
Electron. Commun. Probab. 21 (2016), no. 54, 1–8.
DOI: 10.1214/16-ECP11
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

From survival to extinction of the contact process
by the removal of a single edge

Réka Szabó* Daniel Valesin*

Abstract

We give a construction of a tree in which the contact process with any positive infection
rate survives but, if a certain privileged edge e∗ is removed, one obtains two subtrees
in which the contact process with infection rate smaller than 1/4 dies out.

Keywords: interacting particle systems; contact process; phase transition.

AMS MSC 2010: 82C22.

Submitted to ECP on January 25, 2016, final version accepted on July 19, 2016.

Supersedes arXiv:1601.06564.

1 Introduction

In this paper, we present an example of interest to the discussion of how the behaviour
of interacting particle systems can be affected by local changes in the graph on which
they are defined.

The contact process on a locally finite and connected graph G = (V,E) with rate
λ ≥ 0 is a continuous-time Markov process (ξt)t≥0 with state space {0, 1}V and generator

Lf(ξ) =
∑

x∈V :ξ(x)=1

f(ξ0→x)− f(ξ) + λ ·
∑

y∈V :{x,y}∈E

(
f(ξ1→y)− f(ξ)

) , (1.1)

where f is a local function, ξ ∈ {0, 1}V and, for i ∈ {0, 1} and z ∈ V ,

ξi→z(w) =

{
i, if w = z;

ξ(w), otherwise,
w ∈ V.

This process is usually seen as a model of epidemics: vertices are individuals, which can
be healthy (state 0) or infected (state 1); infected individuals recover with rate 1 and
transmit the infection to each neighbor with rate λ. A comprehensive exposition of the
contact process can be found in [5].

Given A ⊂ V , we denote by (ξAt )t≥0 the contact process with initial configuration

ξA0 = 1A, the indicator function of A; if A = {x}, we write ξxt instead of ξ{x}t . We abuse
notation and associate a configuration ξ ∈ {0, 1}V with the set {x : ξ(x) = 1}.
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Removal of an edge in the contact process

The contact process admits a well-known graphical construction, which we now briefly
describe. We let PλG be a probability measure under which a family of independent
Poisson point processes on [0,∞) are defined:

Dx for x ∈ V, each with rate 1,

D(x,y) for x, y ∈ V with {x, y} ∈ E, each with rate λ;

we regard each Dx and D(x,y) as a random discrete subset of [0,∞). Given a realization
of all these processes, an infection path is a function γ : [t1, t2] → V which is right
continuous with left limits and satisfies, for all t ∈ [t1, t2],

t /∈ Dγ(t) and γ(t) 6= γ(t−) implies t ∈ D(γ(t−),γ(t)).

We say that two points (x, s), (y, t) ∈ V × [0,∞) with s ≤ t are connected by an infection
path if there exists an infection path γ : [s, t]→ V with γ(s) = x and γ(t) = y. This event
is denoted by {(x, s)↔ (y, t)}. Then, given A ⊆ V , the process

ξAt (x) = 1{∃y ∈ A : (y, 0)↔ (x, t)}

has the distribution of the contact process with initial configuration 1A.
To motivate our result, we will now state some facts which follow immediately either

from the generator expression (1.1) or the graphical construction. First, the “all healthy”
configuration, represented as the empty set ∅, is a trap state for the dynamics. Second,

PλG
(
∃t : ξAt = ∅

)
≥ Pλ

′

G′

(
∃t : ξBt = ∅

)
if λ ≤ λ′, A ⊆ B and G ⊆ G′ (1.2)

(G ⊆ G′ means that the vertex set and edge set of G are respectively contained in the
vertex set and edge set of G′). Third (using the fact that G is connected),

PλG
(
∃t : B ⊆ ξAt

)
> 0 for all finite A,B ⊆ V. (1.3)

Combining (1.2) and (1.3), it is seen that the probability

PλG
(
∃t : ξAt = ∅

)
(1.4)

is either equal to 1 for any finite A ⊆ V or strictly less than 1 for any finite A ⊆ V . The
process is said to die out (or go extinct) in the first case and to survive in the latter.

Whether one has survival or extinction may depend on both G and λ, so one defines
the critical rate

λc(G) = sup{λ : PλG
(
∃t : ξAt = ∅

)
= 1 ∀A ⊆ V, A finite}.

