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Latent Marked Poisson Process with
Applications to Object Segmentation

Sindhu Ghanta∗, Jennifer G. Dy†, Donglin Niu‡, and Michael I. Jordan§

Abstract. In difficult object segmentation tasks, utilizing image information
alone is not sufficient; incorporation of object shape prior models is necessary
to obtain competitive segmentation performance. Most formulations that incor-
porate both shape and image information are in the form of energy functional
optimization problems. This paper introduces a Bayesian latent marked Poisson
process for segmenting multiple objects in an image. The model takes both shape
and image feature/appearance into account—it generates object locations from a
spatial Poisson process, then generates shape parameters from a shape prior model
as the latent marks. Inferentially, this partitions the image: pixels inside objects
are assumed to be generated from an object observation/appearance model and
pixels outside objects come from a background model. The Poisson process pro-
vides (non-homogeneous) spatial priors for object locations and the marks allow
the incorporation of shape priors. We develop a hybrid Gibbs sampler that ad-
dresses the variation in model order and nonconjugacy that arise in this setting
and we present experimental results on synthetic images and two diverse domains
in real images: cell segmentation in biological images and pedestrian and car de-
tection in traffic images.

Keywords: spatial Poisson process, segmentation, Bayesian nonparametrics,
object detection.

1 Introduction

Computer vision is a field that is deeply concerned with probabilistic inference. The
problem of processing an image to uncover the physical causes of a light field is an
inverse problem (Marr, 1982) and visual inference problems are naturally formulated
within a Bayesian paradigm (Zhu et al., 1998). The spatial–temporal structure in images
presents abundant opportunities for the exploitation of prior knowledge; indeed, models
from spatial statistics have long provided a fruitful interaction between computer vision
and Bayesian analysis. In particular, models based on Markov random fields (Geman
and Geman, 1984) have been used to capture spatial dependencies and models based
on the Poisson process (Gelfand et al., 2009) naturally express uncertainties regarding
the numbers and locations of objects in images. The latter connection has also helped
spur the development of Bayesian nonparametric models aimed at image processing
and computer vision problems, with random partitions and random measures providing
further realism regarding complex properties of images; examples include (Orbanz and
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Buhmann, 2008; Blei and Frazier, 2011; Ren et al., 2011) and (Sudderth and Jordan,
2009).

Missing from much of the existing Bayesian spatial statistics literature has been an
explicit role for objects and their shapes. Shape models can be a powerful constraint
in vision problems. Even if the focus is solely segmentation, methods that combine
shape prior information with image feature information can improve segmentation per-
formance compared to methods that utilize image feature information alone (Chan and
Zhu, 2005; Cootes et al., 1995; Shotton et al., 2006). The incorporation of shape priors
is popular in level-set methods and optimization-based formulations (Chan and Zhu,
2005; Cremers et al., 2007; Leventon et al., 2000; Huang and Metaxas, 2008). There
have also been proposals that incorporate shape priors in graph-based segmentation
algorithms (Kumar et al., 2005). These formulations have generally been designed to
discover a single object in a visual scene (for example, segmentation of the heart in a
computed tomography image). However, one may be interested in detecting multiple
occurrences of similar objects or patterns in an image (for example, cells in an image)
or in segmentation of multiple objects/patterns in an image that may overlap (Vese and
Chan, 2002; Vu and Manjunath, 2008). Such multiple-object segmentation is the focus
of the current paper.

We introduce a Bayesian latent marked Poisson process model for segmenting mul-
tiple objects/patterns in an image that takes into account both shape prior information
and image feature information. We utilize a spatial Poisson process (Baddeley, 2007;
Gelfand et al., 2009) as a nonparametric prior for the number of objects along with their
locations. Each object has a corresponding shape generated from a shape prior model
(Cootes et al., 1995). This provides a partitioning of the image. When locations and
shapes of objects are determined, the pixels that are inside objects are assumed to be
generated from an object image feature/appearance model and pixels outside objects
are assumed to come from a background model.

Not only does a spatial Poisson process allow us to model the number of objects
along with their locations, but it also provides a natural model for spatial context
information. Often, one has domain knowledge about parts of an image scene that have
a high/low probability of occurrence of an object. For example, in traffic surveillance
images, cars will be found only on roads and their probability of occurrence in other
parts of the image is very low. This information is captured naturally by the Poisson
intensity parameter. Traditionally in computer vision, context is represented in the
form of pairwise geometric relationship between different objects (He et al., 2004); here
we are able to introduce a spatial context prior in the form of the non-homogeneous
Poisson intensity parameter. Moreover, posterior inference for the non-homogeneous
Poisson intensity provides a probability map exhibiting regions where high or low object
concentration occur.

Our model is based on the formalism of marked Poisson processes (MPPs). In par-
ticular, the shape associated with each object location is treated as the mark associated
with the location. Bayesian analysis of marked Poisson processes has been applied to a
variety of domains (Xiao et al., 2015; Taddy, 2010; Rotondi and Varini, 2003). There
exists an extensive literature on the use of general marked point processes for detection
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of objects (Descombes and Zerubia, 2002; Baddeley and Lieshout, 1993); however, this
literature has focused on simple shapes and synthetic images. Exceptions that focus
on real-world images include (Lafarge et al., 2010; Rue and Hurn, 1999; Baddeley and
Van Lieshout, 1992). These work differ from ours in that the marks in their case are
observed random variables; in our case the shape marks are latent random variables. In
addition, these methods discourage object overlap between objects, either using a hard-
core process or a Strauss process. In contrast to these approaches, our model utilizes a
marked Poisson process with no constraints on overlap between objects.

A challenge associated with utilizing a Poisson process for object detection is the
changing model order as each random outcome can have different number of objects.
Typically, a reversible-jumpMarkov chain Monte Carlo (RJMCMC) sampling strategy is
used to address this problem (Ge and Collins, 2009; Zhou et al., 2014), but this strategy
can be a computational bottleneck. Our work introduces a novel inference strategy
based on a hybrid Gibbs sampler. We take advantage of the finite resolution (number
of pixels or voxels) in computer vision problems. Instead of performing inference on the
continuous location variable, we take advantage of the discretization to obtain a Gibbs
sampler. Despite the discretization, our approach still computes posterior probabilities
with respect to the underlying Poisson process.

