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Abstract. It is well known that the behaviour of a branching process is com-
pletely described by the generating function of the offspring law and its fixed
points. Branching random walks are a natural generalization of branching
processes: a branching process can be seen as a one-dimensional branching
random walk. We define a multidimensional generating function associated
to a given branching random walk. The present paper investigates the sim-
ilarities and the differences of the generating functions, their fixed points
and the implications on the underlying stochastic process, between the one-
dimensional (branching process) and the multidimensional case (branching
random walk). In particular, we show that the generating function of a branch-
ing random walk can have uncountably many fixed points and a fixed point
may not be an extinction probability, even in the irreducible case (extinc-
tion probabilities are always fixed points). Moreover, the generating func-
tion might not be a convex function. We also study how the behaviour of a
branching random walk is affected by local modifications of the process. As
a corollary, we describe a general procedure with which we can modify a
continuous-time branching random walk which has a weak phase and turn it
into a continuous-time branching random walk which has strong local sur-
vival for large or small values of the parameter and non-strong local survival
for intermediate values of the parameter.

1 Introduction

A branching process, or Galton–Watson process (see Galton and Watson (1875)),
is a process where a particle dies and gives birth to a random number of offspring,
according to a given offspring law ρ (ρ(n) being the probability of having exactly
n children). Different particles breed independently, all according to ρ. Unless
ρ(0) = 0, it is not completely trivial to tell whether the process survives (with pos-
itive probability) or it goes extinct (almost surely). This question can be answered
by looking at the fixed points of the generating function H(z) = ∑∞

n=0 ρ(n)zn,
which is defined for z ∈ [0,1]. There is almost sure extinction if and only if H

has only the fixed point z = 1. If there are two fixed points, namely z = 1 and
z = q̄ ∈ (0,1), then there is extinction with probability q̄ and survival with prob-
ability 1 − q̄ . If we require that ρ(1) < 1 then the generating function H , being
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monotone and convex, has at most two fixed points, so this description settles all
the possibilities for the branching process.

A branching random walk (BRW hereafter) is a process where particles are
described by their location x ∈ X, where X is an at most countable set (X is usually
interpreted as a spatial variable, but can also be seen as a “type”, see, for instance,
Kurtz et al. (1997)). Particles at site x ∈ X are replaced by a random number of
children, which are placed at various locations on X. This class of processes (in
continuous and discrete time) has been studied by many authors (see Athreya and
Ney (1972); Biggins (1977); Harris (1963); Liggett (1996); Machado et al. (2001);
Machado, Popov and Yu (2000, 2003); Madras and Schinazi (1992); Mountford
and Schinazi (2005) just to mention a few); a survey on the subject can be found in
Bertacchi and Zucca (2012). Note that, in the case of the branching random walk,
there is no upper bound for the number of particles per site. When such an upper
bound is fixed, say at most m particles per site, we get the m-type contact process.
The branching random walk can be obtained as the limiting process as m goes to
infinity (Bertacchi and Zucca (2009b, 2015); Zucca (2011)).

The behaviour of a BRW is in general more complex than the one of a branching
process: if we start with one particle at a given site x, only one of the following
holds for the BRW: (1) it goes almost surely extinct, (2) it survives globally but not
locally, (3) it survives globally and locally but with different probabilities (non-
strong local survival), (4) it survives globally and locally with equal probability
(strong local survival). We stress that there is no strong local survival when either
there is non-strong local survival or almost sure local extinction.

Again, some answers can be obtained through the study of the multidimen-
sional generating function G, defined on [0,1]X , associated to the process. It is
easy to note that all the extinction probabilities are fixed points of G, therefore if
one proves that there is only one fixed point then there is almost sure extinction
(the vector 1, defined as 1(x) := 1 for all x ∈ X, is always a fixed point). If there
are at least two fixed points, then there is global survival starting from some ver-
tices and the extinction probability starting from x coincides with q̄(x), where q̄ is
the smallest fixed point (see Bertacchi and Zucca (2009a), Corollary 2.2 and Sec-
tion 3). For a long time, it has been believed (see Spataru (1989), Theorem 3) that,
in the irreducible case, no more than two fixed points were possible. This was dis-
proved in Bertacchi and Zucca (2014), even though it remains true for irreducible
BRWs on finite sets (see also Bertacchi and Zucca (2014), Corollary 3.1). In this
framework, two questions naturally arise: how many fixed points can the generat-
ing function of an irreducible BRW have? At least in the irreducible case, are all
fixed points also extinction probabilities? Section 3 provides a negative answer to
these questions: Examples 3.5 and 3.6 are a reducible and an irreducible BRWs
respectively, where there are only two extinction probabilities but the set of fixed
points is uncountable. We also show that the topological properties of the multidi-
mensional G are different from the one-dimensional case: G may not be convex
(Example 3.2). Moreover, the set UG := {z ∈ [0,1]X:G(z) ≤ z} is not necessarily
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convex and its extremal points may be neither fixed points nor extremal points of
[0,1]X (Examples 3.3 and 3.4).

Since extinction probabilities are fixed points of G, it is clear that if we know
that G has only two fixed points and that the BRW survives locally, then there is
strong local survival. Conversely, if there is non-strong local survival, then there
must be at least three fixed points. Somehow related is the question of what hap-
pens if we modify locally (that is, on a fixed A ⊆ X) a given BRW: for instance, if
the original BRW has no strong local survival, what can be said about the modified
BRW? Theorem 4.2 shows that there is global survival and no strong local survival
in A in the original BRW if and only if there is global survival and no strong local
survival in A in the modified BRW (regardless of the modifications that have been
introduced in A). As a corollary, we get that if the original BRW dies out locally in
A and the modified BRW survives globally, then almost sure global extinction for
the original one is equivalent to strong local survival in A for the modified BRW
(Corollary 4.3). Moreover, for a fixed irreducible BRW, if there is global survival
and no strong local survival in some A ⊆ X then there is global survival and no
strong local survival in all finite B ⊆ X.

From these results in discrete time, we are able to prove that, in continuous
time, a modification of the BRW in a finite subset A, which lowers the weak criti-
cal parameter (something that can usually be achieved by adding a sufficiently fast
reproduction rate at some site), implies that the weak and strong parameter of the
modified BRW coincide. This allows us to describe a general method to produce
examples such as Example 4.5, where the modified BRW has strong local survival
for some values of the parameter below a threshold and above another threshold,
but non-strong local survival for intermediate values of the parameter (Figures 4
and 5). This example was originally described in Bertacchi and Zucca (2014) but
appears here with an easier proof and in a more general framework. Moreover, we
prove that in general, a continuous-time BRW which is obtained by a local mod-
ification of another BRW, lowering its weak critical parameter, dies out globally
at the weak critical parameter (which is not always true, see Bertacchi and Zucca
(2009a), Example 3).

Here is the outline of the paper: in Section 2, we introduce the terminology,
describe the most common types of BRWs and their features and define the multi-
dimensional generating function associated to a BRW. Section 3 is devoted to the
questions about the generating function, its fixed points and the extinction proba-
bilities. In Section 4, we address the problem of the possible behaviour of modified
BRWs. Section 5 contains the proofs of the results and the detailed computations
for the examples.

2 Basic definitions and preliminaries

The most general example of a BRW lives in discrete time and it can be constructed
easily as a process {ηn}n∈N on a set X which is at most countable, where ηn(x)
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is the number of particles alive at x ∈ X at time n. The dynamics is described as
follows: consider the (countable) measurable space (SX,2SX) where SX := {f :
X → N:

∑
y f (y) < ∞} and let μ = {μx}x∈X be a family of probability measures

on (SX,2SX). A particle of generation n at site x ∈ X lives one unit of time; after
that, a function f ∈ SX is chosen at random according to the law μx . This function
describes the number of children and their positions, that is, the original particle
is replaced by f (y) particles at y, for all y ∈ X. The choice of f is independent
for all breeding particles. The BRW is denoted by (X,μ). The total number of
children associated to f is represented by the function H : SX → N defined by
H(f ) := ∑

y∈X f (y); the associated law ρx(·) := μx(H−1(·)) is the law of the
random number of children of a particle living at x.

