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Abstract

We prove the trichotomy between transience to the right, transience to the left and
recurrence of one-dimensional nearest-neighbour random walks in dynamic random
environments under fairly general assumptions, namely: stationarity under space-time
translations, ergodicity under spatial translations, and a mild ellipticity condition. In
particular, the result applies to general uniformly elliptic models and also to a large
class of non-uniformly elliptic cases that are i.i.d. in space and Markovian in time. An
immediate consequence is the recurrence of models that are symmetric with respect
to reflection through the origin.
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1 Introduction

Random walks in random environments have been the subject of intensive mathemat-
ical study for several decades. They consist of random walks whose transition kernels
are themselves random, modelling the movement of a tracer particle in a disordered
medium. When the random transition kernels, called random environment, do not evolve
with time, the model is called static; otherwise it is called dynamic. Hereafter we will
use the abbreviations RWRE for the static and RWDRE for the dynamic model. The
reader is referred to the monographs [19], [21] for RWRE and [2], [17] for RWDRE. Note
that, by considering time as an additional dimension, one-dimensional RWDRE can be
seen as directed RWRE in two dimensions.

While one-dimensional RWRE is by now very well understood, the state of the art
in RWDRE is in comparison much more modest. Most of the general results available
require strong assumptions such as uniform and fast enough mixing for the random
environment, cf. e.g. [4], [9], [15]. An exception are quenched LDPs, cf. [3], [5], [14].
Otherwise, outside of the uniformly-mixing class, the literature is largely restricted to
particular choices of random environments, cf. e.g. [7], [8], [10], [13], [18].

In the present paper we consider the very basic question of whether the trichotomy
between transience to the right, transience to the left and recurrence, typical for time-
homogeneous Markov chains on Z, also holds for one-dimensional, nearest-neighbour
RWDRE. We conclude that this is indeed the case under fairly general assumptions on
the random environment. An immediate but interesting consequence is that reflection-
symmetric models satisfying our assumptions must be recurrent. We will consider the
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Zero-one law for directional transience of one-dimensional RWDRE

continuous time setting, but the same arguments work, mutatis mutandis, in the discrete
time case. For comparison with other non-Markovian models where this problem was
addressed, the reader is referred to [12] and [22] for the case of 2-dimensional RWRE,
[16] for the case of random walks in Dirichlet environments, and to [1] for the case of
1-dimensional excited random walk.

The paper is organised as follows. In Section 2 we define our model and state
our assumptions and results. Section 3 discusses our setup, providing examples and
connections to the literature; the proof that a class of examples described therein fits
our setting is postponed to Section 6. In Section 4, we present a graphical construction
that will be useful in Section 5, where our main theorem is proved.

2 Model, assumptions and results

Let ω = (ω−t , ω
+
t )t≥0 be a stochastic process taking values on ([0,∞)Z)2, called

the dynamic random environment. We will assume that ω belongs to the space Ω of
right-continuous paths from [0,∞) to ([0,∞)Z)2, where the latter is endowed with the
product topology. Given a realisation of ω, the RWDRE X = (Xt)t≥0 is defined as the
time-inhomogeneous Markov jump process on Z whose laws (Pωx )x∈Z satisfy

Pωx (X0 = x) = 1, (2.1)

Pωx (Xt+s = y ± 1 |Xt = y) = s ω±t (y) + o(s) as s ↓ 0. (2.2)

The existence of such processes is standard (see e.g. [6], Chapter 4, Section 7). We give
here a particular construction in Section 4 below. Without extra assumptions the process
X may explode (i.e., make infinitely many jumps) in finite time; we thus enlarge the
state-space Z with a cemetery point ∆ in the standard way in order to define X after the
explosion time τ∆, i.e., Xt := ∆ for all t ≥ τ∆ (cf. (4.3)).

