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This paper studies the effect of an overdispersed arrival process on
the performance of an infinite-server system. In our setup, a random
environment is modeled by drawing an arrival rate Λ from a given
distribution every Δ time units, yielding an i.i.d. sequence of arrival
rates Λ1,Λ2, . . .. Applying a martingale central limit theorem, we
obtain a functional central limit theorem for the scaled queue length
process. We proceed to large deviations and derive the logarithmic
asymptotics of the queue length’s tail probabilities. As it turns out,
in a rapidly changing environment (i.e., Δ is small relative to Λ) the
overdispersion of the arrival process hardly affects system behavior,
whereas in a slowly changing random environment it is fundamentally
different; this general finding applies to both the central limit and the
large deviations regime. We extend our results to the setting where
each arrival creates a job in multiple infinite-server queues.

1. Introduction. Empirical studies show that the number of arrivals
in customer contact centers, hospital emergency departments and cloud
computing systems typically varies strongly over time [8, 17]. This moti-
vates modeling such arrival processes by a non-homogeneous Poisson pro-
cess (NHPP) with time-dependent arrival rate λ(t), see e.g. [9]. At the same
time, various studies show that in a broad variety of real-life systems the
intensity of the fluctuations in the arrival rate is so severe that the Pois-
son assumption ceases to hold [2, 8]. The observed level of overdispersion
urges the need to develop stochastic models that can capture such persistent
fluctuations.

Starting from the classical Poisson process, it is common practice to in-
crease dispersion by using a mixed Poisson process [2, 13], to that end re-
placing a deterministic parameter λ by a random parameter Λ. This leads
to the idea of modeling overdispersed arrival processes by a mixed version
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of NHPPs, so-called Cox processes [5], where the time-dependent rate λ(t)
of the classical NHPP is replaced by a stochastic process Λ(t). For instance,
one could use Markov-modulated Poisson processes (MMPPs) in which the
arrival rate Λ(t) = λJ(t) is a function of a continuous-time Markov chain
J(·) on a finite state space S and non-negative rates λi for i ∈ S (see
e.g. [1, 3]). Although the MMPP is versatile and has various attractive
properties, it has considerable drawbacks as well. First, while a substan-
tial body of results for single-server queues with Markov modulation has
been established, considerably less is known about their many-server and
infinite-server counterparts; see e.g. an account of this issue for the infinite-
server system in [4]. Second, due to the fact that the process J(·) is not
observed, estimating the parameters of an MMPP from data is a non-trivial
task [15].

The main objective of this paper is to develop an arrival process simpler
than a Markov-modulated Poisson process – arguably the simplest in terms
of analysis – that fits the overdispersed and time-dependent setting, and
to assess the impact of these characteristics on a corresponding system’s
performance. The model we propose is a mixed Poisson arrival process in
a random environment. It is defined as follows. Let Λ a non-negative ran-
dom variable with finite first two moments and density fΛ(·). Introduce a
sampling frequency 1

Δ ; then the arrival rate at time t is given by Λj when
t ∈ [jΔ, (j + 1)Δ), where the Λj are independent and distributed as a non-
negative random variable Λ, for j ∈ Z. In other words, this arrival process
is a special case of a stationary Cox process where the arrival rate at time t
is given by

(1.1) Λ(t) =
∑
j

Λj1[jΔ,(j+1)Δ)(t).

To add nonstationarity in the arrivals, one could include a deterministic
component λ̄(t) without intrinsically complicating the analysis; for ease of
presentation we omit the extra component here. The resulting process can
be viewed as an extension of the classical mixed Poisson setting, which is
enriched by (independently) resampling the arrival rate after every time slot
of length Δ > 0. The intuition is that the arrival rate changes every Δ time
units so that, when observed for a number of consecutive slots, the time
between arrivals and hence the number of arrivals per time unit fluctuates
more severely than one would expect in a standard Poisson setting. This can
be made explicit via an elementary computation. Let the number of arrivals
up to time t be given by Nt ∼ Pois(

∫ t
0 Λs ds) and for simplicity, let t be an

integer multiple of Δ. Then ENt = tEΛ, whereas
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Var(Nt) =

t/Δ∑
j=1

Var(NΔ) = tΔ−1
(
E[Var(NΔ|Λ)] + Var(E[NΔ|Λ])

)
= t

(
EΛ +ΔVar(Λ)

)
.

Conclude that, as desired, the variance-to-mean ratio is strictly larger than
1 for non-deterministic Λ, i.e.,

(1.2)
Var(Nt)

ENt
= 1 +Δ

Var(Λ)

EΛ
.

Observe that the level of overdispersion is determined by the slot size Δ and
the level of overdispersion in Λ (through its variance-to-mean ratio).

Given this model for the arrival process, various queueing models can be
studied; in this paper we focus on single-class infinite-server systems with
exponential service times. The proposed arrival process being overdispersed,
the main objective of this paper is to reveal, in a compact manner, the im-
pact of overdispersion on system performance. Infinite-server systems are a
natural choice when the system at hand is designed to (almost) immediately
serve all customers [16], but it may also serve as a tractable proxy for the
more complicated multi-server systems, which is for instance exploited in
the modified offered-load (MOL) and pointwise stationary approximation
(PSA) methods for staffing large-scale service systems in a time-varying set-
ting [10, 17].

Contributions. Infinite-server systems with overdispersed arrivals are, as
described above, very tractable. As shown in Section 2, it is fairly straightfor-
ward to compute the probability generating function (pgf) of the stationary
and time-dependent queue length processes (which in an infinite-server set-
ting refers to the number of jobs in the system) in terms of transforms. This
is due to the fact that customers are served immediately upon arrival, inde-
pendently of each other; as a result, when analyzing the queue length at a
given point in time, we can separately consider the individual (independent!)
contributions that correspond to each of the preceding intervals of length Δ.

The queue length distribution can be characterized in terms of its pgf,
which effectively means that evaluation of the accompanying performance
measures requires numerical inversion. However, by imposing a scaling on
both the time and scale parameters, Δ and Λ, we succeed in identifying
an asymptotic regime in which the distribution can be explicitly given. We
inflate the arrival rate and sampling frequency in the following way:

Λ �→ NΛ Δ−1 �→ NαΔ−1,(1.3)

where we let N → ∞. The scaled counterpart of the variance-to-mean ratio
in (1.2) is 1 +N1−αΔVar(Λ)/EΛ. Due to the possibility of having different
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growth rates for Λ and Δ−1 under scaling (1.3) this ratio will not always
converge to 1. That is, the value of α determines the nature of the asymptotic
behavior of the arrival process, giving rise to a trichotomy. In this paper we
prove that the queue length process inherits this behavior from the input
process. For α > 1, in which case the arrival rate is resampled relatively
frequently, we find that the system behaves as a standard infinite-server
queue (no overdispersion), whereas for α < 1 the overdispersion remains
present in the asymptotic regime. The case α = 1 essentially reflects a
superposition of the two distinct types of behavior.

For preparatory purposes, we show in Section 2 that the centered and nor-
malized stationary queue length is asymptotically normal under the scaling
in (1.3). Next, in Section 3 we consider a multidimensional setting with cor-
related arrivals: an arrival triggers jobs in multiple queues. Hence, we work
with a coupled system in which d parallel queues are fed by a single ar-
rival process; cf. [11, 12]. With U (N)(·) denoting the vector of centered and
normalized queue length processes, the asymptotic normality now trans-
lates to the corresponding limiting process U(·) being Gaussian: U(·) is a
d-dimensional process of the Ornstein-Uhlenbeck type with parameters that
depend on the scaling regime. Following the approach in [1], we show this
by applying a lemma due to Kurtz and a martingale central limit theorem
(mclt) to a suitable stochastic integral equation.

Subsequently, in Section 4 we carry out a large deviations analysis to
obtain the logarithmic tail asymptotics corresponding to the queue length
distribution. The crucial observation in this analysis is that rare events can
essentially be realized in two ways: (i) the random arrival rate attains an ex-
ceptionally high value, (ii) the Poisson process generates an unusually large
number of arrivals given the (not so rare) value of the random parameter.
Again, the value of α determines what type of tail behavior dominates: for
α < 1 this is effect (i), for α > 1 effect (ii), and for α = 1 a combination
of effects (i) and (ii). These findings complement similar results that have
been established for an infinite-server system with Markov-modulated in-
put, where it is noted that the slow regime (α ∈ (0, 1)) was not covered
in that setting [3, 6]. We conclude Section 4 by pointing out how the large
deviations results can be extended to the multidimensional setting.