The paper is organized as follows. In Section 2, we describe the basic specification
of our model for generating and segmenting multiple objects/shapes of the same type.
We describe the challenges associated with inference on the model and our approach to
ameliorating these challenges in Sections 3 and 4. Then, in Section 5.1, we explain how to
extend the model when we have multiple objects/shapes of different types. In Section 6,
we discuss the results of experiments on one synthetic and two real-world applications:
Cell image segmentation and traffic (car and pedestrian) detection is presented. These
experiments exhibit the use of our model in unsupervised mode (for the cell data) and
in supervised mode (for the car and pedestrian scenes). We present our conclusions in
Section 7.

2 Model Specification

An image is represented by a data matrixX ∈ R
Dr×Dc , whereDr andDc are the number

of rows and columns respectively (total number of pixels,D = Dr×Dc). Each element in
this matrix is a pixel, represented by a scalar in the case of a gray-scale image, a vector
in the case of RGB color images and in general a feature vector capturing local image
characteristics (e.g., wavelet, Fourier coefficients, co-occurrence or histogram features).
To simplify notation, we assume two-dimensional images; however, the concepts here
can be extended to three-dimensional and higher-dimensional images.

Our model takes the following form. We assume that N objects are generated at
locations L = [l1, . . . , lN ] as a draw from a Poisson process with Poisson intensity pa-
rameter β(τ), where τ represents the 2D image plane. Here ln = [ln,r, ln,c] is a pair of
coordinates. Note that N is random. A shape parameter, S for each object, with ori-
gin/center at ln, is generated from a shape prior distribution with hyper-parameter ζ.
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Figure 1: A graphical representation of the proposed model.

The shape parameters, S = [s1, . . . , sN ] define the object contour and thus a partition-
ing of the image: Observation data (the feature representation of each pixel) inside and
outside the contour are generated from foreground and background appearance models
with parameters α and γ respectively. Let all the hyper-parameters be represented by
θ = [β(τ), ζ,α,γ].

The overall probability model is given as follows:

p(L,S,X|θ) =
[

p(L|β(τ))︸ ︷︷ ︸
Poisson process

· p(S|L, ζ)︸ ︷︷ ︸
Shape distribution

]
× p(X|L,S,α,γ)︸ ︷︷ ︸

Appearance/Likelihood

, (1)

where the appearance model—the probability of the pixel data given the hyper-para-
meters—takes the following form:

p(X|L,S,α,γ) =
D∏

d=1

[p(xd|α)]Id [p(xd|γ)]1−Id , (2)

where Id is a random variable that takes a value 1 when the pixel d belongs to an object
and 0 when the pixel does not belong to an object (i.e., it belongs to the background).
Note that this random variable is a deterministic function of L and S. A graphical
representation of the model is shown in Figure 1(a).

2.1 Spatial Poisson Process Prior

A sample from a spatial Poisson process consists of a random number of points at
random locations on the 2D plane based on the underlying intensity function β(τ).
When β(τ) = β, the process is called homogeneous. When β(τ) varies with τ , we say
it is non-homogeneous. A Poisson process is defined in general on a locally compact
metric space S with intensity measure Λ (which is finite on every compact set and has
no atoms) as a point process on S such that, for every compact set B⊂S, the count
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Figure 2: A realization of a homogeneous Poisson process.

Figure 3: A realization of a non-homogeneous Poisson process.

N(B) has a Poisson distribution with mean Λ(B). If B1, . . . ,Bm are disjoint compact
sets, then N(B1), . . . , N(Bm) are independent (Baddeley, 2007). In a spatial setting,
S = R2 and Λ(B) =

∫
B β(τ)dτ .

An example of a draw from a homogeneous Poisson prior is shown in Figure 2. The
number of objects that can be expected in the 2D plane in this case is given by the
scalar Poisson intensity parameter. The distribution of these objects in the 2D plane is
uniform. A draw from a non-homogeneous Poisson process is shown in Figure 3. The
colormap of contours in Figure 3 represents the value of Poisson intensity at each point
in the 2D plane. Red and blue colors indicate a high and low Poisson intensity value
respectively. One should expect to see more objects in the region containing red color
compared to the regions that contain blue color.

2.2 Shape Prior

In many vision problems, the objects of interest have distinct shape characteristics.
Here, we wish to incorporate such knowledge as a shape prior. There are two possible
scenarios for building a shape model: one is when the shape model has a known simple
parametric form, and the other is when the shape model is complex.
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Figure 4: (a) Shape parameters of an ellipse: ra is the major axis, rb is the minor axis,
and ρ is the orientation. (b) Landmark points (green) for shape prior of pedestrians.
Red star is the origin/center point.

Figure 5: (a) Shapes extracted from training images. (b) Synthetic images generated
from the inferred shape prior.

Simple Known Parametric Model In a simple example of our framework, shape is
described by a fixed collection of parameters, θ. For example, we may consider elliptical
shapes (a common simplification used in modeling cells, 2D image slices of blood vessels
and the human face). Ellipses can be described by three parameters: the major axis ra,
the minor axis rb and the rotation angle ρ (which implies s = [ra, rb, ρ]). One could
assume uniform priors on these parameters (which are hyper-priors of the overall model)
or any other appropriate distribution based on either domain knowledge or training data.
We also assume that the major and minor axes are independent of the rotation angle.
Figure 4(a) shows the parameters of an ellipse shape model.

Complex Shape Model There are several ways to build complex shape models. In
this paper, we adapt a simple approach that utilizes a landmark distribution model
for shape (Cootes et al., 1995). In this approach, a complex shape is parameterized by
landmark points along the boundary of the object. Landmark points are representative
points labeled by a domain expert or annotator who aims to capture points that are
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significant for the application, such as the highest point of an object, curvature extrema,
or points along a boundary. Figure 4(b) shows an example of a 16-point model of the
boundary of a person. Each point on the object has a row and column element, giving rise
to a 32-dimensional vector. Therefore, there are m parameters for a m/2 point model.
Each shape, s, is represented by an m-dimensional vector with elements comprising the
row and column location of each landmark point with respect to an origin (the red star
in Figure 4(b)).

