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Abstract

The variational principle for Gibbs point processes with general finite range interaction
is proved. Namely, the Gibbs point processes are identified as the minimizers of the
free excess energy equals to the sum of the specific entropy and the mean energy.
The interaction is very general and includes superstable pairwise potential, finite or
infinite multibody potential, geometrical interaction, hardcore interaction. The only
restrictive assumption involves the finite range property.
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1 Introduction

Gibbs point processes are popular models to describe the repartition of points or
geometrical structures in space. They appeared first for modelling continuum interacting
particles in statistical mechanics. Now they are widely used in as different domains
as astronomy, biology, computer science, ecology, forestry, image analysis, materials
science. The main reason is that they provide a clear interpretation of the interactions
between the points, such as attraction or repulsion depending on their interdistance. We
refer to [18], [2], and [14] for classical text books on Gibbs point processes, including
examples and applications.

The Gibbs point processes are defined via their local unnormalized conditional
densities of the form e−H where H is an energy functional. They are the equilibrium
states of the DLR equations (see definition 2). A variational principle, coming from
the statistical physics, claims that the Gibbs measures are also the minimizers of the
free excess energy equals to the entropy plus the mean energy. More precisely, for
any stationary probability measure P on the space of configurations in Rd, the specific
entropy I(P ) with respect to the Poisson point process and the mean energy per unit
volume H(P ) are defined via thermodynamic limits (see (3.1) and (3.3)). The principle
claims that the Gibbs measures are exactly the probability measures P which minimize
the functional P 7→ I(P ) + H(P ). It thus supports the common belief that the Gibbs
measures provide a proper description of physical systems in thermodynamic equilibrium.
They are many applications of the variational principle in physics and mathematics.
In statistical mechanics, the phase transition phenomenon (non uniqueness of Gibbs
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Variational principle for Gibbs point processes

measures) can be proved in studying the geometry of the set of Gibbs measures and in
particular its extremal points. The variational principle is a key tool in this study (see
[8] for a general presentation). In probability theory, it is related to the large deviation
principle for the empirical field [10]. In spatial statistic, it is a crucial identifiability
assumption for the consistency of the maximum likelihood estimator [6]. This last recent
paper highlights the importance of the variational principle for models coming from
spatial statistics. It was our initial motivation for the present paper.

For the lattice Gibbs models, the variational principle is well established and a
general proof can be found in [18], Section 7. The first proof was for the Ising model in
[12]. In the setting of Gibbs point processes, there are less results because it requires
more sophisticated estimates. For example, the modification of the energy is unbounded
from above and below when a point is added or removed whereas it is bounded for
most of models on lattice. This implies serious difficulties in the computations of the
pressure, entropy, etc. However in [10, 9] the author proves the variational principle
in the continuum for the pairwise potential energy H(ω) =

∑
x,y φ(|x − y|) where the

sum is over all couples {x, y} in the configuration ω. The potential φ is assumed to
be non-integrably divergent at the origin (i.e.

∫ 1

0
φ(r)rd−1ds = ∞) producing a strong

repulsion when the particles are closed to each other. A typical examples is the Lennard
Jones pairwise potential φ(r) = ar−12 − br−6. In another work the variational principle is
proved for the Delaunay-tile interaction [5]. The energy function has the following form
H(ω) =

∑
T φ(T ) where the sum is over all triangles T of the Delaunay triangulation

based on ω. It is a continuum spatial version of nearest neighbours interaction models.
As fas as we know both papers are the only ones proving the variational principle for
Gibbs point processes models. The proofs are based on large deviation tools where
the existence of the pressure is obtained indirectly as the minimum of the free excess
energy. This approach has been first developed in [17], Section 5. Unfortunately many
interesting energy functions are not covered by these results, as for example any pairwise
potential energy with bounded potential φ. In particular, the well-studied Strauss model
in spatial statistics with the pairwise potential φ(r) = 1I[0,R](r) is uncovered. In stochastic
geometry, the Area-interaction or the Quermass-interaction are not covered as well (see
[1] and [11]).