2. Overdispersion in an infinite-server context. In this section
we present a stationary and transient analysis of the single-class Markovian
infinite-server system in a random environment just introduced. A crucial
role is played by Λ(t), the arrival rate at time t given in (1.1). Remember
that we assumed that the arrival rates are i.i.d. and distributed as a random
variable Λ � 0 with finite first two moments and density fΛ(·). The corre-
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sponding service times are assumed i.i.d. (and in addition independent of the
arrival process) exponentially distributed random variables with mean 1/μ.

First, in Section 2.1, we analyze the stationary system behavior, in terms
of its pgf and the corresponding moments, which we then extend to the
associated transient behavior. We then study the stationary behavior in
a central limit regime under parameter scaling (1.3) in Section 2.2. This
exposition serves as an illustration for the reader, and is intended to create
intuition as for why the scaled stationary queue length is asymptotically
normal and why the three different limiting regimes appear; in addition, in
Section 4 we need a result that is proven along the same lines. We note that
in Section 3 the normality is generalized in several directions: we establish
a functional central limit theorem (fclt) for the (scaled) transient process
M (N)(·) corresponding to the d-dimensional parallel system as defined in
the introduction.

2.1. Pre-limit results. This subsection presents ‘pre-limit results’; later
we study their counterparts in the limiting regime after imposing a param-
eter scaling.

Transform of stationary queue length. Let M be the random variable
associated with the stationary number of jobs (also sometimes referred to as
‘customers’) in the system. Exploiting ‘thinning’ properties, we can identify
the pgf φ(z) := EzM of M .

In the sequel we write pt := e−μt for the probability that a job present at
kt is still present at (k+1)t and qt := (1−e−μt)/(μt) for the probability that
a job arriving at a uniform epoch in [kt, (k+1)t) is still present at (k+1)t.
Denote p̄t := 1− pt.

Note that M can be written as the sum of M0,M1,M2, . . ., where Mk

represents the number of jobs that arrived in [−(k+1)Δ,−kΔ) and are still
present at time 0. Furthermore, observe that these ‘thinned’ random vari-
ablesMk are independent. A job that arbitrarily arrived in [−(k+1)Δ,−kΔ)
(i.e., having arrived at a uniform epoch in this interval) is still in the system
at time 0 with probability∫ Δ

0

1

Δ
e−μ(kΔ+s)ds = qΔp

k
Δ.

As a consequence, with rt := tqt,

φk(z) := EzMk

=

∞∑
�=0

∫ ∞

0
fΛ(λ)e

−λΔ (λΔ)�

�!

�∑
m=0

zm
(
�

m

)(
qΔp

k
Δ

)m(
1− qΔp

k
Δ

)�−m
dλ
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=

∫ ∞

0
exp

(
− λrΔp

k
Δ(1− z)

)
fΛ(λ) dλ

= E exp
(
− ΛkrΔp

k
Δ(1− z)

)
.(2.1)

Observe that φk(z) is a pgf of ‘mixed Poisson’ type: conditional on Λk = λ
the pgf corresponds with that of a Poisson random variable with mean
λrΔp

k
Δ. We conclude that Mk is distributed as a mixed Poisson random

variable with random parameter

κk(Λk) := ΛkrΔp
k
Δ,

with Λk the value of the arrival rate in the interval [−(k+1)Δ,−kΔ) (note
that, in fact, we should have written Λ−(k+1) rather than Λk, but due to the
i.i.d. assumption the processes {Λ(s)}s�0 and {Λ(−s)}s�0 have the same
finite-dimensional distributions). Therefore, M is mixed Poisson as well and
its random parameter is given by

∞∑
k=0

κk(Λk) =

∫ ∞

0
Λ(s)e−μs ds =: κ(Λ).(2.2)

(Note that κ(·) is defined as a functional; κ(Λ) should be interpreted as
κ(Λ(·)).)

There is an alternative way to obtain this result. Indeed, since we observe
the system in stationarity,

φ(z) = φ(zpΔ + p̄Δ)gΛ,Δ(z),(2.3)

where gΛ,t(z) is defined by

gΛ,t(z) :=

∫ ∞

0
exp

(
− λrt(1− z)

)
fΛ(λ) dλ = E exp

(
− Λrt(1− z)

)
.

Applying an iteration argument to (2.3) yields

φ(z) =

∞∏
k=0

gΛ,Δ
(
zpkΔ + p̄Δ

k−1∑
j=0

pjΔ
)
=

∞∏
k=0

gΛ,Δ
(
1− (1− z)pkΔ

)
.(2.4)

In the factors gΛ,Δ
(
1− (1− z)pkΔ

)
we recognize the expression for φk(z) as

in (2.1).

First two moments. We now evaluate the first two moments of M . This
is an interesting computation in its own right, but it also provides useful
results that can be exploited when considering this system under the central
limit scaling (as is done in the next subsection).
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Differentiating (2.3) and letting z ↑ 1, we obtain a fixed-point equation,

φ′(1) = φ′(1)e−μΔ + g′Λ,Δ(1) = φ′(1)e−μΔ + rΔ EΛ.

Hence EM = φ′(1) = rΔ EΛ/(1 − e−μΔ) = EΛ/μ. This quantity could
have been computed more directly as well, using a standard identity for
conditional means:

(2.5) EM =
∞∑
k=0

EMk =
∞∑
k=0

E
[
E[Mk |Λk]

]
.

Then observe that (Mk |Λk) is Poisson, and hence its mean equals its pa-
rameter. As a result, (2.5) equals

EM =

∞∑
k=0

E[κk(Λk)] = E[Λ]rΔ

∞∑
k=0

pkΔ = EΛ/μ.

For the variance we use that

φ′′(1) = φ′′(1)p2Δ + 2φ′(1)pΔg
′
Λ,Δ(1) + g′′Λ,Δ(1),

and hence

φ′′(1) =
2φ′(1) pΔ g′Λ,Δ(1)

1− p2Δ
+

g′′Λ,Δ(1)

1− p2Δ
= 2

(EΛ)2

μ2

pΔ
1 + pΔ

+
EΛ2

μ2

1− pΔ
1 + pΔ

.

It thus follows that, after some algebra,

VarM = φ′′(1) + φ′(1)− (φ′(1))2

= EΛ/μ+ C VarΛ/μ2,(2.6)

where C := (1− pΔ)/(1 + pΔ).
Alternatively, one could use the ‘law of total variance’ to identify VarM :

(2.7) VarM =

∞∑
k=0

VarMk =

∞∑
k=0

E[Var(Mk |Λk)] +

∞∑
k=0

Var(E[Mk |Λk]).

Observe that, because of the ‘mixed Poisson property’, E[Var(Mk |Λk)] =
E[κk(Λk)], and as a result the first term at the right-hand side of (2.7)
equals EM. The second term, which is inherently non-negative, gives rise
to ‘overdispersion’, i.e., the effect that the variance of the stationary queue
length exceeds the corresponding mean. This is a distinguishing feature com-
pared to the analogous system in which the Poissonian arrival rate is deter-
ministic: the stationary queue length in an M/M/∞ system is Poisson, and
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cannot accommodate any overdispersion. In order to evaluate the second
term in the right-hand side of (2.7), we note that

(2.8) Var(E(Mk |Λk)) = Var
(
κk(Λk)

)
= r2Δp

2k
Δ · VarΛ.

Substituting (2.8) in the second term in the right-hand side of (2.7), we find
that VarM equals (2.6), as desired.

Formula (2.6) lends itself to a nice interpretation: the term EΛ/μ is the
contribution to the variance that one would have if the arrival rate would
have had the deterministic value EΛ, whereas the term C VarΛ/μ2 needs
to be added in order to deal with the non-Poisson variability due to the
stochasticity of the arrival rate.