Some results rely on the first-moment matrix M = (mxy)x,y∈X , where each entry
mxy := ∑

f ∈SX
f (y)μx(f ) represents the expected number of children that a par-

ticle living at x sends to y (briefly, the expected number of particles from x to y).
For the sake of simplicity, we require that supx∈X

∑
y∈X mxy < +∞. We denote

by ρ̄x := ∑
n≥0 nρx(n) ≡ ∑

y∈X mxy , which is the expected number of children of
a particle living at x. Given a function f defined on X we denote by Mf the func-
tion Mf (x) := ∑

y∈X mxyf (y) whenever the right-hand side converges absolutely
for all x.

If we observe the process at times i · n (i ∈ N), we obtain a new BRW whose
first-moment matrix is the nth power matrix Mn with entries m

(n)
xy . We define

Ms(x, y) := lim sup
n→∞

n
√

m
(n)
xy ,

(2.1)
Mw(x) := lim inf

n→∞ n

√∑
y∈X

m
(n)
xy ∀x, y ∈ X;

see Bertacchi and Zucca (2008, 2009a) for some explicit computations and Zucca
(2011), Section 3.2, for the relation between Ms(x, x) and some generating func-
tions.

It is important to note that, for a generic BRW, the locations of the offsprings
are not chosen independently but they are assigned by the chosen function f ∈ SX .
We denote by P the diffusion matrix with entries p(x, y) = mxy/ρ̄x . In particu-
lar, if ρ̄x does not depend on x ∈ X, we have that Mw(x) = ρ̄ for all x ∈ X and

Ms(x, y) = ρ̄ · lim supn→∞ n

√
p(n)(x, y) (where the lim sup defines the spectral ra-

dius of P according to Woess (2000), Chapter I, Section 1.B). When the offsprings
are dispersed independently, they are placed according to P and the process is
called BRW with independent diffusion: in this case

μx(f ) = ρx

(∑
y

f (y)

)
(
∑

y f (y))!∏
y f (y)!

∏
y

p(x, y)f (y) ∀f ∈ SX. (2.2)

To a generic discrete-time BRW, we associate a graph (X,Eμ) where (x, y) ∈
Eμ if and only if mxy > 0. We say that there is a path from x to y, and we write
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x → y, if it is possible to find a finite sequence {xi}ni=0 (where n ∈ N) such that
x0 = x, xn = y and (xi, xi+1) ∈ Eμ for all i = 0, . . . , n − 1 (observe that there
is always a path of length 0 from x to itself). Whenever x → y and y → x we
write x � y. The equivalence relation � induces a partition of X: the class [x]
of x is called irreducible class of x. It is easy to show that if x � x′ and y � y′
then Ms(x, y) = Ms(x

′, y′) and Mw(x) = Mw(x′). Moreover, m
(n)
xx and Ms(x, x)

depend only on the entries (mww′)w,w′∈[x]. If the graph (X,Eμ) is connected (that
is, there is only one irreducible class), then we say that the first-moment matrix M

is irreducible, otherwise we call it reducible; the same notation applies to the BRW.
The irreducibility of M implies that the progeny of any particle can spread to any
site of the graph. For an irreducible BRW, Ms(x, y) = Ms and Mw(x) = Mw for
all x, y ∈ X.

We consider initial configurations with only one particle placed at a fixed site
x and we denote by Pδx the law of the corresponding process. The evolution of
the process with more complex initial conditions can be obtained by superimposi-
tion. In the following, wpp is shorthand for “with positive probability” (although,
when talking about survival, “wpp” will be usually tacitly understood). In order to
avoid trivial situations where particles have one offspring almost surely, we assume
henceforth the following.

Assumption 2.1. For all x ∈ X there is a vertex y � x such that μy(f :∑
w:w�y f (w) = 1) < 1, that is, in every equivalence class (with respect to �)

there is at least one vertex where a particle can have inside the class a number of
children different from 1 wpp.

We now distinguish between the possible behaviours of a BRW.

Definition 2.2.

1. The process survives locally wpp in A ⊆ X starting from x ∈ X if q(x,A) :=
1 − Pδx (lim supn→∞

∑
y∈A ηn(y) > 0) < 1.

2. The process survives globally wpp starting from x if q̄(x) := q(x,X) < 1.
3. There is strong local survival wpp in A ⊆ X starting from x ∈ X if q(x,A) =

q̄(x) < 1 and non-strong local survival wpp in A if q̄(x) < q(x,A) < 1.
4. The BRW is in a pure global survival phase starting from x if q̄(x) < q(x, x) =

1 (where we write q(x, y) instead of q(x, {y}) for all x, y ∈ X).

According to the previous definition, the probabilities of extinction in A start-
ing from x are denoted by q(x,A), which depend on μ. When we need to stress
this dependence, we write qμ(x,A). When x = y, we will simply say that local
survival occurs “starting from x” or “at x”. When there is no survival wpp, we say
that there is extinction and the fact that extinction occurs almost surely will be tac-
itly understood. There are many relations between q̄(x) and q(x, y) and between
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q(w,x) and q(w,y) where x, y,w ∈ X (see, for instance, Section 3 or Bertacchi
and Zucca (2012); Zucca (2011)).

Roughly speaking, strong local survival means that for almost all realizations
the process either survives locally (hence globally) or it goes globally extinct. More
precisely, there is strong survival at y starting from x if and only if the probability
of local survival at y starting from x conditioned on global survival starting from
x is 1.

We want to stress that q̄(x) = q(x,A) if and only if global survival from x is
equivalent to strong local survival at A from x. On the other hand, q̄(x) < q(x,A)

if and only if there is global survival and no strong local survival at A from x

(that is, either local extinction at A or non-strong local survival at A). Recall that
no strong local survival in A from x means that either there is non-strong local
survival in A from x or there is local extinction in A from x.

2.1 Continuous-time branching random walks

In continuous time, each particle has an exponentially distributed random lifetime
with parameter 1 (death occurs at rate 1). During its lifetime each particle alive at x

breeds into y according to the arrival times of its own Poisson process with param-
eter λkxy (representing the reproduction rate), where λ > 0 and K = (kxy)x,y∈X is
a nonnegative matrix. We denote by (X,K) the family of continuous-time BRWs
(depending on λ > 0). It is not difficult to see that the introduction of a nonconstant
death rate {d(x)}x∈X does not represent a significant generalization. Indeed, one
can study a new BRW with death rate 1 and reproduction rates {λkxy/d(x)}x,y∈X;
the two processes have the same behaviours in terms of survival and extinction
(Bertacchi and Zucca (2014), Remark 2.1).

To show that the class of continuous-time BRWs is “contained” into the class of
discrete-time BRWs, we associate to a continuous-time BRW a discrete-time coun-
terpart which takes into account all the offsprings of a particle before it dies. Thus,
all results in discrete time concerning the probabilities of survival (local, strong
local and global) extend smoothly to the continuous time setting. Conversely, each
example in continuous-time induces an analogous example in discrete-time (just
by using the discrete-time counterpart). In particular, by definition, a continuous-
time BRW has some property if and only if its discrete-time counterpart has it. It
is easy to show that μx satisfies equation (2.2), where

ρx(i) = 1

1 + λk(x)

(
λk(x)

1 + λk(x)

)i

,

(2.3)

p(x, y) = kxy

k(x)
, k(x) := ∑

y∈X

kxy.

Clearly the discrete-time counterpart is a BRW with independent diffusion satis-
fying Assumption 2.1. Moreover, mxy = λkxy and ρ̄x = λk(x).
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Given x ∈ X, two critical parameters are associated to the continuous-time
BRW: the global survival critical parameter λw(x) and the local survival criti-
cal parameter λs(x) defined as

λw(x) := inf
{
λ > 0:Pδx

( ∑
w∈X

ηt (w) > 0,∀t

)
> 0

}
,

λs(x) := inf
{
λ > 0:Pδx

(
lim sup
t→∞

ηt (x) > 0
)

> 0
}
.

