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Dependent Species Sampling Models for
Spatial Density Estimation

Seongil Jo∗, Jaeyong Lee†‖, Peter Müller‡, Fernando A. Quintana§∗∗,
and Lorenzo Trippa¶††,

Abstract. We consider a novel Bayesian nonparametric model for density estima-
tion with an underlying spatial structure. The model is built on a class of species
sampling models, which are discrete random probability measures that can be
represented as a mixture of random support points and random weights. Specif-
ically, we construct a collection of spatially dependent species sampling models
and propose a mixture model based on this collection. The key idea is the in-
troduction of spatial dependence by modeling the weights through a conditional
autoregressive model. We present an extensive simulation study to compare the
performance of the proposed model with competitors. The proposed model com-
pares favorably to these alternatives. We apply the method to the estimation of
summer precipitation density functions using Climate Prediction Center Merged
Analysis of Precipitation data over East Asia.

Keywords: climate prediction, conditional autoregressive model, spatial density
estimation, species sampling model.

1 Introduction

Inference on a collection of probability distributions that are related but not identical
is a fundamental problem in statistics. Some of the simplest versions of this problem
are normal linear regression models, where the distributions are assumed to be normal,
with means assumed to be linear functions of covariates. Such models are, however, in-
adequate to describe more complicated scenarios, such as those arising in inference for
climate and meteorological data when observations are indexed by location and estima-
tion of the climate variable distributions at each location is of interest (see, e.g. Gelfand
et al., 2005). As a motivating application, we consider data on a 33-year period of sum-
mer precipitation over East Asia. One traditional use of such data is the prediction of
summer precipitation in the form of probabilities for above average, average, and below
average precipitation (Barnston et al., 2003; Tippett et al., 2007). A crucial element
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in such predictions is the adequate modeling of the distribution of climate variables.
Modeling of climate variables, however, is not straightforward, as their distributions
are poorly approximated by commonly used parametric families, and might vary by
covariates such as geographical coordinates. In summary, the problem can be described
as spatially varying density estimation.

Density estimation is one of the traditional applications of nonparametric Bayesian
methods. See, for example, Müller and Mitra (2013) for a review. Related nonparametric
Bayesian models include, in particular, prior models for families of distributions that
are indexed by a given set of covariates, {Gx : x ∈ X}. Such models are known as
dependent random probability measures and have been a focal point of recent research
efforts. The study of such models started with the seminal work by MacEachern (1999,
2000), who proposed a covariate-dependent version of the Dirichlet process (DP) by
Ferguson (1973).

The key idea of the dependent DP construction is based on the stick-breaking rep-
resentation by Sethuraman (1994). A random probability measure G with DP prior can
be represented as

G(B) =

∞∑
h=1

whδθh(B), B ∈ B, (1)

where wh = Vh

∏h−1
j=1 (1− Vj) with Vh

iid∼ Beta(1,M) and θh
iid∼ G0, independent of the

wh. Here, B is a Borel σ-field on the space where G0 is supported. In most applications,
this space is Euclidean. In summary, the DP prior model is indexed by two parameters,
M and G0. The parameter M > 0 is known as the total mass parameter, and G0 is
called the centering distribution. We write G ∼ DP(M,G0).

MacEachern’s dependent DP (DDP) considers a family of random probability mea-
sures Gx(B) =

∑
h wx,hδθx,h

(B), where the support points θx,h and weights wx,h are
modeled as stochastic processes indexed by covariates x. DDPs have interesting general
properties, such as continuity and large support under suitable conditions (Barrientos
et al., 2012). The construction of the DDP is such that marginally each Gx follows a
DP distribution for every x ∈ X . A commonly used variation of the DDP model is ob-
tained when dependence is introduced through support points only, keeping the weights
wx,h = wh common across x. This is usually referred to as common or single weights
DDP and has been used by many authors, including De Iorio et al. (2004), Gelfand
et al. (2005), Rodŕıguez and ter Horst (2008), and Jara et al. (2010) to name just a
few. One of the advantages of models based on common weights DDPs is that posterior
simulation algorithms for models based on regular DP priors can usually be adapted
with few modifications.

