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Variational Bayes for Functional Data
Registration, Smoothing, and Prediction

Cecilia Earls∗ and Giles Hooker†

Abstract. We propose a model for functional data registration that extends cur-
rent inferential capabilities for unregistered data by providing a flexible proba-
bilistic framework that 1) allows for functional prediction in the context of regis-
tration and 2) can be adapted to include smoothing and registration in one model.
The proposed inferential framework is a Bayesian hierarchical model where the
registered functions are modeled as Gaussian processes. To address the computa-
tional demands of inference in high-dimensional Bayesian models, we propose an
adapted form of the variational Bayes algorithm for approximate inference that
performs similarly to Markov Chain Monte Carlo (MCMC) sampling methods
for well-defined problems. The efficiency of the adapted variational Bayes (AVB)
algorithm allows variability in a predicted registered, warping, and unregistered
function to be depicted separately via bootstrapping. Temperature data related to
the El-Niño phenomenon is used to demonstrate the unique inferential capabilities
for prediction provided by this model.

Keywords: Bayesian modeling, functional data, functional prediction,
registration, smoothing, variational Bayes.

1 Introduction

This paper introduces a novel approach to functional data registration within a Bayesian
hierarchical model. In this model, both registered and warping functions are modeled in
terms of Gaussian processes with registration described by restrictions on the covariance
of the registered functions. This enables both Markov Chain Monte Carlo (MCMC) and
variational Bayes methods to be employed for estimation and prediction. Our model
for registration extends current inferential procedures to include both 1) functional
prediction in the context of registration and 2) registration and smoothing in one model.

The primary advantage to our proposed registration model in comparison to current
registration methods is that it provides a probabilistic framework in which new ob-
servations can be considered. Assuming a new unregistered function has been partially
recorded, with this framework, we can obtain estimates of the registered partial function
and also the corresponding partial warping function. Using these estimates, the com-
plete registered function, the complete warping function, and the complete unregistered
function can be predicted. Details of the prediction model can be found in Section 5.
To the authors’ knowledge this is the first time functional prediction is considered in
the context of registration.
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Additionally, our model can be extended to allow for noisy observations. Most cur-
rent registration methods consider functional regularization as a pre-processing step
with the exception of Raket et al. (2014). However, in the paper by Raket et al. (2014),
the authors’ maximum likelihood approach to registering latent functions does not pro-
vide an easy way to quantify variability in the estimates of the registered functions. In
Appendix C.3 (Earls and Hooker, 2016), we provide an illustration of how smoothing
functions in a pre-processing step can significantly underestimate the variability in the
estimates of the registered functions.

The simplest definition of functional data registration is any algorithm that aligns
functions in a way that eliminates all phase variability between functions (Ramsay and
Silverman (2005)). Without registration, basic summary statistics such as the sample
mean and covariance are less interpretable as time variation between significant features
in the functions tends to dampen the amplitude variation in these features. Furthermore,
the average timing of significant features may also be of interest and is difficult to obtain
under traditional methods of analyzing functional data. There has been much recent
interest in proper ways to define and measure registration as well as in developing
registration methods with desirable statistical properties.

The evolution of registration dates back to Sakoe and Chiba (1978) where the authors
use a dynamic programming algorithm for landmark registration. Landmark registration
was again considered by Kneip and Gasser (1992, 1995). In 1997, a new cost function
for functional registration was introduced by Wang and Gasser (1997). A significant
advancement in registration literature can be traced to Silverman (1995) and Ramsay
and Li (1998) where the authors introduce global registration procedures, and Ramsey
considers the use of a flexible family of monotone warping functions. Parametric and
B-spline base warping functions are considered by Brumback and Lindstrom (2004) and
Gervini and Gasser (2004), respectively. Nonparametric maximum likelihood approaches
to registration are considered by both Ronn (2001) and Gervini and Gasser (2005). A
moments based approach to registration is introduced by James (2007). Tang and Muller
(2008) propose pairwise curve synchronization. The first Bayesian approach to registra-
tion can be found in Telesca and Inoue (2007). Registration to principal components
is considered by Kneip and Ramsay (2008). Finally, with regard to improvements in
registration, the recent work by Srivastava et al. (2011) offers the most comprehensive
framework for registration to date.

Much of the focus in combining registration with other types of inference in one
model has been in the area of functional data clustering and registration. Current work
in this area can be found in Liu and Yang (2009), Sangalli et al. (2010), and also a
Bayesian approach in Zhang and Telesca (2014). Recent work by Raket et al. (2014)
includes a model for functional smoothing and registration. While these extensions to
registration procedures offer additional tools for functional data analysis, they tend to
focus less on high-quality registration.

In this paper, we develop Bayesian hierarchical models that address both areas of
development in registration procedures. First, a model is proposed to register functional
data that gives estimates that compare favorably with those from the best current
registration methods available, notably, Srivastava et al. (2011). Then, we demonstrate
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how this model can be extended to incorporate other inferential procedures. The two
examples provided in this paper are extensions for both a functional prediction model
and a model for simultaneous registration and smoothing.

This paper also addresses the computational issues associated with high-dimensional
Bayesian hierarchical models. To this end, we propose an alternative algorithm to
variational Bayes approximation that can be used for models in which the full con-
ditional distributions of a subset of the parameters are not from a known paramet-
ric family. To distinguish our algorithm from pure variational Bayes, in this paper
we will refer to this approximate inference procedure as Adapted Variational Bayes
(AVB).

This paper is organized as follows. Section 2 presents our basic registration model.
The Adapted Variational Bayes algorithm is discussed in detail in Section 3. A com-
parison of results from our model to current methods can be found in Section 4.1.
Additionally, a comparison of results obtained using AVB and those given by MCMC
can be found in 4.2. The prediction model is presented in Section 5. In Section 5.4,
the prediction model is used to forecast the future trajectory of sea-surface tempera-
tures that are associated with the El-Niño phenomenon. An adaptation to our model
that allows for noisy data is found in Appendix C (Earls and Hooker, 2016). Finally, a
discussion is found in Section 6.

2 Gaussian Process Models for Registration

The functional registration models proposed in this paper are foremost designed to
extend and improve on the minimum eigenvalue registration criterion for continuous
registration first introduced by Ramsay and Li (1998). Accordingly, we will consider
two functions perfectly registered if the variation between the two functions can be de-
scribed entirely in terms of one functional direction – the target function. Our method
of registration improves on Ramsay and Li’s Procrustes method, Ramsay and Li (1998),
by implicitly accounting for vertical shifts between registered functions and by allow-
ing the target curve to evolve throughout the registration procedure. In Section 4, we
will demonstrate how using the minimum eigenvalue criterion under these conditions
provides a more complete curve registration. Our results are comparable to those of
Srivastava et al. (2011).

