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A Bayesian Nonparametric Approach to Testing
for Dependence Between Random Variables

Sarah Filippi∗ and Chris C. Holmes†

Abstract. Nonparametric and nonlinear measures of statistical dependence be-
tween pairs of random variables are important tools in modern data analysis. In
particular the emergence of large data sets can now support the relaxation of lin-
earity assumptions implicit in traditional association scores such as correlation.
Here we describe a Bayesian nonparametric procedure that leads to a tractable,
explicit and analytic quantification of the relative evidence for dependence vs
independence. Our approach uses Pólya tree priors on the space of probability
measures which can then be embedded within a decision theoretic test for depen-
dence. Pólya tree priors can accommodate known uncertainty in the form of the
underlying sampling distribution and provides an explicit posterior probability
measure of both dependence and independence. Well known advantages of hav-
ing an explicit probability measure include: easy comparison of evidence across
different studies; encoding prior information; quantifying changes in dependence
across different experimental conditions, and the integration of results within for-
mal decision analysis.

Keywords: dependence measure, Bayesian nonparametrics, Pólya tree,
hypothesis testing.

1 Introduction

Quantifying the evidence for dependence or testing for departures from independence
between random variables is an increasingly important task and has been the focus of
a number of studies in the past decade. A typical motivating example comes from the
field of biology where a growing abundance of genetic, proteomic and transcriptomic
data is being produced. In order to unravel the existing relationships between different
molecular species (genes, proteins, . . . ) involved in a biological system, large datasets
are commonly screened for evidence of association between the pairs of variables. This
requires adequate statistical procedures to quantify the evidence of dependence (or lack
of independence) between two samples of typically continuous random variables.

In this article, we propose a Bayesian nonparametric procedure to derive a proba-
bilistic measure of dependency between two samples x and y without assuming a known
form for the underlying distributions. In particular let M0 denote a model, or hypoth-
esis, of independence and M1 a model, or hypothesis, of dependence. The posterior
probability, p(M1|x, y), is then a natural measure of the strength of evidence for de-
pendence between the two samples against independence. The Bayes Factor quantifying
the relative evidence in the data in favour of M1 over M0 is simply,
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BF =
p(x, y|M1)

p(x|M0)p(y|M0)
,

which is the ratio of the prior predictive probability of the observed data given the two
competing hypotheses. This Bayes Factor implicitly avoids conditioning on the form of
the unknown distribution functions. The role of Bayesian nonparametrics is to allow
one to accommodate this uncertainty via a prior measure on the space of probability
measures, for instance,

p(x, y|M1) =

∫
f(x, y|M1)π(dF |M1),

where π(·) is a Bayesian nonparametric prior with wide support over the space of prob-
ability measures on the joint sample space ΩX×ΩY ; see for example Hjort et al. (2010).

We use Pólya tree priors (Lavine, 1992; Mauldin et al., 1992; Lavine, 1994) to model
the unknown distributions of the data. We show that the use of such priors leads to an
analytic derivation of the posterior probability of the dependence model p(M1|x, y). In
particular, this measure of dependence involves a finite analytic calculation though the
Pólya tree prior is defined over an infinite recursive partition. Pólya tree priors have
previously been used to derive Bayesian nonparametric procedure for two samples hy-
pothesis testing (Holmes et al., 2015; Ma and Wong, 2011) and extensions of these priors
have been proposed to model distributions indexed by covariates (Trippa et al., 2011).
The “two-sample testing” problem is different to that considered here in that it con-
siders the same measurement, or outcome, Y , measured on independent samples under
different conditions and tests for evidence of the “treatment” or covariate effect, whereas
our paper is concerned with exploring evidence for statistical association between two
joint measurement variables, {Y,X}, recorded together on a set of samples. However,
our approach exploits a similar framework to the testing procedure from Holmes et al.
(2015). In particular, our probabilistic measure necessitates the construction of Pólya
tree priors on a two-dimensional space, and as discussed at the end of the paper, this
engenders new challenges regarding the partitioning scheme to be employed. It is worth
noting that Pólya trees offer a more appropriate nonparametric model than say Bayesian
histograms, with Dirichlet priors (Leonard, 1973), as the recursive tree structure of the
Pólya tree is indexed on the measurement variable, whereas the Dirichlet prior for his-
tograms is for unordered categorical data and local dependence between measurement
bins must be introduced via a hierarchical prior. Moreover the Pólya tree is defined via
an infinite sequence partitioning, bypassing the need to truncate at some level, and, as
noted above, our approach can compute the Bayes factors from the infinite sequence.

