012)
discussed asymptotic properties of the projection esti-
mator under nonnested two-phase sampling. Note that
if the second term of (5.1) is equal to zero, the two-
phase regression estimator is equivalent to the projec-
tion estimator. Asymptotic properties of the two-phase
estimator and variance estimation have been discussed
in Kim, Navarro and Fuller (2006), and Kim and Yu
(2011a).

Creating an imputed dataset for the first-phase sam-
ple, often called mass imputation, is one method for in-
corporating the second-phase information into the first-
phase sample. Fuller (2003) investigated mass imputa-
tion in the context of two-phase sampling. In a large
scale survey, it is a common practice to produce esti-
mates for domains. Legg and Fuller (2009) discussed
the possibility of using imputation to obtain improved
estimators for domains.

The FI procedure can be used to obtain the two-
phase regression estimator in (5.1) and, at the same
time, improve domain estimation. Note that the two-
phase regression estimator (5.1) can be written as

5.2) YrEF = Z Z Wil z;yz )

i€Ay jeA;

x(j) A A A AL A R
where y; " =y +ej, yi =m(x;;0), ¢, =y; — Y,
w;“j =w;j2/(X ke, Wk2), and we assume ) ;. 4, Wil =

> ica, Wi2. The expression (5.2) implies that we im-
pute all the units in the first-phase sample, including
the units that also belong to the second-phase sam-
ple. The estimator (5.2) is computed using an aug-
mented dataset of n| x n records, where n; and n, are
the sizes of A; and Aj, respectively, and the (7, j)th
record has an (1mputed) observation () — =3 +¢j
with weight w;jw};. - That is, for each unit i € Ay, we
impute ny values of yl-* U with fractional weight w. 2
The method in (5.2) imputes all the units in A, and is
called fully efficient fractional imputation (FEFI), ac-
cording to Fuller and Kim (2005). The FEFI estimator
is algebraically equivalent to the two-phase regression
estimator of the population total of y, and can also pro-
vide consistent estimators for other parameters such as
population quantiles.

If it is desirable to limit the number of imputations to
a small value m (m < nj), FI using regression weight-
ing in Fuller and Kim (2005) can be adopted. We first

select m values of y; *U) , denoted by y**(l), s yl**(m)’

from the set of n; imputed values {y; ), ; j € A2} using
an efficient sampling method. The fractional weights
* #(J)

w;; assigned to the selected values i

mined so that

(53) Zwu 1 y**(]) — Z 1](1 y*(]))

JEA2

are deter-

holds for each i € Aj. The fractional weights satisfying
(5.3) can be computed using the regression weighting
method or the empirical likelihood method; see Sec-
tion 6.1 for details. The resulting FI data yl *U) with
weights w,lwl are constructed with n| x m records,
which integrate available information from two phases.
Replication variance estimation with FI, similar to
Fuller and Kim (2005), can be developed. See Sec-
tion 8.7 of Kim and Shao (2014).

6. FRACTIONAL IMPUTATION VARIANTS

6.1 The Choice of M and Calibration Fractional
Imputation

The choice of the imputation size M is a matter
of tradeoff between statistical efficiency and compu-
tational efficiency: small M may lead to large variabil-
ity in the Monte Carlo approximation; whereas large
M may increase computational cost. The magnitude of
the imputation error is usually O(1/+/M), which can
be reduced for large M. Thus, if computational power
allows, the larger M, the better.



424 S. YANG AND J. K. KIM

In survey practice, it is not desirable to release a large
imputed dataset to the public. To reduce the size of
the final dataset, a subset of initial imputated values
can be selected. In this case, FI can be developed in
three stages. The first stage, called Fully Efficient Frac-
tional Imputation (FEFI), computes the pseudo MLE
of parameters in the superpopulation model with a suf-
ficiently large imputation size M, say M = 1000. The
second stage, called the Sampling stage, selects a small
number m (say, m = 10) imputed values from the ini-
tial set of M imputed values. The third stage, called
Calibration Weighting, constructs the final fractional
weights for the m selected imputed values to satisfy
calibration constraints. This procedure can be called
Calibration FI.