These values depend only on the irreducible class of x; in particular they are con-
stant if the BRW is irreducible. The process is called globally supercritical, critical
or subcritical if λ > λw , λ = λw or λ < λw; an analogous definition is given for
the local behaviour using λs instead of λw . Everytime the interval (λw(x), λs(x))

is not empty we say that there exists a pure global survival phase starting from x.
No reasonable definition of a strong local survival critical parameter is possible
(see Bertacchi and Zucca (2014)).

Given a continuous-time BRW (X,K), for all x, y ∈ X, we define

Ks(x, y) := Ms(x, y)

λ
≡ lim sup

n→∞
n
√

k
(n)
xy ,

Kw(x) := Mw(x)

λ
≡ lim inf

n→∞ n

√∑
y∈X

k
(n)
xy ,

where Ms(x, y) and Mw(x) are the corresponding parameters of the discrete-time
counterpart. Ks(x, y) and Kw(x) depend only on the equivalence classes of x and
y, hence if the BRW is irreducible, then they do not depend on x, y ∈ X.

Among continuous-time BRWs, two classes are worth mentioning: site-
breeding BRWs (where k(x) does not depend on x ∈ X) and edge-breeding BRWs
(where kxy ∈ N, typically in a multigraph this is the number of edges from x to y).

2.2 Infinite-dimensional generating function

To the family {μx}x∈X , we associate a generating function G : [0,1]X → [0,1]X ,
which can be considered as an infinite dimensional power series. More precisely,
for all z ∈ [0,1]X , G(z) ∈ [0,1]X is defined as the following weighted sum of
(finite) products

G(z|x) := ∑
f ∈SX

μx(f )
∏
y∈X

z(y)f (y),

where G(z|x) is the x coordinate of G(z). Note that if we have a realization
{ηn}n∈N of the BRW then G(z|x) = E[∏y∈X z(y)η1(y)|η0 = δx].

The family {μx}x∈X is uniquely determined by G. Indeed, fix a finite X0 ⊆ X

and x ∈ X. For every z with support in X0, we have G(z|x) = ∑
f ∈SX0

μx(f ) ×∏
y∈X0

z(y)f (y) which can be identified with a power series with several vari-
ables (defined on [0,1]X0 ). Suppose that we have another generating function
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G (associated to {μx}x∈X) such that G = G. In particular, G(z|x) = G(z|x)

for every z with support in X0. Thus μx(f ) = μx(f ) for all f ∈ SX0 . Since
SX = ⋃

{X0⊆X:X0 finite} SX0 we have that μx(f ) = μx(f ) for all f ∈ SX .
Note that G is continuous with respect to the pointwise convergence topology

of [0,1]X and nondecreasing with respect to the usual partial order of [0,1]X (see
Bertacchi and Zucca (2009a), Sections 2 and 3, for further details); everytime we
say that an element of [0,1]X is the smallest (resp. largest) among a set of points
A, we are also implying that it is comparable with every element of the specific
set A. We stress that z < w means z(x) ≤ w(x) for all x ∈ X and z(x0) < w(x0) for
some x0 ∈ X. Moreover, G represents the 1-step reproductions; we denote by G(n)

the generating function associated to the n-step reproductions, which is inductively
defined as G(n+1)(z) = G(n)(G(z)), where G(0) is the identity. Extinction proba-
bilities are fixed points of G and the smallest fixed point is q̄ (see Section 3 for
details): more generally, given a solution of G(z) ≤ z then z ≥ q̄.

When (X,μ) is a BRW with independent diffusion, we can compute explic-
itly G: indeed G(z|x) = ∑

n∈N ρx(n)(P z(x))n where P z(x) = ∑
y∈X p(x, y)z(y).

If, in particular, ρx(n) = 1
1+ρ̄x

(
ρ̄x

1+ρ̄x
)n (as in the discrete-time counterpart of a

continuous-time BRW) then the previous expression becomes G(z|x) = (1 +
ρ̄xP (1 − z)(x))−1 or, in a more compact way,

G(z) = 1
1 + M(1 − z)

, (2.4)

where M is the first-moment matrix and Mv(x) = ρ̄xP v(x) (by definition of P ).

2.3 Projection of BRWs

We introduce the concept of projection of a BRW onto another one (see also
Bertacchi and Zucca (2012, 2014) where this property is called local isomor-
phism).

Definition 2.3. A BRW (X,μ) is projected onto a BRW (Y, ν) if there exists a
surjective map g : X → Y such that νg(x)(·) = μx(π

−1
g (·)), where πg : SX → SY

is defined as πg(f )(y) = ∑
z∈g−1(y) f (z) for all f ∈ SX , y ∈ Y .

Clearly, if (X,μ) is projected onto (Y, ν) then, for all z ∈ [0,1]Y and x ∈ X,

GX(z ◦ g|x) = GY

(
z|g(x)

)
. (2.5)

Since μ is uniquely determined by G, equation (2.5) holds if and only if (X,μ) is
projected onto (Y, ν) and g is the map in Definition 2.3. The rough idea behind this
definition is to assign to every x ∈ X a label (g(x) drawn from Y ) in such a way
that, if {ηn}n∈N is a realization of the BRW (X,μ) then the sum of the particles
over all vertices with the same label, that is {πg(ηn)}n∈N, is a realization of the
BRW (Y, ν).
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Note that equation (2.5) can be written as GX(z ◦ g) = GY (z) ◦ g hence
G

(n)
X (z ◦ g) = G

(n)
Y (z) ◦ g for all n ∈ N. As a consequence, for the global extinc-

tion probabilities of these BRWs, we have q̄X = q̄Y ◦ g; indeed 0X = 0Y ◦ g, thus
q̄X = limn→∞ G

(n)
X (0X) = limn→∞ G

(n)
Y (0Y ) ◦ g = q̄Y ◦ g.

A BRW which can be projected onto a BRW defined on a finite set, is called F -
BRW (see Bertacchi and Zucca (2014), Section 2.4). To give an explicit example,
consider a BRW with independent diffusion on a tree with two alternating degrees:
this can be projected onto a BRW on a set of cardinality 2. Other examples are qua-
sitransitive BRWs (see Bertacchi and Zucca (2014), Section 2.4, for the formal def-
inition) where the action of the group of automorphisms (bijective maps preserving
the reproduction laws) has a finite number of orbits. There are non-quasitransitive
BRWs which are F -BRWs (see Bertacchi and Zucca (2014), Figure 1). More
generally, let us define the map �g : [0,1]Y → [0,1]X by �g(z) = z ◦ g; then
�g(FGY

) ⊆ FGX
, indeed, using equation (2.5), Gx(�g(z)|x) = GX(z ◦ g|x) =

GY (z|g(x)) = z(g(x)) = �g(z)(x). In particular, the set FGX
is closed under the

action of all maps �g for every projection g of (X,μ) onto itself. Moreover, it is
easy to show that qX(·, g−1(A)) = �(qY (·,A)) for all A ⊆ X.

Another example, is the case of BRWs where the laws of the offspring number
ρx = ρ is independent of x ∈ X; we call them Branching Process-like BRWs (or
BP-like BRWs). In this case, the BRW can be projected onto a BRW defined on a
singleton Y := {y}, where the law of the number of children of each particle is ρ

and g(x) := y for all x ∈ X (and this last BRW is actually a branching process). It
is worth noting that in this case Assumption 2.1 is simply ρ(1) < 1. This kind of
BRWs has been studied in Bertacchi and Zucca (2012, 2014) where they are called
locally isomorphic to a branching process. By using the equality q̄X = q̄Y ◦ g, we
have that q̄ is a constant vector c · 1, where c is the smallest fixed point of the
function z �→ ∑∞

i=0 ρ(z)zi .

2.4 Conditions for survival/extinction

We summarize here some conditions for survival and extinction in discrete and
continuous time that we need in the rest of the paper. For the proofs and further
results, we refer for instance, to Bertacchi and Zucca (2008, 2009a, 2012); Zucca
(2011).

Theorem 2.4. Let (X,μ) be a discrete-time BRW.