Although popular, common weight DDPs have been argued to have some limitations.
See, e.g. the discussion in Griffin and Steel (2006), Duan et al. (2007) and Rodŕıguez
and Dunson (2011). This has led some researchers to consider common or single atoms
DDPs where dependence is introduced in the weights only. Griffin and Steel (2006)
proposed the order-based DP in which one set of weights and support points are shared
by all random measures Gx, but with different random order. Chung and Dunson (2011)
defined the local DP. The local DP utilizes one set of weights and support points as in
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the order-based DP, but each probability measure Gx is defined by a random subset
of the weights and support points. Dunson and Park (2008) proposed the kernel stick-
breaking process in which [0, 1]-valued random variables that define a stick-breaking
process are multiplied by a kernel factor to reflect location effects.

Reich and Fuentes (2007) and Fuentes and Reich (2013) used the kernel stick-
breaking process in modeling wind speed to define spatially varying random distri-
butions, with uniform and elliptical kernels used as location-specific multiplicative fac-
tors. Li et al. (2015) used a similar idea in the boundary detection problem where the
kernel factor is replaced by logit transformed random variables from a latent autore-
gressive model. Rodŕıguez and Dunson (2011) defined the probit stick-breaking process
in which the Beta random variables of the stick-breaking process are replaced by probit-
transformed Gaussian processes. Alternatively, Ren et al. (2011) and Ding et al. (2012)
used Beta random variables defined by a logit transformation of covariates. These ap-
proaches allow for more flexible variations of random probability measures than the
common weights DDP.

All these approaches include the stick-breaking construction, and the type of de-
pendence structure introduced is counterintuitive and foreign to the spatial dependence
literature, with the exception of Rodŕıguez and Dunson (2011) and Li et al. (2015).
Another critical limitation of DP- or DDP-based models is that the weights in the
stick-breaking construction are stochastically ordered in an exponentially descending
way. This implies a particular clustering structure that favors a small group of large
clusters, which is unnatural in many applications. To deal with these limitations, we
propose a class of dependent random probability measures whose definition is based on
two main ingredients: species sampling models (SSM) and conditional autoregressive
(CAR) models. In particular, we do not use the stick-breaking process to define the
weights of random probability measures and define the weights directly via normaliza-
tion.

The first component of the proposed approach is the use of general SSM’s (Pitman,
1996). A SSM defines a random discrete probability measure with random weights and
support points that are independent of each other. It is the de Finetti measure of a
species sampling sequence, that is, an exchangeable sequence of random variables for
which the predictive distribution of the next observation is a function of the number
of ties and frequencies among the earlier observations. Species sampling sequences are
extensions of the Pólya urn sequence (Blackwell and MacQueen, 1973), that is, an
exchangeable sequence of random variables whose de Finetti measure is the Dirichlet
process. SSMs are random probability measures that involves a probabilistic structure to
define a random probability measure. Many well known examples follow this structure.

The second element of the proposed approach is the use of CAR models, which
were introduced by Besag (1974) and have been widely used for modeling data with
spatial dependencies. For example, Geman and Geman (1984) and Besag et al. (1991)
applied CAR models to image data, while Nieto-Barajas (2008) and Lee (2011) used
these models to investigate medical records. The main advantages of CAR models are
the easy implementation of posterior simulation algorithms and the natural extension
to the modeling of spatio-temporal data. We will argue that the combination of these
two features provides a rich basis for flexible modeling of data with a spatial structure.
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The rest of this paper is organized as follows. In Section 2 we review SSMs and CAR
models. In Section 3 we introduce the proposed CAR SSMs. Computational methods to
implement posterior simulation under the CAR SSMs are described in Section 4.1. In
Section 5 we present a simulation study and the application to the motivating climate
variables data for predicting rainfall in the Korean peninsula. Some final comments and
conclusions are presented in Section 6.