It follows from this definition and (1.2) that the process dies out when λ < λc and
survives when λ > λc.

It is natural to expect that the critical rate λc of the contact process is not affected
by local changes on G, such as the addition or removal of edges (as long as G remains
connected). More precisely,

Conjecture 1.1 (Pemantle and Stacey, [9]). Assume G = (V,E) and G′ = (V,E′) are two
connected graphs with the same vertex set V and E′ = E ∪ {{x, y}}, with x, y ∈ V . Then,
λc(G) = λc(G

′).

Jung [3] proved this conjecture for vertex-transitive graphs (a graph G is vertex
transitive if, for any two vertices x and y, there exists an automorphism in G that maps x
into y). Proving the conjecture in full generality is still an open problem.

Rather than making progress on this problem, we consider a slightly different line of
inquiry. LetG1 = (V1, E1) andG2 = (V2, E2) be two graphs with disjoint vertex sets V1 and
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Removal of an edge in the contact process

V2. Let x ∈ V1, y ∈ V2 and define G = (V,E) with V = V1 ∪ V2 and E = E1 ∪E2 ∪ {{x, y}}
(that is, we connect the two graphs using the edge {x, y}). It follows from (1.2) that
λc(G) ≤ min(λc(G1), λc(G2)), and it is natural to ask whether or not the inequality can be
strict. Strict inequality would mean that, for some λ < min(λc(G1), λc(G2)), the contact
process with rate λ on G survives. This leads to a curious situation: since the process
is subcritical on both G1 and G2, under PλG there are almost surely no infinite infection
paths entirely contained either in G1 or in G2, so any infinite infection path in G needs
to traverse the edge {x, y} infinitely many times.

We present an example of a graph in which this situation indeed occurs.

Theorem 1.2. There exists a tree G = (V,E) with a privileged edge e∗ so that

λc(G) = 0 (1.5)

and, letting G1, G2 be the two subgraphs of G obtained by removing e∗, we have

λc(G1), λc(G2) ≥
1

4
. (1.6)

We end this Introduction discussing some related works in the interacting particle
systems literature (apart from the already mentioned [3]). In [6], Madras, Schinazi
and Schonmann considered the contact process on Z in deterministic inhomogeneous
environments – for them, this means that the recovery rates (that is, the rates of transition
from state 1 to state 0) are vertex-dependent and deterministic, while the infection rate
is the same everywhere. Among other results, they showed that if the recovery rate is
equal to 1 everywhere except for a sufficiently sparse set S ⊂ Z, where it is equal to
some other value b ∈ (0, 1), then the critical infection rate λc is the same as that of the
original process on Z. In [8], Newman and Volchan studied a contact process on Z in
an environment in which the recovery rates are chosen randomly, independently among
the vertices (the infection rate is again constant). They give a condition for the recovery
rate distribution under which the process survives for any value of the infection rate
(similarly to what happens to our graph G of Theorem 1.2). In [2], Handjani exhibited
a modified version of the voter model (which is another class of interacting particle
system) in which modifications of the flip mechanism in a single site can change the
probability of survival of the set of 1’s from zero to positive.

2 Notation and preliminary results

Given a set A, the indicator function of A is denoted 1A and the cardinality of A is
denoted |A|.

Given a graph G = (V,E), the degree of x ∈ V is denoted degG(x), the graph distance
between x, y ∈ V is distG(x, y) and the ball of radius R with center x is BG(x,R). We
omit G from the notation when it is clear from the context. We sometimes abuse notation
and associate G with its set of vertices (so that, for example, |G| denotes the number of
vertices of G). A star graph S with hub o on n vertices is a tree with one internal node
(o) and n− 1 leaves.

We always assume that the contact process is constructed from the graphical con-
struction. Given A,B ⊆ V , J1, J2 ⊆ [0,∞), we write A × J1 ↔ B × J2 if (x, t1) ↔ (y, t2)

holds for some x ∈ A, y ∈ B, t1 ∈ J1 and t2 ∈ J2.
In the remaining part of this section we will describe five preliminary results that will

be needed in the proof of Theorem 1.2. We start with the following.

