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Abstract

We develop a new quantitative approach to a multidimensional version of the well-
known de Jong’s central limit theorem under optimal conditions, stating that a se-
quence of Hoeffding degenerate U-statistics whose fourth cumulants converge to zero
satisfies a CLT, as soon as a Lindeberg-Feller type condition is verified. Our approach
allows one to deduce explicit (and presumably optimal) Wasserstein bounds in the
case of general U-statistics of arbitrary order d > 1. One of our main findings is
that, for vectors of U-statistics satisfying de Jong’ s conditions and whose covariances
admit a limit, componentwise convergence systematically implies joint convergence to
Gaussian: this is the first instance in which such a phenomenon is described outside
the frameworks of homogeneous chaoses and of diffusive Markov semigroups.
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1 Introduction, framework and main results

1.1 Overview

Let {W, : n > 1} be a sequence of unit variance U-statistics of order d > 1 (not nec-
essarily symmetric) with underlying independent data X, ..., X,,, that are degenerate
in the sense of Hoeffding (see Section 1.2 for formal definitions) and have a finite fourth
moment. In the landmark paper [12] (see also [11]), P. de Jong proved the following
remarkable fact, valid as n — oo: if lE[W,f;} — 3 and a Lindeberg-Feller-type condition is
verified, then W,, converges in distribution towards a standard Gaussian random variable
Z (note that 3 = E[Z%)]). This surprising result represents a drastic simplification of
the method of moments and cumulants (see e.g. [41, Section A.3]), which should be
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Quantitative de Jong theorems in any dimension

contrasted with the ‘typical’ non-central asymptotic behaviour of degenerate U-statistics
of a fixed order d > 2 and with a fixed kernel — see e.g. [22], [62], [60], [15] or [27, Ch.
11]; it also provides a general explanation of the ubiquitous emergence of the Gaussian
distribution in geometric models where counting statistics can be naturally represented
in terms of degenerate U-statistics, see e.g. [26, 48, 54].

One should notice that de Jong’s central limit theorem (CLT) is a one dimensional
qualitative statement: in particular, it does not provide any meaningful information about
the rate of convergence of the law of W,, towards the target Gaussian distribution. Our
aim in this paper is to use Stein’s method of exchangeable pairs, as originally developed
in Stein’s monograph [63], in order to prove new quantitative and multidimensional
versions of de Jong’s central limit theorem under minimal conditions, in the setting
of degenerate and non-symmetric U-statistics that do not necessarily have the form
of homogeneous sums. In particular, we are interested in characterizing the joint
convergence of those vectors of degenerate U-statistics, whose components verify one-
dimensional CLTs.

One of the main motivations for pursuing our goal is that the findings of [11] have
anticipated a modern and very fruitful direction of research, where tools of infinite-
dimensional calculus are used in order to deduce fourth moment theorems in the spirit of
de Jong (but, crucially, without the use of Lindeberg-Feller-type conditions) for random
variables belonging to the homogeneous chaos of some general random field. The
best-known results in this area gravitate around the main discovery of [46] (as well as
its multidimensional extension [51]), where it is proved that a sequence of normalized
random variables {Y,, : n > 1}, belonging to a fixed Wiener chaos of a Gaussian field,
verifies a central limit theorem (CLT) if and only if E[Y,}] — 3. The combined use of
Malliavin calculus and Stein’s method has consequently allowed one to deduce strong
quantitative versions with explicit Berry-Esseen bounds of these results (see [40, 41]),
and it is therefore a natural question to ask whether the original CLT by de Jong can be
endowed with explicit bounds, that are comparable with those available in a Gaussian
setting.

The reader can consult the constantly updated webpage

https://sites.google.com/site/malliavinstein/home

for an overview of the emerging domain of research connected to [40, 41, 46, 51].
Among the many notable ramifications of the results of [40, 46] to which our findings
should be compared, we quote: [32, 44, 55] for results involving homogeneous sums
in the Rademacher (also called Walsh) chaos, [17, 34, 35, 49, 52, 57, 61] for the anal-
ysis of Poissonized U-statistics living in the Wiener chaos associated with a Poisson
measure, [1, 5, 30, 45] for fourth moment theorems involving homogeneous sums in
a non-commutative setting, and [2, 6, 36] for results in the setting of chaotic random
variables associated with a diffusive Markov semigroup. Central and non-central quanti-
tative versions of de Jong’s results in the case of fully symmetric Poissonized U-statistics
can be found in [17, 20, 50].
Two sets of references are particularly relevant for the present work:

(a) In reference [43] (see also [53]) de Jong’s CLT in the special case of homogeneous
sums was studied in the framework of the powerful theory of universality and
influence functions initiated in [39]. In particular, explicit bounds were obtained
for vectors of homogeneous sums satisfying a CLT.

(b) In the already quoted reference [51], the following striking phenomenon was dis-
covered. For r > 2,let Y™ = (Y{",...,Y,™), m > 1, be a sequence of random vectors
whose components live in a fixed Wiener chaos, and assume that the covariance
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matrix of Y™ converges to some ¥ > 0 and that each component Y;” verifies a
CLT; then, Y™ converges in distribution towards a Gaussian vector with covariance
3., that is: for vectors of random variables living in a fixed chaos, componentwise
convergence to Gaussian, systematically implies joint convergence. As explained
e.g. in [41, Chapter 6], such a phenomenon serves as a key stepping stone in
order to deduce Gaussian approximations for general functionals of Gaussian fields.
Since then, this result has been extended (at least, partially), to the framework of
the homogeneous chaos associated with a Poisson measure (see [4, 52]), to general
vectors of homogeneous sums (see [43, Section 7] and [42]), to the free probability
setting (see [45]), as well as to the framework of Markov chaoses (see [6]).

The achievements of the present paper are twofolds:

(1) On the one hand, we will obtain a general quantitative version of the one-dimen-
sional de Jong CLT, displaying explicit bounds on the 1-Wasserstein distance. As
anticipated, we will do that in the full general setting of degenerate U-statistics
that do not necessarily have the form of homogeneous sums, and that are not
necessarily symmetric. In particular, this extends the CLTs for homogeneous sums
proved in [43], as well as the results for Poissonized and symmetric U-statistics
proved in [17, 34].

(2) On the other hand, we will deduce (quantitative) multidimensional versions of de
Jong theorems, showing that the crucial phenomenon observed in [51] (see the
discussion at Point (b) above) basically extends to the framework of degenerate
U-statistics. Our main theorems on the matter show that the case of U-statistics
of the same order must take into account at least one cumulant of order four —
thus echoing recent results from [6]. Our forthcoming Theorem 1.7 marks the first
instance in which the phenomenon observed in [51] is described in full generality,
outside the frameworks of homogeneous chaoses, and of the chaoses associated
with a diffusive Markov semigroup.

We will now describe our setting and our main results in more detail.

1.2 Main results, I: univariate normal approximations

Let us fix the following setup and notation, which we essentially adopt from [12]. We
refer the reader to the classical references [25, 31, 29, 62, 64], as well as to the more
recent works [18, 19, 33, 47], for an introduction to degenerate U-statistics, Hoeffding
decompositions and their use in stochastic analysis.

Let (Q, 7,P) be a probability space and for an integer n > 1 let X,..., X, be inde-
pendent random elements on this space assuming values in the respective measurable
spaces (E1,&1),...,(Ey, &,). Further, assume that

n n
I H E,—-R is ® &; — B(R) - measurable
j=1 j=1

and that
W= f(X1,...,X,) € L*(P)
satisfies
EW]=0 and E[W? =1. (1.1)
We write
[n] :={1,...,n}

and for J C [n] we also write
Fi Z:O'(Xj,jEJ).
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We write

W = Z W, (1.2)

JC|[n]
to indicate the Hoeffding decomposition of W. Note that this means that, for each
J C [n], Wy is Fj-measurable and that
E[W;|Fk] =0, (1.3)
whenever J ¢ K. It is well-known that W admits a Hoeffding decomposition of the type
(1.2), as long as W € L!(P) and that it is almost surely unique and given by
Wy=> (-)EHEW I F], JCn). (1.4)
LCJ
We can thus write
Wy = fi(X;,j€J) (1.5)
for some measurable functions
fr:[[E =R, TS
jeJ
Let us also define
o= Var(Wy), JCn].
One major assumption in what follows will be that, for some fixed integer d € [n], W is

a degenerate U -statistic of order d (or d-degenerate U-statistic), i.e. that the Hoeffding
decomposition (1.2) has the form

W = Z Wy, (1.6)

where

Dg:={JC[n]: |J|=d}
denotes the collection of all (7)) d-subsets of [n]. Equivalently, we have Wy = 0 whenever
K C [n] is such that | K| # d. Hence, we have

W=f(X1,....X.) = Y f1(X;,5€]).
JeDy

The next lemma lists important properties of the Hoeffding decomposition of W which
will be used without further mention.

Lemma 1.1. Let the above notation and definitions prevail. Then, one has the following
properties:

1) Whenever J, K4, ..., K, € Dy are such that
JZ|JKi=K
i=1
and g(Wk,,...,Wk,) is square-integrable, then
]E[WJQ(WKI, ceey WKS)] =0.

In particular, W;, J € Dy, are uncorrelated.
2) For all J,K € Dy such that J # K we have E[W; | Fx] = 0.
3) Forall J,K € Dy we have E[W,] =0 and E[W;Wk| = 6, k03.

4 ) oj=1

JEDy

5) Whenever Jy,...,J.,K1,..., K, € Dy are such that

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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S

(Ur)n (U)o,

1 i=1

then the families {Wy, : I =1,...,r} and {Wgk, : i =1,...,s} are independent, i.e.
the summands W;, J € Dy, are dissociated as defined in [37].