Numerous frequentist approaches have been developed for identifying associations
between two samples (Shannon and Weaver, 1949; Cover and Thomas, 1991; Reshef
et al., 2011; Gretton and Györfi, 2010) but to the best of our knowledge this is the
first Bayesian nonparametric procedure to quantify the relative evidence of dependence
vs independence. Being able to provide the posterior probability of the dependence
model is attractive for a number of reasons. First, it can be combined with a variety of
probabilistic approaches. In particular, it can be easily merged with a decision theory
framework in order for optimal statistical decisions to be made in the face of uncer-
tainty. Another important property of probabilistic measures is their interpretability.
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Indeed, a given level p = p(M1|x, y) of this measure is exactly the probability of a
dependent generative model given the data and the probability of an independent gen-
erative model is simply 1 − p. Over and above the standard arguments in favour of
Bayesian inference, one explicit consequence of the coherence is that we can explicitly
quantify the evidence for a change in dependence between two variables across two or
more conditions. For example, if there is evidence that two dependent variables {X,Y }
become independent on application of a treatment, or across disease states. Answering
such questions is problematic from a non-Bayesian perspective, as a null hypothesis
of dependence is of higher dimension than the corresponding alternative hypothesis of
independence which is nested under the null. This makes the quantification of a p-value
extremely challenging. In Bayesian analysis, the symmetry of the model space makes for
a simple and intuitive solution. In Section 4 we illustrate this issue using an application
in cancer genetics concerned with the alteration of gene co-regulations with disease.

The remainder of the paper is organised as follows. We first introduce the Pólya
tree priors in Section 2 and summarise their main properties. In Section 3, we describe
our nonparametric procedure to test for dependencies between two samples. We then
illustrate in Section 4 our approach on data generated from simple models and then
we apply our procedure to two real world problems from biology. In the Supplementary
material (Filippi and Holmes, 2016) we provide an empirical calibration comparing our
method to that of other non-Bayesian approaches in the literature.

2 Polya tree priors

Pólya trees form a class of distributions for random probability measures F on some
domain Ω (Ferguson, 1974) by considering a recursive partition of Ω into disjoint mea-
surable spaces and constructing random measures on each of these spaces. A binary
recursive partitioning is typically used for one-dimensional domains: Ω is divided in
two disjoint sets C0 and C1 which themselves are divided in two other disjoints sets
C0 = C00 ∪ C01 and C1 = C10 ∪ C11, and so on. The infinite recursive partition is
denoted by C = {Cj , j = 0, 1, 00, 01, 10, 11, . . . }; the partition at level k is comprised of
2k sets Cj where j are all binary sequences of length k.

To better understand the probability measure constructed on these nested partitions,
one can think of a particle going down the tree shown in Figure 1 (Left); at each junction
j, usually represented in binary format, the particle has a random probability θj to
choose the left branch. In Pólya trees, the random branching probability follows a Beta
distribution, with θj ∼ Beta(αj,(0), αj,(1)). Given the partition C, the sequence of non-
negative vectors A = {αj,(0), αj,(1)}j and the sequence of realisations of the random
branching variables Θ = {θj}j , it is possible to compute the likelihood for any set of
observations x:

p(x|Θ, C,A) =
∏
j

θ
nj0

j (1− θj)
nj1 , (1)

where the product is over the set of all partitions and nj0 and nj1 denote the number
of observations that lie in the partitions Cj0 and Cj1 respectively. The Beta prior on
the partition probability is conjugate to the Binomial likelihood and, integrating out θj
for all j, we obtain that
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Figure 1: (Left) Construction of a Pólya tree distribution in the uni-dimensional case:
at each junction j the particle has a random probability θj to choose the left branch and
1− θj to choose the right one. (Right) Illustration of the first two levels of the quadrant
partitioning scheme in the two-dimensional case.

p(x|C,A) =
∏
j

B(nj0 + αj,(0), nj1 + αj,(1))

B(αj,(0), αj,(1))
, (2)

where B(., .) refers to the Beta function. For more details on Pólya Tree priors, we refer
the reader to Ferguson (1974); Lavine (1992); Mauldin et al. (1992); Lavine (1994);
Ghosh and Ramamoorthi (2003); Wong et al. (2010).

In this paper, we are interested in testing independence between two samples x and
y. We therefore need to consider the joint space ΩX ×ΩY of the two sample spaces. For
reasons that will become obvious later on, we recursively subdivide this space into four
rectangular regions. We start with partitioning ΩX × ΩY in 4 quadrants, ΩX × ΩY =
C0∪C1∪C2∪C3, and continue with nested partitions defined by Cj = Cj0∪Cj1∪Cj2∪Cj3

for any base 4 number j. Thus the partition at level k is formed of 4k sets Cj where j are
all quaternary sequences of length k. We assume that the sets Cj are rectangular, i.e. can
be written as a Cartesian product D × E where D ⊂ ΩX and E ⊂ ΩY . We arbitrarily
choose to denote Cj0 the left bottom region of the set Cj , Cj1 the right bottom region,
Cj2 the left top region, and Cj3 the right top region for all j. This recursive partition
C = {Cj , j = 0, 1, 2, 3, 01, 02, 03, 11, . . . } is illustrated in Figure 1 (Right). Similarly to
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the one-dimensional case, a probability measure can be constructed on this recursive
partition by defining random branching probabilities in the recursive quaternary parti-
tion. In the following we will use different distributions for these branching probabilities.

3 A Bayesian nonparametric measure of dependence

3.1 The approach

Given a N sample (x, y) which are i.i.d. realisations of the random vector (X,Y ), we
wish to evaluate the evidence for the competing hypotheses:

M0 : X and Y are independent random variables;

M1 : X and Y are dependent random variables.