The law Pωx is called the quenched law. We denote by Px the joint law of X and ω

(with Px(X0 = x) = 1). The corresponding expectations will be denoted respectively by
Eωx and Ex. In the literature, the annealed (or averaged ) law is often defined as the
marginal law of X under Px, but for convenience we will call Px itself the annealed law.

Define the space-time translation operators θzs : Ω→ Ω, z ∈ Z, s ∈ R+, acting on ω as
(θzsω)x,t := ω(z + x, s+ t). We will write θs := θ0

s , θ
z := θz0 . Denoting by

Ft := σ(ω, (Xu)0≤u≤t)

the natural filtration of X, the Markov property for X then reads

Eωx [f ((Xt+s)s≥0) | Ft] = EθtωXt
[f(X)] Pωx -a.s. (2.3)

for any bounded measurable f and any t ≥ 0. Moreover, since the space-time process
(Xt, t) is Feller, by the strong Markov property the time t in (2.3) may be replaced by any
a.s. finite Ft-stopping time. Also, we may and will assume that X is right-continuous.

We will work under the following assumptions:
(SE): The process ω is stationary with respect to space-time translations, i.e., for

each z ∈ Z, t ≥ 0, θztω has the same distribution as ω. Furthermore, we assume that ω is
ergodic with respect to the spatial translations θz.

(EL): P0-a.s.,
lim inf
t→τ∆

Xt and lim sup
t→τ∆

Xt ∈ {−∞,+∞}. (2.4)

Assumption (SE) is standard; in fact, ω is usually taken ergodic also in time. Assump-
tion (EL) is an ellipticity condition; note that it holds e.g. when ω is uniformly elliptic,
i.e., if there exists κ ∈ (0, 1) such that κ ≤ ω±t (x) ≤ κ−1. Indeed, in this case the property
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of being visited infinitely often is either a.s. satisfied by all or by none of the points of Z.
Note that (EL) implies

inf{t > 0: Xt ∈ [−n, n]c} < τ∆ P0-a.s. for all n ∈ N. (2.5)

While (EL) may be hard to check in non-uniformly elliptic examples, (2.5) holds as
soon as ω is stationary and ergodic with respect to time translations and satisfies a
non-degeneracy condition; see Proposition 6.1 below.

We can now state our main result.

Theorem 2.1. If assumptions (SE) and (EL) are satisfied, then τ∆ =∞ P0-a.s. and one
of the following three cases holds:

1. P0

(
lim
t→∞

Xt =∞
)

= 1 ;

2. P0

(
lim
t→∞

Xt = −∞
)

= 1 ;

3. P0

(
lim sup
t→∞

Xt =∞ = − lim inf
t→∞

Xt

)
= 1.

A zero-one law for directional transience is said to hold if the probabilities in items
1 and 2 of Theorem 2.1 are either 0 or 1. This statement is equivalent to Theorem 2.1
as the ellipticity assumption (EL) ensures that the event appearing in item 3 is almost
surely equal to the complement of the union of the events in 1–2.

As an immediate consequence of Theorem 2.1, we obtain recurrence for any model
satisfying (SE)–(EL) that is symmetric with respect to reflection through the origin:

Corollary 2.2. Assume that (SE) and (EL) hold and that (−Xt)t≥0 has under P0 the same
distribution as (Xt)t≥0. Then item 3 of Theorem 2.1 holds.

For an interesting example to which Corollary 2.2 applies, consider the following. Let
ω+
t (x) := αηt(x) + β(1 − ηt(x)), ω−t := α(1 − ηt(x)) + βηt(x) where 0 < β < α < ∞ and

(ηt)t≥0 is a simple symmetric exclusion process in Z started from a product Bernoulli
measure νρ with density ρ ∈ (0, 1). Very little is known for this model in the literature (see
e.g. [3], [10] and [18]), in particular in the case ρ = 1/2 where the expected asymptotic
speed of X is zero. However, since it satisfies (SE)–(EL) and is reflection-symmetric for
ρ = 1/2, Corollary 2.2 implies that it is recurrent in this case.