The theoretical basis for modeling functional data as Gaussian processes in a hi-
erarchical Bayesian environment is established in Earls and Hooker (2014). In our
registration model, each registered function, Xi(hi(t)), i = 1, . . . , N , is the composi-
tion of an observed unregistered function, Xi(t), with an unknown warping function,
hi(t), over some fixed time domain T = [t1, tp]. The function hi(t) is represented as

hi(t) = t1 +
∫ t

t1
exp (wi(s))ds to enforce its monotonicity where wi(t) is specified as

having a Gaussian process distribution, resulting in a functional random effect. In this
paper, we will refer to wi(t) as the base function associated with warping function
hi(t). The base functions are non-parametrically specified for optimal registration. We,
however, impose the following restrictions on the warping functions:
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1. h(t1) = t1,

2. h(tp) = tp, and

3. if tk > tj , then h(tk) > h(tj) for all tk, tj ∈ T .

Restrictions (1) and (3) are built into the definition of hi(t). Restriction (2) is im-
posed through the characteristic function in the expression for the prior defined for each
base function, wi(t). Note that wi(t) = 0 corresponds to the identity warping, hi(t) = t.
An important feature of our definition of the warping functions is that it defines an iden-
tifiable relationship between hi(tj) and wi(t) which is necessary for predicting future
outcomes of curves that are only partially observed. In Section 5 is a more thorough
discussion of the prediction model.

We also model each registered function, Xi(hi(t)), i = 1 . . . N , as a Gaussian process
such that

Xi(hi(t)) | z0i, z1i, f(t) ∼ GP (z0i + z1if(t), γ
−1
R Σ(s, t)), s, t ∈ T . (1)

Here, f(t) is the target function. The target function serves as the primary functional
direction in which the registered functions vary. Accordingly, the above covariance func-
tion, γ−1

R Σ(s, t), is defined to penalize all variation in the registered functions beyond a
scaling and vertical shifting of the target function (the function-specific mean). In these
models we will define γR as a registration parameter that determines the severity of this
penalty.

Given a sample of unregistered functions, Xi(t), i = 1 . . . N , defined over the interval
T = [t1, tp], we are interested in estimating the warping functions, hi(t), the shifting
and scaling parameters, z0i and z1i, the target curve, f(t), and the registered functions.

For now, we will assume the functions are recorded without noise. If the functions
are recorded with noise, it is common practice in the current literature to first perform a
pre-processing smoothing step. An undesirable result of this pre-processing step is that
the subsequent inference procedure is unable to capture the extra variability associated
with the smoothing process. This phenomenon is illustrated using the Berkeley boys
growth velocity data in Appendix C.3 (Earls and Hooker, 2016). Appendices C.1 and
C.2 (Earls and Hooker, 2016) detail how our basic registration model can be modified
to both smooth and register functions.

Inference is accomplished through a Bayesian hierarchical model. The distributional
assumptions and prior specifications for this model are

Xi(hi(t)) | z0i, z1i, f(t)∼GP (z0i + z1if(t), γ
−1
R Σ(s, t)), s, t ∈ T , i = 1, . . . , N, (2)

Σ(s, t)=P1(s, t) + P2(s, t), (3)

hi(t)= t1 +

∫ t

t1

exp(wi(s))ds, t ∈ T , i = 1, . . . , N,

wi(t)∝GP (0, γ−1
w Σ(s, t)+λ−1

w Pw(s, t))1{t1 +
∫ tp

t1

exp(wi(s))ds= tp},
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s, t ∈ T , i = 1, . . . , N, (4)

Pw(s, t)=P2(s, t), (5)

z0i | σ2
z0 ∼N(0, σ2

z0), i = 1, . . . , (N − 1), z0N = −
N−1∑
i=1

z0i,

σ2
z0 ∼ IG(a, b),

z1i | σ2
z1 ∼N(1, σ2

z1), i = 1, . . . , N, (6)

σ2
z1 ∼ IG(a, b), (7)

f(t) | ηf , λf ∼GP (0,Σf (s, t)), s, t ∈ T , (8)

Σf (s, t)= η−1
f P1(s, t) + λ−1

f P2(s, t), (9)

ηf ∼G(c, d), and

λf ∼G(c, d).

For this model, the parameters, z0i, i = 1, . . . , N , allow the registered functions to
vary by vertical shifts from a scaling of the target function, f(t). The constraint, z0N =

−
∑N−1

i=1 z0i, ensures the average vertical shift is estimated to be 0. The parameters,
z1i, i = 1, . . . , N , quantify amplitude variation in the registered functions. Note, the
Gaussian distribution on z1 = (z11 . . . z1N )′ can be replaced by a Dirichlet distribution
on z1/N . The result is a slightly more complicated model that has the nice effect of
scaling the target function to the empirical mean of the estimated registered functions.
Priors (6) and (7) would then be omitted.

In the above model specifications, all covariance functions are composed of a linear
combinations of two bi-variate functions, P1(s, t) and P2(s, t). P1(s, t) penalizes vari-
ation in constant and linear functions and P2(s, t) penalizes function variability in all
other directions. Together they define a proper covariance function. For each covariance
function above, the specification of the registration and smoothing parameters indicate
the extent the two different types of variability should be penalized for each function.
For example, for both the registered functions and the base functions, we want to pe-
nalize variation in any direction other than that of the mean function. The covariance
specifications of γ−1

R Σ(s, t) and γ−1
w Σ(s, t) reflect these penalties, where the magnitude

of the penalty is controlled by registration parameters, γR and γw, (distributional as-
sumptions 2,3, and 4). We can use P2(s, t) to penalize roughness in a given function.
Here we would like both the target function and the base functions to be smooth. This is
achieved by the inclusion of λ−1

f P2(s, t) and λ−1
w P2(s, t) in the priors for these functions

(distributional assumptions 8, 9, 4, and 5) where the level of the penalty is controlled by
the smoothing parameters λf and λw. For the exact definitions of P1(s, t) and P2(s, t),
see Earls and Hooker (2014).