Transient behavior. As the analysis of the transient system behavior
strongly resembles its stationary counterpart, we restrict ourselves to a short
account of this. We let the system start empty (for ease of presentation; a
non-empty initial condition can be analyzed without any additional diffi-
culty). Denote by M(t) the number of jobs present at time t. Then, for n
the smallest integer such that t− nΔ < Δ,

M(t) =

n−1∑
j=0

M̄j + M̄[nΔ,t),

where M̄j (M̄[nΔ,t)) represents the number of jobs that have arrived between
in [jΔ, (j + 1)Δ) ([nΔ, t)) and are still around at nΔ (t). As before, these
have pgfs

EzM̄j = E exp
(
− ΛrΔp

n−(j+1)
Δ e−μ(t−nΔ)(1− z)

)
;

EzM̄[nΔ,t) = E exp
(
− Λ/μ(1− e−μ(t−nΔ))(1− z)

)
.

As the individual random variables M̄1, M̄2, . . . and M̄[nΔ,t) are independent,
M(t) is mixed Poisson with random parameter

κt(Λ) :=

∫ t

0
Λ(s)e−μs ds.(2.9)

2.2. Limit results. This section focuses on the central limit regime that
results from simultaneously scaling, in a controlled way, both the arrival rate
Λ and the sampling frequency 1

Δ as in (1.3). Let the scaled counterpart of

Λ(t) be NΛ(N)(t), with

Λ(N)(t) :=

∞∑
j=0

Λj1[jΔN−α,(j+1)ΔN−α)(t).(2.10)
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That is, the sampling frequency and the arrival rates are both inflated as we
let N tend to ∞, but, importantly, at rates that are not necessarily identical.
As mentioned in the introduction, depending on the value of α, we obtain
fundamentally different behavior.

We consider a sequence of systems indexed by N , where the N -scaled
system uses a mixed Poisson arrival process with time-dependent random
rate NΛ(N)(t). Let M (N) denote the stationary queue length in the N -scaled
system, with parameter Nκ(Λ(N)) (cf. (2.2)). We start our exposition by a
preliminary calculation, in which we compute the mean and variance ofM (N)

and study their behavior for large N , which indeed reveals the announced
trichotomy. Then, after centering and normalizing M (N), we derive a central
limit theorem.

Qualitative behavior of first two moments: trichotomy in variance. First,
we identify the steady-state mean and variance in our scaling regime, using
(2.5), (2.7) and (2.8). We find that

EM (N) = NEΛ/μ;(2.11)

VarM (N) = NEΛ/μ+N2 1− e−μΔN−α

1 + e−μΔN−α VarΛ/μ
2,(2.12)

where it is noted that for large N , (2.12) behaves approximately as

NEΛ/μ+N2−αΔVarΛ/(2μ)

(the ratio of the two converges to 1). We thus observe the trichotomy

VarM (N) ∼

⎧⎪⎨
⎪⎩
NEΛ/μ if α > 1;

N2−αΔVarΛ/(2μ) if α < 1;

N
(
EΛ/μ+ΔVarΛ/(2μ)

)
if α = 1.

(2.13)

For α > 1, the sampling frequency dominates the variability of Λ. Conse-
quently, the model behaves essentially as an M/M/∞ system, with the vari-
ance of M (N) being linear in N and equal to EM (N), for large N . For α < 1,
we find a superlinear relation between N and VarΛ, and both the sampling
frequency (i.e., the reciprocal of the interval length Δ) and the variance of
Λ play a role. Hence, the asymptotic variance indeed grows faster than the
asymptotic mean for α < 1; in this regime the system is overdispersed. For
α = 1, the variance is ‘slightly larger’ than for α > 1, but it is still linear
in N . In this case the sampling frequency and the variance of Λ grow at the
same rate, so that the variance for M (N) combines the effects observed in
the two former cases.



10 M. HEEMSKERK, J. VAN LEEUWAARDEN, AND M. MANDJES

As observed from the above computation, the variance of M (N) is essen-
tially proportional to Nγ with γ := max{1, 2 − α}. As a consequence, one
may expect that, under (1.3),

(2.14) M̌ (N) := N−γ/2(M (N) − EM (N))

converges to a (zero-mean) normally distributed random variable. It is this
property that we verify now.

Asymptotic normality. We show how to establish asymptotic normality
for the centered and normalized version of M (N) in (2.14) via evaluation
of the corresponding Laplace transform. Appealing to Lévy’s convergence
theorem, we establish the desired convergence in distribution. For simplicity,
the proof of Thm. 2.1 assumes that all moments of Λ are finite; however,
as will appear from the proof of Thm. 3.2 only finiteness of the first two
moments is necessary.

Theorem 2.1 (clt). As N → ∞, M̌ (N) converges to a zero-mean nor-
mally distributed random variable with variance

σ2 :=
EΛ

μ
1{α�1} +

ΔVarΛ

2μ
1{α≤1}.

Proof. Let φ(N)(z) be the counterpart of (2.4) under scaling as in (1.3);

likewise g
(N)
Λ,Δ(z) is the counterpart of gΛ,Δ(z). Then

φ(N)(z) =
∞∏
k=0

g
(N)
Λ,Δ

(
1− (1− z)e−μkN−αΔ

)
.

We are interested in the behavior of M (N) in the central limit regime, hence
we need to analyze the limiting distribution of M̌ (N). To this end, we eval-
uate the logarithm of the corresponding Laplace transform:
(2.15)

logE exp
(
−sN−γ/2(M (N)−EM (N))

)
= sN1−γ/2EΛ/μ+log φ(N)

(
e−sN−γ/2)

.

We now use that log φ(N)(e−sN−γ/2
) equals

∞∑
k=0

logEe−NΛ/μ
(
1−e−μN−αΔ

)(
1−e−sN−γ/2

)
e−μkN−αΔ

.(2.16)

Observe that (2.16) is the sum of cumulant generating functions (which is
again a cumulant generating function), each of them related to the random
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variable Λ but evaluated at different arguments. Let m� denote the �-th
cumulant of Λ (for � ∈ N); in particular m1 = EΛ and m2 = VarΛ. In
addition, we define

ζ
(N)
k (s) := −N/μ

(
1− e−μN−αΔ

)(
1− e−sN−γ/2)

e−μkN−αΔ.

Then it follows that

log φ(N)
(
e−sN−γ/2)

=
∞∑
�=1

m�

�!

∞∑
k=0

(
ζ
(N)
k (s)

)�
.(2.17)

Let us first consider the contribution of the term corresponding to � = 1.
Observe that, as N → ∞,

m1

∞∑
k=0

ζ
(N)
k (s) = −N EΛ/μ

(
1− e−sN−γ/2)

∼ −sN1−γ/2EΛ/μ+
1

2
s2N1−γEΛ/μ.(2.18)

Note that the first term in (2.18) is canceled by the first term in the right-
hand side of (2.15), so that we are left with the second term, i.e.,

(2.19)
1

2
s2N1−γEΛ/μ.

The second term in (2.17) corresponding to � = 2 gives
(2.20)

1− e−μN−αΔ

1 + e−μN−αΔ

(1− e−sN−γ/2
)2

2μ2
N2VarΛ ∼ 1

2
s2N2−α−γ ΔVarΛ/(2μ).

Now compare the asymptotic expansion identified in (2.19) and (2.20). In
case α > 1, we have that γ = 1, so that (2.19) equals 1

2 s
2 EΛ/μ, whereas

(2.20) converges to zero. On the other hand, for α < 1 we have γ = 2−α, and
hence (2.19) converges to zero, whereas (2.20) behaves as 1

2s
2ΔVarΛ/(2μ).

Finally, if α = 1, we find that both terms converge to the expected finite
positive limit.

We now check that the terms in (2.17) for � � 3 vanish as N → ∞. For
large N the terms can be approximated as follows,

∞∑
k=0

(
ζ
(N)
k (s)

)� ∼ N �

(
1− e−μN−αΔ

)�
1− e−�μN−αΔ

(
1−e−sN−γ/2)� ∼ N � μ

�N−α�Δ�

�μN−αΔ

s�

Nγ�/2
,

hence being of order N δ with δ = δ(α) := �(1−α− γ/2)+α. In case α � 1,
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we get (bearing in mind that γ = 1 and � � 1)

δ = �(
1

2
− α) + α =

1

2
�+ α(1− �) � 1

2
�+ 1− � = 1− �

2
;

on the other hand, in case α < 1 we get δ = −�α/2 + α = α(1− �/2) (with
γ = 2− α). We conclude that δ < 0 for � � 3 and the corresponding terms
in (2.17) can indeed be neglected. We have therefore established that, as
N → ∞,

logE exp
(
− sN−γ/2(M (N) − EM (N))

)
→ 1

2
σ2 s2,

as claimed.