In this paper we prove the variational principle for Gibbs point processes with
general finite range interaction. The other assumptions are standard and satisfied by
all models we met in statistical mechanics and spatial statistics (see Section 3). In
particular, our setting includes superstable pairwise potential, finite or infinite multibody
potential, geometrical interaction, hardcore interaction. The main contribution in the
present paper is to provide a simple and direct proof of the variational principle without
sophisticated large deviation results as in [5],[9] and [10]. The simplicity of our proof
allows us to exhibit the minimal required assumptions and therefore we improve the
previous results in the finite range setting. Our proof is based on a fine computation
of the specific entropy of Gibbs measures with respect to the Gibbs measure with free
boundary condition. The finite range property seems to be crucial in these developments.
Note also that we use a fundamental result coming from [18] and developed in [5] which
claims that a stationary point process is a Gibbs measure if and only if its specific entropy
with respect to some Gibbs measure is null.

The paper is organized as follows. In section 2, we introduce the notations and the
Gibbs models. The variational principle and the main theorem are presented in Section
3. Two standard examples are given in Section 4; the superstable pairwise potential with
compact support and the Quermass interaction. Section 4 is devoted to the proof of our
main theorem.

ECP 21 (2016), paper 10.
Page 2/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4368
http://www.imstat.org/ecp/


Variational principle for Gibbs point processes

2 The Gibbs models

2.1 State spaces and reference measures

Our setting is the Euclidean space Rd of arbitrary dimension d ≥ 1 equipped with
its Borel σ-field. An element of Rd is denoted by x and the Lebesgue measure on Rd

is denoted by λd. A configuration is a subset ω of Rd which is locally finite, meaning
that ω ∩ Λ has finite cardinality NΛ(ω) = #(ω ∩ Λ) for every bounded Borel set Λ. The
space Ω of all configurations is equipped with the σ-algebra F generated by the counting
variables NΛ. The space of finite configurations is denoted by Ωf .

The symbol Λ will always refer to a bounded Borel set inRd. It will often be convenient
to write ωΛ in place of ω ∩ Λ. We abbreviate ω ∪ {x} to ω ∪ x and abbreviate ω\{x} to
ω\x for every ω and every x in ω.

As usual, we take the reference measure on (Ω,F) to be the distribution π of the
Poisson point process with intensity measure λd on Rd. Recall that π is the unique
probability measure on (Ω,F) such that the following conditions hold for all subsets Λ:
(i) NΛ is Poisson distributed with parameter λd(Λ), and (ii) conditional on NΛ = n, the n
points in Λ are independent with uniform distribution on Λ. The Poisson point process
restricted to Λ will be denoted πΛ.

Translation by a vector u ∈ Rd is denoted by τu, either acting on Rd or on Ω. A
probability P on Ω is said stationary if P = P ◦ τ−1

u for any u in Rd. In this paper we
consider only stationary probability measures P with finite finite intensity measure (i.e.
EP (N[0,1]d) < +∞). We denote by P the space of such probability measures.

2.2 Gibbs point processes models

We consider a measurable function H from Ωf to R ∪ {+∞} which is called energy
function. Note that the energy H(ω) is only defined for finite configurations ω. We
assume that H is stationary; for any ω ∈ Ωf and any u ∈ Rd, H(ω) = H(τu(ω)). We
assume also that the energy function H is hereditary which means that for any x in
Rd and ω in Ωf , H(ω ∪ {x}) = +∞ as soon as H(ω) = +∞. The energy H is said
non-degenerate if H({0}) 6=∞ and H(∅) = 0. We assume also that H is stable which
means that there exists A > 0 such that for any finite configuration ω ∈ Ωf

H(ω) ≥ −A#(ω). (2.1)

All these assumptions are standard and non restrictive. The main restriction in the
present paper is the finite range assumption which means that there exists R ≥ 0 such
that for any configuration ω, any bounded set Λ the quantity

HΛ(ω) := H(ωΛ′)−H(ωΛ′\Λ) (2.2)

