
Electron. Commun. Probab. 21 (2016), no. 39, 1–10.
DOI: 10.1214/16-ECP4786
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Critical heights of destruction for a forest-fire model on the
half-plane*

Robert Graf†

Abstract

Consider the following forest-fire model on the upper half-plane of the triangular
lattice: Each site can be “vacant” or “occupied by a tree”. At time 0 all sites are
vacant. Then the process is governed by the following random dynamics: Trees grow
at rate 1, independently for all sites. If an occupied cluster reaches the boundary
of the half-plane or if it is about to become infinite, the cluster is instantaneously
destroyed, i.e. all of its sites turn vacant.

Let tc = log 2 denote the critical time after which an infinite cluster first appears in
the corresponding pure growth process, where there is only the growth of trees but no
destruction mechanism. Choose an arbitrary infinite cone in the half-plane whose apex
lies on the boundary of the half-plane and whose boundary lines are non-horizontal.
We prove that at time tc almost surely only finitely many sites inside the cone have
been affected by destruction in the forest-fire process.
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1 Introduction

Forest-fire processes were first introduced by B. Drossel and F. Schwabl in [3] as a
toy model for self-organized criticality. This concept, coined by P. Bak, C. Tang and K.
Wiesenfeld in their seminal paper [1], describes certain dynamical systems which are
inherently driven towards a permanent critical state. By now, various forest-fire models
with different dynamics and on different graphs have been studied in the physics and
mathematics literature. The original motivation of this paper comes from the following
forest-fire model on a box of the square lattice Z2: Each site in the box can be “vacant”
or “occupied by a tree”. At time 0 all sites are vacant. Then the process is governed by
two competing random mechanisms: On the one hand, trees grow according to rate 1

Poisson processes, independently for all sites. On the other hand, if an occupied cluster
reaches the boundary of the box, it is instantaneously destroyed, i.e. all of its sites turn
vacant. Since the box contains only finitely many sites, the existence and uniqueness
of such a process are clear. This model is believed to be self-organized critical when
the radius of the box tends to infinity while keeping the centre of the box fixed. If this
limit exists in a suitable sense, it yields a limit process on the lattice Z2. By Prokhorov’s

*Supported by the Studienstiftung des deutschen Volkes
†Ludwig-Maximilians-Universität München, Germany. E-mail: robert.graf@math.lmu.de

http://dx.doi.org/10.1214/16-ECP4786
http://www.imstat.org/ecp/
mailto:robert.graf@math.lmu.de


Critical heights of destruction

theorem one can easily show that at least subsequential limit processes exist in a weak
sense - compare the arguments in [4] and [5]. However, it has been an open question for
many years what the dynamics of such a (subsequential) limit process on Z2 is like. It
seems clear that all sites are vacant at time 0 and that trees grow according to rate 1

Poisson processes, independently for all sites. As for a potential destruction mechanism,
one might intuitively expect that clusters get destroyed as soon as they become infinite.
Yet this intuition turns out to be wrong as it has recently been proven by D. Kiss, I.
Manolescu and V. Sidoravicius in [8] that a process with this dynamics does not exist on
the square lattice Z2. In fact, the non-existence had already been conjectured by J. van
den Berg and R. Brouwer in [2].

In [5] the setting described above is modified in the following way: As the radius
of the box tends to infinity, the bottom side rather than the centre is fixed so that
the subsequential limit processes live on the upper half-plane of the square lattice Z2

instead of the full plane. Additionally, the destruction mechanism is restricted to the
fixed bottom side and edges are added between the left and right side of the box to
make the setup invariant under horizontal translations. Theorem 1.2 in [5] states that
every subsequential limit process on the upper half-plane of the square lattice Z2 has
the following dynamics: At time 0 all sites are vacant. Then trees grow according to
rate 1 Poisson processes, independently for all sites. If an occupied cluster reaches the
boundary of the half-plane or if it becomes infinite, it is instantaneously destroyed.