3 Examples and discussion

In the literature, ω is often given as a functional of an interacting particle system, i.e.,
of a Markov process (ηt)t≥0 on EZ where E is a metric space, often assumed compact.
For example, in the setting of [15], the transition rates are given by

ω±t (x) = α±(θxηt) (3.1)

where the functions α± : EZ → [0,∞) satisfy some regularity properties. The setting of
[4] is a particular case where E = {0, 1}.

Since directional transience follows from a law of large numbers with non-zero speed,
and recurrence from a functional central limit theorem if the speed is zero, Theorem 2.1
brings no new information in the cases where these results are known. However, our
result applies to many situations where such theorems have not yet been proved, which
is the case for several uniformly elliptic but non-uniformly mixing models, e.g., when
ηt is a simple exclusion process or a system of independent random walks outside the
perturbative regimes considered in [7], [10]. By “uniformly mixing” here we mean that
the conditional law of ηt(0) given η0 converges to a fixed law uniformly over all possible
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Zero-one law for directional transience of one-dimensional RWDRE

realizations of η0; cf. e.g. the cone-mixing condition of [4] (Definition 1.1 therein), or the
coupling conditions of [15] (Assumptions 1a–1b therein).

Let us now describe a large class of examples satisfying our assumptions that includes
many non-uniformly elliptic cases with slow and non-uniform mixing:

Example 3.1. Let ηt(x), x ∈ Z, t ≥ 0, be i.i.d. in x with each ηt(x) distributed as an
irreducible, positive-recurrent Markov process on a countable state-space E, started
from its unique invariant probability measure π. Let ω be defined by ω±t (x) = α±(ηt(x))

with α± : E → (0,∞), i.e., the jump rates are always positive (in which case the model is
called elliptic) and depend only on the state of ηt at x.

The models defined in Example 3.1 clearly satisfy (SE). Moreover:

Theorem 3.2. The models defined in Example 3.1 satisfy (EL).

The proof of this theorem is given in Section 6 below. Note that, as already mentioned, it
covers many models that are slowly and non-uniformly mixing and thus do not fall into
the categories generally studied in the literature of RWDRE so far.

It is interesting to ask in which directions Theorem 2.1 could be generalised, and
how far our hypotheses could be weakened. The analogous result in discrete time can
be proved with a similar approach via graphical representation (cf. Section 4 below).
However, new ideas are needed for random walks in other graphs, e.g. Zd with non-
nearest neighbour jumps and/or d > 1, and regular trees.

4 Graphical construction

We construct next a particular version of the process X with convenient properties.
Denote byMp the space of point measures on Z× [0,∞), and let N+

ω , N−ω ∈Mp be two
independent Poisson point processes with intensity measures µ±ω identified by

µ±ω (A×B) :=
∑
x∈A

∫
B

ω±s (x)ds, A ⊂ Z, B ⊂ [0,∞) measurable. (4.1)

We denote by P̂ω the joint law of N+
ω , N−ω , and by P̂ the joint law of the latter and ω.

Define the space-time translations θzt of N±ω and functions thereof by

θztN
±
ω (C) := N±ω (C + (z, t)), C ⊂ Z× [0,∞) measurable,

θzt f(N±ω ) := f(θztN
±
ω ), f :Mp → R,

(4.2)

where
C + (z, t) :=

⋃
(y,s)∈C

{(y + z, s+ t)}.

We note that, under P̂, N±ω inherits from ω the stationarity with respect to space-time
translations and the ergodicity with respect to spatial translations.

On each point of N+
ω , resp. N−ω , we draw a unit-length arrow pointing to the right,

resp. to the left. Then we set, for x ∈ Z, Xx to be the path started at x that proceeds by
moving upwards in time and forcibly across any arrows in a right-continuous way; the
paths are defined only up to the explosion time. See Figure 1.