1. There is local survival starting from x if and only if Ms(x, x) > 1.
2. There is global survival starting from x if and only if there exists z ∈ [0,1]X ,

z(x) < 1 such that G(z|y) = z(y), for all y ∈ X (equivalently, such that
G(z|y) ≤ z(y), for all y ∈ X).

3. If (X,μ) is an F -BRW, then there is global survival starting from x if and only
if Mw(x) > 1.
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Local survival depends only on the first-moment matrix while global survival,
except for particular classes as explained in Bertacchi and Zucca (2014), Sec-
tion 3.1, does not. Moreover, each solution z of the inequality in Theorem 2.4(2)
satisfies z ≥ q̄, since the latter is the smallest among such solutions.

For a BRW with independent diffusion, from equation (2.4) and Theorem 2.4(2)
we have that there is global survival starting from x, if and only if there exists
v ∈ [0,1]X , v(x) > 0 such that

Mv ≥ v/(1 − v)
(
equivalently,Mv = v/(1 − v)

)
. (2.6)

Remember that, for a continuous-time BRW, M = λK . As before, each solution v
of the previous inequality satisfies v ≥ 1 − q̄, since the latter is the largest among
such solutions. In the continuous-time case however, global and local survival are
related to the critical values λw(x) and λs(x) so it is useful to be able to give some
estimates.

Theorem 2.5. Let (X,K) be a continuous-time BRW.

1. λs(x) = 1/Ks(x, x) and if λ = λs(x) then there is local extinction at x.
2. λw(x) ≥ 1/Kw(x).
3. If (X,K) is an F -BRWs then λw(x) = 1/Kw(x) and when λ = λw(x) there is

global extinction starting from x.

More conditions can be found for instance, in Bertacchi and Zucca (2008,
2009a, 2012). In particular, λw admits a characterization, in the spirit of equa-
tion (2.6), in terms of a system of functional inequalities (see Bertacchi and Zucca
(2009a), Theorem 4.2). Even if there can be global survival when λ = λw (see
Bertacchi and Zucca (2009a), Example 3), this is not true for a continuous-time
F -BRW. Indeed, in this case, λw(x) = 1/Ks(x, x) and there is always global ex-
tinction starting from x when λ = λw(x) (see Bertacchi and Zucca (2009a), Theo-
rems 4.7 and 4.8).

So far all results describe conditions for extinction versus survival, that is,
q(x,A) = 1 versus q(x,A) < 1. One could also investigate whether q̄(x) =
q(x,A) < 1 or q̄(x) < q(x,A) < 1; to put it another way, what is the probabil-
ity of local survival conditioned to global survival? Studying strong local survival
is more complicated than working on local or global survival. Many properties
which can be easily proven when studying local/global behaviour, do not hold
for the strong local one. For instance, as we already observed, even the irreducible
case, it is not possible give a reasonable definition of a critical parameter for strong
local survival as we did for local and global survival. Moreover, in the irreducible
case, local and global behaviours do not depend on the starting vertex (or, more
generally, on the starting configuration as long as it is finite) but this is not true for
strong local behaviour unless ρx(0) > 0 for all x ∈ X (see Remark 3.1 below and
Bertacchi and Zucca (2014), Example 4.3).
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Some conditions for strong local survival are achieved by using a generating
function approach (see Bertacchi and Zucca (2014), Section 3.2, in particular The-
orem 3.4 and Corollaries 3.1 and 3.2) and they are briefly discussed in Section 3.
Among other results available in the literature, it is worth mentioning a characteri-
zation of strong local survival originally proven in Menshikov and Volkov (1997),
Theorem 2.1, and extended to a generic irreducible BRW in Bertacchi and Zucca
(2014), Theorem 3.5. Results on strong local survival for BRWs in random envi-
ronment can be found, for instance, in Gantert et al. (2010).

3 Fixed points and extinction probabilities

Define qn(x,A) as the probability of extinction in A no later than the nth gener-
ation starting with one particle at x, namely qn(x,A) = Pδx (ηk(y) = 0, ∀k ≥ n,
∀y ∈ A). The sequence {qn(x,A)}n∈N is nondecreasing and satisfies{

qn(·,A) = G
(
qn−1(·,A)

) ∀n ≥ 1,
q0(x,A) = 0 ∀x ∈ A.

(3.1)

Moreover, qn(x,A) converges to q(x,A), which is the probability of local extinc-
tion in A starting with one particle at x (see Definition 2.2). Since G is continuous
we have that q(·,A) = G(q(·,A)), hence these extinction probabilities are fixed
points of G, that is, elements of FG := {z ∈ [0,1]X:G(z) = z}.

Note that q(·,∅) = 1. Since q̄ = limn→∞ G(n)(0) we have that q̄ is the smallest
fixed point of G in [0,1]X (see Bertacchi and Zucca (2009a), Corollary 2.2); we
stress here that q̄ is not only the smallest extinction probability vector, but the
smallest among all fixed points; hence q̄ = 1 if and only if FG is a singleton.
Using the same arguments, one can prove that q̄ is the smallest fixed point of G(m)

for all m ∈ N.
A meaningful consequence of the convergence qn(x,A) ↑ q(x,A) is that,

whenever q(x,A) < 1, the probability of survival conditioned on surviving at A

up to a time larger than or equal to n converges to 1, that is, (1 − q(x,A))/(1 −
qn(x,A)) ↑ 1. In the case A = X, “surviving up to a time larger than or equal to n”
is equivalent to “surviving up to time n”; thus, given that the population survived
globally up to a sufficiently large (but finite) time n then the conditional probability
of survival is arbitrarily close to 1.

Note that A ⊆ B ⊆ X implies q(·,A) ≥ q(·,B) ≥ q̄. From this we can derive
trivial implications between local survival or extinction in A and B . In particular,
strong local survival in A from x implies strong local survival in B from x; more-
over, non-strong local survival in B from x implies either non-strong local survival
in A from x or local extinction in A from x.

Since for all finite A ⊆ X we have q(x,A) ≥ 1 − ∑
y∈A(1 − q(x, y)) then, for

any given finite A ⊆ X, q(x,A) = 1 if and only if q(x, y) = 1 for all y ∈ A.
If x → x′ and A ⊆ X, then q(x′,A) < 1 implies q(x,A) < 1; as a consequence,

if x � x′ then q(x,A) < 1 if and only if q(x′,A) < 1. Moreover if y � y′ we
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have q(x, y) = q(x, y′) for all x ∈ X. The main properties in the irreducible case
are summarized in the following remark.

Remark 3.1. In the irreducible case, for every x ∈ X and A ⊆ X finite and
nonempty, we have q(x,A) = q(x, x). Thus, q(x,A) = q(x,B) for every couple
A, B of finite, nonempty subsets of X.

If, in addition, ρx(0) > 0 for all x ∈ X, we have that if q̄(x) = q(x,A) for some
x ∈ X and a finite subset A ⊆ X then q̄(y) = q(y,B) for all y ∈ X and all (finite
or infinite) subsets B ⊆ X (hence, strong local survival is a common property of
all subsets and all starting vertices, see Theorem 4.2). Clearly, this may not be true
in the reducible case. Besides, if we drop the assumption ρx(0) > 0 for all x ∈ X,
we might actually have q̄(x) = q(x,A) < 1 and q̄(y) < q(y,A) for some x, y ∈ X

and a finite A ⊆ X even when the BRW is irreducible (see Bertacchi and Zucca
(2014), Example 4.3). Hence, in general, even for irreducible BRWs, strong local
survival is not a common property of all vertices as local and global survival are.

As we recalled in the Introduction, the generating function G of a branching
process has at most two fixed points in [0,1], q̄ and 1. This is still true for BRWs
on finite sets X (see, for instance, Bertacchi and Zucca (2014), Corollary 3.1, or
the proof of Spataru (1989), Theorem 3, which is incorrect in the infinite case, but
correct in the finite one). Moreover, for a branching process, G is strictly convex
and UG is closed, compact and convex (recall that UG was defined in Section 1 as
{z ∈ [0,1]X:G(z) ≤ z}). Let us denote by EG the set of extinction probabilities:
EG := {q(·,A):A ⊆ X}. For a branching process, it is true that the extremal points
of UG are the fixed points q̄ and 1 (where q̄ may coincide with 1) and all fixed
points are extinction probabilities: in short, exp(UG) = FG and FG = EG.