A prior shape model is constructed as follows. Given a set of P training shape tem-
plates (see Figure 5(a)), the shapes are first aligned by adjusting the scale, translation
and rotation that minimizes a weighted sum of squared distances between equivalent
points on each shape template as described in (Cootes et al., 1995). Then, for each
shape, si, where i = [1, ..., P ], we calculate its deviation, dsi, from the mean, s̄:

dsi = si − s̄ (3)

and the covariance matrix C, using

C =
1

P

P∑
i=1

dsids
T
i . (4)

One can sample from a Gaussian distribution with this mean and covariance matrix
to generate a synthetic shape. Figure 5(b) shows examples of synthetic images gener-
ated from the inferred shape prior. To take into account variation in scale and rotation,
additional variables that represent scaling a and rotation angle ρ can be introduced and
assumed to be generated from uniform or gamma distributions depending on the appli-
cation. We also assume that the shape, scale and rotation angle are independent of each
other. For notational convenience, we represent the set of all parameters representing a
complex shape—s, a and ρ—by s. When the number of landmark points is large, prin-
cipal component analysis (PCA) can be used for dimensionality reduction as described
in Cootes et al. (1995). Note that we have chosen this simple landmark-based shape
model as a concrete illustration; within our framework one can deploy more powerful
and flexible shape models (see, e.g., (Bhattacharya and Dunson, 2010) which provides
a Bayesian nonparametric model for shape).

2.3 Feature/Appearance Model

We assume that data (pixels), xd, inside a shape contour are generated from an object
feature/appearance model, p(xd|α), and data outside any shape boundary are gener-
ated from a background model, p(xd|γ). As indicated earlier, an observation pixel, xd,
can be represented by its gray-scale value or color values. For textured objects, xd

would be represented by a feature vector based on image characteristics (e.g., wavelet,
Fourier, co-occurrence, histogram features). One can utilize a multinomial distribution
over pixel intensities or a truncated Gaussian distribution based on the features used
for the application. Detailed examples of foreground/object and background models are
provided in our experiments.
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3 Leveraging the Finite Nature of Image Pixels

Finding the posterior distribution of the number of objects, their locations and corre-
sponding shapes in a Bayesian framework for a continuous location parameter is chal-
lenging due to the need to compare different model orders. In addition, we must treat
non-conjugate priors, which result from the fact that the likelihood depends on parti-
tioning based on shape boundaries. A standard approach to providing posterior inference
in such a setting involves employing Metropolis–Hastings sampling within the reversible
jump Markov chain Monte Carlo (RJMCMC) framework. However, it is advantageous
to use Gibbs sampling as it samples directly from the conditional posterior distribution,
does not involve rejections and one does not have to worry about choosing an appropri-
ate proposal distribution. However, the basic Gibbs sampling strategy does not handle
trans-dimensional jumps and hence cannot be used directly for inference in our setting.

To make Gibbs sampling applicable to our setting, we take advantage of the fact
that there are only a finite number of pixels in an image and that we only care about
location information up to a pixel resolution. For example, it is enough for us to know
that an object center occurs in an area dτ covered by a pixel rather than the exact
continuous value of the location. We introduce a latent variable Z = [z1, . . . , zD], where
each zd is a discrete variable representing the number of object centers at a particular
pixel location d. Note that the number of object centers that can occur at any given
pixel is unbounded.

According to the definition of a spatial Poisson process, for disjoint sets B1, . . . , BN ,
the number of objects lying in these sets, N(B1), . . . , N(BN ), are independent random
variables. In our case, the disjoint sets are individual pixels. This value depends only
on the underlying Poisson intensity parameter in the area covered by the pixel. Let this
value of Poisson intensity parameter at each pixel be given by βd =

∫ p

p−1

∫ q

q−1
β(u, v)dudv,

where p and q are the indices of the pixel and u and v are continuous random variables
that represent location in the 2D plane. zd has a Poisson distribution with parameter
βd. The total number of objects N in the image has a Poisson distribution with param-
eter I, where I is the integral of the intensity parameter of the Poisson process for the
entire image given by I =

∫
τ
β(τ).

Given the number of objects N in the image, the joint distribution is a multinomial
distribution:

p(Z|N) =
p(Z)

p(N |I) =

∏D
d=1

exp(−βd)β
zd
d

zd!

exp(−I)IN

N !

=
N !

z1! . . . , zd!

(
β1

I

)z1

. . .

(
βD

I

)zD

(5)

and our overall model takes the following form:

p(Z,S,X|θ) = p(Z|N)p(S|L, ζ)p(X|Z,S,α,γ), (6)

as depicted in Figure 1(b). The random number of objects in the image can be repre-

sented by
∑D

d=1 zd.
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Figure 6: (a) Location Set-1 and (b) Location Set-2 where the image is divided into
16 regions. (c) and (d) show the division of space into 4 regions. Value of Poisson
log-likelihood for each configuration is reported below the corresponding figure.

Figure 7: (a) Location Set-1 (b) Location Set-2 with M = 4 and (c), (d) show the same
set with M = 9. Value of Poisson log-likelihood for each configuration is reported below
the corresponding figure.

4 Inference

Posterior inference for the proposed model involves calculating the posterior distribution
over the variables (Z,S) given the observation X. We develop a Gibbs sampling frame-
work to perform this inference. A naive application of Gibbs sampling would compute
the following conditional probability:

p(zd|Z−d,S,θ) ∝ p(zd|Z−d, β(τ))p(X|Z,S,α,γ). (7)

One of the properties of the spatial Poisson process is that the distribution of points in
the 2D plane does not depend on the presence of other points; the occurrence of a point
at any location depends only on the underlying Poisson intensity parameter. Sampling zd
in this way does not capture the complete spatial randomness property of the Poisson
process for a given set of object locations. This happens due to discretization of the
space. The random variable Z has a distribution which is a functional of the spatial
Poisson process. However, it is not possible to invert this functional by considering the
values of zd independently.