Using the right-continuity of ω, it is straightforward to check that this construction
gives the correct law, i.e., Xx has under P̂ω the same law as X under Pωx . In particular,
this provides a coupling for copies of the random walk starting from all initial positions,
which will facilitate the proof of Theorem 2.1.

With this construction, the explosion times τx∆, x ∈ Z can be defined as

τx∆ := sup{t > 0: Xx crosses finitely many arrows up to time t}, (4.3)
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Figure 1: Graphical construction. The arrows represent events of N±
ω . The thick lines mark the

paths Xx and Xy, which in this example coalesce at site y − 1.

and we identify X := X0, τ∆ := τ0
∆.

We end this section with the following monotonicity property, which is a consequence
of the graphical construction and will be useful in the proof of Lemma 5.3 below.

Lemma 4.1. For any y, z ∈ Z such that y ≤ z, P̂-a.s.,

Xy
t ≤ Xz

t ∀ t ∈ [0, τy∆ ∧ τ
z
∆). (4.4)

Proof. Since the paths start ordered, move by nearest-neighbour jumps, and a.s. cannot
jump simultaneously before they meet, either Xy

t < Xz
t for all relevant t or there exists a

first s ≥ 0 such that Xy
s = Xz

s , in which case by construction Xy
u = Xz

u for all u ≥ s.

5 Proof of Theorem 2.1

For A ⊂ Z, denote by
HA := inf{t > 0: Xt ∈ A} (5.1)

the hitting time of A. Let Ac := Z \A and note that, if A is finite, then HAc is a.s. finite
by (2.5). For a random time S ∈ [0,∞], define

ΘSHA :=

{
inf{t > 0: XS+t ∈ A} if S <∞,
∞ otherwise.

(5.2)

Note that ΘSHA = θXS

S HA−XS
when S <∞, where A− x := {z − x : z ∈ A}. Define now

the k-th return time T (k)
A to A as follows. Set T (0)

A := 0 and, recursively for k ≥ 0,

T
(k+1)
A := T

(k)
A + Θ

T
(k)
A

(HAc + ΘHAcHA) . (5.3)

Note that T (1)
A = HA if X0 /∈ A. When A = {z}, we write Hz and T (k)

z .
Our proof of Theorem 2.1 is based on three lemmas which we state next; their proofs

are given respectively in Sections 5.1 and 5.2 below. The first of them implies that, if the
random walk visits −1 (resp. 1) a.s., then all its excursions from 0 to the right (resp. to
the left) will be a.s. finite.

Lemma 5.1. Assume that (SE) holds, and let x ∈ {−1, 1}. If P0(Hx <∞) = 1, then

T
(k)
0 <∞ ⇒ T

(k)
0 + Θ

T
(k)
0
Hx <∞ P0-a.s. for all k ≥ 1. (5.4)

The second lemma excludes the possibility of explosions in our setting.

Lemma 5.2. Assume that (SE) and (2.5) hold. Then

P0 (τ∆ =∞) = 1. (5.5)
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Zero-one law for directional transience of one-dimensional RWDRE

The third lemma shows that, if there is a positive probability for the random walk to
never touch −1 (resp. 1), then its range is bounded from below (resp. above).

Lemma 5.3. Assume that (SE) and (2.5) hold. Then P0(H−1 = ∞) > 0 implies
P0 (∃ z < 0: Hz =∞) = 1, and P0(H1 =∞) > 0 implies P0 (∃ z > 0: Hz =∞) = 1.

Note that Lemmas 5.1–5.3 do not use assumption (EL) directly but only its conse-
quence (2.5). Moreover, Lemma 5.1 only uses stationarity in time and the strong Markov
property; the graphical construction of Section 4 is only used in the proof of Lemmas 5.2
and 5.3.

We can now finish the proof of Theorem 2.1.