We denote by FXY the unknown joint probability distribution of (X,Y ) and by FX and
FY the two unknown marginal distributions. Following a Bayesian approach, we aim at
estimating the posterior probability

p(M1|x, y) ∝ p(x, y|M1)p(M1),

where p(M1) represents prior beliefs regarding the competing hypotheses. We specify
our uncertainty in the distribution FXY via a Pólya tree prior. Denoting by ΩX and
ΩY the domains of the probability measures FX and FY respectively, we consider a
recursive quaternary partition of ΩX ×ΩY into disjoint measurable sets as described in
the previous section.

Under modelM0, we assume that samples x and y are independent. We can therefore
think of the partitioning in terms of x-axis and y-axis separately. Let ξj,X and ξj,Y denote
the independent random branching probabilities which determine the probability of
going in the “left” region of Cj (i.e. Cj0∪Cj2) and the“bottom” region of Cj (i.e. Cj0∪
Cj1) respectively. Similarly to the one-dimensional case, we assume that the random
branching probabilities follow Beta distributions, ξj,X ∼ Beta(αj,X,(0), αj,X,(1)) and
ξj,Y ∼ Beta(αj,Y,(0), αj,Y,(1)). By independence of ξj,X and ξj,X , the likelihood of the
data given the partition C, the sequence of random branching variables Ξ = {ξj,X , ξj,Y }j ,
AX = {αj,X,(0), αj,X,(1)}j and AY = {αj,Y,(0), αj,Y,(1)}j can be computed as follows

p(x, y|Ξ, C,AX ,AY ,M0) =
∏
j

ξ
nj0+nj2

j,X (1− ξj,X)nj1+nj3ξ
nj0+nj1

j,Y (1− ξj,Y )
nj2+nj3 ,

where, for quaternary sequence j ∈ {0, 1, 2, 3, 01, . . . , 03, . . . , 31, . . . , 33, . . . }, nj is the
number of observations falling in Cj . Integrating the random branching probabilities
out, we have

p(x, y|C,AX ,AY ,M0) =
∏
j

B(nj0 + nj2 + αj,X,(0), nj1 + nj3 + αj,X,(1))

B(αj,X,(0), αj,X,(1))

×
B(nj0 + nj1 + αj,Y,(0), nj2 + nj3 + αj,Y,(1))

B(αj,Y,(0), αj,Y,(1))
. (3)
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Under the M1 hypothesis, we do not assume independence between samples x and
y. In this case, for each set j, the random branching probability θj = (θj,(0), θj,(1), θj,(2),
θj,(3)) is a random vector taking values in the simplex S

3. For every i ∈ {0, 1, 2, 3}, θji is
the probability that the particle falls in the quadrant Cji. We use Dirichlet distributions
with parameters αj = (αj,(0), αj,(1), αj,(2), αj,(3)) for the random branching variables
{θj}j (Hanson, 2006). Hence the marginal likelihood is

p(x, y|C,A,M1) =
∏
j

B̃(ñj + αj)

B̃(αj)
, (4)

where ñj = (nj0, nj1, nj2, nj3) and B̃ is the multinomial Beta function defined as

B̃(αj) =

∏3
i=0 Γ(αj,(i))

Γ(
∑3

i=0 αj,(i))
,

where Γ designates the Gamma function.

Typically the values for the αj,(i) are of the form ck2 for α parameters at level k
(Walker and Mallick, 1999); we recall that k is the depth of the set Cj and the length
of the quaternary sequence j. We will follow this convention so that aj = αj,(i) for
i ∈ {0, 1, 2, 3}. In addition, to ensure that the prior distributions are equivalent under
the two models, we will assume that, for all j, αj,X,(0) = αj,(0)+αj,(2) = 2aj , αj,X,(1) =
αj,(1) + αj,(3) = 2aj , αj,Y,(0) = αj,(0) + αj,(1) = 2aj and αj,Y,(1) = αj,(2) + αj,(3) = 2aj .

To compare evidence in favours of both hypotheses, we compute the following ratio

p(M0|x, y)
p(M1|x, y)

=
p(x, y|M0)

p(x, y|M1)

p(M0)

p(M1)
,

where the first term is the Bayes factor which can be written as a product over all
partitions:

p(x, y|M0)

p(x, y|M1)
=

∏
j

bj , (5)

where bj is defined below. From equations (3) and (4) and expressing Beta and multi-
nomial Beta functions in terms of Gamma functions, we have

bj =
Γ(nj0 + nj2 + 2aj)Γ(nj1 + nj3 + 2aj)Γ(nj0 + nj1 + 2aj)Γ(nj2 + nj3 + 2aj)

Γ(nj0 + nj1 + nj2 + nj3 + 4aj)Γ(nj0 + aj)Γ(nj1 + aj)Γ(nj2 + aj)Γ(nj3 + aj)

× Γ(4aj)Γ(aj)
4

Γ(2aj)4
. (6)