The FEFI step is described in Section 5. Here, we
describe the last two stages in detail. In the Sampling
stage, a subset of imputed values is selected into re-
duce the final imputation size. For each i, we have M
initial imputed values yl?kj = (Yobs.i> y;(ié?i) with frac-
tional weights wl*j We treat yj* = {yi"‘j; j=1,...,M}
as a weighted finite population with weights {w?‘j; j=
1,..., M}, and use an unequal probability sampling
method such as probability-proportion-to-size (PPS)
sampling without replacement to select a sample of
size m, say m = 10, from Xi* using wl*j as the selection
probability. Let y7, ...
from y;*.

, ¥, be the m values sampled

According to the above selection rule, the fractional
weights for the sampled m imputed values are given
by ﬁ)lf"jo =m~'. However, this set of fractional weights
may not necessarily satisfy the imputed score equation,

m

(6.1) Y owi Yy Wi S(0:57) =0,
ieA  j=I

where 6 is the pseudo MLE of 6 obtained at the FEFI
stage. It is desirable for the solution to the imputed
score equation with small m to be equal to the pseudo
MLE of 6, which specifies the calibration constraint.
At the Calibration Weighting stage, the initial set of
weights is modified to satisfy the constraints (6.1) and

?:1 ’D;kj = 1, which can be achieved by regression
weighting. The regression fractional weights are con-
structed by

6.2) W = W] + WA (S — 57).

where S;} = S(6; yl?’}), b_’;k = Z’;’:l wijOS;“j,_and A=
X ica wiSHY {Xiea wi Xy W50(S); — SH®2) .
Note that some of the fractional weights computed by

(6.2) may be negative. To avoid negative weights, al-
ternative algorithms other than regression weighting
can be used. For example, the fractional weights of the
form

B 1]);“].0 exp(A Si*j)

VoYl Wi exp(AS])

are approximately equal to the regression fractional
weights in (6.2) and are always positive.

IS3
c %

6.2 The Choice of the Proposal Distribution

PFI generates imputed values from the proposal dis-
tribution h. The choice of the proposal distribution
is somewhat arbitrary. However, a well-specified pro-
posal distribution may improve the finite-sample per-
formance of the imputation estimator. In what follows,
we discuss a number of ways to specify the proposal
distribution and assess the quality of specification.

For a planned parameter, for example, the population
mean of y, Kim (2011) showed the optimal proposal
distribution that makes the Monte Carlo approximation
variance of y* = ?’1:1 u)l*] yi*j as small as possible, is
h*(ymis,i | yobs,i)

= f(ymis,i | Yobs,i s 0)

_ |yi = E{i | Yobsi3 0}
E{lyi — E{yi | Yobs,i; 0} | Yobs,i; 0}

where 6 is the MLE of 6. For general-purpose esti-
mation, the parameter of interest is often unplanned
at the time of imputation. According to Fay (1992),
h(Ymis,i | Yobs,i) = f (Ymis,i | Yobs,i; @) 18 a reasonable
choice in terms of statistical efficiency. For impor-
tance sampling, since we do not know 6 at the out-
set of the EM algorithm, we can use 4 (Ymis.i | Yobs,i) =
S f Omis.i | Yobs.i; 0)7(0) d6, where 7 (0) is a prior dis-
tribution for 6.

We now discuss a special choice of the proposal dis-
tribution /4, based on the realized values of the variables
having missing values, which is akin to hot deck impu-
tation. For simplicity, assume that the scalar variable y;
is subject to missingness, §; is the response indicator
of y;, and x; is completely observed in the sample. For
each missing value y;, Ag ={j € A;§; = 1} forms a
donor pool. For this choice of imputed values, the pro-
posal distribution 2(y;) is f(y; | §; = 1). In calculat-
ing the fractional weights, we approximate f(y; | §; =