The overall effect of this destruction mechanism on the half-plane is measured by
the so-called heights of destruction. For a time t and a site x on the boundary of the
half-plane, the corresponding height of destruction is defined as the maximal height
at which sites vertically above x have been affected by destruction up to time t. By
Theorem 1.5 in [5] there exists a deterministic critical time tc = tc(Z

2) such that almost
surely the heights of destruction are finite for t < tc and infinite for t > tc. In other
words, before the critical time, the effect of the destruction mechanism is only felt locally
near the boundary of the half-plane whereas after the critical time, it is felt globally
on the entire half-plane. The value of the critical time tc corresponds with the critical
probability pc = pc(Z

2) of independent site percolation on Z2 via 1− e−tc = pc.
It is the aim of this paper to show that the heights of destruction are also almost

surely finite for t = tc. However, the proof we give below needs an inequality which is
related to two critical exponents of independent site percolation (Condition 3.1 below)
and which is currently known for the triangular lattice but not for the square lattice.
We therefore consider an analogous forest-fire model on the upper half-plane of the
triangular lattice and generalize the concept of the heights of destruction in such a way
that it becomes independent of the lattice.

The rest of the paper is organized as follows: Section 2 gives the formal statement of
our result, Section 3 discusses the tools from percolation theory that we use, in particular
with regard to critical exponents, and Section 4 contains the proof of our result.

2 Statement of the main result

Let i =
√
−1 denote the imaginary unit, let

T :=
{
k + leiπ/3 : k, l ∈ Z

}
be the set of sites of the triangular lattice, let

Cu := {z ∈ C : Im z ≥ 0}

be the upper half-plane and let Tu := T∩Cu be the set of sites of the half-plane triangular
lattice (see Figure 1). Note that according to our definition the relation Z ⊂ Tu ⊂ Cu
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holds, where Z can be interpreted as the (inner) boundary of Tu in T. Two sites v, w ∈ T
of the triangular lattice are said to be neighbours if their Euclidean distance is 1. For a
subset S ⊂ Tu of the half-plane triangular lattice, we write

∂S := {v ∈ Tu \ S : ∃w ∈ S s.t. v and w are neighbours}

for the outer boundary of S in Tu. For a site x ∈ Z, for example, we have ∂{x} =

{x+ 1, x+ eiπ/3, x+ ei·2π/3, x− 1}.
At every point in time we describe the configuration of the half-plane forest-fire

process by an element in {0, 1}Tu

, where “1” corresponds to an occupied site and “0”
corresponds to a vacant site. In order to introduce some notation, let V ∈ {Tu,T}, let
(αv)v∈V ∈ {0, 1}V and let j ∈ {0, 1}. A j-path in (αv)v∈V from a site y ∈ V to a site z ∈ V
is a sequence v0, v1, . . . , vl of distinct sites in V (where l ∈ N0 := {0, 1, 2, . . .}) such that
the following holds:

• v0 = y, vl = z;
• vk−1 is a neighbour of vk for all k ∈ {1, . . . , l};
• αvk = j for all k ∈ {0, . . . , l}.

If Y,Z ⊂ V are subsets, then a j-path in (αv)v∈V from Y to Z is simply any j-path in
(αv)v∈V from a site y ∈ Y to a site z ∈ Z. Moreover, the cluster of a site y ∈ V in
(αv)v∈V is the set of all sites z in V such that there exists a 1-path in (αv)v∈V from y to z.
If αy = 0, then the cluster of y in (αv)v∈V is just the empty set.

We now give a formal definition of the forest-fire model, which is similar to the
definitions in [5] and [4]. Here, if I ⊂ R is a left-open interval and I 3 t 7→ ft ∈ R is a
function, we write ft− := lims↑t fs for the left-sided limit at t, provided the limit exists.

Definition 2.1. Let (ηt,z, Gt,z)t∈[0,∞),z∈Tu be a process with values in ({0, 1} ×
N0)[0,∞)×Tu

, initial condition η0,z = 0 for z ∈ Tu and boundary condition ηt,x = 0

for t ∈ [0,∞), x ∈ Z, and let t 7→ (ηt,z, Gt,z) be càdlàg for all z ∈ Tu. For t ∈ (0,∞) and
z ∈ Tu, let Ct−,z denote the cluster of z in the configuration (ηt−,w)w∈Tu .