Some of these properties still hold in the general case, others do not, even when
X is finite. It is clear that FG and UG are always closed and compact sets (with
respect to the product topology of [0,1]X), since they are closed subsets of the
compact topological space [0,1]X . We provide some counterexamples and con-
jectures on the other properties in the following sections.

3.1 Convexity of G and UG and extremal points

Given any w ≤ z ∈ [0,1]X it is true that t �→ G(w + t (z − w)) is convex, never-
theless G is not always a convex function, even when X is finite, as the following
example shows.

Example 3.2. Let X = {1,2} and μ1 = δ(1,1), μ2 = 1
2δ(0,0) + 1

2δ(1,0). Roughly
speaking, every particle at 1 has one child at 1 and one at 2 almost surely, while
every particle at 2 has one child at 1 with probability 1/2 and no children with
probability 1/2. The generating function is

G(x,y) =
(

xy

(1 + x)/2

)
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which is not convex. Nevertheless, UG = {(x, y) ∈ [0,1]2: 2y ≥ x + 1} is convex
and FG = {(0,1/2), (1,1)}. Clearly exp(UG) = FG ∪ {(0,1)}.

The following two examples show that not only UG is not necessarily convex,
but also its extremal points may not be elements of FG ∪ {0,1}X .

Example 3.3. Let X = {1,2} and consider

G(x,y) =
((

1 + 3y2)
/4(

1 + 3x2)
/4

)

which corresponds to the process where each particle has no children with proba-
bility 1/4 and 2 children on the other vertex with probability 3/4. In this case FG

contains two vertices on the bisector (one of them is (1,1) of course) while UG is
the intersection of (1 + 3y2)/4 ≤ x and (1 + 3x2)/4 ≤ y and the set of its extremal
points is the whole boundary.

Example 3.4. Take X := {1,2,3}, μ1 = δ(0,1,1), μ2 = δ(1,2,1) and μ3 = δ(1,1,0).
Roughly speaking every particle at j has two children: one in each point different
from j . The generating function is

G(x1, x2, x3) =
⎛
⎝x2x3

x1x3
x1x2

⎞
⎠ .

According to Bertacchi and Zucca (2012), Corollary 3.1, for a finite-dimensional,
irreducible BRW there are at most two solutions of G(z) ≥ z when z ≥ q̄, that is,
q̄ and 1 (in this case the vertices (1,1,1) and (0,0,0), which are the only fixed
points). It is easy to see that (1/2,1/2,1) and (1/2,1,1/2) are in UG. The line
connecting these points can be parametrized as z(t) := (1/2,1/2 + t/2,1 − t/2),
t ∈ [0,1] and z(t) /∈ UG for all t ∈ (0,1) (since G(z(t)) � z(t) for all t ∈ (0,1)).
Figures 1 and 2 show the shape of UG as seen from the top (vertex (1,1,1)) and
from the bottom (vertex (0,0,0)).

Figure 1 UG from the top. Figure 2 UG from the bottom.
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3.2 How many fixed points does G have?

If a BRW is reducible, then there can be an infinite (even uncountable) num-
ber of fixed points. Consider this completely disconnected BRW: let {ρx}x∈X be
an infinite collection of reproduction laws of supercritical branching processes,
define the expected number of children mx := ∑

n∈N nρx(n) > 1 and denote by
cx < 1 the extinction probability of the xth branching process. Clearly G(z|x) =∑

n∈N ρx(n)z(x)n and FG = ∏
x∈X{cx,1}, which is uncountable. Moreover, every

fixed point is an extinction probability, since for every z ∈ FG, z = q(·,A), where
A := {x ∈ X: z(x) < 1}.

Let us discuss the nontrivial case of an irreducible BRW. The generating func-
tion of an irreducible BRW has at most two fixed points, namely q̄ and 1, when X is
finite. Since EG ⊆ FG, in order to find examples where |FG| ≥ 3, it suffices to find
cases with |EG| ≥ 3. In particular, a BRW with non-strong local survival would do.
In Bertacchi and Zucca (2014), two such examples were provided: Bertacchi and
Zucca (2014), Examples 4.4 and 4.5, are irreducible BP-like BRWs with indepen-
dent diffusion and non-strong local survival, thus with three different extinction
probabilities.

It is worth mentioning that in the case of irreducible, quasitransitive BRWs,
{q̄,1} = EG (local survival starting from some x ∈ X implies strong local survival
starting from all x ∈ X). Thus |EG| = 2 for irreducible, quasitransitive BRWs. The
aforementioned examples in Bertacchi and Zucca (2014) show that {q̄,1} �= EG

(thus, non-strong local survival) is possible in the case of an irreducible F -BRW.
We recall that by Bertacchi and Zucca (2014), Theorem 3.4, for an F -BRW, every
fixed point z different from q̄ satisfies supx∈X z(x) = 1. In particular, if the BRW
is irreducible either q(x, x) = q̄(x) for all x ∈ X or supx∈X q(x, x) = 1.

These remarks do not settle the question of the possible cardinalities of FG,
even in the quasitransitive case, since, as we show in the following section, FG can
be much larger than EG. Indeed, Example 3.6 proves that, even for an F -BRW,
there may be an uncountable number of fixed points. It is an open question whether
this also holds for some irreducible, quasitransitive BRW: we conjecture that the
answer is positive (see Remark 3.7).

3.3 Is every fixed point an extinction probability?

The answer is negative. We start with a reducible example and then we move to an
irreducible example.

Example 3.5. Consider a BRW on N where every particle at n has two children
at n + 1 with probability p and no children with probability 1 − p (p > 1/2 to
make it supercritical). This is a BP-like BRW; easy computations (see Bertacchi
and Zucca (2013), Proposition 4.33) show that G(z|n) = pz(n + 1)2 + 1 − p and
q̄(x) = (1 − p)/p for every x ∈ N. Moreover, due to the right drift, q(·,A) = 1 if
A is finite and q(·,A) = q̄ if A is infinite. Every fixed point must satisfy q̄ ≤ z ≤ 1,
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Figure 3 The irreducible BRW of Example 3.6.

thus z(0) ∈ [(1 − p)/p,1]. Clearly if z(0) = (1 − p)/p (resp. z(0) = 1) we have
z = (1−p)/p ·1 (resp. z = 1). Fix (1−p)/p < z(0) < 1; the equation G(z) = z is
equivalent to the recursive relation z(n + 1) = √

(z(n) − (1 − p))/p. This defines
a unique sequence z which is a fixed point. Indeed (1 − p)/p < z(0) < 1 and, by
induction, if (1 − p)/p < z(n) < 1 then (1 − p)2/p2 < (z(n) − (1 − p))/p < 1,
thus (1 − p)/p < z(n + 1) < 1. Obviously, all fixed points can be obtained by
means of this procedure, hence the set FG is uncountable while there are just two
extinction probabilities.

Example 3.6. Consider the BRW on N where every particle at n has two children
at n + 1 with probability p − ε, one child at max(0, n − 1) with probability ε and
no children with probability 1 −p. We require that 2p − ε > 1 for global survival,
ε > 0 for irreducibility, p < 1/

√
2 and ε(p − ε) ≤ 1/8 for technical reasons (take

for instance, p = 2/3 and ε ≤ 2/9).
This is an irreducible BP-like BRW (see Figure 3); according to Theorem 2.4,

global and local survival depend on Mw and Ms . To compute these parame-
ters, we refer to Bertacchi and Zucca (2008, 2009a) and Bertacchi and Zucca
(2013), Section 4.6. In particular, Mw is the expected number of children 2p − ε.
Moreover, we have (see Bertacchi and Zucca (2013), Proposition 4.33) G(z|n) =
(p−ε)z(n+1)2 +εz(max(0, n−1))+1−p and q̄ = (1−p)/(p−ε) ·1. Besides,
since ε(p − ε) ≤ 1/8 we have local extinction, that is, Ms ≤ 1 (for all the details,
see Section 5). Hence for this BRW there is global survival but local extinction;
thus q(·,A) = 1 if A is finite and, since the BRW must drift to the right in order to
survive, q(·,A) = q̄ if A is infinite.