1) by its empirical distribution NEI D kea Widk f (v |
xk)/Ngr, where Ngp = > ;c 4 wik. The EM algorithm
takes the following steps:
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I-step. For each missing value y;, take all values in
Apg as donors.
W-step. With current parameter estimates of 6, é(,),
compute the fractional weights by

(6.3) Wi X D wibk f (v | X%),
keA
subject to 3~ e 4 8jw;kj([) =1.
M-step. Update the parameter é(;H) by solving the
following imputed score equation:

> widiS©O; xi, i)
i€cA
+ D wil=8) Y wj,S®: xi,y) =0.
icA JEAR

Iteration. Sett =t + 1 and go to the W-step. Stop if
0+1) meets the convergence criterion.

Once the FI datass:t is created, the FI estimator of the
population mean Y is

2 1
Ye = N{Zw,-é,-yi +Zwi(1 — &) Z w;kj)’j}-

ieA i€eA JEAR

Kim and Yang (2014) showed that the resulting estima-
tor gains robustness over PFI, due to the special choice
of the proposal distribution. It is less sensitive to depar-
tures from the assumed parametric model.

6.3 Doubly Robust Fractional Imputation

Suppose we have bivariate data (x;, y;) where x;
is completely observed, y; is subject to missing-
ness and the missing data mechanism is MAR. We
assume an outcome regression (OR) model E(y; |
x;) = m(x;; 6p) and a response propensity (RP) model
P@i =11xi,y) = P0G =11xi)=m(xi;¢o). Let
Ag = {i;8; = 1} be the set of respondents, where
d; is the response indicator of y;. We are interested
in estimating the population total n = ZlNzl vi. No-
tice that we do not need both the OR and RP models
to construct consistent estimators of 7. For example,
N =Y ;eawWim(x;; é), with @ being a consistent esti-
mator of 6y, is consistent for n under the OR model and
M =D ica WiYi/m(xi; (ﬁ), with 43 being a consistent
estimator of ¢y, is consistent for 1 under the RP model.

An estimator of 7 is doubly robust if it is consistent if
either the OR model or the RP model is correctly spec-
ified, but not necessarily both. This property guards the
estimator from bias due to model misspecification. The
DR estimators have been extensively studied in the lit-
erature; see for example, Robins, Rotnitzky and Zhao

(1994), Bang and Robins (2005), Tan (2006), Kang and
Schafer (2007), Cao, Tsiatis and Davidian (2009), and
Kim and Haziza (2014). We now discuss a FI estimator
that has the double robustness feature.

Let m(x; 0) be fitted to the respondent set Ag, lead-
ing to a consistent estimator of 6, é, under the OR
model. For each unit j € Ar, we have the residual
éj=y; — m(xj;é). For each missing value y;, let
the donor pool be Ag, and y/; = Ji + ¢; be the jth
imputed value, where y; = m(x;; f) and & j is con-
tributed from the donor j € Ar. Each donor probably
does not contribute equally. We use inverse probabil-
ity weighting to determine the fractional weight asso-
ciated with the imputed value. We fit 77 (x; ¢) such that

Yicag Wilmw(xj; M) = Y icA Wi, so that each unit
J € AR represents 1/m(x;; ) copies of the sample.
Then the fractional weight w;‘j associated with the jth
imputed value y;"/- is proportional to {1/m(x;; dA)) — 1}
over the donor pool Ag (minus one because y; itself
counts one), that is,

1 e —1
64  wp=——wtl/meEo -l
ke Wibk{1/m (xis ) — 1}
The FI estimator is given by
©5) i =Y wils+ (1 = Y suip ||

icA jeA

The FI estimator 7pr in (6.5) is doubly robust. First,
notice that 7y is algebraically equal to

AFr=)_ wi [m(xi; 0)
€A
(6.6) <
Si
+ <
7T (x5 @)
Let 7, =) ;c4 wiy; be the full sample estimator of 7,
then

. . 5

—h =5 "w: _

NFL — T l%; l{ﬂ(xi;(]b)

This is an asymptotically unbiased estimator of zero if

either the OR model or the RP model is correctly spec-

ified, but not necessarily both. Kim and Haziza (2014)

discussed efficient estimation of (6, ¢) and doubly ro-
bust variance estimation in survey sampling.