Proof of Theorem 2.1. Assumption (EL) and Lemmas 5.2–5.3 together imply that

P0(H−1 =∞) > 0 ⇒ P0

(
lim
t→∞

Xt =∞
)

= 1 (5.6)

since, if the left-hand side of (5.6) holds, then lim inft→∞Xt > −∞ a.s. and hence it must
be equal to∞ by (EL). Analogously,

P0(H1 =∞) > 0 ⇒ P0

(
lim
t→∞

Xt = −∞
)

= 1. (5.7)

To conclude, we claim that

P0 (H1 ∨H−1 <∞) = 1 ⇒ −∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt =∞. (5.8)

Indeed, note that, by Lemmas 5.1–5.2, P0 (H−1 <∞) = 1 implies that lim inft→∞Xt ≤ −1

a.s., which together with (EL) gives lim inft→∞Xt = −∞. The last equality is obtained
analogously.

5.1 Proof of Lemma 5.1

Proof. To start, we claim that, P0-a.s.,

P θtω0 (Hx =∞) = 0 simultaneously for all t ≥ 0. (5.9)

Indeed, for each fixed t ≥ 0, P θtω0 (Hx = ∞) = 0 a.s. since, by stationary, P0(·) =

E0[Pω0 (·)] = E0[P θtω0 (·)]. Hence (5.9) holds with t restricted to the set of rational numbers,
and to extend it to all t ≥ 0 we only need to show that the function t 7→ P θtω0 (Hx =∞) is
right-continuous. To this end, note that, since ω is right-continuous,

P θtω0 (∃u ∈ [0, s] : Xu 6= 0) = 1− e−
∫ t+s
t {ω+

u (0)+ω−
u (0)}du

≤
∫ t+s

t

{
ω+
u (0) + ω−u (0)

}
du

≤ 2s
{
ω+
t (0) + ω−t (0)

}
(5.10)

for all s > 0 small enough (depending on ω and t). Denoting by Oω(s) a function whose
modulus is bounded by sCω where Cω ∈ (0,∞) may depend on ω, we obtain

P θtω0 (Hx =∞) = P θtω0 (ΘsHx =∞, Xu = 0∀u ∈ [0, s]) +Oω(s)

= Eθtω0

[
1{Xu=0 ∀u∈[0,s]}P

θt+sω
0 (Hx =∞)

]
+Oω(s)

= P
θt+sω
0 (Hx =∞) +Oω(s), (5.11)
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where for the second line we use the Markov property and for the last one we again use
(5.10). From this follows the desired right-continuity and consequently also (5.9). By the
strong Markov property (cf. the paragraph below (2.3)) and Θ

T
(k)
0
Hx = θ

T
(k)
0
Hx,

P0

(
T

(k)
0 <∞,Θ

T
(k)
0
Hx =∞

)
= E0

[∫ ∞
0

P θtω0 (Hx =∞)Pω0

(
T

(k)
0 ∈ dt

)]
= 0 (5.12)

by (5.9).

5.2 Proof of Lemmas 5.2–5.3

We start by showing that explosions are not possible under (SE) and (2.5).

Proof of Lemma 5.2.
It is enough to show that, for any a, b ∈ [0,∞) with b− a > 0 small enough,

P0 (τ∆ ∈ (a, b]) = 0. (5.13)

To that end, define the events

Aa,bx := {there are no arrows in {x} × [a, b]} =
{
N±ω ({x} × [a, b]) = 0

}
(5.14)

and let ε > 0 be so small that, if b− a ≤ ε, then

P̂
(
A0,b−a

0

)
≥ P̂

(
A0,ε

0

)
= Ê

[
exp

{
−
∫ ε

0

[
ω+
s (0) + ω−s (0)