Proof. Point 1) is a consequence of the degeneracy property (1.3) because,
EW;|Fk] =0,
as J ¢ K and, hence, by conditioning we have
EW,9(Wk,,....Wk,)]| =E[g(Wk,,..., Wk, )E[W, | Fk]] =0.

Now, Point 2) follows since it is a special case of Point 1) and also Point 3) and Point 4)
are immediately implied by Point 1), in view of assumption (1.1). Finally, Point 5) follows
from independence as well as the disjoint block theorem. O

Let us furthermore define the quantity

2 2 2
= = . 1.7
0" = 0n i max Z 0K (1.7)
€Dy:
ieK

The next result corresponds to de Jong’s celebrated (qualitative) CLT discussed in
Section 1.1.

Theorem 1.2 (See [12]). Fixd > 1, and let {n,, : m > 1} be a sequence of integers
diverging to infinity. Let {W,, : m > 1} be a sequence of unit variance degenerate
U -statistics of order d, such that each W,, is a function of the vector of independent
variables (X\"™ ..., X\™). Then, as m — oo, if E[W*] — 3 and 02— 0, one has that
W, converges in distribution towards a standard Gaussian random variable.

Note that the condition lim,,, .. g%m = 0 guarantees that, as m — oo, the influence of
each of the random variables (X fm), . X,(Lm)) on the total variance of W,, , is negligible.

In fact, in the case d = 1 it reduces to the classical Lindeberg-Feller condition

lim max 0? =0,
m—001<j<nm

from the Lindeberg-Feller CLT (see e.g. Theorem 5.12 in [28]). Here, we wrote aj? for
2

0%,
{7}

Our first main statement provides an explicit bound in the Wasserstein distance dyyags
for Theorem 1.2. We recall that, given two integrable random variables X and Y, the
Wasserstein distance between the distributions of X and Y is given by the quantity

dwass(X,Y) = sup |E[h(X)] - E[h(Y)H s
heLip(1)

where Lip(1) stands for the class of 1-Lipschitz functions.

Theorem 1.3. As before, let W € L*(P) be a degenerate U -statistic of order d such that
(1.1) is satisfied and let Z ~ N(0,1) be a standard normal random variable. Then, it
holds that

2 12 9.3 1/2
dwass(W, Z) < \/;<1E[W4] -3+ I*idgi) + T\f (2(IE[W4] -3)+ 3@@3)

< (24 ) imw g+ vra(y 2+ 22),

where kg4 is a finite constant which only depends on d.
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Recall that a degenerate U-statistic W of order d as given by (1.6) is called symmetric,
if, additionally, the measurable spaces (F1,&1),..., (En,&,) all coincide, the random
variables Xi,..., X, are i.i.d. and if there is a measurable kernel ¢ : E‘f — R such that
f7 =g forall J € Dy. In this special situation, the relations

1=Var(W)= > E[g*(X;,je])] = (Z)]E[g%xh...,xd)} and
JE€Dy
, -1
on = E[¢’(X;j€])] = (Z_ I)E[92(X1=~~aXd)]
JEDy:
leJ
imply that
9 d
Qn =
n

Hence, we arrive at the following corollary of Theorem 1.3.

Corollary 1.4. Let W € L*(P) be a normalized, degenerate and symmetric U -statistic
of order d and let Z ~ N(0,1) be a standard normal random variable. Then,

dwass(W, Z) < (\/z+§) |E[W4}—3y+\/j?( i+2\‘//§)

In particular, under the assumptions of Theorem 1.2, a sequence {W,, : m > 1} of
degenerate and symmetric U -statistics of a fixed order d converges in distribution to
Z ~ N(0,1), whenever lim,,, ., E[W2] = 3.

Remark 1.5. (a) The previous Therorem 1.3 is a complete quantitative counterpart

to de Jong’s Theorem 1.2. The constant x,; appearing in the bound is given by
kg = Cgq + 2d, where Cy is a combinatorial constant defined in Equation (4.5) below.

(b) In the context of multilinear forms in independent and standardized real-valued
random variables (X;);cw considered in [43], the authors had to assume that the
uniform moment condition sup,. E[X}] < cc is satisfied. It is easy to check that,
for homogeneous sums, this condition is in fact equivalent to the hypercontractivity
condition

4
_ o EW]]
sup D,, < oo where D, := max v
nelN JEDy oy

Interestingly, this condition was also assumed in the monograph [11] by de Jong who
was only able to dispense with it in the later paper [12]. Note further that the bounds
for multilinear forms in independent random variables with arbitrary distributions
derived in [43] are stated in terms of three times differentiable test functions whose
first three derivatives are uniformly bounded by a constant. Hence, our Theorem 1.3
is not only more general than the corresponding result from [43] as far as the class
of random functionals dealt with is concerned but is also stated in terms of much
less smooth test functions.

(c) It should be mentioned that the original proof of Theorem 1.2 in [12] applies a
quantitative martingale CLT from [24] and, by carefully revising its proof, one would
be able to derive a bound on the rate of convergence. This issue is also briefly
addressed in the introduction of the monograph [11] but not pursued any further.
The resulting rate, however, would be of a much worse order than the rate provided
by Theorem 1.3. Roughly, the power 1/2 appearing in our statements would have
to be systematically replaced by the power 1/5. Furthermore, as was shown in [23]
by means of an example, the Berry-Esseen bound for martingales from [24] cannot
in general be improved with respect to the rate of convergence. Consequently, the
techniques used by de Jong are not capable of providing sharp error bounds for
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his qualitative statement. Note that the phenomenon of generally sharp bounds on
the rate of convergence for martingale CLTs which reduce to sub-optimal bounds in
particular situations was already discovered in the paper [3]. We also stress that,
unlike our work, references [11, 12] do not contain any multidimensional statements.

Finally, we would like to mention that the paper [58] also deals with bounds on the
normal approximation of so-called degenerate weighted U-statistics of order d = 2, which
have the form

U= Y wiv(XiX;)
1<i<j<n

for some vector X = (X1,...,X,,) ofi.i.d. random variables, some symmetric, degenerate
kernel ¢ and with nonnegative weights w; ;, 1 < ¢ < j < n. Note that the class of
weighted U-statistics is strictly included in our framework, since we can define the
degenerate kernel f{; ;3 corresponding to the subset {4, 5} € D, by f{; ;3 = w; %, leading
to the Hoeffding components Wy; ;1 = w; j4(X;, X;), 1 < i < j < n. This, of course, also
holds for arbitrary positive integers d. Note that, in contrast to our work, the bounds
given in [58] are expressed in terms of quantities which are related explicitly to the
kernel ¢ and to the weights w; ; rather than in terms of the fourth cumulant of U and,
hence, cannot be immediately compared to ours.

1.3 Main results, II: multivariate normal approximations

In this subsection we state a new approximation theorem for the distribution of
vectors of degenerate, non-symmetric U-statistics by a suitable multivariate normal
distribution. In particular, we show that an analog of de Jong’s theorem 1.2 holds in any
dimension, see Theorem 1.7. Note that, in the multivariate case, even this qualitative
result relating the asymptotic normality of the vector of degenerate, non-symmetric
U-statistics to fourth moment conditions is completely novel.

As before, let X1,..., X,, be the underlying sequence of independent random vari-
ables, let r € IN and for 1 < i < r let W (i) be a random variable on (€2, 7, P) which is
measurable with respect to F,,; = o(X1,...,X,) and whose Hoeffding decomposition is
given by

W)=Y Wi
JED,,
for some p; € IN, i.e. W (i) is a degenerate U-statistic of order p;. Without loss of
generality, we can assume that p; < p, whenever 1 < ¢ < k < r. Thus, there is an
s € {1,...,r}, positive integers r1,...,r, with 1 <r; <7y < ... < ry = r and integers
1<q < g2 <...<gqssuch that

pi=q forall ie{r_1+1,...,r} andall [=1,... s,

where we set rg := 0. We define

and assume that each W (i) € L*(P) with

E(W(i)] =0 and Var(W(i)) =E[W(@)?] = > BW,(@)’] =1, 1<i<r,

JEDy,
We also let
vi g, = Cov(W (i), W(k)) =E[W(@EHW ()], 1<i<k<r,
and
V= V(W) = COV(W) = ('Ui,k:)lgi,kgr .
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Note that v;; = 1 fori=1,...,r and |v; x| < 1for 1 < i,k < r, by the Cauchy-Schwarz
inequality. Note also that v; ;, = 0 unless p; = p;.. Hence, V is a block diagonal matrix.
Throughout this section we denote by

7 =(2(1),..., 2(r))" ~ N.(0,V)

a centered Gaussian vector with covariance matrix V. For1 < k£ <r and J € D,, we
define
os(k)? == Var(W;(k)) = E[W,;(k)?] and o}, := Jmax, > ask).
JED,, :
jeJ

Before stating our multivariate normal approximation theorem, we have to introduce
some more notation: For a vector = = (z1,...,7,)7 € R" we denote by ||z||2 its Euclidean
norm and for a matrix A € R"*" we denote by ||Al|op, the operator norm induced by the
Euclidean norm, i.e.,

[Allop := sup{[[Az[|2 : [[z[l2=1}.