{yi = m(xi; 9)}]

_1}{)’1' —m(x;; 0)}.

7. COMPARISON WITH MULTIPLE IMPUTATION

Multiple imputation (MI) has been proposed as a
general tool for imputation and features simplified vari-
ance estimation. It is therefore of interest to compare
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the behavior of MI and FI. In this section, we compare
MI and FI in terms of statistical efficiency and their
ability to handle informative sampling.

7.1 Statistical Efficiency

For the purpose of illustration, we consider a sim-
ple setting where the complete data z are randomly
drawn from a population whose density is f(z; ) with
0 € R?. MI creates M complete datasets by imputing
the missing data znis from the posterior predictive dis-
tribution given the observed data zobs, f (Zmis | Zobs) =
ff(zrnis | Zobs; )7 (0 | Zobs) dO, where (0 | Zobs) 18
the posterior distribution of 8. The MI estimator of 9 is

M
k=1

where 6®) is the MLE applied to the kth imputed
dataset. Rubin’s variance formula is

Var(Ov) = War + (1+ M_])BM,

where Wy = MY M VO By =M — )" x
Z,i”: l(é(") — 6yvn)?, and V® is the variance estimator
of 6 under complete response applied to the kth im-
puted dataset.

Bayesian MI is a simulation-based method, and thus
introduce additional variability in generating parame-
ters from the posterior distribution. This explains why

the asymptotic variance of the MI estimator, given by
Wang and Robins (1998),

o VM = Zo_bl + M*lcholnl’misl—(;):n
' +M T,

is strictly larger than the asymptotic variance of the FI
estimator,
(7.2) Ver=Z: + M '77]

obs com

ImisI o

com’

where Zoom = E{S(0)®?), Zobs = E{Sobs(@)®?},
Tmis = Zeom — Zobs, S(8) = S(Z;0) = dlog f(Z;0)/
06 is the score function of the complete-data likeli-
hood, Sops(0) = E{S(0) | Zobs} is the score function
of the observed-data likelihood, and J = Imislcj)}n is
the fraction of missing information matrix (Rubin,
1987, Chapter 4). The difference between (7.1) and
(7.2) can be sizable for a small M. Furthermore, for
a large M, although the MI estimator is efficient, the
inference is inefficient since Rubin’s estimator of the
variance of the MI estimator is only weakly unbi-
ased, that is, VMI(éMI) converges in distribution in-
stead of converges in probability to V. This leads to

much broader confidence intervals and less powerful
tests than produced via a consistent variance estima-
tor (Nielsen, 2003). On the other hand, the replication
variance estimator for FI, discussed in Section 3, is
consistent for Vgy.

7.2 Imputation Under Informative Sampling

Under informative sampling, the MAR assumption
is subtle. We assume that the response mechanism
is MAR at the population level, now referred to as
population missing at random (PMAR), to be distin-
guished from the concept of sample missing at random
(SMAR). For simplicity, assume y is a scalar variable
which is subject to missingness, § is the response in-
dicator of y, x is a vector of covariates which is al-
ways observed, and [ is the sample inclusion indica-
tor. PMAR means that y 1 § | x, that is, MAR holds
at the population level, f(y | x) = f(y | x, ). On the
other hand, SMAR is defined as y L § | (x,I = 1),
that is, MAR holds at the sample level, f(y | x,I =
)= f(y|x,I =1,5). The two assumptions are not
testable empirically. The plausibility of these assump-
tions should be judged by subject matter experts. Of-
ten, PMAR is regarded to be more realistic than SMAR
because an individual’s decision about whether or not
to respond to a survey more likely depends on his or
her own characteristics than on being actually being
selected; for example, a person may never respond to
any telephone or internet survey as a general principle.