The product in (5) is defined over the infinite set of partitions. However for any set Cj

containing zero or one data point (i.e. such that nj = nj0+nj1+nj2+nj3 ≤ 1), bj = 1.
Therefore, only subsets with at least two data points contribute to this product. The
Bayesian measure of the strength of evidence for dependence between the two samples
against independence involves a finite analytic calculation even though (5) is over the
infinite number of levels in the tree.
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The procedure is described in Algorithm 1. For each set Cj containing more than one
datapoint, the term bj measures the relative evidence in favour of M0 given the number
of datapoints falling in each of the four quadrants of Cj . Intuitively, for each set Cj we
perform a Bayesian independence test based on the local two-by-two contingency table.
Pólya tree priors provides us with a theoretical framework to perform these “local”
independence tests at every level while taking into account potential dependences on
neighbouring sets. In addition, it allows us to compute the Bayes Factor analytically
without having to chose any arbitrary level or any truncation. The parameter aj which
decreases with the depth of the set Cj enables us to give more importance to “local”
independence tests at the higher levels than at the deepest levels. In the next subsection,
we investigate the impact of the choice of this parameter.

Algorithm 1 Bayesian nonparametric evidence for independence.

1. Fix the quadrant partitioning scheme; choose a constant c.
For every set Cj containing more than one data point, compute bj defined in (6)
with aj = ck2 where k is the depth of the set Cj .

2. Assuming equal prior belief for both hypotheses,

p(M1|x, y) =
1

1 +
∏

j bj
= 1− p(M0|x, y).

3.2 Sensitivity to choice of A
The proposed procedure relies on a choice of the sequence of non-negative vector A,
AX and AY . As discussed above, the α parameters are constant per level and such that
αj,(i) = ck2 where k is the depth of the set Cj . In addition, αj,X,(i) = αj,Y,(i) = 2ck2.
The parameter c controls the speed of divergence of the α parameters with the depth
k and therefore the relative contribution of each level of the partition to the Bayes
Factor. We have investigated the impact of the setting of c (see Figures S4 and S5 in
Supplementary Material) and observe that small values of c typically favour the simpler
model (M0) especially when the number of samples is small and there is not enough
evidence to determine M1. This is to be expected as Bayesian modelling encompasses
a natural Occam factor in the prior predictive (see for example chapter 28 of MacKay
(2003)). We have found c = 5 to be a reasonable canonical choice but practitioners are
strongly advised to explore the setting for their own analysis.

3.3 Choice of the partition

Basic approach: partition centred on the median of the data

The inference resulting from a Pólya tree model is known to strongly depend on the
specification of the partition C over the data space (Paddock et al., 2003), and a mul-
titude of quadrant partitioning scheme could be used in our procedure. As a default,
partially subjective approach we suggest to construct a partition based on the quantiles



926 A Bayesian Nonparametric Independence Test

Figure 2: Construction of the partition. Both the basic approach and the empirical Bayes
approach are illustrated on a simulated sinusoidal dataset with some outliers. Under the
basic approach (Left column), the data are marginally transformed via the inverse of
the c.d.f. of normal distributions. The empirical Bayes approach consists in shifting the
central location of the partition by a factor δ and wrapping the data around: the data
space is divided into two regions Z1 = {(x, y), x ≤ δ} and Z2 = {(x, y), x > δ} which
are then juxtaposed. The obtained “shifted” data are then normalised via the inverse
of the CDF of a normal distribution. Quaternary recursive partitions of [0, 1] × [0, 1]
are constructed by subdividing the normalised data into four rectangular quadrants of
equal size (Bottom panels).

of two normal distributions (for the x- and y-axis respectively). In other words, both
variables x and y are transformed through the inverse cumulative distributive function
of a normal distribution; a quaternary recursive partition of [0, 1] × [0, 1] is then con-
structed by subdividing it into four rectangular quadrants of equal size (see Figure 2
(Left)) The mean and standard deviation of the normal distributions can be derived
from empirical estimates of the location and spread of the two samples. In the next
section we use the median and the median absolute deviation as this choice induces
robustness to potential outliers.

A simple partial optimising procedure for partition centring

Two random variables X and Y are dependent if and only if the distribution of Y
conditional on X ∈ DX is different to the distribution of Y conditional on X ∈ DC

X for
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some DX a compact set of ΩX and DC
X is its complement. In the previous paragraph, we

suggest centring the partition on the median (mx,my) of the data. For such choice of
partition, at the top-level of the Pólya tree our procedure tests whether the distribution
of Y conditional on X ∈ DX = (−∞,mx] is equal to the distribution of Y conditional on
X ∈ DC

X . The procedure performs the test symmetrically on the x-axis and the y-axis.
Instead of focusing on the median, it would be more informative to test whether the
distribution of Y conditionally onX ∈ DX is equal to the distribution of Y conditionally
on X ∈ DC

X for any compact set DX ∈ ΩX .