]
ds

}]
> 0, (5.15)

which exists by the right-continuity of ω and the dominated convergence theorem. Noting
that Aa,bx = θxAa,b0 , we obtain from Birkhoff’s ergodic theorem that, P̂-a.s.,

lim
N→∞

1

N

N−1∑
x=0

1Aa,b
x

= P̂
(
Aa,b0

)
= P̂

(
A0,b−a

0

)
> 0 (5.16)

by stationarity under time translations, and analogously for x ≤ 0. In particular,

P̂
(
∀ z ∈ Z, ∃x < z < y such that Aa,bx and Aa,by occur

)
= 1. (5.17)

Note now that, by (2.5), if τ∆ ∈ (a, b] then for all n ∈ N the random walk exits the interval
[−n, n] before time b. Therefore

P0 (τ∆ ∈ (a, b]) ≤ P̂
(
∀n ∈ N, a+ ΘaH[−n,n]c < b

)
(5.18)

where H[−n,n]c is the hitting time of Z\ [−n, n] by X0. On the other hand, by the graphical
construction, if both Aa,bx and Aa,by occur for some x < X0

a < y, then a+ ΘaH[−n,n]c ≥ b

with n = |x| ∨ |y|. Hence (5.18) is at most

P̂
(
∀x, y ∈ Z such that x < X0

a < y, either Aa,bx or Aa,by does not occur
)

= 0 (5.19)

by (5.17), proving (5.13).

We now prove Lemma 5.3.

Proof of Lemma 5.3. We assume that P0(H−1 = ∞) > 0; the case P0(H1 = ∞) > 0 is
proved analogously. For x ∈ Z, let

Ax := {Xx
t ≥ x∀ t ≥ 0} . (5.20)
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Since Ax = θxA0, Birkhoff’s ergodic theorem implies that, P̂-a.s.,

lim
N→∞

1

N

−N+1∑
z=0

1Az
= P̂ (A0) = P0 (H−1 =∞) > 0, (5.21)

and in particular P̂(Az occurs for some z ≤ 0) = 1. Noting that, by Lemmas 4.1 and 5.2,
if z ≤ 0 and Az occurs then X0

t > z − 1 for all t ≥ 0, we obtain

P0 (∃ z < 0: Hz =∞) = P̂
(
∃ z < 0: X0

t 6= z ∀ t ≥ 0
)

≥ P̂ (∃ z ≤ 0: Az occurs ) = 1, (5.22)

finishing the proof.

6 Proof of Theorem 3.2

We first show that (2.5) holds for a very large class of models, including our examples.

Proposition 6.1. Assume that ω is stationary and ergodic with respect to the time
translation θ1 and that, for a choice of ∗, ? ∈ {−,+} and every n ∈ N,

P0

(∫ n

0

ω∗s (0) ds <∞
)

= 1 and (6.1)

P0 (ω?0(x) > 0 ∀x ∈ [−n, n]) > 0. (6.2)

Then (2.5) holds.

Proof. Fix n ∈ N. By right-continuity and invariance under time translations, there exist
δ, ε ∈ (0, 1) such that the events

Ak :=
{
ω?k+s(x) ≥ δ ∀ s ∈ [0, ε], x ∈ [−n, n]

}
, k ∈ N (6.3)

have equal and positive probability. Then the event

A := lim sup
k→∞

Ak =
⋂
k≥1

⋃
l≥k

Ak = {Ak occurs for infinitely many k ∈ N} (6.4)

also has positive probability by the Poincaré recurrence theorem (cf. Theorem 1.4 in
[20]); moreover, since A is invariant under θ1, it occurs almost surely by ergodicity. Let

V1 := inf {l ∈ N : Al occurs} ,
Vk+1 := inf {l > Vk : Al occurs} , k ≥ 1.