Then (ηt,z)t∈[0,∞),z∈Tu is called a Tu-forest-fire process with growth processes
(Gt,z)t∈[0,∞),z∈Tu if the following conditions are satisfied:

[POISSON] The processes (Gt,z)t∈[0,∞), z ∈ Tu, are independent Poisson pro-
cesses with rate 1.

[TRANSL-INV] The distribution of (ηt,z, Gt,z)t∈[0,∞),z∈Tu is invariant under trans-
lations along the real line, i.e. the processes (ηt,z, Gt,z)t∈[0,∞),z∈Tu

and (ηt,z+1, Gt,z+1)t∈[0,∞),z∈Tu have the same distribution.

[GROWTH] For all t ∈ (0,∞) and all z ∈ Tu \Z the following implications hold:

(i) Gt−,z < Gt,z ⇒ ηt,z = 1;
(ii) ηt−,z < ηt,z ⇒ Gt−,z < Gt,z.

[DESTRUCTION] For all t ∈ (0,∞) and all x ∈ Z, z ∈ Tu \Z the following implications
hold:

(i)
(
Gt−,x < Gt,x ⇒ ∀v ∈ ∂{x} ∀w ∈ Ct−,v : ηt,w = 0

)
and(

|Ct−,z| =∞⇒ ∀w ∈ Ct−,z : ηt,w = 0
)
;

(ii) ηt−,z > ηt,z
⇒
((
∃u ∈ ∂Ct−,z ∩Z s.t. Gt−,u < Gt,u

)
or |Ct−,z| =∞

)
.

The existence of a Tu-forest-fire process can be proved in exactly the same way
as Theorem 1.2 in [5], where an analogous process on the upper half-plane of the
square lattice Z2 is shown to exist. As in [5] it is currently unknown whether Tu-forest-
fire processes are unique in distribution or whether they are adapted to the filtration
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generated by the growth processes. The uncertainty regarding uniqueness is the reason
why the translation-invariance property [TRANSL-INV] does not necessarily follow from
the other parts of Definition 2.1 and is therefore included in the definition. It is also
unclear whether the destruction of infinite clusters occurs with positive probability at all.
However, below we will see that up to the critical time all of these questions are easily
answered.

For the remainder of the paper let (ηt,z)t∈[0,∞),z∈Tu be a Tu-forest-fire process with
growth processes (Gt,z)t∈[0,∞),z∈Tu on a complete probability space (Ω,F ,P). An impor-
tant auxiliary process is the pure growth process on Tu defined by

σt,z := 1{Gt,z>0}, t ∈ [0,∞), z ∈ Tu,

where 1A denotes the indicator function of an event A. For a fixed time t ∈ [0,∞), the
configuration σu

t := (σt,z)z∈Tu has the same distribution as independent site percolation
on Tu where sites are occupied with probability 1 − e−t. It is a well-known fact of
percolation theory (see e.g. [6], Section 3.1) that there exists a critical time tc = tc(T) =

log 2 such that a.s. the configuration σu
t contains no infinite cluster for t ≤ tc and exactly

one infinite cluster for t > tc. Since the Tu-forest-fire process is dominated by the pure
growth process in the sense that for s, t ∈ [0,∞), z ∈ Tu

s ≤ t⇒ ηs,z ≤ σs,z ≤ σt,z (2.1)

holds, it follows that a.s. for all t ∈ (0, tc] and z ∈ Tu, the cluster Ct−,z is finite. On the
time interval (0, tc], the destruction mechanism is therefore a.s. simplified to:

[DESTRUCTION] For all t ∈ (0, tc] and all x ∈ Z, z ∈ Tu \Z the following implications
hold:

(i) Gt−,x < Gt,x ⇒ ∀v ∈ ∂{x} ∀w ∈ Ct−,v : ηt,w = 0;
(ii) ηt−,z > ηt,z ⇒ ∃u ∈ ∂Ct−,z ∩Z s.t. Gt−,u < Gt,u.