More generally, for a k-multilinear form ¢ : (R")* — R, k € IN, we define the operator
norm

[Pllop == sup {|¢(ur, .., ug)l = ujg € R, flujlla =1, 5 =1,....k}.
Recall that for a function ~ : R” — R, its minimum Lipschitz constant M; (h) is given by
h(z) —h
M;(h) := sup [h(z) = hiy)] € [0, 00) U {o0}.
azy |17 =yl

If h is differentiable, then M (h) = sup,cg- || Dh(x)||op. More generally, for k£ > 1 and a
(k — 1)-times differentiable function & : R"™ — R let

Dk—l _ Dk—l o
M) — sup 12 7R@) = D () ey
vy [z = yll2

)

viewing the (k — 1)-th derivative D*~'h of h at any point x as a (k — 1)-multilinear form.
Then, if & is actually k-times differentiable, we have My (h) = sup,cg- || D*h(z)|op. Having
in mind this identity, we define My(h) := ||h]|co-

Recall that, for two matrices A, B € R"*", their Hilbert-Schmidt inner product is
defined by

(A, B)us. = Tr(ABT) = Tr(BAT) = Tr(BTA) = > ai;bi;

i,j=1

Thus, (-, )m.s. is just the standard inner product on R"™*" = R"™. The corresponding
Hilbert-Schmidt norm will be denoted by ||-||g.s.. With this notion at hand, following [8]
and [38], for k£ = 2 we finally define

M;(h) := sup ||Hess h(z)||us. ,
xeR"™

where Hess h is the Hessian matrix corresponding to h.

Theorem 1.6. There exist finite constants C,,, 1 <1 < s, only depending on q; as well as
finite constants C; , 1 < i,k < r, depending on i and k only through p; and p;, such that,
with the definition

s 2 T

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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+q mln(Qi k> @72L i) + q10n,kOn,i + Ci,k max(@%,i’ Q?L,k))

2 % ql“m DS (B[w ()] 1)

1<l<m<s i=ri_1+1k=r,_1+1

(IE [W(k‘)ﬂ -3+ (2Qm +C 7n,)g727,,k)1/2

1/2

+ min (qz@i,k , qmgi,i) + C; x max(oj ;, Qi,k)]

and under the above assumptions, we have the following bounds:

(i) For any h € C3(R") such that E[|h(W)|] < oo and E[|h(Z)|] < oo,

|E[L(W)] - E[h(2)]] < —M (VA

_4(11

/

YRS (V0 ) +3(C +2),)
i=rj_1+1

(ii) IfV is in addition positive definite, then for each h € C?(R") such that E[|h(W)|] <
oo and E[|h(Z)|] < oo,

|E[R(W)] — E[R(Z2)]] < M1<h>\|v*1/2uopx/2

/
\ﬁMQ BV~ 1/2||Opqu Z (2 ]—3)+3(C’ql—|—2q1)gnz)l2.

i=r—1+1

Fix r € IN. Since the class of all compactly supported, three times differentiable
functions h on R” is convergence-determining, from Theorem 1.6 (i) we obtain the
following statement, which is a new multidimensional extension of Theorem 1.2.

Theorem 1.7. Fix r > 2, as well as integers p1,...,pr, and let n,, — 0o, as m — oo.
Let Wy, == Wn(1),...,Wn(r)T, m > 1, be a sequence of random vectors such that
each W,,(k) is a centered, unit variance degenerate U -statistic of order p;, whose
argument is the vector of independent random elements (Xfm), e Xr(Lm)) Furthermore,
let 3 € R"*" be a positive semi-definite matrix with ¥(j,j) = 1 for j = 1,...,r and
denote by N = (N(1),...,N(r))T ~ N,(0,X) a centered Gaussian vector with covariance
matrix ¥. Assume the following:

(i) The covariance matrix of W,,, converges to 3;
(i) Asm — oo, Qim,k — 0, forevery k=1, ...,7;
(iii) Asm — oo, E[W,,(k)*] — 3, forevery k=1, ...,r;
(iv) If j # k but p; = py then, as m — oo, E[W,,()*W,,(k)?] — E[N(j)?°N(k)?] =
1+ (2, k)2

Then, as m — oo, W,,, converges in distribution to N.

In the framework of the normal approximation of vectors of eigenfunctions of dif-
fusive Markov semigroups, a condition similar to (iv) in the above statement has been
recently introduced and applied in [6]. The rest of the paper is organized as follows:
Section 2 contains the proof of our one-dimensional result, Section 3 focusses on our
multidimensional statements, whereas Section 4 contains the detailed proofs of several
technical lemmas.

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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2 Proof of the one-dimensional theorem

In this section we give a detailed proof of Theorem 1.3. First we review Stein’s
method of exchangeable pairs for univariate normal approximation.

2.1 Stein’s method of exchangeable pairs

The exchangeable pairs approach within Stein’s method dates back to Stein’s cel-
ebrated monograph [63]. Recall that a pair (X, X’) of random elements on a common
probability space is called exchangeable, if

(X, X)) 2 (X, x).

In [63] C. Stein extensively illustrated the fact that a given normalized random variable
W is close in distribution to Z ~ N(0, 1), whenever one can construct another random
variable W’ on the same space such that: (i) W' is ‘close’ to W in some proper, quantifi-
able sense, (ii) the pair (W, W’) is exchangeable, (iii) the linear regression property

E[W —W |W] = -AW (2.1)

is satisfied for some small A > 0, and (iv) the conditional second moment of W/ — W
given W is close to its mean, the constant 2), in the L' metric. For a precise statement
see Theorem 2.1 below.

The range of examples to which this method can be applied was considerably extended
by the work [58] by Rinott and Rotar, who proved bounds on the distance to normality
under the condition that the linear regression property is only approximately satisfied,
i.e. that there is some negligible remainder term R such that

%]E[W’—WW} =-W+R (2.2)
is satisfied, where G is a sub-o-field of F such that (W) C G. The method of exchange-
able pairs has been generalized to other absolutely continuous distributions, like the
exponential (7] and [21]), the multivariate normal (8], [56] and [38]) and the Beta
distribution [14]. It has also been developed for general classes of one-dimensional
absolutely continuous distributions in [9], [16] and [14]. As was observed in [59], in
the case of one-dimensional distributional approximation one may in general relax the
exchangeability condition to the assumption that W and W' be identically distributed.
In this article we focus on the exchangeable pairs method in the context of one- and
multidimensional normal approximation. The following result is a variant of Theorem 1,
Lecture 3 in [63] (see also Theorem 4.9 in [10]). It slightly improves on these result with
respect to the constants appearing in the bound and is also stated in terms of identically
distributed random variables W, W’ as opposed to exchangeable ones as well as for
general sub-o-fields G of F with o(W) C G. The proof is standard and therefore omitted
from the paper. Moreover, the result is a direct consequence of Proposition 3.19 in [14]
together with the best known bounds on the first two derivatives of the solution to the
standard normal Stein equation for Lipschitz test functions (see e.g. Lemma 2.4 in [10]).

Theorem 2.1. Let (W, W’) be a pair of identically distributed, square-integrable random
variables on (2, 7, P) such that, for some \ > 0, (2.1) holds. Furthermore, let G be a
sub-c-field of F with o(W) C G. Then, we have the bound

dwass (W, Z) \f\/\/ar -w)[d]) + %E|W/ ~w. (2.3)

For the proof of Theorem 1.3 we will need the following new auxiliary result about
exchangeable pairs satisfying identity (2.1) which might be of independent interest.

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Lemma 2.2. Let (W, W’) be an exchangeable pair of real-valued random variables in
L*(PP) such that, for some )\ > 0, (2.1) is satisfied and let G be a sub-o-field of F with
o(W) CG. Then,

%E[(W’ —W)*] = 3E {WQ%IE[(W’ -2 |g]| - B,

Proof. By exchangeability of (W, W') we have
%E[(W’ — W)Y =E[WW -W')?] = IE[W4 —3W3AW' 4+ 3(W'W)? — W(W’)ﬂ
=E[W*] + 3E[(WW')?] —4E[W*W'] . (2.4)
Also, by (2.2)
E[W*W'] = E[W*E[W'[d]] = (1 - NEW'] 2.5)
and
B[WW'?) = [W2E[(W — W +W)? | d]]
= B[W2B[(W — W) + 20 (W'~ W) + W2 |d]]
— E[W*] — 2AE[W*] + E[W2]E[(W’ — W) gﬂ
— (1 - 2V E[WY] + ]E[WQE[(W’ — W2 g]} . (2.6)
Thus, from (2.4), (2.5) and (2.6) we obtain that

%]E[(W’ W) = (1 £ 3(1—2)\) —4(1— )\))IE[W4] +3E [WQ]E[(W’ —W)?| g]}

= SE[W2E[(W' — W)? | g] — 22B[W"],

proving the lemma. O

2.2 Proof of Theorem 1.3

Let W € L*(PP) be as in Theorem 1.3 such that its Hoeffding decomposition is given
by (1.6). We are going to apply Theorem 2.1 to the o-field G = o(X},..., X,) and to the
exchangeable pair (W, W’) which is constructed as follows: Let Y := (Y;)1<;j<» be an
independent copy of X := (X;)i<j<n, and let o be uniformly distributed on {1,...,n}
such that X, Y and « are jointly independent. Letting, for j =1,...,n,

X
X;, fa#j
and
X'=(X,.... X))
it is easy to see that the pair (X, X’) is exchangeable. Finally, as exchangeability is
preserved under functions, defining

W' = f(Xiva:z) = Z]‘{a—j}< Z Wi+ Z WS”)
j=1

JeD,: JEDy:
j¢J jed
ey
= Y wr+ Y wi,
JEDy: JEDy:
ag¢J acJ

also the pair (W, W’) is exchangeable. Here, for J = {j1,...,j4} € Dgwith 1 < j; < j2 <
... <Jja<nandj=j; €J, we write

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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X

Wﬁj) ::fJ(lev"' X]k NYJMX jd)v

Jhg1o

where the kernel f; is given by (1.5). We now show that the pair (W, W’) satisfies Stein’s
linear regression property (2.1) exactly with coefficient A = d/n.