3. Functional central limit theorem. In this section we generalize
the central limit result of Thm. 2.1 in two ways. First, we establish the func-
tional version: the centered and normalized transient queue length process
converges to a limiting process of Ornstein-Uhlenbeck type with parameters
that depend on the value of α. Second, we extend this to a multidimen-
sional setting with correlated arrivals: every arrival triggers jobs in multiple
queues. The correlation structure of the resulting multidimensional Gaussian
limiting process is explicitly identified.

Let us start by describing the mechanics of the generalized setting. We
consider a parallel system in which d queues are fed by a single arrival process
that was constructed in the same way as the one in the previous section: a
Markovian process with arrival rate Λ(t) as in (1.1). The service times in
queue i are i.i.d. exponential random variables with mean μ−1

i ; the service
processes of the individual queues are independent, and also independent
of the arrival process. We perform the same scaling as before: the sampling
frequency is sped up by a factor Nα, while the (random) arrival rate is
blown up by a factor N . This results in a mixed Poisson arrival process with
time-dependent rate Λ(N)(t) as in (2.10). Let

M (N)(t) = (M
(N)
1 (t), . . . ,M

(N)
d (t))T,

where M
(N)
i (t) is the queue length at time t in the i-th queue of the N -scaled

system, for i ∈ {1, . . . , d}. Note that the M
(N)
i (t) are mixed Poisson with

time-dependent random parameter Nκt,i(Λ
(N)), with κt,i(Λ

(N)) as defined
in (2.9) but with μ replaced by μi.

We now present an alternative way of writing M
(N)
i (t), which facilitates

the use of a martingale central limit theorem. We introduce the functional

Ψ[X](t) :=

∫ t

0
X(s) ds,
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mapping the stochastic process {X(s) : s ∈ [0, t]} to a real number; then

μiΨ[M
(N)
i ](t) is to be interpreted as the ‘cumulative service capacity’ in

queue i over the interval [0, t]. In addition, for the ‘cumulative arrival rate’
we have Ψ[Λ](t), with scaled counterpart NΨ[Λ(N)](t). By the law of large
numbers, Ψ[Λ](t)/t converges a.s. to EΛ as t → ∞ and for fixed t, Ψ[Λ(N)](t)
converges a.s. to tEΛ as N → ∞.

With Y0(·), . . . , Yd(·) denoting independent unit-rate Poisson processes,

M
(N)
i (t)

d
= M

(N)
i (0) + Y0

(
NΨ[Λ(N)](t)

)
− Yi

(
μiΨ[M

(N)
i ](t)

)
.(3.1)

Our objective is to derive a d-dimensional fclt for M (N)(·). This result
characterizes the time-dependent queue length in the scaled system and
makes explicit how the correlated arrivals lead to correlation between the
individual queue length processes. It will be stated and proved in subsection
3.2; first we study the stationary behavior by presenting the corresponding
first two moments of M (N) (including the covariances).

3.1. Qualitative behavior of first two moments in stationarity. Note that
the individual queue lengths are only coupled through the arrival process,
so under (1.3) the mean and variance of M (N) are, as in (2.11) and (2.12),
given by

EM
(N)
i = NEΛ/μi,

VarM
(N)
i = NEΛ/μi +N2VarΛ/μ2

i

1− pi(ΔN−α)

1 + pi(ΔN−α)

∼ NEΛ/μi +N2−αΔVarΛ/(2μi),

for i = 1, . . . , d. Hence, we find the same behavior as in (2.13). Interestingly,
the same trichotomy is observed for the covariances between the individual
queues, as stated in the next lemma.

Lemma 3.1 (Covariance in M (N)). For i, k ∈ {1, . . . , d} with i �= k, and
for large N ,
(3.2)

Cov(M
(N)
i ,M

(N)
k ) ∼

⎧⎪⎨
⎪⎩
NEΛ/(μi + μk) if α > 1;

N2−αΔVar(Λ)/(μi + μk) if α < 1;

N
(
EΛ/(μi + μk) + ΔVar(Λ)/(μi + μk)

)
if α = 1.

Proof. Without loss of generality, we take i = 1 and k = 2. We first
consider the non-scaled model, by studying the joint probability generating
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function,

Ez
M1(nΔ)
1 z

M2(nΔ)
2 =

n−1∏
j=0

ξjn(z1, z2),

where ξjn(z1, z2) is the contribution due to the slot between jΔ and (j+1)Δ;
as z1 and z2 are held fixed for the moment, we suppress them. Now we
introduce functions (for � = 1, 2)

f�(r, n) := e−μ�(nΔ−r), gj(μ, n) :=
1
μΔ(1− e−μΔ) e−μ(n−j)Δ,

where it is noted that gj(μ, n) behaves as e
−μ(n−j)Δ for small Δ. In addition,

we define the quantities

ζ++
jn : =

∫ (j+1)Δ

jΔ

1
Δf1(r, n)f2(r, n)dr = gj(μ1 + μ2, n),

ζ+−
jn : =

∫ (j+1)Δ

jΔ

1
Δf1(r, n)(1− f2(r, n))dr = gj(μ1, n)− gj(μ1 + μ2, n),

ζ−+
jn : =

∫ (j+1)Δ

jΔ

1
Δ(1− f1(r, n))f2(r, n)dr = gj(μ2, n)− gj(μ1 + μ2, n),

ζ−−
jn : =

∫ (j+1)Δ

jΔ

1
Δ(1− f1(r, n))(1− f2(r, n))dr

= 1− gj(μ1, n)− gj(μ2, n) + gj(μ1 + μ2, n).

Using arguments similar to those we have used before,

ξjn := E
( ∞∑
m=0

e−λΔ (λΔ)m

m!

(
ζ++
jn z1z2 + ζ+−

jn z1 + ζ−+
jn z2 + ζ−−

jn

)m)
= E exp

(
ΛΔ

(
ζ++
jn z1z2 + ζ+−

jn z1 + ζ−+
jn z2 + ζ−−

jn − 1
))

∼ E exp
(
ΛΔ

( 2∏
i=1

(
(zi − 1)e−μi(n−j)Δ + 1

)
− 1

))
for small Δ.

Because the contributions to M1(nΔ) and M2(nΔ) resulting from different
time intervals are independent, we obtain that

Cov
(
M1(nΔ),M2(nΔ)

)
=

n−1∑
j=0

( ∂2

∂z1∂z2
ξjn(z1, z2)−

∂

∂z1
ξjn(z1, z2)

∂

∂z2
ξjn(z1, z2)

)∣∣∣∣
z1↑1,z2↑1

.
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Now imposing scaling (1.3) and considering the stationary behavior by let-
ting n → ∞, it is readily derived that (for large N)

E z
M

(N)
1

1 z
M

(N)
2

2 ∼
∞∏
j=0

E exp
(
ΛΔN1−α

( 2∏
�=1

(
(z� − 1)e−μ�jΔ/Nα

+ 1
)
− 1

))
;

observe that, for reasons of symmetry, it is allowed to replace n− j by j in
the definition of the gj(μ, n). We thus arrive at

Cov
(
M

(N)
1 ,M

(N)
2

)
∼

∞∑
j=0

(
(EΛΔN1−α + E[Λ2]Δ2N2−2α)e−(μ1+μ2)jΔ/Nα

−
2∏

�=1

EΛΔN1−αe−μ�jΔ/Nα)

=
EΛΔN1−α + Var(Λ)Δ2N2−2α

1− e−(μ1+μ2)ΔN−α ,

which behaves in accordance with (3.2) for N large.