Lemma 2.1. For any λ ≤ 1
4 , letting In = {1, . . . , n}, we have

PλZ

(
ξInt ⊆ In ∀t

)
≥ 1

2
. (2.1)
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Proof. Define

Lt = inf{x : ξInt (x) = 1}, Rt = sup{x : ξInt (x) = 1}, t ≥ 0,

with inf ∅ =∞ and sup∅ = −∞. It is readily seen that Rt is stochastically smaller than
the continuous-time Markov chain (Xt) on Z with X0 = n which jumps one unit to the
right with rate λ and jumps one unit to the left with rate 1. Hence,

PλZ (Rt < n+ 1 ∀t) ≥ P (Xt < n+ 1 ∀t) ≥ 3

4
,

by an elementary computation for biased random walk on Z. Similarly PλZ (Lt > 0 ∀t) ≥ 3
4 ,

so

PλZ

(
ξInt ⊆ In ∀t

)
= PλZ (Rt < n+ 1 and Lt > 0 ∀t) ≥ 1

2
.

Our remaining four preliminary results are taken from [7]. The following shows that
the contact process survives on a large star graph S for a time that is exponential in
λ2|S|. It is a refinement of the first result to this effect that appeared in [1] in Lemma
5.3.

Lemma 2.2. ([7], Lemma 3.1) There exists c > 0 such that, if λ < 1, S is a star with hub
o so that deg(o) > 64e2 · 1

λ2 and |ξ0| > 1
16e · λ deg(o), then

PλS(ξecλ2 deg(o) 6= ∅) ≥ 1− e−cλ
2 deg(o). (2.2)

In [7], this lemma was applied to guarantee that in a connected graph G an infection
around a vertex with sufficiently high degree is maintained long enough to produce an
infection path that reaches another vertex at a certain distance.

Lemma 2.3. ([7], Lemma 3.2) There exists λ0 > 0 such that, if 0 < λ < λ0, the following
holds. If G is a connected graph and x, y are distinct vertices of G with

deg(x) >
7

c

1

λ2
log

(
1

λ

)
· distG(x, y) and

|ξ0 ∩B(x, 1)|
λ|B(x, 1)|

>
1

16e
,

then

PλG

(
∃t : |ξt ∩B(y, 1)|

λ|B(y, 1)|
>

1

16e

)
> 1− 2e−cλ

2 deg(x). (2.3)

(Note that c is the same constant that appeared Lemma 2.2).
In the opposite direction as Lemma 2.2, the following result bounds from below the

probability that the infection disappears from a star graph within time 3 log(1/λ).

Lemma 2.4. ([7], Lemma 5.2) If λ < 1
4 and S is a star, then

PλS

(
ξS
3 log( 1

λ )
= ∅

)
≥ 1

4
e−16λ

2|S|. (2.4)

Using the Markov property and (1.2), for any t ≥ 0 we have

PλS
(
ξSt 6= ∅

)
≤ PλS

(
ξS
3 log( 1

λ )
6= ∅

)b t
3 log(1/λ)c ≤

(
1− 1

4
e−16λ

2|S|
)b t

3 log(1/λ)c
.

This implies that, if C > 16 and |S| is large enough, then the infection will with high
probability disappear before time exp{Cλ2|S|}. This estimate matches (except for the
value of the constant in the exponential) the one that follows from Lemma 2.2.

It follows from Lemma 2.2 that vertices of degree much larger than 1
λ2 will sustain

the infection for a long time. The last preliminary lemma in our list deals with tree
graphs in which such big vertices are absent; in this case, it is unlikely that the infection
spreads.
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Lemma 2.5. ([7], Lemma 5.1) Let λ < 1
2 and T be a finite tree with maximum degree

bounded by 1
8λ2 . Then, for any x, y ∈ T and t > 0,

PλT (ξ
T
t 6= ∅) ≤ |T |2 · e−t/4 and (2.5)

PλT ({x} × [0, t]↔ {y} ×R+) ≤ (t+ 1) · (2λ)distT (x,y). (2.6)

3 Proof of Theorem 1.2

3.1 Construction of G

Our graph G will be equal to the one-dimensional lattice Z with the modification
that a few vertices, denoted o1, o2, . . ., are given extra neighbors, so that their degrees
become increasingly large. The extra neighbors are vertices which we add to the graph
as leaves.