Given the above model, in practice we will proceed by using finite approximations to
each function and functional distribution. In Earls and Hooker (2014) we establish some
theoretical properties of these types of approximations. The following finite-dimensional
distributions are used in the final model in lieu of their infinite dimensional counterparts
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above:

Xi(hi) | z0i, z1i, f ∼ Np(z0i1+ z1if , γ
−1
R Σ), i = 1 . . . N, (10)

hi(tj) = t1 +

j∑
k=2

(tk − tk−1) exp(wi(tk−1)), i = 1 . . . N, j = 1 . . . p,

wi ∝ Np−1(0, γ
−1
w Σ+ λ−1

w Pw)1{t1 +
p∑

k=2

(tk − tk−1) exp(wi(tk−1)) = tp},

i = 1 . . . N, (11)

f | ηf , λf ∼ Np(0,Σf ), and

Σf = η−1
f P1 + λ−1

f P2.

Section 4 provides several examples that illustrate how allowing the target function
to be estimated within the model results in a more complete functional registration in
comparison to the Procrustes method, Ramsay and Li (1998). However, the Gaussian
process model does not constrain the timing of a feature in the target function to occur
at the average time of the corresponding unregistered features. Although the model for
the wi(t) is centered on zero, it is still possible that the average of the estimated warped
time points, h·(t1),. . .,h·(tp), does not correspond to the original time points. Shifting
these by an additional registration so that the warped times average to the original time
does not affect our prediction model, but it will then allow an explicit comparison of
hi(tj) to tj to tell us whether the process is running ahead or behind “standard” time.
Srivastava et al. (2011) use a similar “correction” to determine their target function.
Details on how to perform this final registration can be found in Appendix A.3 (Earls
and Hooker, 2016).

2.1 Registration and Warping Parameter Selection

Registration in this model is controlled by three parameters, γR, γw, and λw. The
parameter γR determines the extent the registered functions will be penalized for varying
from a shifting and scaling of the target function. This penalty for lack of registration
is tempered by penalties for roughness in the warping functions. The parameter γw
determines how far the warping functions can deviate from the identity warping while
λw controls the smoothness of the warping functions. This model can also be adapted
to allow for function specific warping penalties. In Section 5.4, we will give an example
where function specific penalties for the base functions have been utilized to preserve
significant covariance relationships in the estimated registered functions.

For a given statistical analysis, the registration parameters are chosen by the user.
This is because variation in registered functions outside of shifts and rescaling f(t)
(controlled by γR) is nearly non-identifiable from variation in warping functions, as
regulated by γw and λw. That is, there are linear directions of variation in the w(t)
that result in nearly linear directions of variation in the resulting Xi(t) (a simplified
example is the identity sin(t+δ) = cos(δ) sin(t)+sin(δ) cos(t) which confounds horizontal
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shifts with vertical variation in periodic functions). An exact description of this form

of confounding is beyond the scope of this paper, but it yields unstable estimates when

these parameters are not fixed and we therefore choose these by hand. In this model a

large registration penalty, γR, in comparison to the penalty on warping, γw, will result in

registered functions that no longer retain significant features in the data. Alternatively, a

registration parameter that is too small will not properly align features. Desirable values

of these parameters can be determined using short runs of the adapted variational Bayes

algorithm described in Section 3.1. In practice, we have found these penalties should

be adjusted by powers of ten to see a significant change in estimates of the registered

functions. Once determined, γR, γw, and λw are fixed and can be used with the adapted

variational Bayes estimates to initialize an MCMC sampler.

3 Variational Approximation

3.1 Variational Bayes

For our registration model, it is appropriate to use Markov Chain Monte Carlo (MCMC)

methods to sample from the joint posterior distribution of all unknown parameters.

However, for most applications, the dimensionality of the parameter space will require

exceptionally long chains that are impractical and expensive to obtain. Here, we suggest

a variational Bayes alternative to MCMC sampling to at the very least obtain good

starting values for a MCMC sampler. Alternatively, we will show in Section 4.2 that

differences in the estimated parameters obtained through adapted variational Bayes and

MCMC sampling tend to be small, and estimation via adapted variational Bayes alone

is likely sufficient for many inferential procedures.

The variational Bayes procedure described here is based on the variational methods

proposed by Omerod and Wand (2010) and Bishop (2006). Their proposed method opti-

mizes a lower bound of the marginal likelihood which results in finding an approximate

joint posterior density that has the smallest Kullback–Leibler (KL) distance from the

true joint posterior density. Both fixed form and nonparametric forms of variational

Bayes algorithms are currently available. The variational Bayes algorithm that we pro-

pose is most closely related to fixed form variational Bayes. A clear explanation of fixed

form variational Bayes can be found in Goldsmith et al. (2011) where the authors utilize

variational Bayes for a functional regression model.

Suppose q(θ) is the approximated posterior joint distribution. The fixed form varia-

tional Bayes algorithm assumes for some partition of θ = {θ1, . . . ,θd}, q(θ) =∏d
k=1 qk(θk), where each distribution qk is of a known parametric form. Traditionally

this requirement is satisfied through the use of conditionally conjugate priors.

In our model, the Gaussian process priors for the base functions, wi(t), i = 1, . . . , N ,

are not conditionally conjugate to the likelihood function. Therefore, the fixed form

variational Bayes optimization method does not apply directly since qk(wi), i = 1, . . . , N

are not known parametric distributions.
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3.2 Adapted Variational Bayes (AVB)

Suppose we order the parameter vector, θ, so that, θ = {w1, . . . ,wN ,θN+1, . . . ,θd},
for k = {(N +1), . . . , d}. While the q distributions on the approximated base functions,
wi, i = 1, . . . , N are not of known parametric forms, each qk(θk), k = {(N +1), . . . , d},
is a known parametric distribution that can be estimated using the standard fixed form
variational Bayes algorithm. The following variational Bayes algorithm is adapted to
include estimation for parameters without conditionally conjugate priors in addition
to all other parameters that typically can be estimated using fixed form variational
Bayes. This adaptation is similar to the variational approximation to the EM algorithm
described by Tzikas et al. (2008) which performs approximate inference based on the
EM algorithm for models where the posterior distribution of the latent variables is of
an unknown form.

The Adapted Variational Bayes Algorithm

Define f(X,w,θ) as the joint distribution of the data, X, and parameters of a
Bayesian hierarchical model. Suppose an approximate joint posterior distribution of the
parameters, θ = {w1, . . . ,wN ,θN+1, . . . ,θd}, is of the form

∏N
j=1

∏d
k=N+1 qj(wj)qk(θk)

where each qj(wj), j = 1, . . . , N , is known only up to a constant of proportionality and
the distributions, qk(θk), k = N+1, . . . , d, are of known parametric forms. We will define
the following estimation procedure for θ as the adapted variational Bayes algorithm.