2 Background

2.1 Species Sampling Models (SSM)

A random probability measure G is called a SSM (Pitman, 1996), if it can be represented
as

G =

∞∑
h=1

Phδθh +RG0, (2)

for a sequence of positive random variables (Ph) and a nonnegative random variable
R with R = 1 −

∑∞
h=1 Ph with probability 1, and where (θh) is a sequence of random

samples from a diffuse probability measure G0 and independent from (Ph). We can
immediately see that (1) is a special case of (2). A SSM for which P (R = 0) = 1 is
termed proper. The practical use of SSM as nonparametric priors is restricted to proper
SSM’s. SSMs admit many popular classes of random probability measures as particular
cases. These include the DP, the two-parameter DP or Pitman–Yor process (Pitman and
Yor, 1997), the stick-breaking priors (Ishwaran and James, 2001) and the normalized-
inverse Gaussian processes (Lijoi et al., 2005). More properties of SSMs can be found
in Pitman (1996), Ishwaran and James (2003), Navarrete et al. (2008), James (2008),
James et al. (2009), Jang et al. (2010), and Lee et al. (2013).

Recently, Bassetti et al. (2010) and Airoldi et al. (2014) proposed a generalization
of species sampling sequences designed for nonexchangeable data which has modeling
potential for time series and spatial statistics. Lee et al. (2013) considered a family of
SSMs whose weights are normalized positive random variables

G =

∞∑
h=1

Phδθh , Ph =
wh∑∞
l=1 wl

, h = 1, 2 . . . , (3)

where (wh)
∞
h=1 is a sequence of positive random variables and (θh) are independent and

identically distributed (i.i.d.) random support points distributed according to G0, and
independent of (wh). A sufficient condition for

∑∞
l=1 wl < ∞ a.s. is that

∑∞
l=1 E(wl) <

∞ (Lee et al., 2013).

The class of SSMs is a large class of discrete random probability measures subject
only to the constraint of having i.i.d. atoms that are independent of the weights. In
the following discussion, we consider a specific class of SSMs based on sequences of
log-normal random variables: for h = 1, 2, . . . ,

wh = euh with uh ∼ N
(
log[1− {1 + eb−ah}−1], τ2

)
, (4)
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where a, b, β, τ2 are positive constants. It is easy to verify that
∑∞

l=1 E(wl) < ∞, and
thus

∑∞
l=1 wl < ∞ a.s. The specification (4) is chosen to define models with relevant

differences compared to the Dirichlet process prior. The proposed form for the weights
(wh) allows for a number of moderately large weights of (a priori) comparable size. This
is in contrast to the DP prior which assumes a priori stochastically ordered and geo-
metrically decreasing sizes for the weights. This will be important in the context of the
spatial dependence across related measures which we will introduce later. With multiple
dominant weights it is easier to model the desired heterogeneity across locations.

2.2 Gaussian Conditional Autoregressive (CAR) Models

The CAR model is one of the most popular models for a large number of dependent
random variables. Under a CAR model, the joint distribution of a set of random vari-
ables is specified via the full conditional distributions. However, not every set of full
conditional distributions leads to a legitimate joint distribution. See further details in
Besag (1974), Cressie (1993), Kaiser and Cressie (2000), Cressie and Wikle (2011) and
references therein.

We focus on Gaussian CAR models. Let D = {si, i = 1, . . . , n} be a set of spa-
tial locations and let u = (u1, . . . , un)

T be a collection of random variables with ui

corresponding to location si for i = 1, 2, . . . , n. We define

ui | uj , j �= i ∼ N
(
μi −

n∑
j:j �=i

ξij(uj − μj), τ
2
i

)
, i = 1, . . . , n, (5)

where μi, ξij ∈ R and τ2i > 0 for all i, j = 1, . . . n and let Λ = (λij) with

λii = 1/τ2i , λij = ξij/τ
2
i , i, j = 1, . . . , n.

A key result for (5) to define a proper model is the following. If Λ is symmetric and
positive definite, then the joint distribution of y is N(μ,Λ−1). See Rue and Held (2005)
for further details, or Besag (1974), Cressie (1993), and Banerjee et al. (2004). Specific
choices for ξij will be discussed below, when we combine (3) through (5) to construct
the desired spatially dependent SSMs.