We start defining sequences of integers (oi)i≥1, (di)i≥1 satisfying

0 > o1 > o3 > · · · , 0 < o2 < o4 < · · · , 0 < d1 < d2 < · · · .

The definition will be inductive. We set d1 = 1, o1 = −1 and o2 = 2. Assume we have
already defined o1, . . . , oi and d1, . . . , di−1. Then, set

oi+1 =

oi−1 + i ·
∑(i−1)/2
j=1 d2j if i is odd,

oi−1 − i ·
∑(i−2)/2
j=0 d2j+1 if i is even,

di = i · |oi − oi+1|. (3.1)

We clearly have
di > i! (3.2)

Now, for each i ≥ 1, let {xi1, . . . , xidi} be a set with di distinct elements (for distinct
values of i, these sets are assumed to be disjoint). Then let

G = (V,E), with V = Z ∪
∞⋃
i=1

{xi1, . . . , xidi}, E = E(Z) ∪
∞⋃
i=1

di⋃
j=1

{{oi, xij}},

where E(Z) is the set of edges of Z. The construction is illustrated on Figure 1. We
let e∗ be the edge {0, 1}. When e∗ is removed, G is split into two subgraphs: we let G−
denote the one associated to the negative half-line, and G+ the one associated to the
positive half-line.

e∗

o5 o3 o1 0 1 o2 o4

Figure 1: The graph G.

The strategy in the construction of G, and in particular in the choice of (di) and (oi),
is as follows.

• As we will prove in the next subsection, for any λ > 0, if i is sufficiently large, the
star B(oi, 1) is large enough to sustain the infection long enough that it reaches
B(oi+1, 1) with high probability. The infection is then sustained there long enough
to reach B(oi+2, 1) and so on. As the probability of the intersection of all these
events is close to 1, there is survival. Note that, as observed in the Introduction,
indeed the infection necessarily relies on infinitely many traversals of e∗ in order
to survive.
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• In Subsection 3.3, we will show that, if λ = 1
4 and e∗ is absent, then the star

B(oi, 1) is not quite large enough to hold the infection long enough to overcome
the distance to oi+2. Hence, it becomes increasingly difficult for the infection to
travel from one star to the next in the same half-line, and consequently there is
extinction.

3.2 Proof of λc(G) = 0

We need to show that, for any λ > 0, the contact process with rate λ on G survives.
By (1.2), it is sufficient to show this for λ ∈ (0, 1 ∧ λ0), where λ0 is as in Lemma 2.3.

Fix λ ∈ (0, λ0). As explained in the Introduction, it is enough to show that there exists
a finite set A ⊂ V such that (1.4) is strictly less than 1. Assume i ∈ N is large enough
that

deg(oi) = di + 2 > i · |oi − oi+1| = i · distG(oi, oi+1) >
7

c

1

λ2
log

(
1

λ

)
· distG(oi, oi+1),

where c is coming from Lemma 2.2. Then, by Lemma 2.3,

if A ⊆ V, |A ∩B(oi, 1)|
λ|B(oi, 1)|

>
1

16e
, then PλG

(
∃t : |ξ

A
t ∩B(oi+1, 1)|
λ · |B(oi+1, 1)|

>
1

16e

)
> 1− 2e−cλ

2di .

The desired result now follows from (3.2), the Strong Markov Property and a union
bound.

3.3 Proof of λc(G−), λc(G+) ≥ 1
4

We will only carry out the proof of λc(G+) ≥ 1
4 ; the proof for G− is similar. As

explained in the Introduction, it is sufficient to show that, in the contact process on G+

with rate

λ =
1

4
(3.3)

and started with a single infection located at vertex 1, the infection almost surely
disappears, i.e.

PλG+

(
ξ1t 6= ∅ ∀t

)
= 0. (3.4)

Define the sets of vertices

Sj = {oj , xj1, . . . , x
j
dj
}, j ∈ {2, 4, . . .}

H0 = {1},
Hj = (oj , oj+2) ∩Z, j ∈ {2, 4, . . .},

Gi = H0 ∪

 i/2⋃
j=1

(S2j ∪H2j)

 , i ∈ {2, 4, . . .}.