We prove (see Section 5) that the equation G(z) = z, which is equivalent to
the recursive equation z(n + 1) = h(z(n), z(max(0, n − 1))) where h(x, y) :=√

(x − yε − (1 − p))/(p − ε), defines a unique fixed point for every z(0) ∈ [(1 −
p)/(p − ε),1] (and every fixed point can be obtained this way). Thus, the set of
fixed points is uncountable but there are just two extinction probabilities.

We conjecture that the previous example extends to quasitransitive BRWs as the
following remark suggests.

Remark 3.7. Consider the BRW on Z where every particle at n has two children
at n + 1 with probability p − ε (such that 2p − ε > 1), one child at n − 1 with
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probability ε and no children with probability 1 − p: due to global survival, local
extinction and the right drift we have just two extinction probabilities, namely
q(·,A) = 1 if supA is finite and q(·,A) = q̄ if supA is infinite.

Suppose that p and ε satisfy the assumptions of Example 3.6; in order to find
an uncountable set of fixed points we can proceed as follows. Any fixed point z of
Example 3.6, outside q̄ and 1, is a strictly increasing sequence {z(n)}n∈N converg-
ing to 1. The function φn mapping z(0) to z(n) is continuous, strictly increasing
and maps (1−p)/(p−ε) and 1 into themselves; thus φn is an invertible map from
[(1 − p)/(p − ε),1] into itself. More precisely, φn can be obtained recursively as⎧⎨

⎩
φ0(x) := x,

φ1(x) := h(x, x),

φn+1(x) = h
(
φn(x),φn−1(x)

)
,

where h(x, y) := √
(x − yε − (1 − p))/(p − ε) as in Example 3.6. Moreover,

{φn(x)}n∈N is strictly increasing for all x ∈ ((1 − p)/(p − ε),1) and constant for
all x ∈ {(1 −p)/(p − ε),1}. Fix α ∈ ((1 −p)/(p − ε),1) and define z(n) ∈ [0,1]Z
as

z(n)(i) :=
{

φn+i

(
φ−1

n (α)
)

if i ≥ −n,
0 if i < −n.

This is a left-translation of the fixed points of the previous example such that
z(n)(0) = α for every n ∈ N. We conjecture that the sequence {z(n)}n∈N con-
verges (pointwise) to some z̃ ∈ ((1 − p)/(p − ε),1)Z; more precisely, we con-
jecture that {z(n)(i)}n∈N is strictly increasing (resp. decreasing) when i is pos-
itive (resp. negative). If this holds, due to the continuity of the map (x, y) �→
(p − ε)x2 + εy + 1 − p, then z̃(n) = (p − ε)z̃(n + 1)2 + εz̃(n − 1) + 1 − p for
every i ∈ Z; whence, z̃ is a (nonconstant) fixed point for the generating function of
the quasitransitive BRW described above.

Let us summarize: we proved that, in the irreducible case,

X finite �⇒ {q̄,1} = EG = FG

(Bertacchi and Zucca (2014), Corollary 3.1),

X infinite, (X,μ) quasitransitive �⇒ {q̄,1} = EG(�?)FG

(Bertacchi and Zucca (2014), Corollary 3.2),

X infinite, (X,μ)F-BRW �⇒ {q̄,1}�EG � FG

(Bertacchi and Zucca (2014), Examples 4.4 and 4.5, Example 3.6),

where � means there are cases where the inclusion is proper and cases where the
equality holds. We point out here that the proper inclusion {q̄,1} �= EG is equiv-
alent to non-strong local survival (for some, set A starting from some vertex x),
while {q̄,1} �= FG tells us nothing about strong local survival. We believe that fol-
lowing the ideas of Remark 3.7 one could obtain an example where EG �= FG for a
quasitransitive BRW (hence EG � FG) but this exceeds the purpose of this paper.
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4 Strong local survival and local modifications

We recall here the following theorem (it is essentially Bertacchi and Zucca (2014),
Theorem 3.3). In the case of global survival, it gives equivalent conditions for
strong local survival in terms of extinction probabilities.

Theorem 4.1. For every nonempty subset A ⊆ X, the following assertions are
equivalent.

(1) q(x,A) = q̄(x), for all x ∈ X.
(2) q0(x,A) ≤ q̄(x), for all x ∈ X.
(3) For all x ∈ X, either q̄(x) = 1 or the probability of visiting A at least once

starting from x conditioned on global survival starting from x is 1.
(4) For all x ∈ X, either q̄(x) = 1 or the probability of local survival in A start-

ing from x conditioned on global survival starting from x is 1 (strong local
survival in A starting from x).

(5) For all x ∈ X the probability of surviving globally starting from x without ever
visiting A is 0.

This theorem implies that if there exists x ∈ X such that q(x,A) > q̄(x) (that is,
there is a positive probability of global survival and local extinction in A starting
from x) then there exists y ∈ X such that q0(y,A) > q̄(y) (which implies that there
is a positive probability that the BRW survives globally starting from y without
ever visiting A, clearly y /∈ A). Note that, q0(x,A) > q̄(x) implies q(x,A) > q̄(x)

but the converse is not true. Hence we have the following dichotomy: for every
fixed nonempty A, either q(·,A) = q̄(·) or there is x ∈ X \ A such that there is a
positive probability of global survival starting from x without ever visiting A.

We note that there is no a priori order between the events A0 := “never visit
A” and GE := “global extinction”. Nevertheless, Theorem 4.1 tells us that if
q0(·,A) ≤ q̄(·) then Px(A0 \ GE) = 0 for all x ∈ X (the converse is trivial).

From Theorem 4.1, which is stated for a single BRW, we derive Theorem 4.2
and its Corollaries 4.3 and 4.4 which give us information about the behaviour of a
BRW after some modifications.

Theorem 4.2. Consider two BRWs (X,μ) and (X, ν). Suppose that A ⊆ X is a
nonempty set such that μx = νx for all x /∈ A.

1. If we denote by qμ and qν the extinction probabilities related to (X,μ) and
(X, ν) respectively, then we have that qμ

0 (x,A) = qν
0(x,A) for all x ∈ X and

qμ(·,A) = q̄μ(·) ⇐⇒ qν(·,A) = q̄ν(·).
2. If (X,μ) is irreducible and B,C ⊆ X are two nonempty sets such that B is

finite, then

qμ(·,B) = q̄μ(·) �⇒ qμ(·,C) = q̄μ(·).
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As a consequence, we have the following corollary.

Corollary 4.3. Consider two BRWs (X,μ) and (X, ν). Suppose that A ⊆ X is a
nonempty set such that μx = νx for all x /∈ A.

1. Suppose that (X,μ) dies out locally in A from all x ∈ X and (X, ν) survives
globally from all x ∈ X; then

q̄μ(x) = 1 for all x ∈ X

⇐⇒ strong local survival for (X, ν) at A from all x ∈ X.

2. If (X,μ) dies out globally from all x ∈ X and (X, ν) survives globally from all
x ∈ X, then there is strong local survival for (X, ν) in A from all x ∈ X.

The following corollary describes how a small and local modification can affect
the phase diagram of a continuous-time BRW.

Corollary 4.4. Let (X,K) and (X,K ′) two irreducible continuous-time BRWs
such that kxy = k′

xy for all x ∈ X \ A where A is a nonempty, finite set. Then the
following are equivalent:

1. λ′
w < λw;

2. λ′
s < λw;

3. λ′
w = λ′

s < λw .

Moreover if one of the previous holds, for the BRW (X,K ′)

(i) if λ ≤ λ′
w there is a.s. global and local extinction in every nonempty set B;

(ii) if λ ∈ (λ′
w,λw) there is strong local survival in every nonempty set B;

(iii) if λ = λw and the (X,K)-BRW dies out globally, then there is strong local
survival in B for every nonempty set B , otherwise there is non-strong local
survival in B for every nonempty finite set B;

(iv) if λ ∈ (λw,λs] (when nonempty) there is non-strong local survival in every
nonempty finite set B;

(v) if λ > λs then local survival is strong (resp. non-strong) in a nonempty finite
set B if and only if the same holds for (X,K).