In this section, we consider a simple partial optimisation of the partition-centring
location by considering different compact sets DX . The approach involves shifting the
central location of the partition as defined by the top-level split, and wrapping the
data round to maintain balance in the number of points in each region. Consider a real
number δ ∈ [a, b] where a and b are respectively the minimum and maximum values of
the data on the x-axis. We denote by ψδ the transformation that divides the data space
in two regions Z1 = {(x, y), x ≤ δ} and Z2 = {(x, y), x ≥ δ} and juxtaposes them as
illustrated in Figure 2 (Right). More formally, ψδ : [a, b]×ΩY → [δ, b−a+ δ]×ΩY such
that

ψδ(x, y) =

{
(b− a+ x, y) if x ≤ δ,

(x, y) otherwise.

The obtained “shifted” data are then transformed through the inverse cumulative
distributive function of normal distributions and a quaternary recursive partition of
[0, 1]× [0, 1] is constructed as in the basic approach. We denote the obtained partition
by Cδ.

We consider optimising the marginal evidence of dependence p(M1|x, y) by max-
imising the Bayes factor as defined in equation (5) over all the partitions Cδ for δ ∈ [a, b].
The obtained probability of dependence is therefore

p(M1|x, y) =
1

1 +Bδ
,

where Bδ designates the Bayes Factor given the partition Cδ. This approach is called the
“empirical Bayes approach” in the rest of the paper. Note that optimising the central
location of the partition with respect to p(M1|x, y) will naturally tend to inflate the
evidence for M1. However, when testing many pairs of random variables for evidence
of dependence we are mainly concerned with the ranking of the pairs for further anal-
ysis, rather than explicit quantification of the evidence, and partial optimisation of the
partition may well help to produce more stable and accurate rankings as illustrated in
Section 4.1.

4 Applications

In this section, we illustrate the performance of our Bayesian nonparametric procedure
for detecting dependence across different datasets. We first test the procedure on simple
models proposed by Kinney and Atwal (2014) and then apply it on two real examples
from biology.
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Figure 3: (Top row) Illustration of the five synthetic datasets and sampling distributions
with N = 300 data and noise parameter σ = 2. (Middle rows 2 and 3) Frequency
distribution (over 500 independent runs) of the probability of the hypothesis M1 for
each model varying the number of data points (N) in plot row 2 and the level of noise
(σ) in plot row 3. When varying the number of data points, the level of noise is fixed
at σ = 2; when varying the level noise, the number of data points is fixed to N = 300.
The red curve represents the median while the light and dark grey area designate the
zone between the 5th and 95th percentiles and the inter-quartile region respectively.
(Bottom row) Distribution (over 500 independent runs) of the contribution (Bk) of the
5 first levels in the Pólya Tree. A negative Bk indicates evidence against independence.
We set N = 150 and σ = 2.

4.1 Illustration for synthetic datasets

We apply our Bayesian procedure on datasets generated under 5 different models pro-
posed by Kinney and Atwal (2014) as illustrated in Figure 3 (Top row): a linear model
(y = 2x/3+η), a parabolic model (y = 2x2/3+η), a sinusoidal model (y = 2 sin(x)+η),
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a circular model (x = 10 cos(θ) + η and y = 10 sin(θ) + η) and a model called “checker-
board” (x = 10(ix + θ) + η and y = 10(iy + θ) + η where ix ∼ U({0, 1, 2, 3}) and
iy = mod(2u, ix) with u ∼ U({0, 1})); in addition θ ∼ U([0, 2π]) and for each model we
have i.i.d noise variables η ∼ N (0, σ2).

We generated 500 independent data sets of sizeN for each of the 5 models, and varied
the level of noise (σ), and the number of data points (N). We used our procedure to
compute the probability of the hypothesisM1 given each of these datasets. The partition
structure was set using the robust mean and standard deviation of the data, and the
parameter c was set equal to 5. The frequency distribution (over the 500 independent
runs) of the probability of the hypothesis M1 for each model as a varying number of
data points and the level of noise is shown in Figure 3 (Middle rows). The red curve
represents the median while the light and dark grey area designate the zone between
the 5th and 95th percentiles and the inter-quartile region respectively.

As expected, the probability that the two samples are dependent is equal to 0.5
for every model when N = 1 as we assumed equal prior belief of both hypotheses.
The probability of M1 increases as the number of data points increases and is very
close to one for every model if N is larger than 4000. It is interesting to note that
when the number of samples is small there is not enough evidence to determine M1

and the Bayes Factor may favour the simpler model M0. As mentioned previously, this
it to be expected as Bayesian modelling encompasses a natural Occam factor in the
prior predictive (see for example chapter 28 of MacKay (2003)). This effect is stronger
for other smaller values of the parameter c (see Figures S4 and S5 in Supplementary
Material).