1. Initialize θ.

2. For each iteration, m, and each k, k = 1, . . . , N , update the estimate for wk so

that w
(m)
k = supwk

qk(wk | θ
(m−1)
j , j = (N + 1), . . . , d). This is equivalent to

setting w(m) = supw f(X,w | θ(m−1)
j , j = (N + 1), . . . , d).

3. For each iteration, m, and each k, k = (N + 1), . . . , d, update qk so that q
(m)
k ∝

exp[E(θ−k)(log f(θk | rest)], where the expectation is taken with respect to the

distributions q
(m−1)
j (θj), j = 1, . . . , d, j �= k.

4. Repeat steps (2) and (3) until the desired convergence criterion is met.

Here the notation, E(θ−k), denotes the expected value over all parameters except
θk. In the next section, we will drop the subscript k, and E(θ−θk

) will represent the

expectation over all parameters except for θk (e.g. E(θ−ηf
) will represent the expectation

taken over all parameters except for ηf ).

Theorem. The adapted variational Bayes algorithm converges to estimated parameters,
θ̂, that minimize the Kullback–Leibler distance between the approximate posterior distri-
bution, q(θ−w), and the posterior distribution, f(θ−w | X,w), for a local optimization
of f(X,w | θ−w) in w.

Proof. Assume w is known. Goldsmith et al. (2011) demonstrate that minimizing the
K-L distance between q(θ−w) and f(θ−w | X,w) is equivalent to maximizing the
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following log of a q-specific lower bound of the joint marginal distribution of X and w
in q.

log(X,w; q) =

∫
q(θ−w) log

{
f(X,w,θ−w)

q(θ−w)

}
dθ−w

= Eq(θ−w)[log[f(X,w,θ−w)]− log[q(θ−w)]]

The adapted variational Bayes algorithm alternates between: 1) maximizing f(X,w |
θ−w) in w (possibly locally), and 2) fixing w at the value determined by the previous
step and using traditional variational Bayes to maximize f(X,w; q). Here we demon-
strate this process results in a monotonic increasing sequence in log f(X,w; q) which
guarantees the convergence of this algorithm.

For each iteration, m of our adapted variational Bayes algorithm,

log f(X,w(m); q(m)) = Eq(θ−w)[log[f(X,w(m),θ
(m)
−w)]− log[q(θ

(m)
−w)]]

≤ Eq(θ−w)[log[f(X,w(m+1),θ
(m)
−w)]− log[q(θ

(m)
−w)]] (12)

≤ Eq(θ−w)[log[f(X,w(m+1),θ
(m+1)
−w )]− log[q(θ

(m+1)
−w )]] (13)

= log f(X,w(m+1); q(m+1)).

The inequality in (12) is guaranteed by step 2 of the adapted variational Bayes
algorithm, and the inequality in (13) is the result of using the traditional variational
Bayes algorithm with w considered known (step 3).

The lower bound of the marginal distribution of X and w can be monitored until
changes in this function are under some threshold. The specific form of this function
can be found in Appendix B.2 (Earls and Hooker, 2016). However, as the algorithm is
guaranteed to converge, it is in practice more prudent to instead monitor changes in
the parameter estimates from iteration to iteration and stop the algorithm when these
changes are below a specified threshold.

Convergence of the AVB algorithm is guaranteed. However, convergence to a global
maximum is not guaranteed. In the maximization step of the AVB algorithm, a function
proportional to the approximate posterior for the base functions is maximized in the
base functions. This function can be multimodal and occasionally the estimated base
functions reflect a local maximum of the approximated posterior. To circumvent this
problem, in practice it is sometimes necessary to adjust the registration and warping
penalties as the functions become registered. An unregistered function that requires a
substantial amount of warping can cause convergence to a local maximum due to the
small penalty on warping. The flexibility in warping allowed by this small penalty can
cause the function to deform rather than register. This can be remedied in two ways.
The first option is to perform a simple initial warping for this function that prevents
the optimization from falling into a local mode. The second option is to adjust the
registration and warping parameters over time. Initially a stronger warping penalty is
employed to prevent function deformation. Then, as the functions register, the warping
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Method Sim BGV RBGV

ME 176 1636 NA
F-R 1.3 2.9 NA
AVB 1820 36540 28692

MCMC 222 271296 46037

Table 1: Computational Time (seconds).

penalty can be reduced to allow for a more complete registration. When initializing
an MCMC sampler, the final penalties on warping and registration from the adapted
variational Bayes algorithm should be used.

While AVB estimates are often close to MCMC estimates, often it will still be de-
sirable to characterize the posterior distributions of all parameters through MCMC
sampling. This is particularly prudent when noise is present in the observed unreg-
istered functions which introduces a significant amount of variability in the posterior
samples (see Appendix C.3, Earls and Hooker (2016)). We can express the computa-
tional savings due to using the AVB algorithm as the amount of time saved in burn-in
iterations. When applying the adapted variational Bayes algorithm to “real” data such
as the Berkeley Boys Growth Velocity Data, we have found the adapted variational
Bayes algorithm saves a significant amount of computational time in the burn-in pe-
riod. For simulated data, there may not be any savings in computational time due to
the following: 1) MCMC samples move very quickly towards the optimal solution when
the registration problem is perfectly defined and 2) the maximization step of the AVB
algorithm is inefficient, especially in the first few iterations. In Table 1, we compare
the computational cost of obtaining estimates through MCMC sampling, AVB, the F-R
algorithm, Srivastava et al. (2011), and the ME algorithm, Ramsay and Li (1998), for
simulated data, the original Berkeley Boys Growth Velocity Data (BGV), and the boys
growth velocity data corrupted with noise (RBGV). Full descriptions of these datasets
and all proposed registration methods are described in Sections 4 and Appendix C.3
(Earls and Hooker, 2016). Since the ME, F-R and AVB algorithms do not include vari-
ability estimates, for this comparison the MCMC sampler is run long enough to obtain
estimates but not necessarily long enough to characterize the posterior distributions.
Note: since the ME and F-R algorithms treat smoothing as a pre-processing step, for the
noisy growth velocity data we only compare the computational time needed to burn-in
an MCMC sampler to the computational time required to obtain AVB estimates (that
can then be used to initialize an MCMC sampler).