As a consequence of the Russo-Seymour-Welsh results on critical percolation we also
have

P
[
σu
tc contains infinitely many disjoint 0-paths from Z<x to Z>x

]
= 1, (2.2)

P
[
σu
tc contains infinitely many disjoint 1-paths from Z<x to Z>x

]
= 1 (2.3)

for all x ∈ Z, where Z<x := {x′ ∈ Z : x′ < x} and Z>x := {x′ ∈ Z : x′ > x}. Equations
(2.1) and (2.2) imply that on the time interval [0, tc], Tu-forest-fire processes are unique
in distribution and adapted to the filtration generated by the growth processes. Indeed,
if we partition Tu into a random collection of finite sets separated by 0-paths in σu

tc ,
the different areas of the partition do not interact in the Tu-forest-fire process so that
the Tu-forest-fire process can be uniquely constructed from the growth processes by a
graphical representation.

In this paper we analyse the total effect of destruction in the Tu-forest-fire process
up to a certain time, which is quantified by the heights of destruction:

Definition 2.2. For t ∈ [0,∞) and S ⊂ Cu, let

Yt(S) := sup
{

Im z : z ∈ S ∩Tu and ∃s ∈ (0, t] s.t. ηs−,z > ηs,z
}
∨ 0 (2.4)

be the height up to which sites in S have been destroyed up to time t, where Yt(S) can
take values in [0,∞]. We call Yt(S) the height of destruction in S up to time t.

Note that Yt(S) is monotone increasing in t and S in the sense that for t1, t2 ∈ [0,∞)

and S1, S2 ⊂ Cu the implication

(t1 ≤ t2 and S1 ⊂ S2)⇒ Yt1(S1) ≤ Yt2(S2) (2.5)
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Figure 1: The half-plane triangular lattice Tu, a cone Kϕ
x and three semi-infinite tubes

M
ϕj
xj (j = 1, 2, 3).

holds. We will study the heights of destruction in infinite cones and semi-infinite tubes
as defined in Definition 2.3 and illustrated in Figure 1.

Definition 2.3. (i) For x ∈ R and ϕ ∈ (0, π/2), let

Kϕ
x :=

{
x+ aeiϕ + bei(π−ϕ) : a, b ≥ 0

}
denote the infinite cone whose apex is x and whose boundary lines have angular
directions ϕ and π − ϕ, respectively.

(ii) For x ∈ R and ϕ ∈ (0, π), let Lϕx :=
{
x+ yeiϕ : y ≥ 0

}
denote the half-line with

starting point x and angular direction ϕ, and let

Mϕ
x :=

{
z ∈ Cu : dist(z, Lϕx ) ≤ 1

2

}
denote the semi-infinite tube with centre line Lϕx and width 1, where

dist(z, S) := inf {|z − z′| : z′ ∈ S} (2.6)

is the distance of a point z ∈ C from a set S ⊂ C.

Equation (2.3) indicates that Ytc(K
ϕ
x ) could potentially be equal to∞. We prove that

this case a.s. does not occur:

Theorem 2.4. For all x ∈ R and ϕ ∈ (0, π/2) we have P [Ytc(K
ϕ
x ) <∞] = 1.

Roughly speaking, Theorem 2.4 means that up to and including the critical time
tc, the influence of [DESTRUCTION] in Definition 2.1 is confined to areas close to the
boundary of the half-plane. Combining Theorem 2.4 with results in [5], we can determine
the behaviour of the heights of destruction for all times:

Corollary 2.5. (i) For all x ∈ R and ϕ ∈ (0, π/2) we have

P [∀t ∈ [0, tc] : Yt(K
ϕ
x ) <∞ and ∀t ∈ (tc,∞) : Yt(K

ϕ
x ) =∞] = 1.