The logarithm of the Bayes Factor defined in equation (5) can be decomposed in
terms of levels in the recursive partition as follows

log

(
p(x, y|M0)

p(x, y|M1)

)
=

∑
k

⎛⎝ ∑
j s.t.Cj in level k

log(bj)

⎞⎠ =
∑
k

Bk

and the contribution of each level in favour of the independence or dependence model
(denoted by Bk for the level k) can be investigated. When Bk is close to 0, the contribu-
tion of level k is negligible, whereas large positive (resp. negative) Bk indicates stronger
evidence in favour of independence (resp. dependence) at level k. In Figure 3 (Bottom
row), we show the distribution (over 500 independent runs) of Bk for k ∈ {1, 2, 3, 4, 5}
for a sample of N = 150 data generated from the 5 different models with σ = 2. We
observe that in the linear model, the dependence can already be detected at the first
level, with B1 being strongly negative for most of the generated datasets. However, for
the four other models, the value of B1 is mostly positive and the top level does not
contain enough information to detect that there are dependencies between the two vari-
ables. In these examples, most of the information in favour of the dependence model is
in the second level. Deeper levels contribute less to the decision; this is due to the form
of parametrisation with the α parameters being proportional to k2. This decomposi-
tion of the evidence across levels is an attractive qualitative feature of the Pólya tree
testing framework, which can assist the statistical analyst in better understanding the
dependence structure.
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Figure 4: (Left) Illustration of the independent models sampling 300 data from two
independent standard normal distributions. (Right) Distribution (over 500 independent
runs) of the probability of the hypothesis M0 varying the number of data points (N).
The red curve represents the median whereas the light and dark grey area designate the
zone between the 5th and 95th percentiles and the inter-quartile region respectively.

The symmetric nature of the probability, p(M0|·) = 1−p(M1|·), allows us to explore
the ability to detect independence. The probability of the independent hypothesis M0

given data sampled from two independent standard normal distributions is shown in
Figure 4 for increasing number of data points (N). The probability of the independent
hypothesis increases with N and is very close to one if N is larger than 500. Such a
measure of independence between variables is problematic to compute for non-Bayesian
methods, as we are testing for a simpler model nested within a more complex one.
Frequentist approaches use a p-value which is conditional on M0 being true. Hence as
it stands it cannot be used as evidence for M0.

The performance of our Bayesian nonparametric approach varies between models
both in terms of number of data points required to detect dependence and in terms
of noise sensitivity: dependencies are detected for the circular and checkerboard mod-
els even for relatively high levels of noise and relatively small number of data points
but less so for the linear model, which visually appears closer to independence (top
plots in Figure 3). In addition, our approach necessitates a relatively high number of
data points (N ≥ 300) to detect dependence in the parabolic or the sinusoidal models
even for a level of noise σ = 2. We can obtain some explanation for this behaviour by
observing the bottom plots of Figure 3 where we see that for the parabolic and sinu-
soid examples there is a relative large evidence at level 1 in favour of independence.
This tempers the contribution of the evidence at level 2 that detects the dependence
structure present at this level of resolution. One way to try and address this issue is to
change the partitioning scheme and apply the empirical Bayes approach described in
Section 3.3. It consists in maximising the marginal evidence of the dependence model
over different partition centrings. Figure 5 shows that the evidence for dependence is
strongly increased for those two models when running the empirical Bayes approach.
Centring the Pólya Tree partition on the model that maximises the evidence of M1

will clearly obscure the Bayesian interpretation of the posterior probability. However,
when testing many pairs of variables in a common data set, the rank ordering of the
pairs by the resulting Bayes Factor may still be a useful method for highlighting those
showing greatest evidence. In the Supplementary Material, we provide an extensive,
frequentist, power analysis of our approach against other popular non-Bayesian meth-
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Figure 5: Distribution (over 500 independent runs) of the probability of dependence
using our Bayesian nonparametric approach (Left) and our empirical Bayes approach
which maximises the marginal probability of dependence over the shifted partition
scheme with data wrapping (Right). Data are generated under the 5 illustrative ex-
amples as well as an independent generative model where both x and y are vectors of
i.i.d. samples from a normal distribution with mean 0 and standard deviation 1. Here,
N = 150 and σ = 2.

ods. We observe that the power of every method strongly varies from one generative
model to another. Overall the power of the empirical Bayes approach appears to be
competitive (see Figure S2 in Supplementary Material); however, on some datasets, our
approach observes lower power than simpler non Bayesian state-of-the-art methods such
as the Maximum Information Criterion (Reshef et al., 2011) or the Mutual Informa-
tion estimated using the 20-nearest neighbours (Shannon and Weaver, 1949; Cover and
Thomas, 1991). The sensitivity of results to the partitioning structure of the Pólya Tree
is known to be a issue in Bayesian nonparametric model (Hjort et al., 2010), and is an
open area of future research. Clearly careful diagnostic checking should be made by the
statistician when employing any method, and permutation testing under the null could
be employed here to highlight sensitivity issues with regards to power, although we do
not explore this further.