As an illustration, consider Figures 6(a) and 6(b) as two sets of observations and
the goal of calculating the likelihood of these observations as the outcome of a uniform
Poisson process with prior

∫
λ(τ) = 2. The number of points in both sets is the same.

Intuitively, one expects the likelihood value to be low when the observations are clustered
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and high when they are spread apart. When the image is discretized into 16 parts; both
observations will have the same likelihood according to log(

∏16
d=1 p(zd|λ)) = −6.158. If

instead the image is discretized into 4 pixels/parts, the grid in Figure 6(c) (−3.386)
has higher likelihood compared to Figure 6(d) (−4.079). The relative likelihood value

depends on the number of parts the image has been divided into and
∏D

d=1 p(zd|λ)
cannot capture this spatial randomness as every value of zd is independent (Skellam,
1952). In our case, digital images are naturally discretized into pixels and introducing
the latent variable zd for the presence of an object center cannot distinguish clustered
objects from uniformly distributed objects (assuming homogeneous Poisson intensity).
A similar issue is encountered in maximum likelihood estimation of the Poisson intensity
parameter where distance methods are proposed to ameliorate this problem (Skellam,
1952; Pollard, 1971).

Distance methods assume a grid of M points evenly distributed on the surface
of the image (denoted by hollow red circles). The probability of finding the near-
est object/observation point at a distance rm from the mth grid point is given by
p(rm) = (2πrmβ)exp(−πr2mβ). Let the distances of nearest object occurrence from this
grid of M points be denoted by r1, r2, . . . rM . For example, Figures 7(a) and 7(b) assume
four grid points in the image. We will describe how the number M can be chosen and
its associated trade-offs later in this section. Extending the likelihood equation for non-
homogeneous case given in Pollard (1971), we derive the following equation for sample
distances r1, r2, . . . rM :

p(R) =
M∏

m=1

D∑
d=1

(2πrm)(pdβd)exp(−πr2mβd), (8)

where R = [r1, . . . , rM ] and pd is the proportion of image a pixel region represents, which
is equal to 1/D. Note that this equation assumes that rm are independent and we inherit
the assumptions in Pollard (1971) that the region within the nearest neighboring point to
a grid point has a uniform intensity βd and the boundary problem is ignored. For the ho-
mogeneous case, this equation reduces to p(R) = (2πβ)Mexp(−πβ

∑M
m=1 r

2
m)(r1r2 . . . rM ).

The likelihood value in terms of the distances R given in (8) captures the spatial
randomness for a given set of object locations and intensity value. For example, p(R) in
Figure 7(a) (−5.688) is higher compared to Figure 7(b) (−8.816). Even in a case where
more number of grid points are chosen (M = 9), the likelihood of the configuration
in Figure 7(c) (−8.67) is higher than the configuration of Figure 7(d) (−13.03). This
is a desirable property to determine the configurations that are more likely to occur
than others. Note that Skellam (1952); Pollard (1971) introduced distance methods for
point estimation of the Poisson intensity parameter, β(τ), using a maximum likelihood
criterion, given observed Poisson locations. We, on the other hand, are interested in
exploring the possible object locations zd and their likelihood given the intensity value.
We view R as an auxiliary variable (as shown in (9)) that captures the spatial random-
ness of the objects in the image. Based on this augmentation, we derive a Gibbs sampler
as follows:

p(zd, R|Z−d,S,θ) ∝ p(X|Z,S,θ)p(zd, R|Z−d, β(τ)). (9)
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Note that R is deterministic given Z. Given that we are interested only in zd for the
purposes of inference, we discard the values of R after they are used in the sampling
process. We have:

p(zd, R|Z−d, β(τ)) = p(R|Z−d, β(τ))p(zd|Z−d, R, β(τ)). (10)

Note that zd can take discrete values in the range [0,∞); i.e., we do not place any
restrictions on the number of object centers that can appear in one pixel.

For Gibbs sampling, all the variables except the one being sampled are assumed to
be known and constant. This implies that one needs to sample the values of R with
only one unknown value zd. The possible values that R can take given Z−d reduces to
two cases (Ro and Rø, if zd = 0 or zd > 0 respectively):

p(R|Z−d, β(τ)) =

{
p(Ro), if zd = 0,

p(Rø), if zd > 0.
(11)

This value for both cases can be calculated from (8) as R is deterministic given the
values of Z. All the cases where zd > 0 give the same R = Rø value as the distance
between a fixed point and its nearest object remains the same irrespective of the number
of objects present in that pixel. This leads to the following conditional probabilities:

p(zd = k,R|Z−d, β(τ))k=0 = (1/H)p(Ro)p(zd = 0|Z−d, Ro)

= (1/H)p(Ro)e
−βd , (12)

p(zd = k,R|Z−d, β(τ))k �=0 = (1/H)p(Rø)p(zd = k|Z−d, Rø)

= (1/H)p(Rø)(e
−βdβd

k/k!),

where

H =

∞∑
k=0

p(R)p(zd = k,Rk|Z−d)

= p(Ro)e
−βd + p(Rø)

∞∑
k=1

e−βdβk
d

k!

= p(Ro)e
−βd + p(Rø)(1− e−βd). (13)

To set the number of grid points M for calculating R, we notice that if M is too sparse
compared to the number of objects in the image, most values of zd will have no influence
on the value of R and p(zd, R|Z−d, β(τ)) = eβdβzd/zd!; this ceases to capture the spatial
randomness of the objects. On the other hand, having the grid points that are too dense
will result in increased computational expense. As a default, we chose M to be ten pixels
apart in the image.

Step 1 of Algorithm 1 provides the pseudocode for sampling zd based on three cases:
deletion of a point, remaining at the same state and addition of a point. This involves
calculating the likelihood for all the possible cases followed by normalization giving a
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Algorithm 1 Gibbs Sampling for a Marked Poisson Process.