3 Spatial CAR SSMs

We combine the definitions of SSM’s and CAR models to construct a class of spatially
∓ dependent SSMs {Gs : s ∈ D} on a set of locations D = {s1, s2, . . . , sn}. The domain
D can be a set of grid points defined on a spatial region, such as the area including
South Korea for our motivating application, or a set of time points, etc. We define a
probability measure Gs at each location s ∈ D as

Gs =

∞∑
h=1

Ps,hδθh , (6)
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where
Ps,h =

ws,h∑∞
k=1 ws,k

, s ∈ D, h ≥ 1,

ws,h are nonnegative random variables with
∑

h≥1 ws,h < ∞ a.s., and (θh, h ≥ 1) is a
random sample from a nonatomic distribution G0, independent of ws,h. The dependence
of the random probability measures Gs across s is introduced through the dependence of
(ws,h, s ∈ D). We use the CAR model to define the joint distributions of (ws,h, s ∈ D).
We also note that (6) highlights the discrete nature of the model for Gs. This implies
that a sample from any Gs will have ties with positive probability, giving thus rise to
a particular clustering structure whose distribution is controlled by the distributional
assumptions on the set of weights (Ps,h) for s ∈ D, in turn determined by the (ws,h)
quantities.

We combine (4) and (5) to define wsi,h = eui,h , with the joint distribution of (ui,h)
determined by the CAR model

ui,h | u�,h, 	 �= i ∼ N
(
mi,h −

n∑
�:��=i

ξi�(u�,h −m�,h), τ
2
)
, i = 1, . . . , n (7)

where τ2 > 0, and

mi,h = log{1− (1 + eb−ah)−1}, a > 0, b > 0, i = 1, . . . , n. (8)

A key element of model (7) is the specification of the autoregressive coefficients (ξi�).
We consider here two alternative ways of defining (ξi�), which differ in the extent and
strength of the induced dependence structure. We will later compare the relative merits
of both specifications.

Mercer CAR model: Suppose K(s, t) is a Mercer kernel with K(s, s) = 1 for all
s ∈ D. Define

ξi� = K(si, s�), i �= 	, i, 	 = 1, . . . , n,

then Λ = (λi�)
n
i,�=1, with λi� = K(si, s�)/τ

2 is symmetric and positive definite.

Thus, uh ∼ N(mh,Λ
−1), wheremh = (m1,h, . . . ,mn,h) and uh = (u1,h, . . . , un,h).

We specifically use the Gaussian kernel

K(si, s�) = exp(−ρ||si − s�||2), i, 	 = 1, . . . , n,

where ρ is positive. We call the spatial SSM defined by a Mercer kernel a Mercer
CAR SSM, and denote it as (Gs, s ∈ D) ∼ MCS(G0, a, b, τ

2, ρ). The model does
not include the independent model with uh having diagonal covariance matrix.
But it can be arbitrarily close to the independent model.

Clayton–Kaldor CAR model (Clayton and Kaldor, 1987; Sun et al., 1999):
Let N(si) be the set of neighbors of the i-th location si. Define

ξi� =

{
−ρ 	 ∈ N(si)
0 	 /∈ N(si),



S. Jo, J. Lee, P. Müller, F. A. Quintana, and L. Trippa 385

where ρ ∈ (ψ−1
(1) , ψ

−1
(n)), ψ(1) ≤ ψ(2) ≤ · · · ≤ ψ(n) are the ordered eigenvalues of an

adjacency matrix C = [cij ] with cii = 0, i = 1, . . . , n and ci� = 1 if 	 ∈ N(si)
(Sun et al., 1999). This guarantees that Λ = I − ρC is positive definite and
uh ∼ N(mh, τ

2Λ−1). We specifically consider the neighborhood of si defined by

N(si) := {s� : ||si − s�||2 < B, 	 �= i},

for some fixed positive constant B. We refer to this spatial SSM as the CK CAR
SSM and denote it as (Gs, s ∈ D) ∼ CKCS(G0, a, b, τ

2, ρ, B). The parameter ρ
covers a spectrum of dependence among ui,h’s. For example, the independence
model can be specified by setting ρ = 0.