4 Comparison to Current Methods

4.1 Comparison to Other Registration Procedures

Our registration criterion minimizes all variation in the warped functions that is not
in the direction of the target function (allowing for vertical shifts). In this respect,
the underlying registration principle driving our model is similar to that proposed by



C. Earls and G. Hooker 567

Figure 1: Simulated Data Set 2. Top Left Unregistered functions. Top Right Regis-
tered functions using the minimum eigenvalue criteria (R package ‘fda’). Lower Left
Functions registered by F-R (R package ‘fdasrvf’). Lower Right Functions registered
by the GP model.

Ramsay and Li (1998). Here we will compare our registration results to those using
Ramsey’s method as well as the registration procedure proposed by Srivastava et al.
(2011). Srivastava et al. propose a geometric framework for functional data registration
using the Fisher–Rao Riemannian metric, Rao (1945). In this paper we will refer to
Ramsey and Li’s registration procedure as ME (minimum eigenvalue, Ramsay and Li
(1998)) and Srivastava’s procedure as F-R (Fisher–Rao, Srivastava et al. (2011)), and
the model proposed here as GP (Gaussian Processes). In the paper by Srivastava et
al., several comparisons of registration under the F-R framework to the registration
methods proposed by Gervini and Gasser (2004), James (2007), Liu and Muller (2004),
and Tang and Muller (2008) are provided. In all cases, F-R appears to provide the most
complete registration of the given set of functions. In light of this illustration, we will
consider their method as the current frontrunner in registration procedures and use it
as the standard for our comparisons.

Figures 1 and 2 contain the datasets used for this analysis. Each figure includes the
original unregistered data along with plots of the functions registered using the three
proposed methods. For all three registration methods, a range of parameter values were
explored for optimal registration.
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Figure 2: Registered Boys Growth Velocity. Top Left Original unregistered boys veloc-
ity data functions. Top Right Boys velocity functions registered using the minimum
eigenvalue criteria (R package ‘fda’). Lower Left Boys velocity functions registered by
F-R (R package ‘fdasrvf’). Lower Right Boys velocity functions registered by the GP
model.

We have chosen to use the Sobolev Least Squares (sls) criterion to compare the
three registration methods for each dataset as advocated by Srivastava et al. (2011).
The Sobolev Least Squares criterion compares the total cross-sectional variance of the
first derivatives of the registered functions to that of the original functions. Explicitly,

sls =

∑N
i=1

∫
(X ′

i(hi(t))− 1
N

∑N
j=1 X

′
j(hj(t)))

2dt∑N
i=1

∫
(X ′

i(t)− 1
N

∑N
j=1 X

′
j(t))

2dt
. (14)

Lower values of sls correspond to better function alignment.

Simulated Data Set Figure 1 contains the functions of a simulated data set. These
data consist of 20 unregistered scaled mixtures of three Gaussian probability density
functions. All three registration procedures result in similar alignments. However, the
GP method does a better job of recovering the original shape of the functions and
results in the lowest sls. Note: The ME registered functions are based on 5 complete
runs of the ME algorithm where in each run the previous runs results were used as the
‘unregistered’ functions.
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Berkeley Boys Growth Velocity Data Figure 2 contains 39 velocity of growth
functions for boys from the Berkeley Growth Study, Tuddenham and Snyder (1954). For
this analysis, the original data are slightly changed to eliminate some erratic behavior
at the beginning of each function. Here, GP and F-R yield similar registration results.
However, the GP algorithm results in the lowest sls. ME registers the most significant
peak in growth velocity but does not align lesser features as well as GP. Note: The ME
registered functions are based on 2 complete runs of the ME algorithm where in each
run the previous runs results were used as the ‘unregistered’ functions. Running this
algorithm more than twice resulted in function distortion due to over-warping and a
larger sls.

While the GP and F-R methods result in a similar alignment of functions, these
results are achieved in very different environments that are specialized to satisfy specific
inferential preferences. The F-R registration method is convenient (using R package
‘fdasrvf’) and provides fast high-quality estimates. On the other hand, while providing
comparable registration results, our method expands inferential capability by providing
1) variability estimates for all unknown parameters and 2) a probability framework in
which future partially observed unregistered functions are considered. In contrast to
traditional functional prediction methods, our model not only provides an estimate of
the complete unregistered function, but also estimates the complete warping function
and the complete registered function. Details of the prediction model are found in
Section 5.

4.2 Comparison to MCMC Results

To establish the utility of the adapted variational Bayes algorithm, here we compare
the estimates of registered functions using adapted variational Bayes versus those ob-
tained through MCMC sampling. For this exposition, the simulated data set and the
Boys Growth Velocity data set described in Section 4.1 are used to look at the discrep-
ancies between the estimated registered functions from MCMC sampling versus those
determined by the AVB algorithm.

The squared L2 norm of the difference between the AVB and MCMC estimate
of a registered function is used to quantify the differences between these estimates.
Figure 3 illustrates for the simulated data set how closely the AVB estimates follow the
MCMC estimates. Even the largest squared L2 norms of the differences between these
two estimates correspond to minor changes in the estimates. These simulated data
represent rather ideal conditions for registration where there is almost no variation
in the registered functions beyond a scaling and vertical shift of the target function.
Consequently, as we might expect, the MCMC and AVB estimation procedures are
primarily in agreement. Figure 4 is a more realistic look at the differences between
the MCMC and AVB registration results for data that has significant variation in the
registered functions beyond a scaling and vertical shift of the target function. However,
even here we see the AVB algorithm performs well. Of the 39 observations, in only 2
or 3 are there notable discrepancies between the AVB and MCMC estimated registered
functions.
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Figure 3: Simulated Data – Difference Between MCMC and AVB Estimates. Left Plot
of the squared L2 norm of the difference between the MCMC and AVB estimates for
each observation in decreasing order of magnitude. Center and Right The original
unregistered function plotted with the MCMC and AVB estimates of the registered
functions for the observations with the two largest discrepancies between the MCMC
and AVB estimates.

These examples show that while ideally AVB estimates are used to initialize a MCMC
sampler, they often deviate only in minor ways from the posterior mean estimates ob-
tained from MCMC sampling. The next logical step is to compare the variance of the
approximated posterior distributions to that present in the MCMC samples. The AVB
algorithm does not include approximate posterior distributions for the base functions
or the registered functions. However, we can compare the estimated credible intervals
obtained through AVB and MCMC sampling respectively for the target function. Here
we will provide this comparison for the target functions associated with 1) the original
(noiseless) Berkeley Boys Growth Velocity data and 2) the Berkeley Boys Growth Ve-
locity data corrupted with Gaussian noise (see Appendix C.3, Earls and Hooker (2016),
for more information on these data).