Initial: Sample the variables {zd}D1 for every pixel and {sn}N1 for every object, where

number of objects is given by N =
∑D

1 zd. Given a set of these values from the
previous iteration, sample a new set as follows:
Step 1: Z = Zt and S = St. For d = 1, . . . , D, draw a new sample for zd from the
following probabilities:

p(zd = k,R|Z−d,S,θ) ∝

⎧⎪⎨
⎪⎩
p(zd = k,R|Z−d, β(τ))p(X|Z,S,α,γ), if k ≤ kt

p(zd = k,R|Z−d, β(τ))
∫
p(X|Z,S,α,γ)p(sN+1|ζ)ds,

if k = kt + 1,

if k = kt + 1, sample a new parameter sN+1 from p(sN+1|ζ)p(X|Z,S,α,γ) and
N = N + 1; if k < kt, delete an object and reduce dimension of s, N = N − 1.
Step 2: For n = 1, . . . , N .
Sample the shape parameter of each object: p(sn|Z,S−n,θ) ∝ p(X|Z,S,θ)p(sn|ζ).
Step 3: t = t+ 1, Zt = Z and St = S.
REPEAT Steps 1, 2 and 3 until convergence.
Output: We assume convergence when first order statistics vary below a pre-set
threshold ε: save and report the mean values of all object’s location and shape.

discrete probability distribution. The final value of zd is sampled from this distribution.
This is similar to the Gibbs sampling framework for Dirichlet process mixtures.

The shape variables are assumed to be independent of each other. Sampling the
shape variable is given as follows and constitutes Step 2 of Algorithm 1:

p(sn|S−n,L, ζ) ∝ p(X|Z,S,θ)p(sn|ζ). (14)

Because our prior is not conjugate to the observation likelihood, we use sampling–
resampling to approximate a sample from the posterior (Smith and Gelfand, 1992). We
sample a fixed number (300) of shapes from the prior distribution and then calculate the
corresponding likelihood for each case. We then sample a shape from these candidate
shapes by sampling from a discrete distribution (for each shape model) whose weights
are the normalized scores of (14).

Implementation Details Initialization of {zd}D1 in the algorithm can be done randomly.
However, to speed-up the process, we initialize using a simple heuristic. For intensity
based features, we apply a threshold on the infinity norm of the vector. The default
threshold used in our experiments was just the midpoint between the maximum and
minimum value. We then use the center of the connected components of this binary im-
age to initialize the object centers. More details are provided in the experiments section.
Inference using Gibbs sampling on this model is expensive due to the introduction of
the latent variable Z, whose size is equal to the total number of pixels. For this reason,
we use a hybrid Gibbs sampler that combines a single site and a blocked Gibbs sampler.
Blocks of pixels in the image are sampled for the value of Z at first. Blocks that show
very low likelihood (compared to the likelihood of presence of an object observed so far)
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for the occurrence of an object in it are removed from further sampling. In other words,
these are the pixels whose appearance is closer to the background than the foreground
model. This allows us to get rid of obvious non-object center locations. After this step,
the rest of the image is sampled for Z at every pixel location. The algorithm has been
implemented in MATLAB and takes an average of 10 minutes per [1024× 1344] image
on a 12 GB RAM, 2.4 GHz computer. This limitation of high computational time can be
overcome by parallelizing Gibbs sampling (Terenin et al., 2015; Gonzalez et al., 2011).
Sampling of location and the corresponding shape parameters in different parts of the
image can be distributed over several computer nodes. These nodes can communicate
back with a master node for global parameter update at constant intervals.

4.1 Inference of the Non-Homogeneous Poisson Prior

Inference of the non-homogeneous Poisson intensity prior given a set of training exam-
ples is not straightforward. In this section we present the details regarding learning a
non-homogeneous Poisson intensity prior parameter as suggested in Adams et al. (2009).

Let the set of observations in a region τ be denoted by {ln}Nn=1. Given these ob-
servations, one needs to infer the underlying Poisson intensity parameter β(τ). One
does not know the functional form of the intensity parameter a priori. We thus make
use of a Cox process, where the Poisson intensity prior is drawn from another under-
lying stochastic process. In particular, we utilize a log Gaussian Cox process so as to
respect the constraint that the intensity must be nonnegative. That is, we model the
intensity as an exponential function of a random realization from a Gaussian process:
β(τ) = exp(g(τ)), where g(τ) : R2 → R is a random scalar function having a Gaus-
sian process prior. This formulation has the following advantages: (a) there is no issue
with edge effects, (b) the intensity within a bounded window, given a realization of the
process can be predicted using Bayesian methods, (c) higher-order properties take a
simple expression and theoretical properties can be easily derived, and (d) the model is
amenable to interpretation.

The likelihood for a given set of observations is given by

p(lNn=1|β(τ)) = exp{−
∫
τ

dlβ(l)}
N∏

n=1

β(ln), (15)

where β(τ) = exp(g(τ)). Inferring β(τ) given a set of observations requires inference of
the underlying function g . The posterior distribution of g is given by

exp(g)|{ln}Nn=1 ∼
GP(g) exp {−

∫
τ
exp(g)dτ)}

∏
n exp g(ln)∫

dgGP(g) exp {−
∫
τ
exp(g)dτ)}

∏
n exp g(ln)

.

We wish to use an MCMC algorithm to sample from this distribution. The posterior
distribution over the Gaussian process g is unfortunately doubly-intractable (due to the
presence of an integral over the Gaussian process in both the numerator and denomi-
nator of the Metropolis–Hastings acceptance probability) but the intractability can be
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Figure 8: An example of inference of Poisson intensity given a set of observations.

overcome by using an approach due to Adams et al. (2009); Moller et al. (1998, 2006),
in which an additional layer of sampling of “fantasy events” is employed such that the
integral in the numerator and denominator cancels. In our setting the fantasy events
are the locations of new points {e} that we generate apart from the given observations

{ln}Nn=1 (based on the current and proposed states of g). We use delayed rejection sam-
pling (Green and Mira, 2001) to minimize rejections resulting in faster convergence. An
example problem is shown in Figure 8(a).