(with the convention ∞ − ∞ = 0) does not depend on the choice of Λ′ as soon as
Λ ⊕ B(0, R) ⊂ Λ′ where the symbol ⊕ denotes the Minkowski sum of sets. HΛ(ω)

represents the energy of ωΛ inside Λ given the configuration ωΛc outside Λ.
The Gibbs measures P associated to H are defined through their local conditional

densities, as described below. We denote by Ω∞ the set of configurations ω ∈ Ω such
that for any Λ, H(ωΛ) < +∞. So for every Λ and every configuration ω ∈ Ω∞, the local
conditional density fΛ of P with respect to πΛ is defined by

fΛ(ω) =
1

ZΛ(ωΛc)
e−HΛ(ω), (2.3)

where ZΛ(ωΛc) is the normalization constant given by

ZΛ(ωΛc) =

∫
e−HΛ(ω′Λ∪ωΛc )πΛ(dω′Λ).
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Let us note that 0 < ZΛ(ωΛc) < +∞ since H is stable and non-degenerate.
We are now in position to define the Gibbs measures associated to H (See [18] for

instance).

Definition 2.1. A probability measure P on Ω is a Gibbs measure for the energy
function H if P (Ω∞) = 1 and if for every bounded borel set Λ, for any measurable and
bounded function g from Ω to R,∫

g(ω)P (dω) =

∫ ∫
g(ω′Λ ∪ ωΛc)fΛ(ω′Λ ∪ ωΛc)πΛ(dω′Λ)P (dω). (2.4)

Equivalently, for P -almost every ω the conditional law of P given ωΛc is absolutely
continuous with respect to πΛ with the density fΛ defined in (2.3).

The equations (2.4) are called the Dobrushin–Lanford–Ruelle (DLR) equations. The
existence of such Gibbs measures, in the present setting of finite range stable interac-
tions, is done in [4], Corollary 3.4 and Remark 3.1. Note that the uniqueness of such P
does not necessarily hold, leading to the phase transition phenomenon. Although this
phenomenon is believed to occur for several models with a large density of particle and
a low temperature, there are only few results in this direction. However it is rigorously
proved for the Widom Rowlinson model [21] and for a four-body potential of Kac-type
[13]. We denote by GH the set of all Gibbs measures for the energy H.

3 Variational principle

The variational principle in statistical mechanics claims that the Gibbs measures are
the minimizers of the free excess energy defined by the sum of the the mean energy and
the specific entropy. Moreover the minimum is equal to minus the pressure. Let us first
define precisely all these macroscopic quantities. For the sake of simplicity we consider
the macroscopic limit along the sequence of sets Λn = [−n, n]d, n ≥ 1.

Let P be a stationary probability measure in P. The specific entropy of P with
respect to the Poisson point process is defined as the limit

I(P ) = lim
n→+∞

1

|Λn|
I(PΛn

, πΛn
), (3.1)

where for any probability measures µ and ν

I(µ, ν) =

{ ∫
ln(f)dµ if µ� ν with density f

+∞ otherwise
.

Note that the limit in (3.1) always exists; see [8] for general results on specific entropy
for lattice model and [7], Section 2.3 for its generalization in the point process setting.

Let us now introduce the Pressure with free boundary condition. It is defined as the
following limit.

pH := lim
n→+∞

1

|Λn|
ln(Zn), (3.2)

where Zn = ZΛn(∅) is the partition function with empty boundary condition.
In the following lemma we show that pH always exists in the setting of the present

paper.

Lemma 1. Assuming that the energy function H is finite range, stable and non-degener-
ate, then the pressure pH defined in (3.2) exists and belongs to [−1, (eA − 1)].

Proof. For any set Λ we denote by Λ	 the set

Λ	 = {x ∈ Λ, B(x,R0) ⊂ Λ},
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where R0 is an integer larger than the range of the interaction R. So for n > R0,
Λ	n = Λn−R0

.
For any R0 < m < n, we consider the Euclidean division n = km+ l with 0 ≤ l < m,

k ≥ 0. Let (Λim)1≤i≤kd be a family of kd disjoint cubes inside Λn where each cube is a
translation of Λm.