The main difference between the two CAR SSM models is the nature of the preci-
sion matrix that is implied by the two models, which in turn results in different partial
correlation structures. The precision matrix of CK CAR is sparse and thus its partial
correlation structure is local, i.e. only neighboring sites have nonzero partial correlation.
On the other hand, the precision matrix of Mercer CAR model is dense and its par-
tial correlation structure is global, i.e., any two sites have nonzero partial correlation.
Although the two models have little difference in fitted mean models, the difference in
partial correlation structure can have actual impacts in other data analysis. As ρ −→ ∞,
the Mercer CAR can be arbitrarily close to the independent model with independent
random probability measures at different locations. But in actual data analysis choice
of hyperparameter ρ can be delicate and sometimes the posterior includes long range
dependencies. See Figure 10. Thus, if the densities are expected to possibly change
abruptly, the Mercer CAR needs to be used with caution. Also, the sparsity of the
precision matrix of CK CAR may be used to speed up the computation for large data
set.

In a recent paper, Li et al. (2015) considered the use of CARmodels to define a spatial
stick-breaking prior. In the CAR SSM the weights of random probability measures are
directly defined via normalization of CAR models, while Li et al. (2015) modeled the
weights with a stick-breaking process defined by logit transformations of CAR models.

Nonparametric prior models, by definition, are designed to be flexible and to cap-
ture departures from simpler parametric constructions. A direct approach to verify this
property consists of characterizing the weak support of the prior model. It is common
in the Bayesian nonparametric literature to prove that the prior model has full weak
support in order to emphasize its flexibility. The prior is said to have full weak sup-
port if the support of the prior under the weak topology is the same as the parameter
space. This approach has been used for example to study prior models for unknown
densities (see, e.g. Wu and Ghosal, 2008) and prior models for families of unknown
distributions indexed by covariates (see, e.g. Barrientos et al., 2012). We refer to Ghosh
and Ramamoorthi (2003) for a discussion on the use of the weak metric in Bayesian
nonparametrics. The following proposition shows that the CAR SSMs have full weak
support. The proof is given in Appendix A of the Supplementary Material (Jo et al.,
2016).

Proposition 1. If G0 has full support on R, then the Mercer CAR SSM, MCS(G0, a, b,
τ2, ρ), and the CK CAR SSM, CKCS(G0, a, b, τ

2, ρ, B), have full weak supports.
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4 Mixtures of CAR SSM

In this section, we discuss how the CAR SSMs can be used to model spatially located
density functions simultaneously. Consider a grid D = {si : i = 1, 2, . . . , n}, and a set
of corresponding observations at each point, Y = {(ysi,j , j = 1, . . . , Ni) : si ∈ D}. In
many applications, such as in the motivating example, the responses Y are continuous
variables. The discrete nature of the MCS and the CKCS model would be inappropriate
for such data.

A common extension of discrete random probability measures to accommodate con-
tinuous data is the use of an additional convolution with a continuous kernel (see, e.g.
Lo, 1984). Specifically, we propose a probability model for data Y with spatial structure
D which can be described as a mixture with respect to a CAR SSMs. We use either the
Mercer or the CK constructions described above. The model is stated as follows.

(Gsi , si ∈ D) ∼ MCS(G0, a, b, τ
2, ρ) or CKCS(G0, a, b, τ

2, ρ, B)

(ysi,j , j = 1, 2, . . . , Ni) | Gsi
iid∼

∫
f(y|θ)dGsi(θ), for i = 1, 2, . . . , n,

(9)

where f(y|θ) is a kernel density with parameter θ, and a, b, τ2, ρ, B > 0. While this kernel
may be chosen to be any distribution supported on the real numbers, for convenience
we often specify it as the normal density f(·|θ) ≡ N(·;μ, σ2) with θ = (μ, σ2), in which
case the conjugate (Normal Inverse Gamma) base distribution G0 is chosen as

G0(μ, σ
2;μ0, α, ν, ψ) = N(μ;μ0, σ

2/α)Ga(σ−2; ν/2, νψ/2), (10)

where μ0 ∈ R and α, ν, ψ > 0, and Ga(a, b) refers to a gamma distribution with mean
a/b and variance a/b2. The hyperparameter ψ plays the role of a bandwidth in the
kernel density estimation and controls the smoothness of the density estimates. It can
affect posterior sensitivity. We fix hyper parameters μ0, α, and ν, but place a hyperprior
on ψ:

ψ ∼ Ga
(
ψ;

ν0
2
,
ν0ψ

−1
0

2

)
, (11)

where ν0 is a positive constant.