(6.5)

Denote by H[−n,n]c the hitting time of Z \ [−n, n]. By (6.1), N∗ω([−n, n]× [0, T ]) <∞ a.s.
for all T ≥ 0, and thus H[−n,n]c =∞ implies τ∆ =∞ almost surely. Hence

P0

(
H[−n,n]c =∞

)
≤ P0

(
XVk

∈ [−n, n],ΘVk
H[−n,n]c > ε ∀ k ≥ 1

)
= lim
L→∞

P0

(
XVk

∈ [−n, n],ΘVk
H[−n,n]c > ε ∀ 1 ≤ k ≤ L

)
. (6.6)

Note now that, if XVk
∈ [−n, n], then between times Vk and Vk + ε ∧ ΘVk

H[−n,n]c the
RWDRE has a rate at least δ to jump in direction ?. Therefore,

XVk
∈ [−n, n] ⇒ P

θVk
ω

XVk

(
H[−n,n]c ≤ ε

)
≥ ϑn (6.7)

for some deterministic ϑn ∈ (0, 1) independent of k. By the Markov property,

P0

(
XVk

∈ [−n, n],ΘVk
H[−n,n]c > ε ∀ 1 ≤ k ≤ L+ 1

)
= E0

[
1{XVk

∈[−n,n],ΘVk
H[−n,n]c>ε ∀ 1≤k≤L}P

θVL
ω

XVL

(
H[−n,n]c > ε

)]
≤ (1− ϑn)P0

(
XVk

∈ [−n, n],ΘVk
H[−n,n] > ε ∀ 1 ≤ k ≤ L

)
(6.8)

and we conclude using induction that (6.6) is equal to zero, proving (2.5).
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As a consequence, no explosion can occur in our examples.

Corollary 6.2. In all models defined in Example 3.1, τ∆ =∞ almost surely.

Proof. The models described are mixing in time, and thus satisfy the hypotheses of
Proposition 6.1. Since they also satisfy (SE), the corollary follows by Lemma 5.2.

We can now finish the proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove that, P0-a.s.,

∀ x ∈ Z, T (k)
x <∞ ∀ k ≥ 1 ⇒ T

(k)
x−1 <∞ ∀ k ≥ 1. (6.9)

The analogous result for x+ 1 in place of x− 1 then follows by reflection. This implies
(EL) since, by Proposition 6.1, (2.5) holds. We claim that it suffices to show that, a.s.,

∀ x ∈ Z, T (k)
x <∞ ∀ k ≥ 1 ⇒ T

(1)
x−1 <∞. (6.10)

Indeed, fix j ∈ N. Suppose by induction that (6.10) holds with (1) substituted by (j).
Then write, using the strong Markov property,

P0

(
T (k)
x <∞ ∀ k ≥ 1, T

(j+1)
x−1 =∞

)
= P0

(
Θ
T

(j)
x−1

T (k)
x <∞ ∀ k ≥ 1, T

(j)
x−1 <∞,ΘT

(j)
x−1

T
(1)
x−1 =∞

)
= E0

[∫ ∞
0

P θtωx−1

(
T (k)
x <∞ ∀ k ≥ 1, T

(1)
x−1 =∞

)
Pω0

(
T

(j)
x−1 ∈ dt

)]
. (6.11)

With an argument identical to the one used to prove (5.9), we can show that the integrand
in (6.11) is a.s. identically equal to 0, proving (6.9).

Fix O ∈ E and choose a finite set E∗ ⊂ E such that O ∈ E∗ and

inf
t≥0
P0 (ηt(0) ∈ E∗ | η0(0) = O) > 1

2 . (6.12)

This is possible since ηt(0) converges in distribution to π (cf. Theorem 2.66 in [11]).
Considering the maximal jump rate in E∗, we further obtain ε > 0 such that

inf
t≥0
P0 (ηs(0) ∈ E∗ ∀ s ∈ [t, t+ ε] | η0(0) = O) > 1

2 . (6.13)

Fix now a site x ∈ Z and define

U1 := inf{t > 0: ηt(x) = O},
V1 := inf{t > U1 : Xt = x} = U1 + ΘU1

T
(1)
x ,

(6.14)

and, recursively for k ≥ 2,

Uk :=

{
inf{t > Vk−1 + 1: ηt(x) = O} if Vk−1 <∞,
∞ otherwise,

Vk :=

{
inf{t > Uk : Xt = x} = Uk + ΘUk

T
(1)
x if Uk <∞,

∞ otherwise.