From the definition of the partition function

Zn ≥ πΛn
(ωΛn\∪iΛ

i,	
m

= ∅)
∫
e−H(ω)π∪iΛ

i,	
m

(dω)

= e−(|Λn|−kd|Λ	m|)
∏
i

ZΛi,	
m

(∅)

≥ e−(kd2dR0(2m)d−1+2dm(2n)d−1)Zk
d

m−R0
.

So since |Λn|/kd goes to |Λm| when n goes to infinity,

lim inf
n→∞

1

|Λn|
ln(Zn) ≥ 1

|Λm|

(
ln(Zm−R0

)− 2dR0(2m)d−1
)
.

This inequality holds for each m ≥ R0. So, letting m tends to infinity

lim inf
n→∞

1

|Λn|
ln(Zn) ≥ lim sup

m→∞

1

|Λm|
ln(Zm−R0

) = lim sup
m→∞

1

|Λm|
ln(Zm)

which proves that the limit exists in R ∪ {±∞}.
Thanks to the stability and the non degeneracy of H we get that

e−|Λn| ≤ Zn ≤ e|Λn|(eA−1)

which implies that pH ∈ [−1, (eA − 1)].
The last macroscopic quantity involves the mean energy of a stationary probability

measure P . It is also defined by a limit but, in opposition to the other macroscopic
quantities, we have to assume that it exists. The proof of such existence is based on
stationary arguments and a nice representation of the energy contribution per unit
volume. It depends strongly on the model and the expression of the Hamiltonian H.
Examples are given in Section 4. So for any stationary probability measure P we assume
that the following limit exists

H(P ) := lim
n→∞

1

|Λn|

∫
H(ωΛn

)P (dω). (3.3)

and we call the limit mean energy of P .
We need to introduce a last technical assumption on the boundary effects of H. We

assume that for any P in GH

lim
n→∞

1

|Λn|

∫
∂HΛn(ω)P (dω) = 0, (3.4)

where ∂HΛn(ω) = HΛn(ω)−H(ωΛn). This assumption is satisfied by all the examples we
met.

Theorem 1. We assume that H is stationary, hereditary, non-degenerate, stable and
finite range. Moreover we assume that the mean energy exists for any stationary proba-
bility measure P (i.e. the limit (3.3) exists) and that the boundary effects assumption
(3.4) holds. Then for any stationary probability measure P ∈ P

I(P ) +H(P ) ≥ −pH , (3.5)

with equality if and only if P is a Gibbs measure (i.e. P ∈ GH).
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4 Examples

In this section we present two examples of energy functions included in the setting
of Theorem 1. The first example is the standard superstable pairwise potential energy.
The second example involves the Quermass interaction which is an energy function for
morphological patterns built by unions of random convex sets. It can be also viewed
as a infinite body potential interaction. The main restriction in Theorem 1 is the finite
range property. So most of the standard examples, having this property, could have been
considered as well.

4.1 Pairwise potential

In this section the energy function has the following expression: for any finite
configuration ω ∈ Ωf

H(ω) = zN(ω) +
∑

{x,y}⊂ω

φ(x− y), (4.1)

where φ is a symmetric function from Rd to R ∪ {+∞} with compact support. The
parameter z ∈ R is called chemical potential and allows to change the intensity of the
reference Poisson point process. The potential φ is said stable if the associated energy H
in (4.1) is stable (see (2.1)). In the following we need that the potential φ is superstable
which means that φ is the sum of stable potential and a positive potential which is non
negative around the origin. See [19] for examples of stable and superstable pairwise
potentials. In this setting the variational principle holds as a corollary of Theorem 1.

Corollary 1. Let H be a energy function coming from a superstable pairwise potential φ
given by (4.1). Then for any stationary probability measure P ∈ P

I(P ) +H(P ) ≥ −pH , (4.2)

with equality if and only if P is a Gibbs measure (i.e. P ∈ GH ). The expression of H(P ) is
given in (4.3).