Generally the concern with using variational Bayes to approximate the posterior
distributions is that variability is underestimated in the approximated posteriors, Wang
and Titterington (2005) and Bishop (2006). In the appendices (Earls and Hooker, 2016),
Figure C.1 contains credible bands determined through MCMC sampling for two of the
registered functions from the noiseless growth velocity data. As can be seen in this
figure, for noiseless observations, once the registration parameters have been set, the
result of specifying a highly informative prior on the registered functions is that most
of the variability from the mean is eliminated resulting in very narrow credible bands.
Of course, if the credible bands associated with the registered functions are narrow, it
makes sense that credible bands for the target function are even narrower. Thus, for
the original boys growth velocity data, very little variability is exhibited in the MCMC
samples of the target function and the differences between the estimated 95% credible
band determined from the q distribution of the target function and that determined
from the quantiles of the posterior MCMC sample are so small that on a graph they
are indistinguishable. In the plot on the left in Figure 5 is a comparison of the width
of the respective credible intervals for the target function at each time point. Here
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Figure 4: Registered Boys Growth Velocity – Differences Between MCMC and AVB
Estimates. Top Left Plot of the squared L2 norm of the difference between the MCMC
and AVB estimates for each observation in decreasing order of magnitude. Top Cen-
ter and Right The original unregistered function plotted with the MCMC and AVB
estimates of the registered functions for the observations with the first two largest dis-
crepancies between the MCMC and AVB estimates. Lower Plots of the next three
observations with the highest squared L2 norms of the difference between the MCMC
and AVB estimates. The squared L2 norm associated with the lower right plot is about
.64. As can be seen in this illustration, at this level there are only small differences
between the MCMC and AVB estimates.

it can be seen that not only are the credible intervals very narrow, but there are only
minor differences in the width of the credible intervals determined from the approximate
posterior distribution (AVB) and the MCMC sample.

As can be seen in Figure C.2 of the appendices (Earls and Hooker, 2016), if noisy
data are recorded, the variability due to the noise process results in wider credible
intervals for the registered functions (and hence the target function). On the right hand
side of Figure 5 is a comparison of the width of the respective credible intervals for
the target function at each time point for the model that both smooths and registers
the noisy boys growth velocity data. In this illustration, we can see the variability
present in the posterior MCMC sample for the target function is not captured well
by the q distribution associated with the target function. This is not surprising and is
an example of when performing MCMC sampling with an AVB initialization may be
preferred to using AVB alone. Note: for these analyses both samplers were initialized



572 Variational Bayes for Functional Data Analysis

Figure 5: Pointwise Comparison of Credible Interval Width for the Target Function.
Both plots contain the width of the credible interval based on the approximate posterior
distribution for the target function obtained via AVB (triangles) and the width of
the estimated credible intervals determined by the empirical quantiles of the posterior
sample of the target function obtained through MCMC sampling (circles) at each time
point. Left This is a comparison of the credible intervals for the target function when
the data are recorded without noise. For most time points in this plot, the width of the
credible interval at that time point using the approximate posterior is almost identical
to that obtained through MCMC sampling. The biggest difference can be seen at ages
14–16 where the MCMC credible interval is slightly wider. Right This is a comparison
of the credible intervals for the target function when the data are recorded with noise.
Here it can be seen that the approximated posterior distribution of the target function
significantly underrepresents the variability in the true posterior distribution.

with AVB estimates which made burn-in unnecessary. Post sampling analysis showed
low autocorrelation in the final 999 samples of the target function (after thinning) for
both the noiseless and noisy data.

5 Variational Approximation for Functional Prediction

5.1 Functional Prediction Algorithm

The probabilistic framework of our registration model provides a natural structure in
which we can consider new observations. Functional prediction has previously been
considered by Ferraty and Vieu (2006). Here we extend current methods by taking into
account the phase variability of a partially observed function.

We will make the following assumptions.

1. We have a sample of approximated unregistered functions, Xi = (Xi(t1), . . . ,
Xi(tp))

′, i = 1, . . . , N.

2. Xi = (Xi(t1), . . . , Xi(tp))
′, i = 1, . . . , N are registered using the registration

method outlined in Section 2 via a MCMC sampler or adapted variational Bayes.

3. From (2) we have obtained estimates for the target function, f(t), the registered
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functions, Xi(hi(t)), i = 1, . . . , N , the warping functions, hi(wi(t)), i = 1, . . . , N ,
σ2
z0, and σ2

z1.

4. A new function, XN+1(t) has been observed at the time points (t1, . . . , tr)
′, r <

p.

5. (X(h(t1)), . . . X(h(tp)))
′ ≈ Np(μ̂X(h), Σ̂X(h)), the distribution of the registered

functions can be approximated by a multivariate normal distribution using the
sample mean, μ̂X(h), and sample covariance matrix, Σ̂X(h), of the estimated reg-
istered functions obtained in (2).

6. (w(t1), . . . w(tp−1))
′ ≈ Np−1(μ̂w, Σ̂w), the distribution of the base functions can

be approximated by a multivariate normal distribution using the sample mean,
μ̂w, and sample covariance matrix, Σ̂w, of the estimated base functions obtained
in (2).

Under these assumptions, we will proceed as follows.

1. Register the partially observed function, XP
N+1 = (XN+1(t1), . . . , XN+1(tr))

′ to

the estimated target function, f̂(t), truncated to an appropriate registration time,
tf , f ∈ {1, . . . , p}, so that hN+1(tf ) = tr.

2. Using the distributions from assumptions (5) and (6) above, the estimate of

the partial registered function, XP
N+1(ĥN+1) = (XP

N+1(ĥN+1(t1)), . . . ,

XP
N+1(ĥN+1(tf )))

′ and the estimate of the partial base function, ŵP
N+1 =

(ŵP
N+1(t1), . . . ŵP

N+1(tf−1))
′, estimate the registered and base functions to time

tp and tp−1 respectively using the conditional expectation of the multivariate nor-
mal distribution. Accordingly, denoting future registered observations and future
warping function values, XF

N+1(hN+1) and wF
N+1, respectively, the estimates of

these future values are X̂F
N+1(ĥN+1) = E(XF(h)|XP

N+1(ĥN+1), μ̂X(h), Σ̂X(h))

and ŵF
N+1 = E(wF|ŵP

N+1, μ̂w, Σ̂w).

3. Estimate the complete unregistered function, XN+1(t), using the inverse of the
estimated warping function and the estimated registered function.