(ii) For all x ∈ R and ϕ ∈ (0, π) we have

P [∀t ∈ [0, tc] : Yt(M
ϕ
x ) <∞ and ∀t ∈ (tc,∞) : Yt(M

ϕ
x ) =∞] = 1.
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In other words, the heights of destruction experience a phase transition in the sense
that they are a.s. finite until the critical time tc and become infinite immediately after
tc. Note that a priori, statements about the finiteness of the heights of destruction are
stronger for cones than for tubes whereas statements about the infinity of the heights
of destruction are stronger for tubes than for cones. With regards to the unknown
uniqueness of Tu-forest-fire processes after tc, let us emphasize that Corollary 2.5 holds
for any process satisfying Definition 2.1.

Sketch of the proof of Corollary 2.5. In view of Theorem 2.4 and equation (2.5) it suf-
fices to show

P [∀t ∈ (tc,∞) : Yt(M
ϕ
x ) =∞] = 1

for x ∈ R and ϕ ∈ (0, π). This equation can be proved along the lines of Theorem 1.5 in
[5], where a corresponding statement is derived for the upper half-plane of the square
lattice Z2 and for x ∈ Z, ϕ = π/2. (The associated height of destruction up to time t is
denoted by Yt,x in [5].) A crucial property of Mϕ

x in the course of the proof is the fact
that any 1-path which crosses from the left of Mϕ

x to the right of Mϕ
x has at least one site

in Mϕ
x ; this is the reason why we have defined Mϕ

x to have width 1.

3 Tools from percolation theory needed for Theorem 2.4

The proof of Theorem 2.4 is based on tools from percolation theory for which it is
convenient to have the pure growth process available on the whole triangular lattice T
and not just on Tu (e.g. equations (3.1) and (3.2) below). For the remainder of the paper
we therefore extend the probability space (Ω,F ,P) in such a way that it also contains
processes (Gt,z)t∈[0,∞),z∈T\Tu on the lower half-plane and that (Gt,z)t∈[0,∞), z ∈ T, are
independent Poisson processes with rate 1. We define the corresponding pure growth
process on T by

σt,z := 1{Gt,z>0}, t ∈ [0,∞), z ∈ T.

For t ∈ [0,∞), we henceforth abbreviate ηt := (ηt,z)z∈Tu , σu
t := (σt,z)z∈Tu and σt :=

(σt,z)z∈T.
We will frequently use the following terminology: Let V ∈ {Tu,T}, let (αv)v∈V ∈

{0, 1}V be a configuration and let w ∈ V , S ⊂ C. Then we write {w ↔ S in (αv)v∈V } (in
words: w is connected to S in (αv)v∈V ) for the event that there exists a 1-path in (αv)v∈V
from a site y ∈ V to a site z ∈ V such that y is a neighbour of w and dist(z, S) ≤ 1 holds,
where dist(z, S) is defined as in (2.6). Note that our definition of {w ↔ S in (αv)v∈V }
does not impose any condition on the site w itself.

Sections 3.1 and 3.2 briefly explain the major results from percolation theory which
are needed for the proof of Theorem 2.4.

3.1 Exponential decay of the radius

For z ∈ T and n ∈ N := {1, 2, 3, . . .}, let

Hn(z) :=

6⋃
j=1

{
z + (1− a)nei(j−1)π/3 + aneijπ/3 : a ∈ [0, 1]

}
denote the boundary of the regular hexagon with vertices z + neijπ/3, j = 1, . . . , 6. There
exists a function ξ : (0, tc) → (0,∞) such that for all t ∈ (0, tc) the full-plane one-arm
event {0↔ Hn(0) in σt} satisfies

lim
n→∞

− logP [0↔ Hn(0) in σt]

n
=

1

ξ(t)
; (3.1)
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ξ(t) is called the correlation length of the configuration σt. Moreover, there exists a
universal constant c ∈ (0,∞) such that for all t ∈ (0, tc) and n ∈ N

P [0↔ Hn(0) in σt] ≤ cn exp

(
− n

ξ(t)

)
(3.2)

holds. For the proof of (3.1) and (3.2) the reader is referred to [6], Section 6.1. (In
this reference, analogous statements are proven for bond percolation on the square
lattice Z2 and boxes rather than hexagons but the main arguments of the proofs are
transferable to the present setting.)