4.2 Applications from molecular biology

Gene expression network form measurements at single-cell resolution

The field of biology contains numerous examples where a large amount of data has been
produced and adequate measures to detect dependence between variables are required.
Here we focus on an example from single-cell biology. Nowadays, the expression level of
thousands of genes can be jointly measured at single-cell resolution, which allows biolo-
gists to precisely study the functional relationships between genes. In Wills et al. (2013),
the expression of 96 genes affected by Wnt signalling have been measured in 288 single
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cells. The authors provided evidence that many of these transcriptomic associations
are masked when expression is averaged over bulk sequencing on many cells. In their
study the authors investigated the relationships between these genes and constructed
an expression network using the measurements at single-cell resolution. The expression
network can illustrate potential functional relationships and dependencies that are in-
teresting to elicit molecular pathways. The network is constructed by highlighting genes
that have correlated or anti-correlated expressions between cells using Spearman correla-
tion coefficient. We reproduce this network detecting dependences both with Spearman
correlation and with our Bayesian procedure (see Figure 6 (Top row)). Our procedure
detects many associations between genes that were not detected by simple correlation
analysis: More than 250 pairs of genes have a probability of dependence higher than
0.95 and an absolute value of Spearman correlation lower than 0.5 whereas every (ex-
cept one) link with absolute Spearman correlation higher than 0.5 has a probability of
dependence larger than 0.95 (see Figure 6 (Bottom row, Left)). Some of these links that
are only detected using our approach are between genes that are known to interact such
as APC and DVL2, AXIN1 and GSK3B, DVL2 and LRP6 or AXIN1 and DACT1 (see
Figure 6 (Bottom row)). Other detected links remain to be investigated.

Differential co-expression analysis

Networks have proved themselves to be important representation of biological systems
where various molecules are interacting and functionally coordinating. A typical example
is gene expression networks such as the one described in the previous subsection where
nodes correspond to genes and edges represent interactions between genes. Interactions
in biological networks can substantially change in response to different conditions. In
particular, gene co-regulations may be altered with disease and an interaction between
two genes could be present in some conditions and not in other. Differential co-expression
analysis consist in identifying which interactions in gene expression network change from
one condition to another (Hsu et al., 2015).

The main objectives of differential co-expression analysis is to identify couples of
genes (x, y) such that the strength of dependence between x and y changes in response
to different conditions. Our Bayesian procedure is perfectly suited for this type of prob-
lems which require methods able to detect both dependences and independences. Non-
Bayesian testing procedures for independences typically only provide p-values to identify
when the null hypothesis (here, the independence hypothesis) can be rejected. To the
contrary our approach enables us to quantify the relative evidence of dependence versus
independence. In particular, given the expression {xi, yi}i=1,...,n of two genes in n cells
under condition A and the expression {x̃i, ỹi}i=1,...,ñ of the same two genes in ñ cells
under another condition B, we can calculate the probability of a change of interactions
between these two genes in response to conditions A and B as follows

pdiff({xi, yi}i=1,...,n, {x̃i, ỹi}i=1,...,ñ) = (7)

p(M1|{xi, yi}i)
(
1− p(M̃1|{x̃i, ỹi}i)

)
+ p(M̃1|{x̃i, ỹi}i) (1− p(M1|{xi, yi}i)) ,

where M1 and M̃1 denote the dependence model under respectively condition A and B.
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Figure 6: (Top row) Expression network constructed using correlation (Left) – where
links with absolute correlation larger than 0.5 are shown and darker edges represent links
with absolute correlation larger than 0.7 – and our nonparametric Bayesian procedure
(Right) – where links with probability of dependences larger than 0.99999 are shown and
darker edges represent links with probabilities equal to 1. Genes are ordered clockwise
according to increasing number of detected links. (Bottom row – Left) Comparison of
the probability of dependence computed following our approach and the absolute value
of Spearman correlation for every pairs of genes. The 4 red circles indicate some pairs
of genes with known interactions which have an absolute correlation lower than 0.5
but a probability of dependences larger than 0.95. (Bottom row – Middle and Right)
Examples of gene expression data for two genes with known interaction.

In Curtis et al. (2012), a collection of around 2, 000 breast cancer specimens from

tumour banks in the UK and Canada is analysed and compared to a set of 144 normal

cells. We propose to apply our algorithm to these gene expression dataset and make use
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Figure 7: (Left) Expression of eigengenes for different modules (module 2, 3, 4, 10 and
13) in the 144 normal cells and in the 997 tumour cells. We observe that some modules
are strongly interacting under one of the conditions (Normal or Breast Cancer) and
not under the other. Each dot corresponds to the expression of two eigengenes in one
cell. (Right) Differential co-expression network: nodes correspond to modules of genes;
edges represent module interactions that significantly change between normal and cancer
conditions. Red continuous edges correspond to interactions that are present in normal
cells and vanished in tumour cells; blue dashed edges correspond to interactions that
are only present in tumour cells.