Figure 8(b) shows the inferred intensity given the observations. Ideally, the inferred
contours in Figure 8(b) and the actual (ground-truth) contours of Figure 8(a) should
be the same. We infer the contours (intensity parameter) given only one sample (one
set of observations/points drawn from the Poisson process) and the results are very
close. This learned probability map provides us with a spatial context prior indicating
the high density and low density spatial regions of object occurrence. Given a set of
training images with object location annotations, we infer the intensity parameter β(τ)
and utilize this learned probability map as the spatial prior for our model.

5 Extensions to the Model

In this section, we present extensions of the proposed model to the case of multiple
categories. We present two types of extensions, one involving multiple categories with
the same appearance model and the other involving multiple categories with different
appearance models.

5.1 Multiple Categories with the Same Appearance Model

We generally wish to be able to detect multiple categories in an image. For example,
one might want to detect both cars and pedestrians from a traffic surveillance video.
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Figure 9: Results of inference on synthetic images. Figures (a), (b) and (c) (top) show
results from the proposed model with a non-homogeneous spatial Poisson prior. Figures
(d), (e) and (f) (bottom) show results from the proposed model without a spatial prior.

Assuming there are C categories of objects in the image, the joint likelihood is given by

p(L,S,X|θ) =

C∏
c=1

[
p(Lc|βc(τ) · p(Sc|Lc, ζc)

]
× p(X|L,S,α,γ) (16)

where, Lc = [l1, . . . , lNc ] and Sc = [s1, . . . , sNc ]. In this formulation each category has
its own Poisson and shape prior parameters. The number of objects in each category
is represented by Nc. The appearance prior for all the categories is kept the same.
Case study 2 of the experiments section presents an illustration of this scenario. We
demonstrate the advantage of using a non-homogeneous Poisson intensity as a prior in
a case with multiple categories in the following experiments on synthetic data.

Experiments on Synthetic Data

We test the performance of the proposed method on synthetic images that contain two
categories of objects: rectangles and squares. We compare the results to those obtained
from a model that is missing the spatial prior.

The goal is to be able to infer the object location along with its category, given
the appearance and spatial prior. We add different levels of Gaussian noise to these
images to make the detection challenging. Figure 9 shows the segmentation results
of our model with incorporation of spatial context through a non-homogeneous Pois-
son prior as shown by the top figures (a), (b) and (c) for varying noise level and the
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Figure 10: Results of our algorithm on synthetic images.

segmentation results without the spatial prior in the bottom figures (d), (e), and (f).
In the absence of noise, notice that the appearance of objects in the image is differ-
ent from background, thus both models can detect the objects easily. However, when
noise is added, a non-homogeneous Poisson prior provides spatial context to help push
the likelihood value towards the presence of an object. This proves to be useful in
detection of objects under noisy conditions which is true in most real world scenar-
ios.

Five images are generated from one sample of the spatial Poisson process with vary-
ing levels of noise. No noise is added to the first image and the rest of the images have a
Gaussian noise with parameters mean and variance given by [−10, 30], [−20, 30], [−30, 30]
and [−40, 30] respectively followed by smoothing using a median filter of size [5, 5]. 50
different images were generated from different spatial Poisson priors. Each image has
four additional noisy images associated with it. The performance of the algorithms on
a total of 250 synthetic images is reported in Figure 10. We plot the recall rate as a
function of noise.

A constant number of iterations (20000) were used for both the models to make a
fair comparison. Clearly, the model with a spatial Poisson prior outperforms the model
without it. These results are intuitive as the model with a spatial prior will give a very
low probability to a model with very few objects. This experiment was also performed
on images where there were no objects and both models correctly detected no objects
in every case.

5.2 Multiple Categories with Different Appearance Models

In this section, we address the case where each category has its own unique appearance
model. Let the appearance parameters for each category be represented by αc. The joint
likelihood given by (16) becomes problematic when there is overlap between objects.
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Figure 11: Templates used for training shape and appearance of maple leaves.

One needs to decide which object is in front in order to assign it to the appropriate
appearance model. Based on this decision, the indicator variable Id,c is equal to one for
one of the object categories c or zero if it belongs to background.

We introduce a random variable bc,n that represents the probability of the nth object
of category c to be in front. This random variable is assumed to be drawn from a uniform
distribution b ∼ U [umin, umax], where umin = 0 and umax = 1. Let these parameters be
denoted by ε and b = [b1:N1,1, . . . , b1:NC ,C ]. In the generative framework of the model,
this parameter is drawn for each location of the object of each category and when there
is an overlap of shape boundaries, the object with higher b value is assigned to be in
front. The binary variable, Id,c, is thus assigned according to (18). The modified joint
likelihood is given by (17).

p(L1:C,S1:C ,X|θ)=
C∏

c=1

[
p(Lc|βc(τ) · p(Sc|Lc, ζc)p(b|ε)

]
× p(X|L,S,α1:C ,γ), (17)

Id,c =

{
δ(cn), if bn > bn′ ,

δ(cn′), if bn′ > bn.
(18)

Maple leaves data was collected to illustrate an example with multiple categories
and different appearance. There are two types of leaves in the image based on the side
on which it landed on the ground. Each has its own appearance model. The background
consists of grass. In this case, overlap needs to be considered when detecting the leaves.
The shape model was trained with 22 landmark points on 6 examples. The images used
for training are shown in Figure 11. A uniform hyper-prior is chosen over the random
variables ρ and a for variation in orientation and size of the leaves. Results on nine
images are shown in Figure 12. Red and blue color on the boundaries of the leaves
indicate different categories. The average segmentation accuracy of this experiment is
0.95 and the precision and recall rate for object detection is 1 and 0.94 respectively.

6 Experiments

In this section, we present two real-world case studies. The first case study involves
segmentation of cells from fluorescence microscopy images. Inference is accomplished in
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Figure 12: Results on a dataset consisting of maple leaves with different appearance
(red and pink). Red and blue boundaries indicate different categories of leaves found by
our method.

an unsupervised mode using a homogeneous spatial Poisson prior. The second applica-
tion involves detection of cars and pedestrians (two categories) from traffic surveillance
data. Inference in this case is accomplished in a supervised mode and a non-homogeneous
Poisson is utilized.