5.2 Determining the Last Registered Time

An additional random element in the prediction model is the last registered time of the
truncated target function, tf , used to register the partial observation. To obtain the
best possible registration of the partial observation, a range of final registration times
are considered over a finer domain. The efficiency of the adapted variational Bayes
algorithm makes it possible to consider several possible partial registrations as follows.

1. For each of the time points tj , j ∈ {m, . . . , (m+k−1)}, tm+k−1 < tp, the partially

observed function, XP
N+1(t), is registered to the estimated target function, f̂(t),
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truncated to time, tj , so that ĥN+1(j)(tj) = tr, where ĥN+1(j)(t) is the estimated
warping function determined by registering XP

N+1(t) to the proposed final regis-
tration time tj . Note, the first and last times considered in this interval are chosen
by plotting the partial unregistered function and the target function together and
determining a generous interval that contains the appropriate final registration
time. This interval is subsequently made finer to allow this time to fall between
two of the original time points.

2. Calculate dtj = ||XP
N+1−(ẑ0(j)1+ẑ1(j)f

U
(j))||2 for each tj , j ∈ {m, . . . ,m+k−1}

where fU(j) = (f̂(t1), f̂(ĥ
−1
N+1(j)(t2)), . . . , f̂(ĥ

−1
N+1(j)(tr) = tj))

′.

3. Set tf = argmin
tj ,j∈{m,...,m+k−1}

dtj .

This algorithm determines the final registered time, tf , that results in the minimum
L2 norm between the partially recorded unregistered function and the target function
evaluated at the inverse of the warping function estimated using that final time. Note,
for all j, fU(j) shares the same domain as the partially recorded unregistered function,
XP

N+1.

5.3 Confidence Intervals for Predicted Functions

The efficiency of adapted variational Bayes for prediction also makes it possible to
characterize variability in the estimates of the complete registered function, unregistered
function, and base function via bootstrapping. To capture variability in the predicted
functions, for each of m = 1, . . . ,M iterations, perform the following steps.

1. Draw a new sample of N registered functions from Np(μ̂X(h), Σ̂X(h)).

2. Draw a new sample of N base functions from Np−1(μ̂w, Σ̂w).

3. From the bootstrapped samples determined in (1) and (2), compute the sample

mean and covariance matrix for the approximated registered functions, μ̂
(m)
X(h) and

Σ̂
(m)

X(h) and also for the approximated base functions, μ̂(m)
w and Σ̂

(m)

w .

4. Register the partially observed function as in prediction step (1) in Section 5.1

above by setting the approximated target function, f̂ , equal to μ̂
(m)
X(h).

5. Draw a sample of size S from the distribution of XF(h)|XP
N+1(ĥ

(m)
N+1), μ̂

(m)
X(h),

Σ̂
(m)

X(h). Combine each of these samples of future values of the registered function
with the estimated partially registered function determined in (4) to get a sample
of S estimated registered functions.

6. Draw a sample of size S from the distribution of wF|ŵP
(m)

N+1, μ̂
(m)
w , Σ̂

(m)

w . Com-
bine each of these samples of future values of the base function with the estimated
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partial base function determined in (4) to get a sample of S estimated base func-
tions.

7. Determine the S warping functions that result from step (6).

8. Determine the S unregistered functions that result from combining each of the S
registered functions drawn in (5) with the corresponding inverse warping function
from (7).

This process results in M×S bootstrapped samples of the registered function, warp-
ing function and unregistered function. From these samples, point wise bootstrapped
confidence intervals can be determined for each function.

Here we have approximated the distributions of the base and registered functions
by fitting a multivariate normal distribution. However, given the small sample size,
approximating these distributions by a multivariate t distribution as suggested in Lange
(1989) may provide confidence intervals with better coverage properties. Beran (1990)
also provides a method for constructing robust confidence intervals in the context of
univariate prediction problems.

5.4 Functional Prediction – El-Niño Data

The El-Niño data consist of weekly readings of sea surface temperature with the first
observation in June of 1950. Complete data can be found at NOAA’s Climate Prediction
Center website (http://www.cpc.ncep.noaa.gov/data/indices/). The data that we
are using for this analysis are found through Professor Frederic Ferraty’s (Mathemat-
ics; University of Toulouse, France) website (http://www.math.univ-toulouse.fr/
~ferraty/SOFTWARES/NPFDA/npfda-datasets.html). These data are a subset of the
original data with monthly sea surface temperature records from June of 1950 to May
of 2004. For this analysis, the bi-monthly observations are added to the data to prevent
significant changes to the shape of a given function due to interpolation error. Also,
light smoothing is applied to all functions.

The goal of our study is to predict how high temperatures will stay in the remain-
ing part of the year in conjunction with how long temperatures will drop before they
rise again based on the first seven months of temperature recordings from the lowest
temperature recording in the previous year.

For this purpose, the data are restructured to define a “year” as the period of time
between the lowest temperatures in consecutive calendar years. For example, the first
year in our data set ranged from September 1950 to September 1951. Note, these “years”
will not all be 12 months in length, and our final data had “years” that ranged from 11 to
14 months. For our analysis, we will concentrate on a subset of this group of restructured
functions where the previous year’s lowest temperature for each selected temperature
profile is between 19.5 ◦C and 21 ◦C. Twenty-nine of the original temperature profiles
fit this criterion. We will use the first 28 functions to predict the remaining portion of
the 29th function based on the first 7 months of sea surface temperature observed in
that year.

http://www.cpc.ncep.noaa.gov/data/indices/
http://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/npfda-datasets.html
http://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/npfda-datasets.html
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Figure 6: El-niño Data. Top Left Original 28 profiles of sea surface temperature. Top
Right Estimated warping functions. As can be seen here, the time period of the original
data ranged from 11 to 14 months. Lower Left Estimated registered temperature
profiles. Lower Right The solid line is observation 29 recorded for 7 months. The
dashed line is the estimated target function. The grey shaded area spans the 5 time
points that are considered for the final time of the partial registration.

For the purpose of registration, all functions need to be recorded over the same
interval of time. As mentioned above, in this particular case our data is recorded over
a time periods that range from 11 to 14 months. An easy remedy to this situation is to
perform a simple initial warping to each function that rescales every observation to an
11 month time frame. In our final analysis, this initial warping is accounted for when
determining the final base functions used for the prediction algorithm.

The original unregistered functions and the functions registered using the GP model
described in Section 2 are plotted in Figure 6. For this data set, to register significant
features in the sample while retaining function variation beyond a scaling and vertical
shift of the target function, individual warping parameters, γwi , i = 1, . . . , 28 were
utilized instead of γw in (11). Significant differences in the amplitude variation in the
original functions that is unassociated with temporal variation prevented the use of a
global parameter. However, only 3 unique warping parameters in total were necessary.