With an noninformative sampling design, we have
P(I=1|x,y)= P =1]x), under which PMAR
implies SMAR. With informative sampling designs,
however, PMAR does not necessarily imply SMAR.
In such cases, using an imputation model fitted to the
sample data for generating imputed values can result in
biased estimators.

FI does not require that SMAR holds in addition
to PMAR. Under PMAR, we have f(y|x,6 =0) =
f(y|x).Let f(y|x;6) be aparametric model for im-
puted values f(y | x). The parameter 6 can be con-
sistently estimated by solving (2.5), even under infor-
mative sampling. Since FI generates the imputations
from f(y | x; é), with a consistent estimator 0 , the re-
sulting FI estimator is approximately unbiased (Berg,
Kim and Skinner, 2016), whereas, MI tends to prob-
lematic under informative sampling if SMAR does not
hold. To address this, a number of researchers sug-
gest using an augmented model by adding sampling
weights (or some function of sampling weights) into
the imputation model to achieve SMAR, claiming that
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(D

FI1G. 1. A directed acyclic graph (DAG) for a setup where PMAR
holds but SMAR does not hold. Variable U is latent in the sense
that it is never observed.

the resultant MI point estimator is approximately un-
biased (Rubin, 1996; Schenker et al., 2006). However,
as pointed out by Berg, Kim and Skinner (2016), this
approach is not always successful. For example, as pre-
sented in Figure 1, Y is conditionally independent of §
given X. However, Y is not conditionally independent
of § given X and / when there exists a latent variable U
that affects both § and I, because I is a collider in the
pathway from Y to §. In this case, augmenting X by in-
cluding sampling weights does not achieve SMAR and
leaves inference from the MI estimator questionable.

8. SIMULATION STUDY

In this section, we investigated the performance of
FI compared to MI by a limited simulation study us-
ing an artificial finite population generated from real
survey data. The pseudo finite population was gener-
ated from a single month of the US Census Bureau’s
Monthly Retail Trade Survey (MRTS). Each month,
the MRTS surveys a sample of about 12,000 retail busi-
nesses with paid employees to collect data on sales and

inventories. The MRTS is an economic indicator sur-
vey whose monthly estimates are inputs to the Gross
Domestic Product estimates. The MRTS sample design
is a typical one for business surveys, employing one-
stage stratified sampling with stratification based on
major industry classification, further substratified by
the estimated annual sales. The sample design specifies
higher sampling rates in strata with larger units than in
strata with smaller units. More detail about MRTS and
the simulated data can be found in Mulry, Oliver and
Kaputa (2014).

The original population file contains 19,601 retail
businesses stratified into 16 strata, with a strata iden-
tifier (h), sales (y, 10* US dollars), and inventory val-
ues (x, 10* US dollars). For simulation purposes, we
focused on the first 5 strata as a finite population, con-
sisting of 7260 retail businesses. Figure 2 shows the
scatter plot of the sales and inventory data by strata on
a log scale. We assumed the following superpopulation
model:

(8.1) log(yni) = Bon + Binlog(xni) + &pi,

where Bo;, and By are strata-specific parameters with £
being the strata identifier, and &; ~ N (0, 0}%). Figure 3
shows the residual plot and the normal Q-Q plot for
the fitted model (8.1) to assess the adequacy of model
(8.1). From the residual plot, the constant variance as-
sumption of gp; within strata appears to be reasonable.
From the normal Q-Q plot, the normality assumption
of &p,; holds approximately.
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FI1G. 2. Scatter plot of log sales and log inventory data by strata.
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To create missing data, we considered univariate
missingness where only y has missing values. We gen-
erated the response indicator § for y according to

7 =1/[1+exp{4 — 0.3log(x)}].

Under this model, the missing mechanism is MAR and
the response rate is about 0.6.

To generate samples, we considered stratified sam-
pling with simple random sampling within strata
(STSRS). Table 2 shows strata sizes Np,, sample sizes
np, and sampling weights in each stratum. The sam-
pling weights range from 13 to 46. The selection of
samples is repeated 2000 times.