6.1 Case Study 1: Cell Image Segmentation (Unsupervised Mode)

The goal in this application is to segment and detect cell nuclei (Coelho et al., 2009)
in fluorescence microscope images. The dataset contains two sets of images, ‘gnf’ and
‘ic100’, each set containing 50 images. The resolution of each image is [1024 × 1344]
pixels. The nuclei of the cell show variation in appearance, shape and orientation. The
shapes of the cell nuclei are very close to an ellipse. Therefore, variation in shape is
encompassed in a flexible shape prior that assumes an ellipse with major axis (rma),
minor axis (rmi) and angle (ra). Uniform priors are assumed because all possible values
are equally probable; (rmi, rma ∼ U [0,MAX]) where MAX = 300 and angle (ra ∼
U [−π, π]). We assume a multinomial distribution over the intensity values (whose range
is [0, 255]) for the appearance prior. Since this is an unsupervised setting, appearance
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Figure 13: Two example images from the cell dataset.

Figure 14: Groundtruth annotations on two examples from the cell dataset.

parameters for foreground and background are determined adaptively for each test
image. To do this, the intensity of the image is divided into two clusters using the k-
means algorithm (Forgy, 1965; Macqueen, 1967). The resulting histograms for the two
clusters are used to calculate the multinomial distribution parameters for the foreground
(cell) and background appearance priors. Note that the cells are always brighter than
the background. This domain knowledge is utilized to consider the cluster with a higher
mean to belong to foreground. Initialization of the number of objects and their locations
is done using a simple heuristic. A binary image is obtained by thresholding the original
grayscale image. The value of this threshold is the maximum value in the cluster that
belongs to the background appearance model. After this step, connected components
are identified and their midpoints are used as the initial object locations.

Performance of the proposed algorithm is compared with other unsupervised algo-
rithms. Bayesian nonparametric image segmentation (NBIS) (Orbanz and Buhmann,
2008) and graph-based algorithm (GB) (Felzenszwalb and Huttenlocher, 2004) can au-
tomatically determine the number of segments in an image. Spectral clustering (SC)
(Ng et al., 2002) partitions the image into a constant number of regions specified by the
user. This was set to 50 in our experiments. We also compare against level sets (LS)
(Dufour et al., 2005) and the algorithm (MINS) proposed in (Lou et al., 2014), both of
which are capable of inferring segmentations and learning the number of objects. Code
for implementation of all the competing algorithms has been downloaded from the au-
thors’ websites. The competing algorithms are sensitive to parameter tuning; hence, the
parameters are tuned on a validation set of two images chosen randomly.

Example images of cell data are shown in Figure 13 and Figure 14 displays the
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Method RandI SA
NBIS .81± .01 .53± .11
GB .81± .008 .58± .1
SC .84± .02 .62± .11
LS .78± .01 .45± .09
MINS .77± .008 .33± .09
Ours .86± .006 .69± .03

Table 1: Segmentation results for the cell data.

corresponding ground-truth annotations for these two example images. Figure 15 show
the segmentation results provided by our proposed model on these same two images.
Note that the results are reasonable and match the ground truth segmentation well.
Figure 16 displays the results for GB, Figure 17 for MINS, Figure 18 for NBIS, Figure 19
for level sets, and Figure 20 for spectral clustering on these same two images. Note that
the segmentation results on competing models tend to be noisier.

Table 6.1 reports the average segmentation results based on the Rand index (Rand,
1971) (RandI) and average segmentation accuracy (Everingham et al., 2010) (SA) on
all the 100 cell images. The Rand index is the ratio of the number of pixels that have
been classified correctly to the sum of correctly and incorrectly classified pixels (Rand,
1971). Segmentation accuracy is defined as the ratio of true positives to the sum of
true positives, false positives and false negatives (Everingham et al., 2010). Higher
values of Rand index and SA indicate better performance. Note that our proposed
method resulted in the best segmentation performance compared to all other competing
methods.

Because our algorithm can perform both segmentation and detection, we also report
detection performance based on precision and recall. Precision is defined as the ratio
of true positives with true positives and false positives. Recall is defined as the ratio
of true positives with true positives and false negatives. We follow the rules specified
in (Everingham et al., 2010) to calculate these values. The higher the value of these
measures, the better. Table 6.1 reports the detection results in terms of average and
standard deviation of precision and recall on the 50 cell images in each folder, ‘gnf’ and
‘ic100’. Note that our algorithm has a better performance compared to other algorithms
in the experiments. Graph-based methods have very noisy detections as can be seen from
Figure 16, showing high false positives and recall values but very poor precision as shown
in Table 6.1.

Apart from (LS) (Dufour et al., 2005) and (MINS) (Lou et al., 2014), all other al-
gorithms used for comparison are primarily designed for segmentation of images. This
implies that one needs to post-process the results to determine which segments belong
to background and which ones belong to the foreground. This is accomplished using
k-means. The intensity of the image is divided into two classes using the k-means al-
gorithm and the resulting mean values are used to determine the clusters belonging
to background and foreground. Clusters belonging to the category with low mean are
assumed to be from background.
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Figure 15: Results of our algorithm on two example images from the cell dataset. Cor-
responding ground-truth annotations are shown in Figure 14.

Figure 16: Results of graph based (GC) algorithm on two example images from the cell
dataset. Corresponding ground-truth annotations are shown in Figure 14.

Figure 17: Results of MINS algorithm on two example images from the cell dataset.
Corresponding ground-truth annotations are shown in Figure 14.

Figure 18: Results of NBIS algorithm on two example images from the cell dataset.
Corresponding ground-truth annotations are shown in Figure 14.
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Figure 19: Results of level sets algorithm on two example images from the cell dataset.
Corresponding ground-truth annotations are shown in Figure 14.

Figure 20: Results of spectral clustering algorithm on two example images from the cell
dataset. Corresponding ground-truth annotations are shown in Figure 14.