Lemma 2.3. With the above definitions, we have
d
E[W'7W|W] :E[W’7W|X] =—W.
n
Proof. It suffices to prove the second equality. Note that

—W = 21{Q_J} S (W -wy) =3 (Wi —wy).

JEDg: JEDg:
jeJ acJ

Hence, by independence,

E[W’—W|X]:%i2( BW | X] - w,)
:%ZZ( W9 X ie T\ (Y]~ )
:%ZZ( W | Fongy] = W)
Sy S we YW

j=1J:5eJ JEDy JjeJ
ey
JeDy

Here, we have used the defining property of the Hoeffding decomposition to obtain the
fourth equality. O

We would like to mention that the same construction of the exchangeable pair (W, W’)
was used in [58] in the situation of weighted U-statistics. They also noted the validity of
(2.1) with A\ = d/n in the special case of completely degenerate weighted U-statistics of
order d.

In order to apply (2.3), by Lemma 2.3, we thus have to compute an upper bound on
the variance of 25 E[(W’ —W)? | X]. This is done by finding the Hoeffding decomposition
of this quantity in terms of the Hoeffding decomposition of W? for which we will now
find a new convenient expression. More generally, we derive a formula for the Hoeffding
decomposition of the product of two degenerate U-statistics, which will also be needed
for the proof of Theorem 1.6.

Assume that 1 < p,q < n and that W and V are square-integrable p- and ¢g-degenerate
U-statistics with respect to the same underlying sequence X, respectively, with Hoeffding
decompositions

W=> W, and V=Y Vg. (2.7)
JeD, KeD,
The product U := VW in general is not a degenerate U-statistic, but it clearly has a
Hoeffding decomposition of the form

U= Z Uy = Z U - (2.8)

MC[n] MC[n]
[M] <p+q

The following simple observation will be crucial for the computation of the Hoeffding
decompositions of both VIV and of the quantity £ E[(W' — W)? | X].

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Lemma 2.4. If L C [n] is such that JAK = (J\ K)U(K \ J) € L, then
E[W,;Vi |FL] =0.
Proof. Assume e.g. that (J\ K)\L=J\ (KUL)# (. Then,
B[W,Vi | Fi] = E[VKE[WJ | Fro)] ‘h} = B[Vk 0| F] =0,

as E[W; | Fxur] = 0 because J £ K U L. O
Lemma 2.5. Let J € D, and K € D,, respectively.

(a) The Hoeffding decomposition of W ;V is given by

WiVie= > > (—)MEHE[W, V| FL (2.9)

MCln]: LC[n]:
JAKCMCJUK JAKCLCM

(b) Ifj € JN K, then we have the Hoeffding decomposition

E[W,Vk | Fuurngy] = > > ()MEHEW, V| Fr
MCn: LChn:
JAKCMC(JUK\{j} JAKCLCM

(2.10)

Proof. The claim of (a) follows immediately from Lemma 2.4 and from the general
formula for the Hoeffding decomposition of an F; x-measurable random variable T

which is given by
T— 3 (X C)MHETF).
MCJUK LCM

The claim of (b) follows similarly upon observing that, for L C (JU K) \ {;j} we have
E[E[W)Vic | Fouronm] | Fi] = BIWaVic | 2] 0

The next result which might be of independent interest plays a similar role as the
product formula for two multiple Wiener-It0 integrals (see e.g. [41]).

Theorem 2.6 (Product formula for degenerate U-statistics). Let 1 < p,q < n and let
W,V € L*(P) be p- and q-degenerate U -statistics, respectively, with respective Hoeffding
decompositions given by (2.7). Then, the Hoeffding decomposition (2.8) of U := VW is
given by the following formula:

we S (% oM )

MCln JeD,,KeDy:  LC[n):
IM|<p+q JAKCMCJUK JAKCLCM

_ Z (Z(_l)M—lLI Z ]E[WJVK[}‘LD,
J:

MCln]: “LCM JED,,KED,:
|M|<p+q JAKCL,
MCJOK

i.e. for M C [n] with |M| < p+ q we have

Um = Z Z (—)MIHB W, Vi | Fi]
JED,,KEDy: LC[n]:
JAKCMCJUK JAKCLCM

= Z (71)‘M|7|L‘ Z E[WJVK | ]:L] .

LCM JED,,KED,:
JAKCL,
MCJUK

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Proof. By the linearity of the Hoeffding decomposition and since we have
VW= > Wik,
JeD,,KeD,

it suffices to collect the terms resulting from the Hoeffding decompositions of the
summands W;Vk in a suitable way. By Lemma 2.5 (a) we have

VW= Y WiVk= > > S () MEEE[W, Vi | Fi]

JeD,,KED, JeD,,KED, MCln]: LC[n):
JAKCMCJUK JAKCLCM

= Z (Z(l)'mL' Z ]E[WJVKN:L})- m

MCln]): “LCM JED,, KED,:
|M|<p+g JAKCL,
MCJUK

Now we are in the position to express the Hoeffding decomposition of %E[(W’ -
W)? | X } in terms of that of W2. Since we prove a more general result, Lemma 3.3 below,
we do not give its proof, here.

Lemma 2.7. Let W* = 3,/ _,, Un be the Hoeffding decomposition of W?. Then, we
have the Hoeffding decomposition

EE[(W’—W)2|X]: > amUu,

2d
MCln]:
|M|<2d—1
with v
ay =1— % €[0,1] foreach M C [n] with |M| < 2d.

Before we proceed, let us, following [11] and [12], introduce the following important
classes of quadruples (J1, Ja, J3, J4) € D;‘. We call an element j € J; U Jy U J3 U Jy a free
index, if it appears in J; for exactly one i € {1,2,3,4}. Note that this implies that

E[W;,W,W;,Wy,] =0 (2.11)

by Lemma 1.1 4). We say that (Jy, Jo, Js, J4) is bifold, if each element in the union
J1 U Jy U J3 U Jy appears in J; for exactly two values of i € {1,2, 3,4}, i.e. if

1+l +15+15, =2 15000700 -

Let us denote by B = B, the set of all bifold quadruples. Among the bifold quadruples,
the most important ones are given by the subclass Sy which is defined by

50:{(J,K,L,M)epg CJNK=LNM=0, 0CJNL=J\(JNM)CJ
andngmL:K\(KmM)gK}.

Further, we denote by 7 = 7; the set of all quadruples (Ji,J2, Js,.Js) € Dj that are
neither bifold nor have a free index. This just means that

Ly +1n+1,+15, 2215000000,
and there exists at least one j € [n] such that
L () +100) + 1) + 11.() = 3,

i.e. each element of the union .J; U J; U J3 U J4 appears in J; for at least two values of
i € {1,2,3,4} and there is an element of the union J; U .J, U J3 U J; that appears in J; for
at least three values of i € {1, 2, 3,4}.

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Following [12] let us define the quantities

So = Z ]E[WJWKWLWM:I = Z E[WJWKWLW]W] )

J,K,L,MED,: (J,K,L,M)€eSy
JNK=0=LNM,

0CJNLCJ,

0CINMCJ

as well as
T = Tq ‘= Z OJOKOLOMN -
(J,K,L,M)eT

Note that the last identity in the definition of Sy is true by virtue of (2.11). The following
result is Proposition 5 (b) of [12]. We will prove a more general version stated as
Proposition 3.5 to deal with the multivariate case.
Proposition 2.8. We have

SO Z —T.

Recall the definition of the Lindeberg-Feller quantity ¢ = o,, given in (1.7). Next, we
state a substantial improvement of Lemma B in [12]. Indeed, there the upper bound on
T is of order ¢ as compared to the order p?> which we obtain. Its proof is deferred to
Section 4.

Proposition 2.9. For each d € IN there is a finite constant Cy which is independent of n
such that
T = Z ojogoron < Cao®.
(L,K,L,M)ET
Furthermore, we can let Cy = 13.
The next two lemmas will be very useful for what follows.

Lemma 2.10. Again, let W? =37,/ o, Un denote the Hoeffding decomposition of W?.
Then, we have the bound

S Var(Uu) < E[W4] =3+ kae?,
MCln]:
|M|<2d—1
where kg = Cyq + 2d and C, is the constant from Proposition 2.9.
Proof. We have

Z Var(Uys) = Var(W?) — Z Var(Uny)

MC|n]: MC[n]:
[M|<2d-1 |M|=2d
=EWY -1- ) Var(Un)
MC[n]:
|M|=2d
= E[Wﬂ —3+2- Z E[U3]
MCln]:
|M|=2d
—EW -3+ (2= Y EWWkWi]).  (212)
J,K,L,M€EDy:

JNK=0=LNM
For the last equality we have used the fact that for |M| = 2d we have

U= >, W,Wk.