To facilitate posterior sampling, we use the following equivalent hierarchical model,
which is obtained by introducing latent variables θij and replacing the integral in (9)
with a hierarchical prior on θij :

ysi,j | θij
ind∼ f(·|θij), j = 1, . . . , Ni,

θij | Gsi
iid∼ Gsi , (12)

Gsi =

∞∑
h=1

Psi,hδφh
, Psi,h ∝ wsi,h and φh | ψ iid∼ G0(· | ψ),

where (wsi,h, si ∈ D) are defined by either Mercer or CK CAR models, and the hy-
perprior for ψ is given in (11). We refer to (12) as either the MCS mixture or CKCS
mixture model.
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4.1 Posterior Computation

We introduce a posterior sampling algorithm for the mixtures of CAR SSM (12). For
the posterior computation, the SSMs are truncated to the first K terms in the infinite
sum. Similar truncations are often used in infinite mixture models similar to the ones
considered here. See, e.g. Ishwaran and James (2001) and Rodŕıguez and Dunson (2011).

The proposed algorithm is based on the blocked Gibbs sampling algorithm (Ishwaran
and James, 2001) and a data augmentation method for the multinomial logit model
(Scott, 2011) which is an extension of the algorithm of Albert and Chib (1993) for the
probit model. To be specific we use again the normal kernel.

We introduce an additional set of latent variables to help identifying cluster alloca-
tion. Let zi,j = h if θij = φh, for i = 1, . . . , n, j = 1, . . . , Ni and h = 1, . . . ,K, where
φh = (μh, σ

2
h). Let μ = (μ1, . . . , μK), and σ2 = (σ2

1 , . . . , σ
2
K). Let ui,h = log(wi,h),

i = 1, . . . , n, h = 1, . . . ,K, uh = (ui,h, i = 1, . . . , n) and u = {uh, h = 1, . . . ,K}. The
mixtures of CAR SSM model (12) can be equivalently written as

yi,j | φ, zi,j ind∼ f(·|φzi,j ), j = 1, . . . , Ni,

p(zi,j = h | u) = eui,h∑K
k=1 e

ui,k

, h = 1, . . . ,K,

uh | η ∼ p(uh | η), h = 1, . . . ,K,

φh
iid∼ G0(·|ψ), ψ ∼ π(ψ),

(13)

where p(uh | η) is the density of uh under the Mercer or CK CAR models with hyper-
parameter η = (a, b, τ2, ρ) and ψ is the parameter for G0 with hyperprior π(ψ). For the
normal kernel f , π(ψ) is given by (11). The details of the full conditionals and MCMC
steps are given in Appendix B of the Supplementary Material (Jo et al., 2016).

Finally, we comment on computation times. Using the described posterior MCMC
simulation strategy we find that inference for problems with up to some 100s sites can
be implemented with reasonable computing times. See, for example, the computing
times reported in Table 2. For the data analysis reported later, in Section 5.2., we could
finish the computation of the proposed CAR SSMs within a few hours for inference with
6000 observations over more than 200 sites. In summary, computational effort for the
proposed CAR SSMs compares favorably against available methods, but there remains
a limiting factor.

4.2 Hyperparameters

Inference appears to be robust with respect to most of the hyperparameters. We there-
fore recommend to fix hyperparameters except ψ. Below we give guidelines for specific
choices that we find to work well. Let K be the number of mixture components to be
used in the MCMC sampler. The value of K needs to be large enough for the model
to be flexible to fit the data, but not too large for it to slow down the MCMC sam-
pler. Thus, small K which provides enough flexibility of the model is ideal. We choose
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K = Cmax1≤i≤N Ni with C = 1
2 , where Ni is the number of the observations at site i.