Our algorithm is implemented in MATLAB and takes an average of 10 minutes per

[1024 × 1344] image on a 12 GB RAM, 2.4 GHz computer. The NBIS and spectral

clustering (SC) algorithms take 40 minutes and 14 minutes respectively. Graph-based

algorithm (GB) and MINS take 61 and 25 seconds per image respectively. However, their

segmentation and object detection performance is much worse than our algorithm. The

level-set method takes 15 minutes. Parameters of mean and propagation weight were

tuned for optimal performance. This was done once for each of the folders ‘gnf’ and

‘ic100’. The maximum number of iterations allowed was set to 500.

6.2 Case Study 2: Traffic Surveillance Dataset (in Supervised
Mode)

The traffic surveillance dataset (Wang et al., 2013) contains video of a static camera

showing the traffic of pedestrians and vehicles. A spatial prior in this case is very useful

to model the high probability of a car appearing on the road compared to any other

part of the image. The pedestrians in the dataset also show a spatial pattern that can

be captured with a non-homogeneous spatial Poisson prior, with higher probability on

walking paths compared to other regions. Ground truth for training is provided by the

dataset itself consisting of 350 images used to train the model and 100 test images which

are used to test our model.
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Precision Recall
gnf ic100 gnf ic100

NBIS .56± .07 .21± .03 .9± .02 .83± .017
GB .01± .005 .01± .002 .73± .08 .56± .12
SC .29± .016 .0816± .006 .94± .02 .56± .17
LS .35± .14 .12± .01 .4± .01 .17± .03
MINS .67± .02 .13± .01 .46± .1 .28± .17
Ours .72± .01 .36± .06 .6± .01 .3± .03

Table 2: Detection results for the cell data.

Figure 21: Results on traffic images. (a) and (b) show example detection/segmentation
results for pedestrians and cars.

Training: Shape and Appearance Prior A complex shape prior with 16 landmark

points as shown in Section 2.2 is used to model the shape of pedestrians. An orientation

parameter is not required in this case as the orientation of pedestrians in the frame does

not change. Size of the object varies with location in the image; pedestrians who are

farther from the camera appear smaller in size than those who are closer. Therefore, the

size parameter a of the object is drawn from a uniform distribution U [amin,l, amax,l]

where, amin,l = amin × lr, amax,l = amax × lr, lr is row location of the object in the

image, and amin, amax are constants. A rectangular box whose length and width are

determined by the outcome of a multinomial distribution with parameters [ζl, ζw] is used

for the shape prior on cars. The length and width of the rectangular box is discrete and

therefore a multinomial distribution is chosen as the appropriate prior distribution.

The images are in color which implies that they have three channels R, G and

B. We refer to the vector containing the R, G and B values at each location as the

pixel intensity. These pixel intensities of objects from different categories (cars and

pedestrians) show huge variation and modeling them directly is complex. Alternatively,

one can model the difference in intensity value of each pixel from the observed mean

background value; e = |Bd − xd|, where Bd is the mean background intensity value
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Figure 22: Results on traffic images: (a) shows the plot of recall rate vs. false positive per
image of our proposed method compared with other methods for pedestrians, and (b)
shows the contour plot of the posterior Poisson intensity value inferred by the algorithm
for pedestrians.

calculated from the training data. The probability of e is given as follows:

P (e|φc,1, φc,2) =
φc,1 exp(−eφc,1)

(1− exp(−φc,2φc,1))
,

0 < e < φc,2, (19)

which is a right-truncated exponential distribution (truncated at φc,2), where c repre-
sents the category which is foreground and background in our case. α = [α1, α2] =
[φf,1,φf,2] and γ = [γ1, γ2] = [φb,1,φb,2] denote appearance parameters for foreground
and background respectively. The hyper-parameter values for the shape and appearance
priors are calculated using maximum likelihood on the training set.

Testing Initialization of the object centers is done using a heuristic approach. A binary
image is obtained by thresholding the infinity norm of the feature vector. This threshold
is set to a default value (between the maximum and minimum value of the features).
Midpoint of the connected components in the binary image are used as the object
centers.

The dataset was designed for object detection (pedestrians) and does not contain
segmentation annotations in the training set. We therefore evaluate the results only
with respect to object detection accuracy. Results reported in (Wang et al., 2013) for
different approaches are used for comparison. The approaches that we compare with are:
a generic HOG+SVM detector trained on the CUHK dataset; on the INRIA (Dalal and
Triggs, 2005) and CUHK dataset; on an additional dataset (Griffin et al., 2007); and a
scene-specific pedestrian detector (Wang et al., 2013). We refer to the fourth approach
that used adaptive context cues as SSPD (Wang et al., 2013). Segmentation examples
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are shown in 21. Results are reported in Figure 22 which plots recall rate as a function
of false positive per image, where we see that our algorithm outperforms competing
models for detecting multiple pedestrians on this dataset.

Additional benefits of the model include the ability to generate synthetic shapes from
the inferred shape prior (see Figure 5(b)) and the inference of posterior distribution of
the spatial Poisson process that can show the high stress/traffic areas (i.e., the areas of
high probability of occurrence of objects), depicted by the contour plot in Figure 22(b).
This can be inferred and analyzed for different times of the day as well. Moreover, our
model can detect and segment multiple object types (such as, cars and pedestrians)
simultaneously.

7 Discussion

A novel probabilistic generative model for multiple object detection and segmentation is
presented. This model is based on a latent marked Poisson process. The Poisson process
has been pivotal in driving the research in Bayesian nonparametrics. Our proposed
Bayesian latent marked Poisson process provides a natural structure to incorporate
number, location, shape and feature/appearance information. The spatial information
is integrated into the model using a non-homogeneous spatial Poisson process prior.
Inference on this model is challenging due to changing model order which is the natural
outcome of using a Poisson process. We provide a new formulation to perform inference
using hybrid Gibbs sampling by taking advantage of the finite number of pixels in
images. Possible extensions to the model are presented along with experimental results
on two diverse real-world applications. The results show that this model can outperform
competing algorithms for segmenting and detecting multiple objects.
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