We already pointed out that at λ = λw , global survival is possible. This cannot
happen if the process is a finite modification of another BRW, as in Corollary 4.4.
An easy way to modify a BRW (X,K) in order to obtain λ′

s < λw , is to add a
sufficiently rapid reproduction from y to y (for a fixed y).

We now apply Corollary 4.4 to the following example (see also Bertacchi and
Zucca (2014), Example 4.2) which can be discussed without using cumbersome
arguments such as those contained in Bertacchi and Zucca (2008), Remark 3.2,
and Bertacchi and Zucca (2014), Example 4.1.
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Example 4.5. Consider the edge-breeding continuous-time BRW on the homoge-
neous tree Td with degree d ≥ 3; in this case K is the adjacency matrix. It is easy
to prove (see, for instance, Bertacchi and Zucca (2014), Example 4.2) that λw =
1/d < 1/2

√
d − 1 = λs . If λ ≤ λw there is global extinction, if λ > 1/2

√
d − 1

there is strong local survival (see Bertacchi and Zucca (2014), Corollary 3.2) while
if λ ∈ (1/d,1/2

√
d − 1] the probability of global survival is positive and indepen-

dent of the starting point and the probability of local survival in any finite A ⊆ X

is 0. The phase diagram is shown by Figure 4.
Fix a vertex y ∈ Td and denote by A the singleton {y}. Let us modify the BRW

by adding a loop at y, that is, by considering a new matrix K ′ where all the entries
are the same as those of K but k′

yy > d . Hence λ′
s ≤ 1/k′

yy < 1/d = λw and Corol-
lary 4.4 applies. As a result, λ′

s = λ′
w and we have the following behaviour for

(Td,K ′) (see Figure 5): if λ < λ′
w there is global extinction, if λ ∈ (λ′

w,1/d] there
is strong local survival, if λ ∈ (1/d,1/2

√
d − 1] there is non-strong local survival

and if λ > 1/2
√

d − 1 there is strong local survival again.
We note that, as it always happens in a continuous-time BRW, q(·,A) depends

on λ since a continuous-time BRW actually is a family of processes indexed
by λ. The function λ �→ q(·,A) does not need to be continuous. Consider, for
instance, the above edge-breeding BRW (Td,K); if we look for the global extinc-
tion probability vector it is easy to show, by using equation (2.4) and the equality
q̄ = limn→∞ G(n)(0), that q̄(x) = min(1, (dλ)−1) which is a nice continuous func-

Figure 4 Phase diagram for (Td ,K).

Figure 5 Phase diagram for (Td ,K ′).
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tion. On the other hand, if we consider q(x, x) (where x ∈ Td ) then it equals 1 in
the interval (0,1/2

√
d − 1] and (dλ)−1 · 1 in the interval (1/2

√
d − 1,+∞); thus

there is a discontinuity at 1/2
√

d − 1.

5 Proofs

Details on Remark 3.1. If the BRW is irreducible, we have q(v, h) = q(v, v)

for all v,h ∈ X, which implies q(v,A) = q(v, v) = q(v,B) for all v ∈ X and
finite, nonempty sets A and B . Indeed if the process visits infinitely many times
A starting from v then it visits infinitely many times at least a vertex h ∈ A and,
by irreducibility, it visits infinitely many times v. Similarly, if the process visits
infinitely many times v starting from v then it visits infinitely many times any
vertex h ∈ A.

If q̄(x) = 1, then q(y,B) = 1 for all y ∈ X and B ⊆ X and there is nothing to
prove. Suppose that q̄(x) = q(x,A) < 1 and, by contradiction, q̄(y) < q(y,B) for
some x, y ∈ X and A,B ⊆ X finite. We know that there is a positive probability
that the process, starting from x has at least one descendant at y. There is also a
positive probability that all the particles (except one at y) die and the progeny of the
surviving particle survives globally but not locally in A. Thus, there is a positive
probability, starting from x, of surviving globally but not locally in A and this is
a contradiction. Hence q̄(y) = q(y,A) for all y ∈ X. But we proved above that,
in the irreducible case, q(v,A) = q(v,B) for all v ∈ X and all finite nonempty
subsets A and B , whence q̄(y) = q(y,A) for all y ∈ X and every finite nonempty
subset B . If B is infinite and z ∈ B then q̄(y) = q(y, z) ≥ q(y,B) ≥ q̄(y) for all
y ∈ X. �

Proof of Theorem 4.1. The equivalence between (1), (2), (3) and (4) was already
proven in Bertacchi and Zucca (2014), Theorem 3.3. Clearly, Px(A0 \ GE) = 0
implies q0(x,A) ≤ q̄(x), hence (5) �⇒ (2). We prove now that (1) �⇒ (5). In-
deed, define An := “visit A at most n times”. Hence, An+1 ⊇ An and

⋃
n∈N An ⊇

GE. Note that q(x,A) = Px(
⋃

n∈N An) and q̄(x) = Px(GE). If q(x,A) = q̄(x)

then Px(
⋃

n∈N An \ GE) = 0 which is equivalent to Px(A0 \ GE) = 0 for all
n ∈ N. �

Proof of Theorem 4.2.

1. We note that (X,μ) and (X, ν) have the same behaviour until they first hit A,
hence qμ

0 (x,A) = qν
0(x,A) for all x /∈ A. If x ∈ A then clearly qμ

0 (x,A) = 0 =
qν

0(x,A).
Suppose now that qμ(·,A) �= q̄μ(·). Hence, according to Theorem 4.1 (see

comments after its statement), there exists x ∈ X\A such that there is a positive
probability of survival starting from x without ever visiting A. Since the two
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processes have the same behaviour until they first hit A, the same holds for
(X, ν) and this implies that qν(x,A) > q̄ν(x); thus qν(·,A) �= q̄ν(·).

2. By Remark 3.1, when B and C are finite nonempty subsets, qμ(·,B) =
qμ(·,C), whence the implication is trivial.

Moreover, recall that B ⊆ C implies qμ(·,B) ≥ qμ(·,C). Hence, if C is
infinite and z ∈ C then, for all y ∈ X, Remark 3.1 yields

q̄μ(y) = qμ(y,B) = qμ(y, z) ≥ qμ(y,C) ≥ q̄μ(y). �

Proof of Corollary 4.3.

1. According to the hypotheses qμ(·,A) = 1 > q̄ν(·). Hence, if q̄μ(·) = 1 =
qμ(·,A) then, according to Theorem 4.2(1), qν(·,A) = q̄ν(·) < 1, that is,
there is strong local survival for (X, ν) in A from every x ∈ X. Conversely,
qν(·,A) = q̄ν(·) < 1 implies, by Theorem 4.2(1), q̄μ(·) = qμ(·,A) = 1, thus
global extinction from every x ∈ X.

2. If (X,μ) dies out globally from all x ∈ X, then it dies out locally in A from all
x ∈ X hence, from the previous part, there is strong local survival for (X, ν) in
A from every x ∈ X. �

Proof of Corollary 4.4. Observe that the discrete-time counterparts of these
continuous-time BRWs satisfy the hypotheses of Theorem 4.2, namely, their off-
spring distribution are the same outside A.

Clearly (2) �⇒ (1) and (3) �⇒ (2). We just need to prove that (1) �⇒ (3);
more precisely, we prove that λ′

w < λw �⇒ λ′
w = λ′

s . Take λ ∈ (λ′
w,λw); the λ-

(X,K ′) BRW survives globally, hence q̄′ < 1. On the other hand, 1 = q̄ = q(·,A)

whence, according to Theorem 4.2(1), q̄′ = q′(·,A) which implies q′(·,A) < 1.
If the λ-(X,K ′) BRW survives locally in the finite set A it means that it survives
locally at a vertex x ∈ A (⇐⇒ at every vertex, since the process is irreducible).
This implies λ ≥ λ′

s ; thus λ′
s = λ′

w .
Note that in the discrete-time counterpart of a continuous-time BRW every par-

ticle at every vertex has a positive probability of dying without breeding; hence by
Remark 3.1 strong local survival is a common property of all starting vertices.