The parameters of interest are the stratum means
of y, ny = up for 1 < h <5, and the population
mean of y, ng = u. The true parameter values are
n =92.25, np =67.90, n3 = 18.24, ns = 13.01, 5 =
5.92 and ng = 20.40. The estimation methods included
(i) Full, the full sample estimator, which is used as a
benchmark for comparison, (ii) MI, the multiple im-
putation estimator with imputation size M = 100 and

8 ~ Bernoulli(7),

TABLE 2
The sample allocation in stratified simple random sampling

Strata S, S1 S S3 Sa Ss

Strata size Nj, 352 566 1963 2181 2198
Sample size ny, 28 32 46 46 48
Sampling weight 13 18 43 47 46

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Diagnostic plots for the regression of log(y) on log(x) and stratum indicators: the residual plot (left) and the normal Q—Q plot

(iii) PFI, the parametric fractional imputation estima-
tor with imputation size M = 100, where the model
parameters are estimated by the pseudo MLE solving
the imputed score equation (3.2).

For both MI and PFI, we used the log normal regres-
sion model in (8.1) as the imputation model. Because
the sampling design is stratified random sampling and
the imputation model includes the stratum indicators,
the sampling design becomes noninformative. We first
imputed log(y) from the posterior predictive distribu-
tion for (8.1), given the observed data, and then trans-
formed the imputations to the original scale of y. In
each imputed dataset, we applied the design-unbiased
full-sample point estimators and variance estimators
for the STSRS design.

For PFI, the proposal distribution in the importance
sampling step is the imputation distribution evaluated
at initial parameter values estimated from the avail-
able data. For estimating model parameters, we ob-
tained the pseudo MLEs by solving the score equa-
tion (2.5). After imputation, i was estimated by solving
(2.7) by choosing U to be the corresponding estimat-
ing function. We used the delete-1 Jackknife replica-
tion method for variance estimation,

L) =1

Ve =Y 3 (7 - 7)%,

=1 " e,

where 7/l is computed by omitting unit i € Sj, and
modifying the weights so that the sampling weight wy,;
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TABLE 3
Numerical Results of Point Estimation (Mean and Var), Relative Bias (R.B.) of Variance Estimation, Mean Width and Coverage of 95%
Confidence Intervals (C.1.s) under Stratified Simple Random Sampling over 2000 Samples. The estimation methods include (i) FULL: the
Sull sample estimator, (ii) MI: the multiple imputation estimator with imputation size M = 100, (iii) PFI, the parametric fractional
imputation estimator with imputation size M = 100. The parameters are n1 = Stratum 1 mean, ny = Stratum 2 mean,
n3 = Stratum 3 mean, n4 = Stratum 4 mean, ns = Stratum 5 mean, g = Population mean

Mean Var R.B. (%) Mean width of C.Ls Coverage

FULL MI PFI FULL MI PFI FULL MI PFI FULL MI PF1 FULL MI PFI
n 9246 9395 9285 76.46 119.18 120.67 6.08 48.06 7.81 18.01 26.57 22.81 0.951 0.964 0.952
n  67.72 68.40 67.76 40.05 60.91  59.53 6.55 3053 3.26 13.07 17.83 15.68 0.943 0.954 0.946
n3y 1830 18.45 18.28 2.12 3.32 329 —-3.06 23.05 —1.63 2.86 4.04 3.60 0944 0961 0.948
ng 13.03 13.12 13.00 1.02 1.77 1.76 0.51 23.02 —4.28 2.03 2.95 2.60 0.946 0.962 0.943
N5 5.92 598 591 0.22 0.46 0.46 1.84 16.96 —4.40 0.94 1.47 1.32 0.953 0.963 0.947
ne 20.42 20.63 20.42 0.70 1.11 1.10 -3.36 3275 —-3.97 1.65 2.42 2.06 0.952 0.983 0.953

is replaced by npwy;/(n, — 1) for all j € S;, and the
sampling weights remain the same for all other units.