J,KEDy:
JNK=0,
JUK=M

Also, we can write

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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> E[W,WeWWa] =2 > BE[WiWE]+ S,
J,K,L,M€eDg: J,K€eDgy:
JNK=p=LNM JNK=0

=2 E o%a% + So
J,K€Dg:
JNK=0

=2-2 Z o%0% 4+ Sy
J,K€Dgy:
JNK#D

>2—2dp*+ S,

where we have used Lemma 4.1 to obtain the last inequality. Thus, from (2.12) and
Propositions 2.8 and 2.9 we conlude that

> Var(Uu) = Var(W?)— > Var(Un) (2.13)
MCln]: MCln]:
|M|<2d—1 |M|=2d
< E[W*] -3+ 2do* — S
<E[W!] -3+ (2d + Ca)o®
E

[Wﬂ — 3+ Kqo?,

which proves the claim. O
Now we are able to bound the first term on the right hand side of (2.3):

Lemma 2.11. For the above constructed exchangeable pair we have

n

2d

Proof. Using the orthogonality of the summands within the Hoeffding decomposition as
well as apr € [0,1], |M| < 2d — 1, from Lemma 2.7 we obtain that

Var(SE[(W = W)? | X]) < B[W*] = 3+ rag®. (2.14)

Var(;lE[(W’—W)ﬂXD:Var( 3 aMUM) = Y & Var(Uu)

MC[n]: MC|n]:
[M|<2d—1 |M|<2d—1
< Z Var(UM)
MCln]:
|M|<2d—1

<E[W*] =3+ rad®,
where the final inequality is by Lemma 2.10. O

Now, we proceed to bounding the second error term appearing in the bound (2.3)
from Theorem 2.1. The next lemma will be crucial for doing this.
Lemma 2.12. For the above constructed exchangeable pair we have the bound
B[V = W) < 2(EW) - 8) + 3ra0”

Proof. From Lemmas 2.3, 2.2 and 2.7 we obtain that

B[ = W) = 3E[W2ZE[(W' - W)?| x]| - E[W]
=3 Z GA{E [U]wUN] — E[Wﬂ 5
M,NC[n]:
|M|,|N|<2d
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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where we recall that ap; = 1 — % € [0,1], for all M C [n] such that |M| < 2d. Noting

that ay Ug =1, aps = 0 whenever |M| = 2d and using the orthogonality of the Hoeffding
decomposition yield

TE[W - W)Y =3¢gUf ~E[WY +3 > an Var(Un)

4d
MCln]:
1<|M|<2d—1

<3-EWY+3 > Var(Uy)

MCn]:
1<|M|<2d—1

< 3—E[W] 4 3(E[W*] — 3 + ra0?)
= 2(E[W*] - 3) + 3k40%,

where we have used Lemma 2.10 to obtain the last inequality. O

From the fact that

%d =2=E[(W' -W)?]

and using the Cauchy-Schwarz inequality we obtain

1 / 5_ 1 / 21\"/? / 4\1/2
SEW —w[' < (B[ -w)) (B -wl[)
B 2\/§ n , A 1/2
_ T(@E[(W —W) }) . (2.15)
Hence, by virtue of Lemma 2.12 we have
1 3 22 1/2
SEIW =W < S (2B - 3) + 3kac?) (2.16)

Theorem 1.3 now follows from (2.3), Lemma 2.11 and from (2.16).

3 Proof of the multidimensional theorem

3.1 Stein’s method of exchangeable pairs for multivariate normal approxima-
tion
Although the exchangeable pairs coupling lies at the heart of univariate normal
approximation by Stein’s method, it was only in 2008 in [8] that the problem of developing
an analogous technique in the multivariate setting was finally attacked. In their work,
for a given random vector
W= W(Q),...,wW()*,

the authors assume the existence of another random vector
W = W'1),..., W' )7,

defined on the same probability space (2, F,P), such that W’ has the same distribution
as W and such that the linear regression property

EW - W |W] =AW

is satisfied for some positive constant A\. Under these assumptions the authors prove
several theorems which bound the distance from W to a standard normal random vector
in terms of the pair (W, W’).
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In [56] the authors motivate and investigate the more general linear regression
property

E[W - W |G] =—-AW +R, (3.1)
where now A is an invertible non-random r x r matrix, G C F is a sub-o-field of F
such that o(W) C G and R = (R(1),...,R(r))" is a small remainder term. However, in

contrast to [8] and to the univariate situation presented in Subsection 2.1, in [56] the
full strength of the exchangeability of the vector (W, W’) is needed. Finally, in [38] the
two approaches from [8] and [56] are combined, allowing for the more general linear
regression property from [56] and using sharper coordinate-free bounds on the solution
to the Stein equation similar to those derived in [8]. The following result, quoted from
[13], is (a version of) Theorem 3 in [38] but with better constants.

Theorem 3.1. Let (W, W’) be an exchangeable pair of R"-valued L?(P) random vectors
defined on a probability space (2, F,P) and let G C F be a sub-c-field of F such that
o(W) C G. Suppose there exist a non-random invertible matrix A € R"*", a non-random
positive semidefinite matrix Y, a G-measurable random vector R and a G-measurable
random matrix S such that (3.1) and

E[(W’ —wWyW' —w)T ’ g] —2AY + S (3.2)
hold true. Finally, denote by Z a centered r-dimensional Gaussian vector with covariance
matrix .

(a) For any h € C*(R") such that E[|h(W)]|] < oo and E[|h(Z)]] < oo,

BV — EI()]| < 1A o <M1<h>E[||R|2J + LA WE(S s
+ 2 My (WE[|1 - W%})

< 1A o (Ml(h)lE[llRlz} IR YA

+ S My (B[ - W%}) .

(b) IfY is actually positive definite, then for each h € C*(R") such that E[|h(W)|] < oo
and E[|h(Z)|] < oo we have

~1/2
(B[R] — E[h(2)]| < My (B)|A lop (E[IIRIQJ T ME[||S||H.S.]>

V2T
V2T _ _
+ M oI o ELIW — W]

3.2 Proof of Theorem 1.6
Recall the notation and assumptions from Subsection 1.3. Starting from the random
vector W = (W (1),...,W(r))T we will construct another vector
W= W'Q),..., W' )T

such that (W, W’) is an exchangeable pair in the following way: For each 1 < i < r we
construct W’(i) in the same way as we did in the one-dimensional situation treated in
Subsection 2.2 and from the same independent copy Y = (Y1,...,Y,) of X = (X4,..., X,)
and the same « which is independent of (X,Y") and uniformly distributed on [n]. We will
apply Theorem 3.1 with ¥ =V and G = 0(X3,..., X,).
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Lemma 3.2. With the above definitions and notation we have
]E[W’—W|X] = —AW,
where the matrix A is given by A = diag(%, ey %)
Proof. This follows immediately from Lemma 2.3. O

Hence, we obtain that n n
A" op = max — = —. (3.3)
=1,...,7 P; P1

Let us define the random matrix S = (5, x)1<i k< by the relation
E[(W —=W)W —W)" | X] =2AV + 5. (3.4)

From Lemma 3.2 and the fact that v; ; = 0 unless p; = p;, we easily conclude that S is
symmetric. Also, using exchangeability, it is readily checked that

E[S] = B[(W —W)(W' —W)"] —2AV = 0. (3.5)
Lemma 3.3. Let1 < i< k <r andlet

W ()W (k) = Z Un (i, k)
MC[n]:
|M|<pi+pk

be the Hoeffding decomposition of W (i)W (k). Then, we have the Hoeffding decomposi-
tion
nE[(W/(6) = W@)W'(k) =WE)|X] = > an(i,k)Un(isk),

MCn]:
[M|<pi+pr—1

where
an (i, k) =pi +pr — |M].

Proof. First note that we have the representation

(W'(d) = W (@) (W'(k) — W (k))

=S lpamy Y. (W) — Wa(0) (Wi (k) — Wi ()
Jj=1 JEDy, ,KEDy, :
jeEJNK

=Sty X (WPOWDE) + W)W )~ W)W (k)
J=1 JED,, , KEDy, :
jeJNK

which implies that

S InEWsOWEE YD Y BWi)Wk(E) | Fourn )

JED,, , KEDp, : j=1J€EDy, , KED,, :
JNK#D JjEINK
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Using Lemma 2.5 (b) we have

Yo > EWi@Wk®)| Fuornpy]

j=1J€D,, KED,,:

jEINK
= Z Z Z (—1)MI=IHE W, (i)W (k) | Fi]
Jj=1J€Dy,,KEDy, : MCln]: LC[n]:

jeJNK JAKCMC(JUK)\{j} JAKCLCM

> > > S ()R, () Wi (k) | Fi]

JE€Dy, , K€Dy, : jeJNK MC[n]: LCln]:
JNK#0 JAKCMC(JUK)\{j} JAKCLCM
= X > (Jukl-Ml) YT C)MHEW )Wk (k) | Fi]
JED,, ,KED,, : MCln]: LC[n):
JNK#)  JAKCMGJUK JAKCLCM
= > > (Jukl-Ml) Y (C)MEHEW )Wk (k) | Fi]
JED,, ,KEDy, : MCln]: LC[n):
JNK#) ~ JAKCMCJUK JAKCLCM
(3.6)
Note that for the third equality we have used the crucial fact that
(JUK)\M =(JNK)\ M, whenever JAK C M
which implies that
[(JNK)\M|=|JUK|—|M| for JAKCMCJUK.
Also, from Lemma 2.5 (a) we obtain that
> lnKl Y Yoo ()MEEEW, ()W (k) | Fi]
JEDy, , KEDy, : MCn]: LC[n]:
JNK#£ JAKCMCJUK JAKCLCM
= > lnkKl ) Yoo ()MEERW, ()W (k) | Fi]
JE€Dy, , KED,, MCJn]: LC[n]:
JNK#£(D JAKCMCJUK JAKCLCM
= > oo InKl Y (—)MEME[W, )Wk (k) | FL] (3.7)
JE€Dy, , KEDy, MCln]: LC[n]:
JNE#0  JAKCMCJUK JAKCLCM
Combining (3.6) and (3.7) we thus have
nE[(W' (i) = W(@)(W'(k) = W (k)) | X]
= 2 >, (JUK|+|INEK|~|M])
JEDy, , KEDp, : MCln]:
JNK#0  JAKCMCJUK
> (=)MEEE[W, 6 Wi (k) | Fi
LC[n]:
JAKCLCM
= > o irpe—Ml) D (“)MEHE[W Wi (k) | Fi]
JEDy,; , K€Dy, : MC[n]: LC[n]:
JNK#)  JAKCMCJUK JAKCLCM
= Z (pi + pr — | M]) Z Z (=) MIZIHE W, (i) Wik (k) | Fi]
MCln]: JEDy, , KEDy, : LC[n]:
[M|<pi+pr—1 JNK#0, JAKCLCM
JAKCMCJUK
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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= Y. (pitpe— M) > S ()M W, ()W (k) | Fi