Proof. Let us check the assumptions of Theorem 1. It is obvious that H is stationary,
hereditary, non-degenerate, stable and finite range. The existence of the mean energy is
proved in [10], Theorem 1. It is given by

H(P ) =

{ 1
2

∫ ∑
0 6=x∈ω φ(x)P 0(dω) if EP (N2

[0,1]d) <∞
+∞ otherwise

(4.3)

where P 0 is the Palm measure of P . Recall that P 0 can be viewed as the natural version
of the conditional probability P (.|0 ∈ ω) (see [15] for more details). Note also that
that the expression

∫ ∑
06=x∈ω φ(x)P 0(dω) can be equal to infinity although EP (N2

[0,1]d) is
finite. It depends on the explosion of φ to infinity and the distribution of points around
the typical point in P .

It remains to prove the boundary assumption (3.4). Let P a Gibbs measure in GH . A
simple computation gives that for any ω ∈ Ω

∂HΛn(ω) =
∑

x∈ω
Λ
⊕
n \Λn

∑
y∈ω

Λn\Λ
	
n

φ(x− y),

where Λ⊕n = Λn+R0 and Λ	n = Λn−R0 with R0 an integer larger than the range of the
interaction R. Let us recall the GNZ equation (see [16] for details); for any positive
measurable function f from Rd × Ω to R the following equation holds∫ ∑

x∈ω
f(x, ω\x)P (dω) =

∫ ∫
e−z−

∑
y∈ω φ(x−y)f(x, ω)dxP (dω).
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Therefore thanks to the stationarity of P we obtain

|EP (∂HΛn
)| ≤

∫ ∑
x∈ω

Λ
⊕
n \Λn

∑
y∈ω\x

|φ(x− y)|P (dω)

=

∫ ∫
Λ⊕n \Λn

e−z−
∑

y∈ω φ(x−y)
∑
y∈ω
|φ(x− y)|dxP (dω)

= |Λ⊕n \Λn|e−z
∫
e
−

∑
y∈ωB(0,R0)

φ(y) ∑
y∈ωB(0,R0)

|φ(y)|P (dω).

Since φ is stable we deduce that φ ≥ −A− 2z.
So denoting by C := supc∈[−A−2z;+∞) |c|e−c <∞ we find that

|EP (∂HΛn)| ≤ |Λ⊕n \Λn|Ce−z
∫
NB(0,R0)(ω)e(A+2z)NB(0,R0)(ω)P (dω). (4.4)

Using the Ruelle’s estimates in [20] Corollary 2.9, the integral in the right term of (4.4)
is finite. The boundary assumption (3.4) follows.

4.2 Quermass interaction

The Quermass process is a morphological interacting model introduced in [11] which
generalizes the well-known Widom-Rowlinson process or Area Process (see [21], [1]).
The existence of the Quermass process is only proved in the case d ≤ 2 [3] so we
restrict the following to this setting. For any finite configuration ω, L(ω) denotes the
set ∪x∈ωB(x, r) and the energy is defined as a linear combination of the Minkowski
functionals;

H(ω) = θ1A
(
L(ω)

)
+ θ2L

(
L(ω)

)
+ θ3χ

(
L(ω)

)
, (4.5)

where r > 0, θi ∈ R, i = 1 . . . 3 are parameters and A, L, χ are respectively the area,
the perimeter and the Euler-Poincaré characteristic functionals. Recall that χ(L(ω))

is equal to Ncc(L(ω)) − Nh(L(ω)) where Ncc(L(ω)) denotes the number of connected
components in L(ω) and Nh(L(ω)) the number of holes. We refer to [2] for more details
about Minkowski functionals.

Corollary 2. Let H be the Quermass interaction given in (4.5). Then for any stationary
probability measure P ∈ P

I(P ) +H(P ) ≥ −pH , (4.6)

with equality if and only if P is a Gibbs measure (i.e. P ∈ GH ). The expression of H(P ) is
given in (4.10).