of the probability in equation (7) in order to identify dysregulation in gene expression in
response to breast cancer. We focus on comparing a subset of 997 tumour cells (called
the discovery test in Curtis et al. (2012)) with the set of 144 normal cells; for each cell,
the expression level of 48,803 probes is available. Following the approach proposed by
Langfelder and Horvath (2007) we use the gene expression of the normal cells to identify
25 modules of correlated genes and determine so called “eigengenes” that represent the
expression of genes in each module. We used the R implementation of this module
detection and eigengene computation provided in the R package WGCNA (Langfelder
and Horvath (2008)). We represent in Figure 7 (Left) the eigengene expression of some
selected modules under the two conditions. By computing the probability in (7) for the
300 pairs of modules, we identify interactions between modules that significantly change
in response to breast cancer. We find that the probability pdiff is larger than 0.95 for 69
module interactions, represented in Figure 7 (Right). Among those 69 interactions, 49
are interactions that were present in normal cells and vanished in tumour cells whereas
13 of the interactions only appear in tumour cells.
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Module Number Over-represented Pathway(s)
1 Cell Cycle, Mitotic
2 ATP sensitive Potassium channels
3 Gene Expression
4 Elastic fibre formation
5 IFN-alpha/beta pathways + Interferon Signalling*
6 ALK1 signalling events
7 Translation + Ribosome*
8 Bladder cancer − Homo sapiens (human)
9 Apoptotic cleavage of cell adhesion proteins
10 ERK/MAPK targets
11 Extracellular matrix organisation
12 AP-1 transcription factor network
13 Metabolism
14 Generation of second messenger molecules
15 The citric acid (TCA) cycle and respiratory electron transport
16 Thromboxane signalling + ADP signalling
17 Peptide ligand-binding receptors
18 Generic Transcription Pathway
19 Type I hemidesmosome assembly
20 Peptide chain elongation
21 PI3K-Akt signalling pathway − Homo sapiens (human)
22 Eukaryotic Translation Elongation
23 Immune System
24 Metabolism
25 Mitochondrial translation elongation

Table 1: Pathway enrichment results, using three pathway databases (PID, KEGG,
and Reactome), for the 25 modules identified. For each module, the most significant
pathway was selected based on adjusted p-values. Ties were resolved by taking the
smaller pathway (for pathways with large discrepancy in size), or by the most significant
by unadjusted p-values.

The pathway enrichment analysis enables us to implicate each of the 25 modules
with established biological cascades and clinically-relevant pathways (see Table 1). The
two modules with the highest degree in the differential co-expression network are: (a)
the ALK1 signalling pathway, and (b) complexes associated with translation (e.g. ribo-
some). For the former, this likely indicates loss of regulation and signalling cross-talk;
for the latter, since ribosomes are essential and translational genes are often tightly
regulated, this hints at wide-spread transcriptomic perturbation. In particular, the high
degree of the ribosome/translation module indicates that, in the cancerous state, more
modules are increasingly dysresgulated and out of sync with the more tightly regulated
translation-involved modules. Our analysis shows that both of these high-degree mod-
ules are disconnected to numerous other important pathways such as the ERK/MAPK
pathway, or genes involved in immune signalling (such as antigen presentation). More
generally, this demonstrates that overlaying biological and clinically relevant annota-
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tions on the differential co-expression network may be the basis for further research
regarding transcriptomic alterations in breast tumours.

5 Discussion/conclusion

We have presented a novel Bayesian nonparametric approach that quantifies a proba-
bilistic measure for the strength of evidence for dependence between two samples against
that of independence. The procedure is based on Pólya tree priors that facilitate an an-
alytic expression for the Bayes factor even though the Pólya tree prior is defined over
an infinite recursive partition. We have applied our approach to simulated datasets as
well as applications in molecular biology including single-cell gene-expression analysis
and network analysis in cancer genetics.

The inference resulting from a Pólya tree model is known to strongly depend on the
specification of the partition C over the data space (Hjort et al., 2010). We have illus-
trated the sensitivity of the performance of our approach to the partitioning structure
of the Pólya Tree by introducing an empirical procedure which consists in maximising
the marginal evidence of the dependence model over different partition centrings. By
definition, this empirical approach tends to inflate the evidence in favour of dependence
which complicates the Bayesian interpretation of the posterior probability. However,
the Bayes Factor obtained following the empirical Bayes approach can be used to ac-
curately rank order different pairs of variables in a common data set for highlighting
those showing greatest evidence in favour of the dependence model. Future work would
involve exploring further methods to optimise the partitioning structure of the Pólya
Tree such as incorporating random partitioning schemes.

Our probabilistic measure has some importance advantages over existing frequentist
statistics such as Mutual Information or the Maximal Information Criterion (Shan-
non and Weaver, 1949; Cover and Thomas, 1991; Reshef et al., 2011) due to its in-
terpretability in terms of a recursive partition of the data space, and its symmetry in
that p(M0|·) = 1−p(M1|·). The explicit quantification of a probability allows for com-
bining with other sources of information within a prior or meta-analysis. As shown in
Section 4.2 the Bayesian approach provides a unified method for detecting both inde-
pendence and dependence, something that is not possible without a fully probabilistic
framework. The Bayesian probabilistic approach allows for the inclusion of substantive
prior information on the plausibility of an association, which can be particularly useful
for screening large biological data sets. There is also the possibility to embed the model
within a hierarchical structure, borrowing strength coherently across categories, some-
thing that is challenging for existing approaches based on non-probabilistic methods.

Supplementary Material

Supplement Material of “A Bayesian Nonparametric Approach to Testing for Depen-
dence Between Random Variables” (DOI: 10.1214/16-BA1027SUPP; .pdf).

http://dx.doi.org/10.1214/16-BA1027SUPP
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