Recall that γ = max{1, 2 − α}; the above computation shows that the
covariance matrix of M (N) is essentially proportional to Nγ . Therefore, we
expect that the centered and normalized version of the joint stationary queue
length process converges to a (zero-mean) d-dimensional Gaussian random
vector with covariance matrix C such that

Cik =

{
1{α�1}EΛ/μi + 1{α�1}ΔVar(Λ)/(2μi) if i = k,

1{α�1}EΛ/(μi + μk) + 1{α�1}ΔVar(Λ)/(μi + μk) if i �= k,

for i, k ∈ {1, . . . , d}. This is verified in the next subsection.

3.2. Proof of functional central limit theorem based on mclt. The main
objective of this subsection is to derive a functional limit theorem for
M (N)(t), the vector describing the queue lengths of the scaled system at

time t. To this end, we consider the process M̃
(N)
i (·) := M

(N)
i (·)/N , for

which we have
(3.3)

M̃
(N)
i (t) = M̃

(N)
i (0) +N−1Y0

(
NΨ[Λ(N)](t)

)
−N−1Yi

(
NμiΨ[M̃ (N)](t)

)
.

We will need the following lemma, which uses the law of large numbers for
Poisson processes; see [1].
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Lemma 3.2. Let Y be a unit-rate Poisson process. Then for any U > 0,
almost surely

lim
N→∞

sup
0�u�U

∣∣∣∣Y (Nu)

N
− u

∣∣∣∣ = 0.

The uniform convergence in Lemma 3.2 entails that (3.3) converges almost
surely to the solution of the functional equation

i(t) = i,0 + tEΛ− μiΨ[i](t),(3.4)

as N → ∞, under the proviso that M̃
(N)
i (0) converges a.s. to some value

i,0 for i = 1, . . . , d. The solution is given by a convex mixture of the initial
position i(0) = i,0 and the limiting value EΛ/μi:

i(t) = i,0e
−μit +

EΛ

μi

(
1− e−μit

)
.(3.5)

Having identified this fluid limit, the next objective is to establish an fclt

for the centered and normalized process U (N)(·) given by

U
(N)
i (t) := N

β
2
(
M̃

(N)
i (t)− i(t)

)
,(3.6)

with β := 2 − γ = min{1, α}. Here we closely follow the approach in [1],
where the idea is to use an mclt, so as to obtain weak convergence to a
(generalized) Ornstein-Uhlenbeck process. The version of the mclt that we
need in our setting is stated below.

Theorem 3.1 (mclt, [1]). Let {R(N)}N∈N be a sequence of Rd-valued
martingales. Assume that the following condition on the jump sizes is
met:

lim
N→∞

E
[
sup
s�t

∣∣R(N)(s)−R(N)(s−)
∣∣] = 0;(3.7)

in addition, assume that, as N → ∞,

[
R

(N)
i , R

(N)
k

]
t
→ Cik(t)

for a deterministic function Cik(t), continuous in t for all t > 0 and for
i, k = 1, . . . , d. Then the process R(N) converges weakly to a centered Gaus-
sian process W with independent increments whose covariance matrix is
characterized by

E
[
Wi(t) ·Wk(t)

T
]
= Cik(t).
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Introducing compensated unit-rate Poisson processes Ỹi(t) := Yi(t) − t,
we define

Y̌
(N)
0 (t) := N

β
2
−1

⎛
⎜⎝
Ỹ0

(
NΨ[Λ(N)](t)

)
...

Ỹ0
(
NΨ[Λ(N)](t)

)
⎞
⎟⎠ ,(3.8)

Y̌
(N)

(t) := N
β
2
−1

⎛
⎜⎝
Ỹ1

(
Nμ1Ψ[M̃

(N)
1 ](t)

)
...

Ỹd
(
NμdΨ[M̃

(N)
d ](t)

)
⎞
⎟⎠ .(3.9)

Lemma 3.3. Consider the d-dimensional processes Y̌
(N)
0 (·) and Y̌

(N)
(·).

If α � 1, then as N → ∞ these processes converge weakly to d-dimensional
zero-mean Brownian motions with covariance matrices K0(t) := (tEΛ)11T

and K(t) := diag{μ1Ψ[1](t), . . . , μdΨ[d](t)}, respectively; if α < 1 the
limiting covariance matrices equal 0.

Proof. We start by checking the conditions of Thm. 3.1. First, ob-

serve that for each N , Y̌
(N)
0 (·) and Y̌

(N)
(·) are d-dimensional real-valued

martingales. Also, condition (3.7) is met, as both for R(N) = Y̌
(N)
0 and

R(N) = Y̌
(N)

,

lim
N→∞

E
[
sup
s�t

∣∣∣R(N) −R(N)(s−)
∣∣∣ ] < ∞,

whereas N
β
2
−1 � 1/

√
N converges to zero.

Note that β = min{1, α}, so that β − 2 = min{−1, α − 2}. Now ob-
serve that for α � 1 (and hence β − 2 = −1) the quadratic covariation of

Y̌
(N)
0 (·),

[
N

β
2
−1Ỹ0

(
NΨ[Λ(N)](t)

)]
t
= Nβ−2Y0

(
NΨ[Λ(N)](t)

)
,

converges to tEΛ as N → ∞ (0 for α < 1), by virtue of Lemma 3.2. The

covariance matrix for Y̌
(N)

(·) is determined in the same way; for α � 1 the
diagonal entries are given by

lim
N→∞

[
N

β
2
−1Ỹi

(
NμiΨ[M̃

(N)
i ](t)

)]
t
= lim

N→∞
Nβ−2Yi

(
NμiΨ[M̃ (N)](t)

)
= μiΨ[i](t)
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(which would equal 0 for α < 1), whereas for i �= k (then Ỹi(·) and Ỹk(·) are
independent)

lim
N→∞

[
N

β
2
−1Ỹi

(
NμiΨ[M̃

(N)
i ](t)

)
, N

β
2
−1Ỹk

(
Nμk Ψ[M̃

(N)
k ](t)

)]
t
= 0,

with i, k ∈ {1, . . . , d}. For α � 1, Thm. 3.1 yields that the processes converge
weakly to d-dimensional Brownian motions with covariance matrices K0(t)
andK(t). On the other hand, for α < 1 the entries of the covariance matrices

all vanish as N → ∞. As a result, both Y̌
(N)
0 (·) and Y̌

(N)
(·) converge to a

process identical to 0.

Stated below is the main theorem of this section: an fclt for U (N)(·),
the process defined via (3.6). In line with earlier findings, three regimes need
to be distinguished: α > 1 (the fast regime), α < 1 (the slow regime) and
α = 1 (the intermediate regime).

Theorem 3.2 (fclt). As N → ∞, U (N)(·) converges weakly to a zero-
mean d-dimensional Gaussian process with covariance matrix given by

Cii(t) := 1{α�1}
(
EΛ/μi + i,0e

−μit
)
(1− e−μit)

(3.10)

+ 1{α�1}ΔVarΛ/(2μi)(1− e−2μit),

Cik(t) :=
(
1{α�1}EΛ/(μi + μk)+ 1{α�1}ΔVarΛ/(μi + μk)

)
· (1− e−(μi+μk)t),

(3.11)

for i �= k (i, k ∈ {1, . . . , d}).

Proof. Using (3.3), we write

U
(N)
i (t) = N

β
2
(
M̃

(N)
i (0) +N−1Y0

(
NΨ[Λ(N)](t)

)(3.12)

−N−1Yi
(
NμiΨ[M̃

(N)
i ](t)

)
− i(t)

)
,

for i = 1, . . . , d. Adding and subtracting i,0, (3.12) is equivalent to

U
(N)
i (t) =N

β
2
(
M̃

(N)
i (0)− i,0

)
−N

β
2
(
i(t)− i,0

)
+N

β
2
−1

(
Y0

(
NΨ[Λ(N)](t)

)
− Yi

(
NμiΨ[M̃

(N)
i ](t)

))
,

which, by filling out the implicit form of i(t) as in (3.4), simplifies to

U
(N)
i (t) = U

(N)
0,i (t) + U

(N)
1 (t) + U

(N)
2,i (t),
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with

U
(N)
0,i (t) := U

(N)
i (0)− μiΨ[U

(N)
i ](t),

U
(N)
1 (t) := N

β
2
(
Ψ[Λ(N)](t)− tEΛ

)
,

U
(N)
2,i (t) := N

β
2
−1

(
Ỹ0

(
NΨ[Λ(N)](t)

)
− Ỹi

(
NμiΨ[M̃

(N)
i ](t)

))
.