3.2 Critical exponents

As we will see in Section 4, the core of the proof of Theorem 2.4 depends on the
following condition:

Condition 3.1. There exist ν, ρ > 0 such that the correlation length satisfies

ξ(t) ≤ (tc − t)−ν+o(1) for t ↑ tc, (3.3)

the one-arm half-plane event at criticality satisfies

P
[
0↔ Hn(0) ∩ Cu in σu

tc

]
≤ n−ρ+o(1) for n→∞, (3.4)

and 1/ν + ρ > 1.

Since we work on the triangular lattice, equations (3.3) and (3.4) are known to hold
with equality for ν = 4/3 and ρ = 1/3 so that Condition 3.1 is satisfied in the present
setting. The existence and values of these and other critical percolation exponents for
the triangular lattice were proven by S. Smirnov and W. Werner in [14] (Theorems 1(iv)
and 3) and are also discussed in the survey article [12] (Theorems 33(i) and 22). The
proof in [14] is based on a combination of several deep results, namely the scaling
relations proven by H. Kesten in [7], the determination of critical exponents for the
Schramm-Loewner evolution by G. Lawler, O. Schramm and W. Werner in [9], [10], [11],
and the proof of Cardy’s formula by S. Smirnov in [13]. As the current proof of Cardy’s
formula only works for the triangular lattice, rigorous results for critical exponents are
largely restricted to the triangular lattice although these exponents are widely believed
to be universal. In particular, it is unknown whether Condition 3.1 holds for the square
lattice.

4 Proof of Theorem 2.4

Let x ∈ R and ϕ ∈ (0, π/2); we need to show P[Ytc(K
ϕ
x ) = ∞] = 0. To keep the

notation simple, we assume x = 0 in the following and abbreviate K := Kϕ
0 . The proof

for general, possibly non-integer x only differs in technical details. Since the Tu-forest-
fire process (ηt,z)t∈[0,∞),z∈Tu is dominated by the corresponding pure growth process
(σt,z)t∈[0,∞),z∈Tu in the sense of equation (2.1), a.s. all clusters that are destroyed in the
Tu-forest-fire process in the time interval (0, tc] are finite. Hence, if Ytc(K) =∞ holds,
then a.s. infinitely many clusters which reach from K to the inner boundary Z must have
been destroyed up to the critical time tc. Moreover, since there are only finitely many
jumps in a rate 1 Poisson process up to time tc, every site on the inner boundary Z can
only be the origin of finitely many destruction events up to time tc. This implies the
inclusion

{Ytc(K) =∞}
a.s.
⊂ lim sup

n→∞
An ∪ lim sup

n→∞
A−n,
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where the limit superior is defined as

lim sup
n→∞

An :=
⋂
N∈N

⋃
n≥N

An

and

An := {∃t ∈ [0, tc) s.t. n↔ K in ηt and Gt,n < Gtc,n}

for n ∈ Z. By symmetry, we have P[A−n] = P[An] for all n ∈ N; consequently, it suffices
to prove

P

[
lim sup
n→∞

An
]

= 0. (4.1)

Applying equation (2.1) once more and using the topological fact that any connection
n↔ K necessarily contains a connection n↔ Hbn sinϕc(n)∩Cu, we obtain the inclusions

An ⊂ {∃t ∈ [0, tc) s.t. n↔ K in σu
t and Gt,n < Gtc,n}

⊂
{
∃t ∈ [0, tc) s.t. n↔ Hbn sinϕc(n) ∩ Cu in σu

t and Gt,n < Gtc,n
}

=: Bn. (4.2)

Now recall the exponents ν, ρ of Condition 3.1, choose an arbitrary δ > 0 satisfying
1/ν + ρ > 1 + δ and 1/ν > δ, and set n0 := min