We will abuse notation and refer to the above sets as subgraphs of G+; for instance,
H2 will be the subgraph with vertex set defined above and set of edges having both
extremities in this vertex set.

We now fix an arbitrary i ∈ 2N. Define

τ = exp

{
i

2
(d2 + d4 + · · ·+ di)

}
. (3.5)

We have

PλG+

(
ξ1t 6= ∅ ∀t

)
≤ PλG+

(
ξ1τ 6= ∅

)
≤ PλG+

(
ξ1τ 6= ∅, ξ1t ⊆ Gi ∀t ≤ τ

)
+PλG+

(
ξ1τ 6= ∅, ξ1t * Gi for some t ≤ τ

)
≤ PλGi

(
ξGiτ 6= ∅

)
+PλG+

({oi} × [0, τ ]↔ {oi+2} × [0, τ ]) . (3.6)
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We bound the two terms on (3.6) separately, starting with the second:

PλG+
({oi} × [0, τ ]↔ {oi+2} × [0, τ ])

= PλHi∪{oi,oi+2} ({oi} × [0, τ ]↔ {oi+2} × [0, τ ])

(2.6)
≤ (τ + 1) · (2λ)dist(oi,oi+2)

(3.1),(3.3),(3.5)
≤ 2 exp

{
i(d2 + d4 + · · ·+ di)

(
1

2
− log(2)

)}
< exp {−di} (3.7)

if i is large enough.
We now turn to the first term in (3.6). First define

t1 = 3 log

(
1

λ

)
, L = i log(dist(oi, oi+2)) = i log (i(d2 + d4 + · · ·+ di)) . (3.8)

We will assume that i is large enough (depending on λ) so that L > t1. Using the Markov
property and (1.2), we have

PλGi
(
ξGiτ 6= ∅

)
≤ PλGi

(
ξGiL 6= ∅

)bτ/Lc
. (3.9)

We then bound

PλGi

(
ξGiL = ∅

)
≥

i/2∏
j=1

PλGi

(
ξ
S2j

t ⊆ S2j ∀t, ξ
S2j

t1 = ∅
)
·
i/2∏
j=0

PλGi

(
ξ
H2j

t ⊆ H2j ∀t, ξ
H2j

L = ∅
)
.

(3.10)

Now, for all j ≤ i/2,

PλGi

(
ξ
H2j

t ⊆ H2j ∀t, ξ
H2j

L = ∅
)
≥ PλGi

(
ξ
H2j

t ⊆ H2j ∀t
)
−PλH2j

(
ξ
H2j

L 6= ∅
)

(2.1),(2.5)
≥ 1

2
− |H2j |2 · e−L/4

(3.8)
=

1

2
− (dist(oi, oi+2))

2−i/4 ≥ 1

4
(3.11)

if i is large enough. Again for all j ≤ i/2, we have

PλGi

(
ξ
S2j

t ⊆ S2j ∀t, ξ
S2j

t1 = ∅
)

≥ PλS2j

(
ξ
S2j

t1 = ∅
)
·PλGi

((
D{o2j ,o2j−1} ∪D{o2j ,o2j+1}

)
∩ [0, t1] = ∅

)
(2.4)
≥ 1

4
exp

{
−16λ2|S2j |

}
· exp {−2λt1}

(3.8)
≥ λ6λ

4
exp

{
−17λ2d2j

}
. (3.12)

Using (3.11) and (3.12) in (3.10), we get

PλGi

(
ξGiL = ∅

)
≥
(
λ6λ

16

) i
2+1

· exp
{
−17λ2(d2 + d4 + · · ·+ di)

}
(3.2)
≥ exp

{
−18λ2(d2 + d4 + · · ·+ di)

}
if i is large enough; using this in (3.9), we get

PλGi
(
ξGiτ 6= ∅

)
≤ exp

{
− exp

{
−18λ2(d2 + d4 + · · ·+ di)

}
·
exp

{
i
2 (d2 + d4 + · · ·+ di)

}
i log (i(d2 + d4 + · · ·+ di))

}
< exp{−di} (3.13)

if i is large enough.
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We can conclude using (3.7) and (3.13) in (3.6) that PλG+

(
ξ1t 6= ∅ ∀t

)
< 2 exp{−di}

for all i, so (3.4) follows.
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