MCln]: JEDy, , KEDp, : LC[n]:
[M|<pi+pr—1 JAKCMCJUK JAKCLCM
= E (pi + i — IM|)Unt (i, ),
MCln]:
[M|<pi+pr—1
as claimed. O

Since S is centered, from (3.4) and Lemma 3.3 we obtain that

n?E[S2,] = Var(nSix) = Var (nE[(W' (i) = W(0)(W'(k) — W (k) | X])
S (vt oe— M) Var (U (i, k))
N
<(pi+pe)? Y. Var(Uul(ik))
MC[n]:
|[M|<pi+pr—1
= i+ o (Var(WEOW ) — Y B[Un (. K)))
MC[n]:
|M|=pi+pk

= (pi + pu)? (Vax (W () W (k)

- 3 ]E[W](i)WK(k)WL(i)WM(k)]) . (3.8)
J,LEDpi ,K,]\/[E'Dpk:
JNK=LNM=0)

For 1 < i < k < r define
Soli, k) = > E[W, ()W (k)WL (6)War (k)] -
J,LED,,; , K,MED,, :
JNK=LNM=0,
0CINL=J\(JNM)CJ,
0CLNJ=L\(LNK)CL
If p; < pi, then from (3.8) we have that
RPE[S3] < i+ o) (VarW@OWR) = Y au()?ok(k) = So(i k) (3.9)

JeDy, , KEDy, :
JNK=0

Lemma 4.1 immediately yields that

Z O’J(Z')ZO'K(IC)Z =1- Z 0J(i)2UK(k)2

JED,, , KED,, : JED,, KED,, :
JNK=0 JNK#)
. 2 2
> 1 - min(pig? . prol) - (3.10)

If p; = pg, then we obtain that

n?E[52,] < 4pf (Var(W@OW (k) — 3 os() ok (k)?

_> JE[WJ(i)WJ(k)]E[WK(i)WK(k)]—So(i,k)). (3.11)
J,KEDy,:
JNK=0

Similarly to Lemma 4.1 we obtain for p; = p; that

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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’ 3 E[WJ(i)WJ(k)}E[Wx(i)WK(k)]\

J,KEDp,;:

JNK#D
< 2 B OWmD. > [EWk@Wr ]|
JEDy, j€J K€Dy,
jeK
< > B owsm]|>( > o )1/2( ) UK(k)2)1/2
JEDy, je€J KeD,, K€Dy, :
jeK JEK

<p19nk@n1 Z |E WJ )WJ ]| <ngnk9nz Z JJ() J(k)

JED,, JED,,
A\ 1/2 1/2
SpikaQn,i( > UJ(l)Q) ( > O'J(k)2)
JED,, JED,,

= PiOn,kOn,i -

Hence, if p; = pi. we have that

> EB[W )W (k)] E[Wk () Wi (k)]

JKED,,:
JNK=0
= (X EWaww]) - Y B GOW k) E[Wk ()W (k)]

JED,, JKED,,:

JNK#D
—t— Y E[W W )] E[Wi) Wi (k)]
‘]fé?i@

> v — DiOn,kOn,i - (312)

Note that we can write

2
Var (W)W (k)) = B[W (@2 W ()%] - (B[W ()W ()] )
2, W(k)?) + E[W(i)*|E[W (k)*] — vy
LW(R)?) +1—07,. (3.13)
Hence, if p; < py, then, since v; ;, = 0, from (3.9), (3.10) and (3.13) we see that
n?E[S2] < (s + pi)? (Cov (W2 W (k)2) + min(piod o, prod,) = Solisk)) . (3.14)

If, on the other hand, p; = px, then from (3.11), (3.10), (3.13) and (3.12) we conclude
that

2B[52,] < 4p? (Cov (W(0)2, W (k)?) = 202, + pimin (o2, 02,
+ Pion,k0n.i — So(i, k))
= 47 (E[W @)W (K)?] =1 = 202 + pimin(ed 1., 03 ;)
+ Pin kn,i — So(i, /f))
= 42 (E[W @)W (k)?] ~ B[Z()*Z(k)?] + pimin(e? . ;)

+ PiOn kOn,i — So(i,k)) . (3.15)

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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For the last identity we have used the elementarily verifiable fact that
E[Z(i)*Z(k)?] =1+ 20},

foralll <i,k <r.
For p; < p, by the orthogonality of the Hoeffding decomposition and by the Cauchy-
Schwarz inequality we have that

Cov(W@*Wk)?) = > E[Un(,)Un(k k)]~ EW@EW (k)7

M,NCn):
[M]<2p;,|N|<2py

Z E[UM(’L,Z)UJVI(ka k)}

MCln]:
1<|M|<2p;
1/2 1/2
< Y (BUwi?) " (BUwk )
MCln]:
1<|M|<2p;
1/2 1/2
g( > IE[UM(MV]) ( > E[UM(k,k:)Q])
MC[n]: MC[n]:
1<|M|<2p; 1<|M[<2p;
1/2 1/2
:< > Var(UM(i,i))> ( > Var(UM(k,k)))
MC[n): MC|[n]:
1<|M|<2p; 1<|M|<2p;
1/2 1/2
:(E[W(i)ﬂ—l) ( Z Var(UM(k,k))> : (3.16)
MCln]:
1<|M|<2p;

Since p; < pr, by means of (3.16) we can further bound

cor(w(ipww?) < (Ewa) 1) (¥ Var<UM<k,k>>)1/2

MCln]:
1<|IM|<2pp—1

= (E[W(i)4] _ 1) 1/2 (Var(W(k)Q) B Z E[UM(k,k)Q])l/Q
MC[n]:
| M|=2p,
= (E [W(Z)ﬂ - 1)1/2 (E [W(k)ﬂ -3+ (2pk + Cpk)Qi,k)l/z, (3.17)

where the final inequality is true by (2.13).
From (3.14) and (3.17) and from (3.15), respectively, we thus obtain the following
result.

Lemma3.4.letl1 <i<k<r.

(1) Ifp; < pg, then

. 1/2 1/2
w*B[SE] < (| (BIVGY] — 1) T (BIV ] =3+ (200 + Cp) )
+ min(pigi,k ) pkgfm») - So(i,k)] .
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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(ii) If p; = px, then
n’B[S?,] < 4p? (B[W ()W (k)] — E[Z(0)*2(k)?] + pimin e 5. 22.1)
+ PiOn,kOn,i — SO(ia k)) .
It remains to bound the quantities Sy(i, k), 1 < i < k < r. The concepts of free indices
and bifold quadruples from Subsection 2.2 generalize in the obvious way to quadruples
(J1,J2, J3,J1) € Dy, x Dy, x Dy, x Dy, =: D} .. We denote by B . the collection of all bifold

quadruples in Dﬁk. Also, we denote by 7; ; the set of quadruples (Jy, J2, J3, J4) € Df,k
which are neither bifold nor have a free index, i.e. which satisfy

1y +15 + 15 +15, 22150500500,

and there is a j € [n] such that

1J1(])+1J2(.]) +1J3(]) +1J4(]) > 3.

With these definitions, for 1 < i < k < r, we define
Tig i= > or(@)or(k)oL(i)on (k).
(J,K,L,M)ET; 1

The next result is a generalization of Proposition 2.8.
Proposition 3.5. With these definitions, for 1 <i < k < r, we have

So(i, k) > —7i .

The proof is postponed to Section 4. It remains to obtain a bound on the quantities
7ik in terms of o7 ; and g7 ,. This is provided by the following result which generalizes
Proposition 2.9. An outline of the main elements of the proof is given in Section 4.

Proposition 3.6. Foreach 1 <i,k < r, there exists a finite constant C; ;, which depends
on ¢ and k only through p; and p;, and which is independent of n such that

Tik = > os(i)ok (k)op(i)on (k) < Cipmax(o) ;, 05 1) -
(J’K’L:M)Gﬂ,k

Furthermore, we have C; j, = C ;.

Combining Propositions 3.5 and 3.6, we thus obtain that
So(i, k) > —Cip max (o} ;, 05 1) (3.18)

foralll <i,k <r.
Observe that, using (3.3) and the symmetry of S, we can bound

. n 9 1/27i r ) ) 1/2
1A~ B (1S5 ] < - (B[ISIRs]) = - (Z_n E[s?]) . (3.19)

Now, using Lemma 3.4 we have

T Tm

Z ngE[Szk} = i: z”: Z ngE[Szk}

i,k=1 Ilom=1li=ri_1+1k=rp_1+1
s Ty Ty Tm
=2 2 WE[SH+z > > > n'E[Sh]
=1 4,k=r;_1+1 1<l<m<si=ri—1+1lk=r,_1+1
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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<> Y (EWEWH?] - B[2()°Z()?]
=1

i,k=r;_1+1

+aq min(@i Ko On i) + Q00 k0ni + Ci e max (o ;, Qi,k))

b2 Y @rer Y |(Ewen-1)"

1<l<m<s 1=rj—1+1 k=r,_1+1

(]E [(W(k)*] -3+ (2¢m + Cqm)gi,k)1/2

+ min (qzyi,k 7 qmgi,i) + C; x max (o} ;, Qi,k)]

=A. (3.20)

Here, the constants C,,, are defined by Proposition 2.9.
Note that from Lemma 2.12 applied to the exchangeable pair (W (i), W'(i)) we have

W (i) - W) < 2(B[W (i)Y —3) +3(Cy, + 2p:) 02 - (3.21)

4p;
Using (3.3) as well as Jensen’s inequality, we obtain

M*MEWVfW@:ﬁEWVfW@
o r i) — 3/2 / 21 3/2
-2 (ZE[W() wae*) " = ( ;E|W T)

372 31
ZMW ;

= 12 ZE]W’(@') ~w@).
pP1 i=1
Thus, by (3.21) we have
||A_1||0pE[HWI - W”%]

< I%rlm ;(EWV’@') — W(i)’2)1/2 (E]W’(i) B W(i)|4>

1/2

B ~pi (N » L) 172
_2@;pl(mE|W(z)—W(z)| )

<2Vm Y B (2B )] -3) +3(Cp +2m)eh)

Tl

= Q@i @ > (2(IE[W(Z')4] —3)+3(Cy, + qu)gi7i)1/2 : (3.22)

= i=r_1+1

Theorem 1.6 now follows from Theorem 3.1 and from the respective bounds (3.19),
(3.20) and (3.22).