Proof. As in the previous section, we check the assumptions of Theorem 1. It is obvious
that H is stationary, hereditary and non-degenerate. In dimension d = 2 the functional χ
satisfies the following bound

|χ(L(ω))| ≤ 3#(ω), (4.7)

see [11]. The stability of H follows easily. The finite range assumption is a consequence
of the additivity of Minkowski functionals. Note that the range of the interaction is
R = 2r. In the following we denote by C the cube [0, 1]2, by ∂C the boundary of C and
by Ĉ the double edges {0} × [0, 1] ∪ [0, 1] × {0}. For any k ∈ Z2 we consider also their
translations by vector k; Ck = τk(C), ∂Ck = τk(∂C) and Ĉk = τk(Ĉ). Thanks to the
additivity of Minkowski functionals we obtain that for any finite configuration ω and any
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n ≥ 1

H(ωΛn) =
∑

k∈{−n,n−1}2

(
θ1A

(
L(ω) ∩ Ck

)
+ θ2

[
L
(
L(ω) ∩ Ck

)
− L

(
L(ω) ∩ ∂Ck

)]
+θ3

[
χ
(
L(ω) ∩ Ck

)
−Ncc

(
L(ω) ∩ Ĉk

)])
+Rn(ωΛn), (4.8)

which gives the energy contribution of each cube Ck in H(ωΛn
). Thanks to (4.7) and

obvious bounds for A and L, the boundary term Rn(ωΛn
) satisfies for some constant

c > 0

|Rn(ωΛn
)| ≤ c#

(
ωΛn\Λn−R0

)
. (4.9)

So for any stationary probability measure P ∈ P we deduce from (4.8) and (4.9) the
existence of the mean energy (3.3) with

H(P ) =

∫ (
θ1A

(
L(ω) ∩ C

)
+ θ2

[
L
(
L(ω) ∩ C

)
− L

(
L(ω) ∩ ∂C

)]
+θ3

[
χ
(
L(ω) ∩ C

)
−Ncc

(
L(ω) ∩ Ĉ

)])
P (dω). (4.10)

Thanks to (4.8) and (4.9) again, the boundary assumption (3.4) is easily obtained as
well.

5 Proof of Theorem 1

Let us start by proving the inequality (3.5) for any stationary probability measure
P ∈ P. For n ≥ 1 we define the Gibbs measure on Λn with free boundary condition by

Qn(dωΛn
) =

1

Zn
e−H(ωΛn )πΛn

(dωΛn
). (5.1)

So

I(PΛn
, Qn) =

∫
ln

(
dPΛn

dQn
(ωΛn

)

)
dPΛn

(ωΛn
)

=

∫
ln

(
dPΛn

dπΛn

(ωΛn)
dπΛn

dQn
(ωΛn)

)
dPΛn(ωΛn)

= I(PΛn , πΛn) +

∫
H(ωΛn)dP (ω) + ln(Zn),

which implies that

lim
n→∞

1

|Λn|
IΛn(PΛn , Qn) = I(P ) +H(P ) + pH . (5.2)

Since IΛn(PΛn , Qn) is positive the inequality (3.5) follows. Let us now prove that for
any P ∈ GH the equality holds in (3.5) by showing that the limit in (5.2) is negative.
The development of the computation below is the main technical contribution in the
present paper and seems to be only possible in the finite range setting. Recall that R0

is an integer larger than the range of the interaction R and that Λ⊕n stands for the set
Λn+R0 . We denote by πΛn ⊗ PΛ⊕n \Λn

the law of the point process on Λ⊕n with independent

configurations on Λn and Λ⊕n \Λn following distributions πΛn
and PΛ⊕n \Λn

respectively.
Then
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lim
n→∞

1

|Λn|
I(PΛn

, Qn) = lim
n→∞

1

|Λn|
I(PΛ⊕n

, Qn+R0
)

= lim
n→∞

1

|Λn|

∫
ln

(
dPΛ⊕n

dπΛn
⊗ PΛ⊕n \Λn

(ωΛ⊕n
)
dπΛn

⊗ PΛ⊕n \Λn

dπΛ⊕n

(ωΛ⊕n
)

dπΛ⊕n

dQn+R0

(ωΛ⊕n
)

)
dPΛ⊕n

(ωΛ⊕n
)