We consider the three individual components separately.

(i) Component U
(N)
0,i (t) consists of the starting value of the process, which

is assumed to converge to some value Ui(0), minus a reverting term. It

is now straightforward that, as N → ∞, U
(N)
0,i (·) converges to U0,i(t) =

Ui(0)− μiΨ[Ui](t).

(ii) Then consider U
(N)
1 (·). For α ≤ 1 (and hence β

2 = α
2 ), the standard

functional central limit theorem for partial sums of i.i.d. random vari-
ables entails that, as N → ∞,

U
(N)
1 (·) →

√
ΔVarΛ · V (·),

with V (·) a standard Brownian motion. On the other hand, for α > 1
the limiting process is identical to 0, as a consequence of β

2 = 1
2 < α

2 .

(iii) Finally, from Lemma 3.3, we conclude that U
(N)
2 (·) converges weakly

to a d-dimensional zero-mean Brownian motion with covariance matrix
K0(t) +K(t) for α � 1, and to 0 else.

Using the above observations, we can now complete the proof. Each of the
three regimes will be considered separately.

1. Fast regime (α > 1). We have obtained above that U (N)(·) converges
weakly to the solution U(·) of the d-dimensional stochastic integral equation
given by

Ui(t) = Ui(0)− μiΨ[Ui](t) +Wi(tEΛ + μiΨ[i](t)) for i = 1, . . . , d

with W1(·), . . . ,Wd(·) standard Brownian motions (but not independent),
or equivalently

Ui(t) = Ui(0)− μiΨ[Ui](t) + W̃0(tEΛ) + W̃i

(
μiΨ[i](t)

)
with W̃0(·), W̃1(·), . . . , W̃d(·) independent standard Brownian motions. It
takes a routine calculation to derive that

Ui(t) = e−μit
(
Ui(0) +

∫ t

0

√
EΛ + μii(s) e

μis dWi(s)
)
.



20 M. HEEMSKERK, J. VAN LEEUWAARDEN, AND M. MANDJES

All linear combinations of the Ui(·) are Gaussian processes, so we conclude
that this d-dimensional process is Gaussian. It is readily seen that EUi(t) =
Ui(0)e

−μit. For the variance, an elementary computation gives

VarUi(t)= e−2μit
( ∫ t

0

(
EΛ+μii(s)

)
e2μis ds

)
=
(
EΛ/μi+i,0e

−μit
)
(1−e−μit).

Likewise, for the covariance, with

Ui(t) :=
√
EΛ

∫ t

0
eμis dW̃0(s) +

∫ t

0

√
μii(s)e

μis dW̃i(s),

it follows that, for i �= k,

Cov(Ui(t), Uk(t)) = e−(μi+μk)t E [Ui(t) Uk(t)]

= e−(μi+μk)t EΛ · E
[ ∫ t

0
e−μis dW̃0(s) ·

∫ t

0
e−μks dW̃0(s)

]
= e−(μi+μk)t EΛ

∫ t

0
e(μi+μk)s ds

= EΛ/(μi + μk)(1− e−(μi+μk)t).

This shows (3.10) for α > 1.

2. Slow regime (α < 1). In the slow regime, U (N)(·) converges to the solution
of

Ui(t) = Ui(0)− μiΨ[Ui](t) +
(√

ΔVarΛ
)
V (t) for i = 1, . . . , d,

which can be written as

dUi(t) = −μiUi(t) dt+
(√

ΔVarΛ
)
dV (t).

Therefore the Ui(·) are Ornstein-Uhlenbeck processes given by:

Ui(t) = e−μit
(
Ui(0) +

∫ t

0

√
ΔVar(Λ) eμis dV (s)

)
.

As before, we can conclude that this d-dimensional process is Gaussian with
expectation vector given by Ui(0)e

−μit. Computations as above reveal that
for α < 1, as claimed in (3.10),

Cov(Ui(t), Uk(t)) = ΔVar(Λ)/(μi + μk)(1− e−(μi+μk)t).

3. Intermediate regime (α = 1). In this regime, a combination of the pro-
cesses from the other cases appears:

dUi(t) = −μiUi(t) dt+
√
EΛdW̃0(t) +

√
μii(t) dW̃i(t) +

√
ΔVar(Λ) dV (t).
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The marginal solutions are, for i = 1, . . . , d, equal to

Ui(t) = e−μit
(
Ui(0) +

∫ t

0

√
EΛeμis dW̃0(s)+

∫ t

0

√
μii(s) e

μis dW̃i(s)

+

∫ t

0

√
ΔVar(Λ) eμis dV (s)

)
.

Again, we conclude that this d-dimensional process is Gaussian with ex-
pectation vector given by Ui(0)e

−μit; routine computations yield the de-
sired covariance matrix, as given in (3.10) and (3.11). This completes the
proof.

It is interesting to study the impact of the scaling parameter α on the
correlation between the individual queue lengths. Remarkably, it turns out
that for α �= 1 this correlation depends on the service rates only, whereas for
α = 1 also the first and second moment of Λ play a role; see the following
corollary for a result on the stationary regime.

Corollary 3.1 (Correlation coefficients). In stationarity, the correla-
tion coefficient for i �= k satisfies

(3.13) lim
N→∞

Corr(M
(N)
i ,M

(N)
k ) = cik(α) ·

√
μiμk

μi + μk
,

for some constant cik(α) ∈ [1, 2]. The constant cik(α) equals 1 for α > 1 and
2 for α < 1.

Proof. From Thm. 3.2, as t → ∞,

Cik(t) → 1{α�1}
EΛ

μi + μk1{i 	=k}
+ 1{α�1}

ΔVar(Λ)

μi + μk
.

We observe that (3.13) holds, with

cik(α) =
EΛ1{α�1} +ΔVar(Λ) 1{α�1}
EΛ1{α�1} +

1
2ΔVar(Λ) 1{α�1}

.

4. Large deviations. Where the previous section studied the random-
environment infinite-server system under the central limit scaling, we now
focus on the large deviations domain. As it turns out, the previously observed
trichotomy remains valid. The results again translate to the setting with d
coupled queues; for ease we first present (and prove) the results for d = 1,
to return to the coupled model at the end of the section.
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4.1. Univariate large deviations. Let the arrival rate of the N -scaled
model again be given by NΛ(N)(t) (see (2.10)). An important quantity in
our analysis is

κt
(
Λ(N)

)
=

∫ t

0
Λ(N)(s)e−μs ds

=
1

μ
(1− e−μΔN−α

)


t/(ΔN−α)�−1∑
j=0

Λje
−μjΔN−α

+ op(1),

asN → ∞. As observed earlier,M (N)(t) is a mixed Poisson random variable,
with random parameter distributed as Nκt(Λ

(N)). In the large deviations
setting we are interested in the tail probabilities of M (N)(t) for given t and
N large. More specifically, our objective is to evaluate the decay rate

lim
N→∞

N−β logP
(
M (N)(t)/N � a

)
,

for any a > ρ(t) = ρ(1 − e−μt) (where ρ := λ/μ) and some specific β > 0.
Given the results obtained in the central limit regime, we expect that β =
min{1, α}.

The main idea behind our analysis is to condition on the value of the
random Poisson parameter. In self-evident notation,

P
(
M (N)(t)/N � a

)
= P(Pois(Nκt(Λ

(N)) � Na)

=

∫ ∞

0
P(Pois(Nx) � Na)P(κt(Λ

(N)) ∈ dx).(4.1)

In some parts of the analysis we rely on the following lemma, in which we
establish a large deviation result for P(κt(Λ

(N)) � a).