Using the empirical mean of the 28 original registered functions as the target func-
tion, the first 7 months of sea surface temperature records from observation 29 are
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Figure 7: Estimates and Bootstrapped Confidence Intervals. Left Estimated registered
function with 95% bootstrapped confidence interval. Note: In parts of the domain, the
estimated confidence interval and estimated registered function overlap. This is largely
due to a bimodal distribution of the last registered time. Center Estimated warp-
ing function with 95% bootstrapped confidence interval. Right Estimated unregistered
function with 95% bootstrapped confidence interval. The dashed and dotted line is the
true unregistered function.

registered to a piece of the target function where the final registered time is allowed to
vary from 6.5 to 7.5 months. Between these months, a finer time interval correspond-
ing to weekly records is used to allow for additional flexibility in determining the final
registered time. The partially recorded function is plotted with the target function in
the lower right panel of Figure 6. The grey shaded area includes the time points consid-
ered for the final time of the partial registration. After the optimal registration of the
partially recorded observation is determined, estimates of the entire registered function,
warping function, and unregistered function are determined using the model outlined
in Section 5.1.

One-hundred bootstrapped samples were used to estimate the variability in the pre-
dictions of all three estimated functions. Figure 7 plots the initial estimates with the 95%
bootstrapped confidence intervals. In addition, the plot of the estimated unregistered
function also includes the true value of this function.

The primary advantage of registering the partially recorded observation before esti-
mating future values is that we can capture variation in amplitude and timing separately.
In Figure 7, the first plot captures the variability in the future level of sea surface tem-
perature (amplitude variation), and answers the question,“How high can we expect sea
surface temperatures to stay?”. The second plot captures the variability in the timing
of future observations (temporal variation) which addresses the question of, “When can
we expect sea level temperatures to begin rising again?”. The confidence interval for
the unregistered function seen in the last frame of Figure 7, combines both amplitude
and temporal variation to estimate the future trajectory of sea surface temperature for
this year. In this illustration it can be seen that the main difference in the estimated
and actual temperature profiles lies in the timing of the lowest observation. However,
for this observation, the sea surface temperature at 12 months is not much different
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than the sea surface temperature at 11.5 months. The predicted timing of the lowest
temperature was 11.1 months.

One of the most notable features of this analysis is that there is little uncertainty in
the registration of the first 7 months of sea surface temperatures. The most prominent
feature in the data is the peak temperature that occurs anywhere from 4 to 8 months in
the original data. In our partially recorded observation, as seen in Figure 6, the peak of
the target function and the partially recorded observation are already closely aligned.
Additionally, this observation happens to be similar in shape to the target function.
The combination of these features resulted in only a minimal amount of variation in
the estimated registered and warping functions in the first 7 months. However, we note
here, this phenomenon is an artifact of these particular data, and in other analyses
more variation in the registered timing of the partially recorded observation would be
expected.

The El-niño data set provides a challenging registration problem. The registered
functions vary significantly in directions beyond the target function. Choosing curve
specific registration parameters enabled features common to all functions to be reg-
istered while retaining prominent features in each individual curve. This is just one
example of the difficulties that can arise in registering functional data and in turn how
these challenges can be addressed to analyze data that does not fit the “ideal” registra-
tion problem.

6 Discussion

In this paper we have developed a methodology for Bayesian registration that accounts
for uncertainty in the registered functions, the warping functions, and the parameters
associated with them. The hierarchical structure of this model allows multiple inferen-
tial procedures to be included in one analysis. We give an example where functional
regularization and registration are performed in one model. However, these models will
accommodate any combination of inferential procedures for which an appropriate prior
can be defined. For instance, the models proposed here can easily be extended to a
functional linear regression model where the registered functions or registered latent
functions are considered as covariates.

While our registration algorithm provides high quality estimates in a highly flexible
model, the associated computational costs due to running a MCMC sampling scheme
for a high-dimensional model are considerable. To address these costs, we have proposed
the Adapted Variational Bayes algorithm. This algorithm has been shown to converge
in a similar way to traditional variational Bayes, but may not converge to a global
maximum. However, an initial warping can be performed to move a function closer to
its optimal registered value if the algorithm converges to a local maximum.

The bijective relationship between the base and warping functions in this model
makes it possible to perform functional prediction in the context of registration. Using
the estimated values of the base and registered functions from an initial registration
of N functions, we use approximate distributions for these functions to predict future
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values of the registered, warping, and unregistered functions of a new function that is
only partially observed. Furthermore, the AVB algorithm makes it possible to re-sample
from these distributions to bootstrap confidence intervals for these predicted values.

While the AVB algorithm provides estimates that are similar to their MCMC coun-
terparts, for some models MCMC sampling remains the optimal inferential procedure.
For example, in the model that combines smoothing and registration AVB estimates
are approximate and preferably are only used to initialize an MCMC sampler. While we
have used Metropolis within Gibbs samplers, these are likely not optimal. Determining
the most efficient method of sampling from these joint posterior distributions is left for
future work.

For simplicity, we have used inverse-Gamma or Gamma priors for the variance com-
ponents in these models. The best choice of priors for these components is a uniform
prior on the square root of the variance components as suggested by Gelman (2006).
This is particularly a problem when the variance component is small or there is very
little data to estimate these components. For the models presented here, Gamma priors
for the smoothing parameters are sufficient as small changes in these parameters do
not significantly affect the model. However, in the analysis of the noisy boys’ growth
velocity data in Appendix C (Earls and Hooker, 2016), we saw some evidence that the
“uninformative” inverse-Gamma prior resulted in a slightly upward biased estimate of
the noise variance.

Modeling functions as Gaussian processes in a Bayesian hierarchical model offers a
unified approach to performing multiple inference procedures for functional data within
one model. In Earls and Hooker (2014), we established the properties of functional data
estimates determined by approximating functional distributions over a finite subset of
observed time points and estimating functions at unobserved time points with linear
interpolation. Furthermore, we demonstrated that providing smoothing information in
scale or covariance matrices results in regularized functional estimates. Here we extend
this work by using informative covariance matrices to register functions where the regis-
tered functions are modeled as Gaussian processes. Future work includes adapting these
models for other areas of inference for functional data and continuing to improve on the
models we have proposed here.

Supplementary Material

Appendices for Variational Bayes for Functional Data Registration, Smoothing, and
Prediction (DOI: 10.1214/16-BA1013SUPP; .pdf).
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