Table 3 shows the numerical results. The means and
variances were calculated as the Monte Carlo means
and Monte Carlo variances of the point estimates
across 2000 simulated datasets. The relative bias of the
variance estimator was calculated as {(Ve — Var)/ Var}
x100%, where Ve is the Monte Carlo mean of vari-
ance estimates and Var is Monte Carlo variance of
point estimates. In addition, 95% confidence inter-
vals were calculated. We obtained the Monte Carlo
mean widths and coverages of 95% confidence inter-
vals. The three estimators are essentially unbiased for
point estimation, which is expected since the full sam-
ple estimator is design-consistent, and for MI and PFI,
the imputation model is correctly specified. Our pri-
mary interest lies in comparison of the performance of
variance estimation. As shown in Table 3, the mean
width of confidence intervals based on MI is larger
than that of FI. Rubin’s estimator of the variance of
the MI estimator is biased upward with relative bi-
ases 48.06%, 30.53%, 23.05%, 23.02% and 16.96%
for 7jmi, 1 < j <5 and 32.75% for e mr1, respec-
tively. Because of this variance overestimation, the em-
pirical coverage of 95% confidence interval reaches
98.3% for the population mean. Rubin’s variance es-
timator requires a self-efficient complete-sample esti-
mator (Meng, 1994), even when the congeniality con-
dition is satisfied, that is, the imputation model is cor-
rectly specified as in our simulation study. An estimator
n(-) is self-efficient if it never decreases the variance
when it is applied to any subset of the data compared
to the complete data, that is,

(8-2) V{ﬁ(Ysub)} = V{ﬁ(Ycom)}a

where Yg,p is any subset of the data and Y.on is the
complete data. Otherwise, Rubin’s variance estimator
is biased (Meng and Romero, 2003). Self-efficiency
holds for the maximum likelihood estimator of 7. Un-
der the log normal distribution and MAR, the design-
unbiased estimators are the method of moments es-
timators, which were used as complete-sample es-
timators. The (design-unbiased) Horvitz—Thompson
estimators are not self-efficient in the log-normal
model, which explains the bias in Rubin’s variance
estimator. In contrast, the FI variance estimator is es-
sentially unbiased and the empirical coverage of 95%
confidence intervals is close to the nominal coverage
level.

9. CONCLUDING REMARKS

Both multiple imputation (MI) and fractional impu-
tation (FI) can be used to create complete datasets for
general-purpose estimation from sample survey data
(subject to missingness). Rubin’s MI variance formula
is simple and easy to use, but its validity requires spe-
cial conditions called congeniality and self-efficiency
that can be restrictive in practice. In contrast, FI does
not require the self-efficiency condition for consis-
tent variance estimation. When the sampling design
is informative, MI can use an augmented model to
make the sampling design noninformative. However,
incorporating all design information into the model
is not always possible (Reiter, Raghunathan and Kin-
ney, 2006). When this happens, valid inference of MI
is not easy and is sometimes impossible (Berg, Kim
and Skinner, 2016). In contrast, FI can handle informa-
tive sampling more easily as it incorporates sampling
weights into estimation instead of modeling.
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So far we have presented FI under MAR, but other
response mechanisms can be considered. Parametric
FI can be adapted to situations where the missing
values are suspected to be missing not at random
(MNAR) (Kim and Kim, 2012; Yang, Kim and Zhu,
2013). A semiparametric FI using the exponential tilt-
ing model of Kim and Yu (2011b) is also promising,
which is under development. Also, FI can be used to
approximate the observed log likelihood (Yang and
Kim, 2016a), which can be directly applied to model
selection or model comparison with missing data, such
as using the Akaike Information Criterion (Akaike,
1998) or the Bayesian Information Criterion (Schwarz,
1978). Further investigation of this topic will be worth-
while.

We conclude with the hope that continuing ef-
forts will be made into developing statistical methods
and corresponding computational programs for FI (an
R software package is in progress), so as to make these
methods accessible to a broader audience. Proc Sur-
veylmpute in SAS (version 14.1) contains some op-
tions for fractional imputation for categorical data.
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