{
n ∈ N : tc − n−1/ν+δ > 0

}
. For n ≥ n0,

we consider the event

Cn :=
{
∃t ∈ [0, tc − n−1/ν+δ) s.t. n↔ Hbn sinϕc(n) ∩ Cu in σu

t

}
that the connection n ↔ Hbn sinϕc(n) ∩ Cu in the pure growth process already occurs
before time tc − n−1/ν+δ. The probability of this event can be estimated from above as
follows:

P [Cn] ≤ P
[
∃t ∈ [0, tc − n−1/ν+δ) s.t. 0↔ Hbn sinϕc(0) in σt

]
= P

[
0↔ Hbn sinϕc(0) in σtc−n−1/ν+δ

]
≤ cn exp

(
− bn sinϕc
ξ
(
tc − n−1/ν+δ

))

≤ cn exp

(
− bn sinϕc(

n−1/ν+δ
)−ν+o(1)

)
for n→∞

= cn exp
(
−nδν+o(1)

)
for n→∞.

Here we first drop the condition that the connection occurs in the upper half-plane Cu

and use the translation-invariance of the pure growth process; then we employ the fact
that σt is monotone increasing in t; finally we successively apply equations (3.2) and
(3.3). In particular, this estimate implies

∞∑
n=n0

P [Cn] <∞

and hence

P

[
lim sup
n→∞

Cn
]

= 0

by the Borel-Cantelli lemma. Regarding the limit superior of the events Bn (defined in
(4.2)), we thus conclude
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P

[
lim sup
n→∞

Bn
]

= P

[
lim sup
n→∞

(Bn \ Cn)

]
≤ P

[
lim sup
n→∞

Dn
]

, (4.3)

where we abbreviate

Dn :=
{
∃t ∈ [tc − n−1/ν+δ, tc) s.t. n↔ Hbn sinϕc(n) ∩ Cu in σu

t and Gt,n < Gtc,n

}
for n ≥ n0. The probability of the event Dn can be bounded from above as follows:

P [Dn] ≤ P
[
n↔ Hbn sinϕc(n) ∩ Cu in σu

tc and Gtc−n−1/ν+δ,n < Gtc,n
]

= P
[
0↔ Hbn sinϕc(0) ∩ Cu in σu

tc

]
P
[
Gn−1/ν+δ,0 > 0

]
≤ n−ρ+o(1) ·

(
1− exp

(
−n−1/ν+δ

))
for n→∞

≤ n−ρ+o(1) · n−1/ν+δ for n→∞

= n−ρ−1/ν+δ+o(1) for n→∞.

Here we first relax the condition on the times at which the connection and the growth
event occur, resorting to the fact that σu

t is monotone increasing in t; then we use the
independence and translation-invariance of the events {n ↔ Hbn sinϕc(n) ∩ Cu in σu

tc}
and {Gtc−n−1/ν+δ,n < Gtc,n}; in the next step we apply equation (3.4); finally we use the
inequality 1− e−y ≤ y which is valid for all y ∈ R. Since −ρ− 1/ν + δ < −1 holds by our
choice of δ, the previous estimate shows

∞∑
n=n0

P [Dn] <∞.

Invoking the Borel-Cantelli lemma again, we get

P

[
lim sup
n→∞

Dn
]

= 0. (4.4)

Together with (4.2) and (4.3), equation (4.4) yields the proof of (4.1) and hence of
Theorem 2.4. 2

Remark 4.1. In the proof we used that if the height of destruction is infinite, the forest-
fire process contains infinitely many clusters which connect the cone to the boundary
of the half-plane, and hence exhibits infinitely many half-plane one-arm events. By
monotonicity, these events also occur in the pure growth process. Since forest-fire
clusters can touch the boundary at one point only, in fact, the forest-fire process exhibits
infinitely many three-arm half-plane events. However, the first and third arm consist of
vacant sites so that these events do not necessarily occur in the pure growth process.
This observation therefore does not yield a simple way of strengthening the proof.
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