Lemma 4.1. Let a > ρ(t). Then, with M(θ) := E eθΛ,

(4.2) lim
N→∞

ΔN−α logP(κt(Λ
(N)) � a) = − sup

θ>0

(
θa−

∫ t

0
logM(θ e−μs) ds

)

Proof. As a first step, we define a proxy for κt(Λ
(N)) that is easier to

work with:

(4.3) kt
(
Λ(N)

)
:= ΔN−α


t/(ΔN−α)�−1∑
j=0

Λje
−μjΔN−α

;

later we show that κt(Λ
(N)) and kt(Λ

(N)) are ‘close enough’. Let PN (a) :=
P(kt(Λ

(N)) � a). Writing, for arbitrary θ > 0,
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PN (a) = P
(
eθkt(Λ

(N))/(ΔN−α) � eθa/(ΔN−α)
)

= P
( 
t/(ΔN−α)�−1∏

j=0

eθΛje
−μj ΔN−α

� eθa/(ΔN−α)
)
,

Markov’s inequality immediately yields the upper bound

PN (a) � e−θa/(ΔN−α)


t/(ΔN−α)�−1∏
j=0

M(θe−μjΔN−α
).

Recognizing a Riemann sum, we thus obtain

lim sup
N→∞

ΔN−α logPN (a) � lim sup
N→∞

ΔN−α


t/(ΔN−α)�−1∑
j=0

logM(θe−μjΔN−α
)− θa

=

∫ t

0
logM(θe−μs) ds− θa.

As the established upper bound holds for any θ > 0,

(4.4) lim sup
N→∞

ΔN−α logPN (a) � inf
θ>0

( ∫ t

0
logM(θe−μs) ds− θa

)
.

The next goal is to prove that the above upper bound is tight. We do
so by first noting that, due to the convexity of the function involved, the
infimum in the right-hand side of (4.4) is attained by θ	, being the unique
solution to

∂

∂θ

∫ t

0
logM(θe−μs) ds

∣∣∣∣
θ=θ�

= a.

Now we apply a change-of-measure technique. Define a measure Q by expo-
nential twisting; the density of the Λj is changed into

Q(Λj ∈ dx) :=
eθ

�e−μj ΔN−α
x

M(θ	e−μjΔN−α)
P(Λj ∈ dx).

Fix an ε > 0, and let the event E(N)
a := {kt(Λ(N)) ∈ [a, a+ ε)}. Then

PN (a) = EQ

[
1E(N)

a


t/(ΔN−α)�−1∏
j=0

M(θ	e−μjΔN−α
) e−θ�Λje

−μj ΔN−α ]

� Q
(
kt(Λ

(N)) ∈ [a, a+ ε)
)
e−θ�(a+ε)/(ΔN−α)


t/(ΔN−α)�−1∏
j=0

M(θ	e−μjΔN−α
).
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To obtain that Q(kt(Λ
(N)) ∈ [a, a+ ε)) → 1

2 as N → ∞, we now show that

kt(Λ
(N)) is asymptotically normal. It is verified that EQkt(Λ

(N)) → a as
N → ∞, due to the specific construction of the measure Q. Also,

lim
N→∞

VarQ(kt(Λ
(N))) = lim

N→∞
VarQ

(
ΔN−α


t/(ΔN−α)�−1∑
j=0

Λj e
−μjΔN−α)

= lim
N→∞

ΔN−α
(
ΔN−α


t/(ΔN−α)�−1∑
j=0

e−2μjΔN−α)
VarQ(Λ)

= lim
N→∞

ΔN−α

∫ t

0
e−2μsdsVarQ(Λ) = 0.

Copying the approach – using cumulant generating functions – underlying
the proof of Theorem 2.1, it is readily derived that

N
α
2 (kt(Λ

(N))− a)
d→ N (0, σ2), where σ2 := Δ/(2μ)(1− e−2μt)VarQ(Λ).

Hence,

lim inf
N→∞

ΔN−α logPN (a) � lim inf
N→∞

ΔN−α logQ
(
kt(Λ

(N)) ∈ [a, a+ ε)
)

− θ	(a+ ε) +

∫ t

0
logM(θ	e−μs) ds

�
∫ t

0
logM(θ	e−μs) ds− θ	(a+ ε).

By letting ε ↓ 0, together with the upper bound this leads to

(4.5) lim
N→∞

ΔN−α logPN (a) = − sup
θ>0

(
θa−

∫ t

0
logM(θe−μs) ds

)
.

Now it remains to show that kt(Λ
(N)) can again be replaced by κt(Λ

(N))
(which we abbreviate for compactness to kt and κt). Note that, as N → ∞,

|κt − kt| = |
(1− e−μΔN−α

μΔN−α
− 1

)
ΔN−α


t/(ΔN−α)�−1∑
j=0

Λje
−μjΔN−α

+ op(1)| = op(1).

Let η > 0 small enough to guarantee a− η > ρ(t). Then P(κt ∈ (kt − η, kt +
η)) → 1 as N → ∞, hence

lim
N→∞

ΔN−α logPN (a+ η) � lim
N→∞

ΔN−α logP(κt � a)

� lim
N→∞

ΔN−α logPN (a− η),
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which provides bounds for the decay rate of interest of the form

(4.6) − sup
θ>0

( ∫ t

0
logMe−μs) ds− θ(a± η)

)
.

The rate function in (4.6) is continuous in η, so now letting η ↓ 0 yields
(4.2).

As in the central limit regime, we distinguish between the cases α > 1,
α = 1, and α < 1. For all three cases we derive the logarithmic asymptotics.

1. Fast regime (α > 1). We can bound (4.1) from below by

P(Pois(N(ρ(t)− ε)) � Na) · P(κt(Λ(N)) � ρ(t)− ε),(4.7)

for some ε ∈ (0, a − ρ(t)). As N tends to infinity, it is directly shown that
the second factor in (4.7) converges to 1, and hence has exponential decay
rate 0. Now an application of Cramér’s theorem [7] yields

lim inf
N→∞

N−1 logP(Pois(N κt(Λ
(N))) � Na)

� lim
N→∞

N−1 logP(Pois(N(ρ(t)− ε)) � Na)

= − sup
θ

(
θa− (ρ(t)− ε)(eθ − 1)

)
= a log

(ρ(t)− ε

a

)
− (ρ(t)− ε) + a.

On the other hand, (4.1) is majorized by

P(Pois(N(ρ(t) + ε)) � Na) + P(κt(Λ
(N)) � ρ(t) + ε).(4.8)

By Cramér’s theorem, the first term in (4.8) decays exponentially in N . As
a consequence of Lemma 4.1, the second term decays exponentially in Nα,
i.e., superexponentially in N . This yields

lim sup
N→∞

N−1 logP(Pois(Nκt(Λ
(N)) � Na)

� lim
N→∞

N−1 logP(Pois(N(ρ(t) + ε)) � Na)

= a log
(ρ(t) + ε

a

)
− (ρ(t) + ε) + a.

As this holds for all ε > 0, we conclude that

lim
N→∞

N−1 logP
(
MN (t)/N � a

)
= a log

(ρ(t)
a

)
− ρ(t) + a.
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Recognizing the decay rate of a Poisson distribution with mean ρ(t), we
observe that the essential behavior in the fast regime is again of M/M/∞
type.

2. Slow regime (α < 1). In this regime we need to distinguish between the
situation in which the random variable Λ almost surely results in a κt(Λ

(N))
below a, and the situation in which this is not the case. The proof of the
following lemma is straightforward hence omitted.

Lemma 4.2. Given Λ, let y = inf{x > 0 : P(Λ � x) = 1} and u(t) =
y/μ (1− e−μt). Then, as N → ∞,

P(κt(Λ
(N)) � u(t)) → 1.

The cases u(t) � a and u(t) < a should be treated differently, as follows
from the following intuitive explanation that is based on the decomposition
(4.1). If u(t) � a, then the random variable Λ can be ‘large’ with respect to
a, which enables M (N)(t) to reach Na without the Poisson random variable
attaining an unlikely value. If on the contrary u(t) < a, then Λ is ‘small’
with respect to a; M (N)(t) can only exceed level Na by the Poisson random
variable attaining an extraordinarily large value.

We first consider the case u(t) < a. For ease we assume that Λ attains
values in a discrete set of positive values, of which y is the largest (occurs
with probability p ∈ (0, 1)) and y′ < y the one-but-largest. It is directly seen
that, for θ > 0,

EeθM
(N)(t) � p�t/(ΔN−α) E exp

(
θPois

(
Nu(t)

))
.

As α < 1, this leads to

(4.9) lim
N→∞

N−1 logEeθM
(N)(t) � u(t)(eθ − 1).