(6.15)

These are all well-defined by Corollary 6.2. Note that T (k)
x <∞ for all k ≥ 1 if and only if

Vk <∞ for all k ≥ 1. Therefore, it is enough to show that

P0

(
Vk <∞,ΘVi

T
(1)
x−1 ≥ 1 ∀ 1 ≤ i ≤ k

)
≤ ρk−1 (6.16)
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for some ρ ∈ (0, 1). To this end, note first that

ηt+s(x) ∈ E∗ ∀ s ∈ [0, ε] ⇒ P θtωx

(
T

(1)
x−1 ≤ ε

)
≥ δ (6.17)

for some deterministic δ > 0, since the left-hand side of (6.17) implies that ω±t+s(x) is
bounded away from zero and infinity uniformly in s ∈ [0, ε]. Therefore, for any initial
configuration η̄ ∈ EZ and any z ∈ Z,

Pz

(
V1 <∞,ΘV1T

(1)
x−1 < 1

∣∣∣ η0 = η̄
)

≥ Pz
(
V1 <∞, ηV1+s(x) ∈ E∗ ∀ s ∈ [0, ε],ΘV1T

(1)
x−1 ≤ ε

∣∣∣ η0 = η̄
)

= Ez

[
1{V1 <∞, ηV1+s(x) ∈ E∗ ∀ s ∈ [0, ε]}P θV1

ω
x

(
T

(1)
x−1 ≤ ε

) ∣∣∣ η0 = η̄
]

≥ δPz (V1 <∞, ηV1+s(x) ∈ E∗ ∀ s ∈ [0, ε] | η0 = η̄)

= δPz
(
U1 ≤ V1 <∞, ηU1+(V1−U1)+s(x) ∈ E∗ ∀ s ∈ [0, ε]

∣∣ η0 = η̄
)
. (6.18)

Note now that U1, V1 are measurable in

σ
(
N±ω (C) : C ⊂ {x} × [0, U1] ∪ (Z \ {x})× [0,∞)

)
,

while (ηU1+s(x))s≥0 is independent of the latter sigma-algebra with distribution equal to
that of (ηs(x))s≥0 with η0(x) = O. Therefore, (6.18) equals

δ

∫∫
0<u≤v<∞

Pz
(
∩s∈[0,ε]{ηv−u+s(x) ∈ E∗}

∣∣ η0(x) = O
)
Pz (V1 ∈ dv, U1 ∈ du | η0 = η̄)

≥ δ

2
Pz (V1 <∞| η0 = η̄) (6.19)

by (6.13), implying that, for any η̄ ∈ EZ and any z ∈ Z,

Pz

(
V1 <∞,ΘV1

T
(1)
x−1 ≥ 1

∣∣∣ η0 = η̄
)
≤ ρ := 1− δ

2
< 1. (6.20)

To conclude, use the strong Markov property of (Xt, ηt) at time Vk + 1 to write

P0

(
Vk+1 <∞,ΘViT

(1)
x−1 ≥ 1 ∀ 1 ≤ i ≤ k + 1

)
= E0

[
1{Vk<∞,ΘVi

T
(1)
x−1≥1 ∀ 1≤i≤k}PXVk+1

(
V1 <∞,ΘV1

T
(1)
x−1 ≥ 1

∣∣∣ η0 = η̄
)
η̄=ηVk+1

]
≤ ρP0

(
Vk <∞,ΘViT

(1)
x−1 ≥ 1 ∀ 1 ≤ i ≤ k

)
(6.21)

by (6.20), and so (6.16) follows by induction.
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