4 Proofs of several technical results
Lemma 4.1. In the situation of Section 3, forall1 < i < k < r we have
> o) ok(k)? < min(pigi,k : pk@i,i) :

JEDy, , KEDp,
JNK#D

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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Proof. Note that we have

Yoo o) Pok(k)?= Y ou(i)* > ox(k)?

JED,, , K€Dy, : JEDy,; KeD,,
JNK#) JNK#D
< D@y > oxlk
JEDy,; JEJ KEDy, :
JEK
2 2 2
<pioy Y os(i)* =pio}.-
JED,,
The claim follows by symmetry. O

Lemma 4.2 (Generalization of Lemma 4 of [12]). Let (J,K,L, M) € B, be a bifold
quadruple. Then, in the situation of Section 3 we have

E[W, Wi W, W] = E{E (W Wi | FraxE[WLWar nyAM” .
Proof. We repeat the short proof from [12]. By independence, we have
E[W, Wi W, Wy =E [WJWK]E[WLWM nyuM]}

=K {WJWKE[WLWJ\I | ]:(JUK)F](LUM)H

= E[E (WiWi | Faumynwonn | E[WLWag |-7:(JUK)ﬁ(LUM)H .
Now, the claim follows from the fact that for a bifold quadruple (J, K, L, M) the identity

(JUK)N(LUM) = JAK = LAM

holds true. O

Lemma 4.3 (Generalization of Lemma 3 of [12]). In the situation of Section 3, for
1<i<k<r, JeD, and K € D, we have

B[ (BIW,Wic| Frax]) ] < o300k k).

Proof. Again, we immitate the proof given in [12]. Using first the conditional version
of the Cauchy-Schwarz inequality and then twice the independence of the underlying
random variables X1, ..., X, we obtain

E[(B[WsWi | Frax] )2} E[E[W} | Frax]B[WE | Frax]]
= E[E[W] | Fnx]B[WE | Fio]|
[E[WJ | Fonid] [ E[E[WE | Fiev] |
= 07 (i)o% (k) . m

Proof of Proposition 3.5. We generalize the argument used in the proof of Proposition 5
(b) of [12]. Forl=1,...,p; — 1 we have

o< Y > B[ X EWeWnm) | Faan])]

CcCln]: B,B'CC: JEDy, ,MEDy, :
|Cl=pi+pr—21|B| pﬁz \B \ =pr—1, J\M=B,M\J=B'
BNB'=
EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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= > 2 2

CCln]: B,B'CC: (J,K,L,M)€ED} ;:
|Cl=pi+pr—20|B|=p;—1,|B'|=pr—l, )\ M=L\K=B,M\J=K\L=B'
BNB’'=0

E [E (W (i) War (k) | Fran | B[WL (i)W (k) | ]-‘LAKH

= > E[W, (i) Wi (k)W (i)W (k)]
(J,K,L,M)EB; 1:
J\M=L\K,M\J=K\L,
|JNM|=l

S Y E[EWOWa) | Foan] E[WL()Wic(h) | Frax]
(J,K,L,M)ET; 1:
JI\M=I\K,M\J=K\L,
|JNM|=1=|LNK]|
=: So(i, k, 1)+ Ry,
where we have used Lemma 4.2 to obtain the second equality. Note that

pi—1

> Soli, k1) = Soli, k)
=1

because for a bifold quadruple (J, K, L, M) the identity J \ M = L\ K implies that
JNK = LN M = () and because we have
So(i k)= > B[Ws(i) Wk (k)WL) W (k)] .
(J,K,L,M)€EB; i
JNK=LNM=0,
0CINMCJ
Further, by the Cauchy-Schwarz inequality and by Lemma 4.3, we have

pi—1 pi—1

> Rl‘ <> > (E[(E[WJ(i)WAI(k> ‘]:JAM])ZD

I=1 I=1  (JK,L,M)ET
J\M=L\K,M\J=K\L,
|JNM|=I=|LNK]|

(IE [(E (W (i)W (k) ‘ ]_-LAK])Q} > 1/2

< Z os(@)or(k)or()on (k) =Tk -
(J,K,L,M)ETi i

1/2

Thus, the claim follows. O

Proof of Proposition 2.9. In order to prove Proposition 2.9 let us review the following
concepts and notation, introduced in [11]. For a quadruple (J1, J2, J3, J4) € Dﬁ write

I:=J1UJoUJsUJy={i1,...,5r} with 1<i3<ig<...<i.<n
and define the shadow (Ji, J5, J§, J}) of (J1, Jo, J3, J4) by
J| = {ae{l,...,r} : iaeJl}, 1<1<4.
Note that since we have the equivalence
a€J i, €J
the sets J] satisfy obvious relations like
|| = =d, |JnJ,|=|LnJn etc. 4.1)

and that a quadruple (Jy, Jo, J3, J4) € Df§ is completely determined by its shadow and by
I = U?:l J;. Note also that if (Jy, J2, J3, Jy) € Tg, then we have

EJP 22 (2017), paper 2. http://www.imstat.org/ejp/
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JIUJSUJsu gy ={1,...,r}

for some r € {d,d+1,...,2d — 1} and J; N Jy # 0 for all i,k = 1,2,3,4. Indeed, if, for
instance, J; N J, were empty and jo € J; for at least three values of i € {1,2, 3,4}, then
necessarily jo € J3 N Jy implying |J3 U J4| < 2d — 1. Hence, J; U J; € J3 U Jy because
|J1 U J2| = 2d by disjointness. Thus, (Ji, Jo, J3, J4) has a free index and, hence, cannot
be in 7;. By the above observation (4.1), this immediateley implies that also J/ N J}, # ()
forall¢,k =1,2,3,4.

In general, we call a quadruple of sets F = (F}, Fy, F3, Fy) a shadow (a d-shadow) if
thereisanr € {d,d+1,...,2d—1} such that F := F{UFUF3UF, = {1,...,r}and |F;| =d
forl=1,2,3,4. We call r the size of the shadow IF. We say that the shadow I is induced
by the quadruple (J1, Jo, J3,J4) € D3, if F = (J], J5, J}, J}). We write F(Jy, Jo, J3, Jy) for
the shadow induced by (J1, Jo, J3, J4). If B/ = (FY, F3, F}, F) is another d-shadow with
F':=F/UF,UF,UF;={1,...,7"}, then we say that IF and I’ are equivalent and write
IF ~ I/, if r = v’ and there is a permutation ¢ € $,. such that

F =o(F) forl=1,2,3,4. (4.2)

We denote the latter fact by I/ = IF,. This clearly defines an equivalence relation on the
set of d-shadows and we denote by [IF]. the equivalence class of . We further denote by
~(IF) the number of permutations ¢ € $, that leave I fixed in the sense that

o(F)=F, foralll=1,2,3,4. (4.3)

The set of these permutaions is just the stabilizer of I with respect to the natural action
of $,. on the set of d-shadows of size r. Note that, for I/ ~ IF, we have v(F) = (F') and
that v(IF) also gives the number of permutations ¢ such that (4.2) holds. Let us define
the function g : [n]? — R by

: . Orinys {1, da| =d
ol a) = A Ty U]
0, otherwise.

Then, g is a symmetric function vanishing on the complement A¢ = [n]?\ A of
A=A = {1, ..., ja) € [N : ji # jm Whenever [ #m} .

Further, for a shadow IF = (F}, F», F3, Fy) which is induced by some quadruple (J;, Jo,
Js,J1) € Dj and with F := [} UF>, UF3 U Fy = {1,...,r} and 7y, being the natural
projection [n]f — [n]f" given by (ju)acr = (jo)acr, define G, : [n]f — R by G, =
g o 7r,. Here, we tacitly identify [n]?¢ with [n]f" and [n]” with [n]%".

Lemma 4.4. Let ¥ = (Fy, F», F3, F,) be a d-shadow of size r which is induced by some
quadruple (Jy, J2, J3, Jy) € T. Then, we have the bound

di(d—1)!

OJOKOLOM < —————0), -
2 () "

(J,K,L,M)€ET:
F(J,K,L,M)€[F]~

Proof. For ease of notation, in this proof we use bold letters a to denote tuples a =
(a1,...,as) € [n]®, where s is some natural number. Also, for two such tuples a =
(ai,...,as) € [n]* and b = (by,...,b;) € [n]' we write anb # 0 if there are indices
1<i<sand1 < j<tsuchthata; = bj, i.e. if

(a1, asy N {br,....b} £0.
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We begin the proof with the remark that
> Grlin,..i)Gry(in,. i) Gry(in, . i) Gr, (i, i)
(’L‘l,“‘,ir)e[n]T

2’7(15‘) Z OJjOKOLOMN -

(J,K,L,M)eT:
F(J,K,L,M)E[F].