In addition, EeθM
(N)(t) is majorized by

pE exp
(
θPois(Nu(t))

)
+ (1− p)E exp

(
θPois(N(y′/μ)(1− e−μt))

)
= p exp

(
Nu(t)(eθ − 1)

)
+ (1− p) exp

(
N (y′/μ)(1− e−μt)(eθ − 1)

)
,

which converges to the right-hand side of (4.9) on an exponential scale (use
y > y′). Applying ‘Cramér’, we thus find that the probability of interest
decays exponentially:

lim
N→∞

N−1 logP
(
M (N)(t)/N � a

)
= − sup

θ>0

(
θa− u(t)(eθ − 1)

)
= a log

(u(t)
a

)
+ a− u(t).



UNCERTAINTY IN MODELING OVERDISPERSED QUEUES 27

Now we focus on u(t) � a; in this case

P(Pois(Na) � Na)P(κt(Λ
(N)) � a)(4.10)

gives an asymptotically non-trivial lower bound for (4.1). Note that for every
δ > 0, there is an N large enough such that

P(Pois(Na) � Na) �
(1
2
− δ

)
,

so the first factor in (4.10) will not contribute to the decay rate. The tail
behavior of the second factor follows from Lemma 4.1. On the other hand,
(4.1) is majorized by

P(Pois(N(a− ε)) � Na) + P(κt(Λ
(N)) � a− ε).(4.11)

Again it is observed that only the second term in (4.11) contributes to the
decay rate: by ‘Cramér’ the first term in (4.11) decays exponentially, whereas
the decay of the second term is subexponential (by Lemma 4.1) for ε > 0
small enough (we need a− ε > ρ(t)). Letting ε ↓ 0 while using that the rate
function in (4.2) is continuous in a, we arrive at

lim
N→∞

ΔN−α logP
(
M (N)(t)/N � a

)
= − sup

θ>0

(
θa−

∫ t

0
logM(θe−μs) ds

)
.

Note that the decay rate in this fast regime depends on more detailed infor-
mation on the distribution of Λ than just the mean.

3. Intermediate regime (α = 1). In this regime we expect exponential decay.
Indeed, it is directly derived that

lim
N→∞

ΔN−1 logEeθM
(N)(t) =

∫ t

0
logM(Δ(eθ − 1)e−μs) ds,

and hence ‘Gärtner-Ellis’ [7] gives

lim
N→∞

ΔN−1 logP
(
M (N)(t)/N � a

)
= − sup

θ>0

(
θa−

∫ t

0
logM(Δ(eθ/Δ − 1)e−μs) ds

)
.

For deterministic Λ the above result would equal that of the fast regime;
the resemblance with the slow regime on the other hand becomes more
pronounced for larger values of Δ.
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4.2. Large deviations for the coupled model. We conclude this section by
pointing out how the large devations for the coupled model (where each
arrival generates work in d queues) can be dealt with. For α � 1 we are in
the regime of exponential decay. The multivariate version of the Gärtner-
Ellis theorem entails that, modulo the validity of mild regularity conditions
to be imposed on the set A ⊂ Rd

+,

lim
N→∞

N−1 logP
(
M (N)(t)/N ∈ A

)

= − inf
a∈A

sup
θ

( d∑
i=1

θiai − lim
N→∞

1

N
logE exp

[ d∑
i=1

θiM
(N)
i (t)

])
.

The problem therefore reduces to characterizing the limiting log moment
generating function. It takes standard computations to verify that for α > 1,
with an argumentation borrowed from specific intermediate results in the
proof of Lemma 3.1,

lim
N→∞

N−1 logE exp
[ d∑
i=1

θiM
(N)
i (t)

]

= tEΛ
( ∫ t

0

1

t

d∏
i=1

(
e−μis(eθi − 1) + 1

)
ds− 1

)
,

whereas for α = 1 it turns out to equal

1

Δ

∫ t

0
logE exp

[
ΛΔ

(( d∏
i=1

e−μis(eθi − 1) + 1
)
− 1

)]
ds.

For α < 1, as before, the decay is either exponential in N (if the the multi-
dimensional random Poisson parameter cannot attain values that are con-
tained in A), or exponential in Nα. The latter regime being the more com-
plicated one, we here include the corresponding decay rate. The probability
of our interest can be rewritten as

(4.12)

∫ ∞

x1=0
· · ·

∫ ∞

xd=0
FA(x) · π(dx1, . . . , dxd),

where

FA(x) := P
((
Pois1(N κt(Λ

(N))), . . . ,Poisd(N κt(Λ
(N)))/N

)
∈ A

)
,

π(dx1, . . . , dxd) := P(κt,1(Λ
(N)) ∈ dx1, . . . , κt,d(Λ

(N)) ∈ dxd);
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here the d Poisson random variables are independent. Using the same ideas
as above, it can be shown that (4.12) decays exponentially in Nα, where the
decay rate is now given by

lim
N→∞

ΔN−α logP
((
κt,1, . . . , κt,d

)
(Λ(N)) ∈ A

)

= − inf
a∈A

sup
θ

( d∑
i=1

θiai −
∫ t

0
logM

( d∑
i=1

θie
−μis

)
ds

)
.

5. Discussion and future research. In this paper we propose to
model an overdispersed arrival process by a mixed Poisson process in a
random environment. We assess the impact of overdispersion on system per-
formance when feeding such an arrival process into an infinite-server system.
Under a specific scaling, we derive (functional) central limit results and large
deviations asymptotics.

Various extensions can be explored before using the model in an opera-
tional context; a few of them are mentioned here. To start with, many results
seem to carry over to the setting with generally distributed service times. In
addition, systematically studying the effect of adding a deterministic trend
λ̄(·) (e.g. to account for diurnal patterns) to the random environment Λ(·),
the results could be generalized to a setting with nonstationary Cox arrival
processes. Moreover, we could pursue to upgrade our model to not only al-
low for a deterministic trend, but also for dependence between arrival rates
corresponding to subsequent time slots; such properties have been observed
in (overdispersed) datasets, and are therefore desirable to incorporate [14].
Another challenge lies in refining the logarithmic asymptotics, as obtained
in Section 4, to exact asymptotics.

In all of the results obtained, we revealed a trichotomy in system be-
havior depending on the imposed scaling on system size and sampling fre-
quency. Here the scaling primarily serves to tweak the level of overdis-
persion in the system. The combination of tunable sampling and tunable
overdispersion provides a rich framework for modeling real-world arrival
processes. One could imagine that in a rapidly changing environment, the
inherent overdispersion of the arrival process hardly plays a role, whereas
in a slowly changing random environment, overdispersion is expected to be
more dominant. This interplay between sampling frequency and overdis-
persion is a convenient feature of our model, which could be used to cal-
ibrate the model to real-world data. The latter could be a promising di-
rection for future research, involving challenging statistical issues related
to determining which of the three asymptotic regimes that arise in the
revealed trichotomy suits best with a given data set for a finite N sys-
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tem, and estimating the model parameters conditioned on the asymptotic
regime.

An application of our model would be in the area of dimensioning ser-
vice systems or staffing, and in particular square-root staffing in many-
server systems. The general idea behind square-root staffing is as follows:
a finite-server system is modeled as a system in heavy traffic, where the
number of servers s is large and at the same time, the system is criti-
cally loaded. Under Markovian assumptions this can be achieved by setting
s = λ + β

√
λ (denoting the load on the system by λ) and letting λ → ∞

while keeping β > 0 fixed. The system then reaches the desirable Quality-
and-Efficiency-Driven (QED) regime, in which the system load approaches
100% while the delays experienced by customers remain limited. In such
large-scale service operations, it is natural to use an infinite-server system
as a proxy to the many-server system. Infinite-server models are extremely
useful because of their tractability; this can be exploited by translating
detailed knowledge of the infinite-server system state to the finite-server
setting. This returns rather good estimates of future arrivals, even in sit-
uations of time-varying arrival processes [16, 17]. The model developed in
this paper provides a new way of modeling such large-scale service systems,
with the additional feature of a tunable level of overdispersion, essentially
replacing a deterministic λ by a stochastically fluctuating Λ. The possi-
bility of using this model, including the above mentioned extensions, for
designing dimensioning schemes is currently being investigated by the au-
thors.
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