= lim
n→∞

1

|Λn|

(
I(PΛ⊕n \Λn

, πΛ⊕n \Λn
) + ln(Zn+R0

)

+

∫
H(ωΛ⊕n

)−HΛ⊕n
(ωΛ⊕n

)− ln(ZΛn
(ωΛ⊕n

))dPΛ⊕n
(ωΛ⊕n

)

)
, (5.3)

where the densities which appear above are given by (2.3) and (5.1). By subadditivity of
the entropy (Proposition 15.10 in [8]),

0 ≤ I(PΛ⊕n \Λn
, πΛ⊕n \Λn

) ≤ I(PΛ⊕n
, πΛ⊕n

)− I(PΛn
, πΛn

),

which implies that

lim
n→∞

1

|Λn|
I(PΛ⊕n \Λn

, πΛ⊕n \Λn
) = 0.

Moreover, thanks to the existence of the mean energy and the boundary assumption
assumption (3.4), the term limn→∞ |Λn|−1

∫
(H(ωΛ⊕n

) − HΛ⊕n
(ω)dP (ω) vanishes as well.

Therefore the limit in (5.2) is negative provided we show

lim inf
n→∞

1

|Λn|

∫
ln

(
ZΛn(ω)

Zn+R0

)
dP (ω) ≥ 0. (5.4)

From the definition of ZΛn
(ω),

ZΛn(ω) ≥
∫

1I{
ω′

Λn\Λn−R0
=∅
}e−H(ω′Λn

)πΛn(dω′Λn
) = e−|Λn\Λn−R0

|Zn−R0

and therefore

lim inf
n→∞

1

|Λn|

∫
ln

(
ZΛn(ω)

Zn+R0

)
dP (ω) ≥ lim inf

n→∞

1

|Λn|
(ln(Zn−R0

)− ln(Zn+R0
)− |Λn\Λn−R0

|) = 0

which proves (5.4). The proof of Theorem 1 is complete if we show that any stationary
probability measure P solving the equality in (3.5) is a Gibbs measure. We follow
essentially the scheme of [18] in the variant used in [9], Section 7. So let P be a
stationary probability measure such that I(P ) +H(P ) + pH = 0. Let us show that for any
bounded local function g and any bounded set Λ,

∫
g(ω)P (dω) =

∫
gΛ(ω)P (dω) where the

function gΛ is defined by

gΛ(ω) =

∫
g(ω′Λ ∪ ωΛc)fΛ(ω′Λ ∪ ωΛc)πΛ(dω′Λ)

where fΛ is the density defined in (2.3). Without loss of generality we assume in the
following that |g| is bounded by one. Thanks to the equality (5.2), for n large enough
I(PΛn , Qn) is finite and therefore PΛn admits a density with respect to Qn which we
denote by fn. Let Λ′ be a bounded set such that Λ⊕ ⊂ Λ′ and such that g is FΛ′ -
measurable. For n large enough such that Λ′ ⊂ Λn, the probability measure PΛ′ admits
a density with respect to Qn restricted to Λ′ which we denote by fn,Λ′ . Similarly we
denote by fn,Λ′\Λ the density of PΛ′\Λ with respect to Qn restricted to Λ′\Λ. Since
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I(PΛn
, Qn)/|Λn| → 0, the standard Lemma 7.5 in [9] ensures that for any δ > 0 there

exists n large enough and a set Λ′ with Λ⊕ ⊂ Λ′ ⊂ Λn such that∫
|fn,Λ′ − fn,Λ′\Λ|dQn < δ.

Moreover∫
g(ω)− gΛ(ω)P (dω) =

∫
fn,Λ′(ω)g(ω)− fn,Λ′\Λ(ω)gΛ(ω)Qn(dω)

and from the definition of Qn∫
fn,Λ′\Λ(ω)gΛ(ω)Qn(dω) =

∫
fn,Λ′\Λ(ω)g(ω)Qn(dω).

We deduce that |
∫
g(ω) − gΛ(ω)P (dω)| ≤ δ. Letting δ tend to zero we get the DLR

equation on Λ. The proof of Theorem 1 is complete.
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