We consider the following disjoint intervals for λ.

(i) Suppose that λ < λ′
w; by definition there is global, hence local, extinction. If

λ = λ′
w then, according to Bertacchi and Zucca (2009a), Theorem 4.7 (see

also Bertacchi and Zucca (2008), Theorem 3.5 and Section 4.2), since λ =
λ′

w = λ′
s then the λ-(X,K ′) BRW dies out locally (at any finite set C), hence

q′(·,C) = 1 (clearly, being λ < λw , q(·,B) = q̄ = 1 for all B ⊆ X), using
Theorem 4.2(1),

q(·,A) = q̄ �⇒ q̄ = q′(·,A) = 1.

Since q̄ ≤ q′(·,B) for all B , we have q′(·,B) = 1.
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(ii) λ ∈ (λ′
w,λw). By definition, since λ′

w = λ′
s , there is global and local survival

for the λ-(X,K ′) BRW. This implies that q̄′ ≤ q′(·,B) < 1 for every set B .
On the other hand, there is global and local extinction for the λ-(X,K) BRW
which implies q̄ = q(·,B) = 1. Again, according to Theorem 4.2(1), q̄′ =
q′(·,A) < 1, that is, strong local survival in A. Irreducibility implies q̄′ =
q′(·,B) for every (finite or infinite) set B .

(iii) Clearly, since λ = λw ≤ λs , we have q(·,B) = 1 for all finite subsets B .
Hence

λ − (X,K) survives globally ⇐⇒ q̄ < q(·,A)

that is, according to Theorem 4.2(1), if and only if q̄′ < q′(·,A). This, again,
implies q̄′ < q′(·,B) for every nonempty finite subset B . If, on the other hand,
λ − (X,K) dies out globally, then q̄′ = q′(·,A) and q̄′ = q′(·,B) for every
nonempty subset B .

(iv) λ ∈ (λw,λs] (we suppose that the interval is nonempty, otherwise there is
nothing to prove). Here we have q̄ < 1 = q(·,B) for every finite subset B .
Theorem 4.2(1) yields q̄′ < q′(·,A) < 1 and, by irreducibility, q̄′ < q′(·,B) <

1 for every finite, nonempty subset B .
(v) λ > λs . Now, q(·,B) < 1 and q′(·,B) < 1 for every nonempty B ⊂ X. Again,

by Theorem 4.2(1), we have

qμ(·,A) = q̄μ(·) ⇐⇒ qν(·,A) = q̄ν(·).
If B is finite, then Theorem 4.2(2) yields the conclusion. �

Details on Example 3.6. We are considering the BRW on N where every particle
at n has two children at n + 1 with probability p − ε, one child at max(0, n − 1)

with probability ε and no children with probability 1 − p. We fixed p < 1/
√

2
and ε(p − ε) ≤ 1/8. We know that Mw = 2p − ε > 1 and now we compute
Ms . More precisely, we prove that, given ε(p − ε) ≤ 1/8, we have local ex-
tinction, that is, Ms ≤ 1. Indeed, 1/Ms = max{z ≥ 0:�(x,x|z) ≤ 1} where
�(x,y|z) := ∑∞

n=1 φn(x, y)zn and φn(x, y) is the expected progeny at y of a par-
ticle which is at x at time 0, along an n-step reproduction trail which hits y for
the first time at step n (see Bertacchi and Zucca (2009a), Section 2.2, and Zucca
(2011), Section 3.2). It is easy to see that �(0,0|z) = εz + 2(p − ε)z�(1,0|z),
�(1,0|z) = εz + 2(p − ε)z�(2,0|z) and �(2,0|z) = (�(1,0|z))2. Solving the
quadratic equation in �(1,0|z) and choosing the solution which has a finite limit
as z → 0, we get that

�(1,0|z) = 1 −
√

1 − 8εz2(p − ε)

4z(p − ε)
,

�(0,0|z) = εz + 1 −
√

1 − 8εz2(p − ε)

2
.
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Clearly, Ms ≤ 1 if and only if �(x,x|1) ≤ 1 which, in turn, is equivalent to 8ε(p−
ε) ≤ 1 and 2ε − 1 ≤ √

1 − 8ε(p − ε). Note that 2p − ε > 1 and p < 1/
√

2, hence
2ε − 1 < 4p − 3 < 2

√
2 − 3 < 0; thus �(x,x|1) < 1 and Ms ≤ 1.

Let us compute the set of fixed points; we prove the existence of an uncountable
number of fixed points. Clearly if z(0) = (1 −p)/(p − ε) (resp. z(0) = 1) we have
z = (1 − p)/(p − ε) · 1 (resp. z = 1). This gives the two constant fixed points (the
smallest one q̄ and the largest one): observe that these constants are the solutions
of J (x) = 0, where J (x) := (p − ε)x2 − (1 − ε)x + 1 − p. Hence, J (x) < 0
for all x ∈ ((1 − p)/(p − ε),1). Any other fixed point must satisfy q̄ < z < 1,
thus z(0) ∈ ((1 − p)/(p − ε),1). We prove by induction that, whenever we fix
z(0) ∈ ((1 − p)/(p − ε),1), then

(Pn) =

⎧⎪⎪⎨
⎪⎪⎩

z(n) > z(n − 1),

z(n) ∈ (
(1 − p)/(p − ε),1

)
,

1 − z(n) >
1 − z(n − 1)

2p

hold for every n ≥ 1. This will prove that any suitable choice of z(0) gives a fixed
point. The previous conditions are clearly redundant but it is easier to proceed like
this. Using the equation, G(z) = z, we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
z(1) =

√
(1 − ε)z(0) − (1 − p)

p − ε
,

z(n + 1) =
√

z(n) − εz(n − 1) − (1 − p)

p − ε
if n ≥ 1.

(5.1)

Since z(0) ∈ ((1 −p)/(p − ε),1) and z(1)2 − z(0)2 = −J (z(0))/(p − ε) > 0 then
z(1)> z(0)>(1−p)/(p−ε). Clearly, z(1) = √

((1 − ε)z(0) − (1 − p))/(p − ε)<√
(1 − ε − (1 − p))/(p − ε) < 1. Moreover, using the previous inequality,

1 − z(1) = 1 − ((1 − ε)z(0) − (1 − p))/(p − ε)

1 + √
((1 − ε)z(0) − (1 − p))/(p − ε)

= 1 − ((1 − ε)z(0) − (1 − p))/(p − ε)

1 + z(1)

>
1 − z(0)

2
· 1 − ε

p − ε

>
1 − z(0)

2p

thus (P1) holds.
Let us prove that (Pn) �⇒ (Pn+1). Using z(n) > z(n − 1) we have z(n + 1)2 −

z(n)2 > (z(n)− εz(n)− (1−p))/(p − ε)− z(n)2 = −J (z(n))/(p − ε) > 0 where
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the last inequality comes from z(n) ∈ ((1 − p)/(p − ε),1). Hence z(n + 1) >

z(n) > (1 − p)/(p − ε). On the other hand, using z(n) < 1 and 1 − z(n − 1) ≤
2p(1 − z(n)),

1 − z(n + 1) = 1 − (z(n) − εz(n − 1) − (1 − p))/(p − ε)

1 + √
(z(n) − εz(n − 1) − (1 − p))/(p − ε)

= 1 − z(n) − ε(1 − z(n − 1))

(p − ε)(1 + z(n + 1))

>
(
1 − z(n)

) 1 − 2pε

(p − ε)(1 + z(n + 1))
= ($)

which implies z(n+1) < 1 (since p−ε > 1−p > 0 whence 1−2pε > 1−2p2 >

0 whenever p < 1/
√

2). Using this last inequality (and the bound p < 1/
√

2), we
prove the last part of (Pn+1):

($) >
(
1 − z(n)

) 1 − 2pε

2(p − ε)
= 1 − z(n)

2

(
ε(1 − 2p2)

p(p − ε)
+ 1

p

)
>

1 − z(n)

2p
.

Hence, the set of fixed points is uncountable. �
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