This follows from

4 4
Z HGFl(ilw--air)Z Z HGFl(ilv"'aiT)

(ir,.yiv)€[n]" 1=1 (i1,eir) E[n]7, 1=1

4
- > S TTe(rGowy: - dow)

1<j1<...<jr<n o€, I1=1

) S TT9(oEGrs- i)

1<j1<...<jr<n o€, I1=1

Z Z HGFlI(jla"'7j7‘)

F/e[F]~ 1</ <...<jr<nli=1

E E 0JOKOLOM

F'€[F]~ (J,K,L,M)eT:
F(J,K,L,M)=F’

=7(F) Z OJOKOLOM -

(J,K,L,M)€ET:
F(J,K,L,M)€E[F] .

Here, we used the notation [n]’, for the set of all tuples (i1,...,i,) € [n]" such that i; 7 i
whenever j # k. Hence, it suffices to show that we always have the bound

4
S [ Galin, i) < did—1)10%

(i1, ip)E[n]7 I=1

if F is as in the statement of the Lemma.

We first treat the simple cases that either two or all of the sets F;, [ = 1,2, 3,4, are
equal. Note that the case of exactly three equal sets is vacuous for a quadruple in 7.
Assume first that e.g. F3 # F} = F» # F4. It might be that also F5 = Fj but this is
immaterial. Then, we have

> Grlin,..i)Gry(ir,. i) Gry(in, .. in)Gr, (i, . i)
= Y Gh(in,..in)Gr(ir,. . i) GRy (it i)

B Z g(j)2 Z GFs(j7k)GF4(j7k)

j€n]f1 ke[n]F\ 1

1/2 1/2
<y g<j>2( S GG, )) ( S GG, >>
j€[n]F1 ke[n]F\F1 ke[n]F\F1

=y g(j)z( > 9(1)2)1/2( > g(m)2>1/2

J€[n]M 1€[n]F3:1nj#0 me[n] 4 :mnj£)
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<@d-1d Y 9()

J€n]™
=d\(d—1)0?

Note that the second inequality follows from the fact that F} N F5 # () and F} N Fy # 0 in
this case as well as by the definition of Q?L. If Iy = F, = I3 = Fy, then we have r = d and

> Galin,..in)Gry(ir, .. i) Grylin, .. in)Gr, (i, . i)

(i1,..-,3r)E[n]"

= S gl

(J1seeerda)€[n]d
Z . max d_lg(jlv"'ajd)Q Z g(jl,kg,...,kd)Q
jr=1 Gzemda)€ln] (koo ka)E[n] 41

<@d-1)e2 Y max  g(j1,---,ja)°

(925---1da) €[n]d=1

IN

Jji=1

S(dil)'gi Z g(j17"'ajd)2
(J1,-27a) €[]
=d!(d—1)102.

For the remainder of this proof we may thus assume that the sets F}, [ = 1,2, 3,4, are
pairwise different. Then, using the Cauchy-Schwarz inequality, we can bound

> Grlin,.. o in)Gry(in,. i) Gry(in, i) Gr, (i, i)

(7;1)"'7i'r')€[n]7‘

= Z g(j) Z GFz(j7k)GF3(jak)GF4(j7k)

j€[n]F1 ke[n]F\F1

< <.Z g(j)2>1/2<_z (> GFQ(j,mGpso,k)Gﬂ(j,k))z)l/z

€] JEM]T1 ke[n]F\F1
o\ 1/2
— Vi ( S (Y GrGRGCRGKGRGK) ) 4.4)
je[n]F1 ke[n]F\F1
Thus, it remains to bound the quantity
2
4= (Y GrGRCHGKGRGK) .
JE[n]F1 ken]F\F1
Let us distinguish the following cases.

1) Each element in F' = F} UF,UF3UF, appears in at least three of the sets Fy, Fy, F3, Fjy.
This implies that

F\ F, = F;\ F}, forall distinct j, k € {2,3,4}.

Then, using Cauchy-Schwarz, we can bound

1s Y (¥ 69 Y GRGNGHG)

j€nF1 ke[n]F\Fl ke[n]F\Fl
- Y (X a0 ¥ 6hGM6HGN)
Jem]f Men)F2:1nj#0 ke[n]F\F1
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<@d-D2 Y ) GRG.KGHGK

JE[n]F1 ke[n]F\F1

= (d_ 1)!Q31 Z Z Z g(kal’ 3)2 Z g(k,l,b)Q

ke[n]F\F1 1€[n]F1NF3NFy ac[n](F3NF1\Fy be[n](FanNF1)\F3

<(@-12 Y 3 > glkla)

kE[n]F\Fl lE[n]FlnFSmEl aE[n](FiimFl)\Fél

= (@=L Y 9G)?

je[n]s
= d\((d—1)1)el .
Note that we have used the fact that
(Fy,NF)\F3=F\F3#0
to obtain the last inequality.

2) There is an element jo € F = F; U F» U F5 U F; which is contained in exactly two of
the sets Fy, Fy, F3, Fy. We may assume that j; € F;. We claim that then there are
distinct indices j, k € {2, 3,4} such that

L F;UF.
Indeed, we have
(FoUF)N(Fy UFy) N (FsUFy) = (FoNF3)U(FaNFy)U(F5N Fy)

and, hence, jo cannot be contained in the set on the right hand side. Thus, let us
assume that F; ¢ F3 U F;. We obtain that

2
A< Z Z ( Z g(a’ k) Z GFS(j7a7 k, I)GF4(jﬂavk>l))

jE[n]F1\F2 ag[n]F17F2 “ke[n]F2\F1 1€ [n](F3UF)\(F1UF2)

< > X ( > g(avk)Q)

jEM]F1\F2 ag[n]F1NF2 ke[n]F2\F1

2 ( > Grlak)Griak 1>)

ke[n]F2\F1 Mg [n](F3UF)\(F1UF2)

= ¥ > ( > > g(alvaz’kf)

JEM]F1\F2 a; €[n]F1NF2N(F3UF1) “a,c[n]F1NF2\(F3UFs) kcn]F2\F1

2
Z ( Z GFg(j7a17a;7k7 l)GF4(jaal7a§ak7 1))

ke[n]F2\F1 “le[n](F3UF)\(F1UF2)

<@g Y 5 5y

_je[n]Fl\Fz ale[n]FlﬁF2ﬁ(F3UF4) ke[n]F2\F1

2
( Gr,(j,a1,a3,k,1)GF, (j,a1, a3, k, 1)) 7
1€[n](F3UFD)\(F1UF2)

where

a; c [n]FlﬁFz\(Fgqu;)

is arbitrary but fixed. Now note that due to the fact that I is induced by some
quadruple in 7 we have
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FsUF, = (B \F)U(F \ Fi)U [(FsUF)NFLNF] U [(FsUF)\ (FLUF)]
= (R \F)U(FR\F)U[(FsUE)NF N U[(FsNF)\ (FLUFR)],

where the union on the right hand side is disjoint. Thus, the last bound becomes

A< (d-1)g2 > > G%,(m,1)
mg [n](F3UF)N(F1UF2) |g[n](F3NF)\(F1UF2)
Z G%‘4 (m7 p)

pE[n](F3NFH\(F1UF)

agn|(F3NF)N(F1UF2) be[n](F3\Fa)N(F1UF2) 1g[n)(F3NFO\(F1UF2)

> > g(a,c,p)*
c€[n](Fa\F3)N(F1UF2) pen|(F3NF)\(F1UF2)
2 .
<((@=1Y)"er > 9()?

j€[n]¥s

—d!((d— 1)) O

End of the proof of Proposition (2.9). Let IFy,...,IF;, be a complete system of pairwise
non-equivalent d-shadows which are induced by quadruples (J, K,L,M) € 7. Then,
clearly, s is independent of n and by Lemma 4.4 we have

S
T = Z OJOKOLOM :Z Z OJOKOLOM

(J,K,L,M)eT j=1 (J,K,L,M)eT:
F(J,K,L,M)€E[F;]~

< (d!(d - 1)! iv(F]‘)_l)Qi

so that we can let

Cyr=dl(d— 1)1 ~(F;)~" (4.5)
j=1

which is independent of n. O

Remark 4.5. Using the fact that the equivalence class of a shadow I = (F}, Fy, F3, Fy)
is determined by the cardinalities of all finite intersections of the sets Fi, F», F5, Fy, one
can get an upper bound on the number s of all equivalence classes of shadows induced
by quadruples in 7. Using that v(IF) > 1 immediately gives a crude bound on C,. It is
not difficult to verify that C5 = 13 by distinguishing all possible cases. Furthermore,
by some clever combinatorial argument, it might be possible to compute sharp bounds
on Cy starting from (4.5). This would be of great interest for deriving limit theorems
in situations where d = d,, — oo with n. We leave this as an interesting problem for
possible future work.

Idea of the proof of Proposition 3.6. The proof of Proposition 2.9 can be easily gener-
alized to the present situation by introducing the concept of a (p;, px)-shadow corre-
sponding to a quadruple (J, Jo, J3, J4) € D;{ . and following exactly the same lines of the
proof. We have, however, refrained from giving the proof in this more general situation
for mainly two reasons. Firstly, the proof of Proposition 2.9 already involves a lot of
notation and introducing even more of it might make the argument less transparent.
Secondly, and more importantly, the precise dependence of the constant C; ;, on p; and
pr. would be more complicated and less explicit than the formula given by (4.5) which
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can be exactly evaluated for small values of d and, as mentioned in Remark 4.5, might
be suitably bounded for general d. O

Acknowledgments. We would like to thank the referee for their detailed report which
helped us fix several typos and improve the exposition of our results.
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