From our experience, this appears to work for most data sets. If the computation time
is scarce, smaller K with C = 1

3 or 1
4 can be used. The values of a, b and τ are chosen to

allow for a sufficient number of non-negligible weights, but at the same time to represent
a preference for a small number of effective components. If mih decreases too rapidly
with h, the number of effective mixture components gets too small and the mixture
model may not be flexible enough. We use logmi,K/2 = 1/2 and logmi,3K/4 = 1/4, and

Pr(eui,K/2 ∈ [ 14 ,
3
4 ]) ≥

1
2 which renders τ = 0.6.

The parameter ψ in the base measure plays a similar role as the bandwidth in the
kernel density estimation. We put a prior on ψ,

ψ ∼ Ga
(ν0
2
,
ν0ψ

−1
0

2

)

where ψ0 = 0.7σ̂N̄−1/5, ν0 = 2, σ̂ = 1
n

∑n
i=1 σ̂i and σ̂i is the standard deviation of

observations at site si. The proposed value for ψ0 is motivated by the rule of thumb
for a kernel density estimation bandwidth parameter, suggested by Silverman (1986) as
1.06σ̂N−1/5.

We choose

μ0 =
1

n

n∑
i=1

ȳi, α = 0.72n−2/5 and ν = 2,

which are chosen so that the mean and variance of N(μ0, σ
2/α) in the base measure

match the mean and variance of observations.

The partial correlation of the ui,h variables is controlled by ρ and B. In the Mercer

CAR model the partial correlation between ui,h and uj,h is −e−ρd2

, with d = ||si− sj ||.
For example, if ρ ≈ 0, the partial correlation between two sites are close to 1 and the
model may fail to cope with abrupt changes of the densities. Thus, one needs to be
careful in choosing the value of ρ. We suggest the following steps to choose ρ. We first
determine the fixed distance d0 at which the partial correlation is 0.5, i.e., e−ρd2

0 = 0.5.
Then, solve the equation to get the value of ρ = (log 2)/d20. In the above steps, 0.5
can be replaced by a different value. For the Clayton–Kaldor model we choose ρ and B
similarly.

5 Examples

5.1 Simulation Studies

We carried out two simulation studies to compare the proposed CAR SSMs versus (i) a
spatially independent SSM, (ii) the spatially dependent Dirichlet process mixture model
(sDP) proposed by Gelfand et al. (2005), (iii) the generalized spatial Dirichlet process
model (gsDP) of Duan et al. (2007), and (iv) the spatial dependent probit stick-breaking
process model (sPSBP) of Rodŕıguez and Dunson (2011). In the first simulation study,
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we carry out repeat experimentation with 100 independent data sets for 13 locations
over a univariate grid, while the second simulation study considers a large scale data
set over a bivariate grid with 10× 10 = 100 grid points.

The sDP, gsDP and sPSBP are implemented using JAGS (Plummer, 2003), which
can be freely downloaded from http://mcmc-jags.sourceforge.net. For speed, we
coded posterior sampling algorithms for the independent SSMs and the proposed CAR
SSMs in Fortran functions that we called from R. (We are developing a user-friendly R
package to implement our models; a preliminary version is available from http://sites.

google.com/site/joseongil/software/). For example, for a two-dimensional large
scale data with 100 locations, posterior simulations of independent SSM and the pro-
posed CAR SSMs take about 2 hours and 5 hours to run 30,000 iterations (10,000
burn-in, 20,000 iterations after burn-in period), respectively. By contrast, the sPSBP
takes approximately 11 hours and the sDP and gsDP take approximately 10 hours and
72 hours in JAGS, respectively. This may be due to the fact that the algorithms of the
sDP, gsDP and sPSBP are implemented through JAGS.

We evaluate the performance of the density estimators by integrated absolute error
(IAE)

IAE =

∫ ∞

−∞
|fs(y)− f̂s(y)|dy, (14)

where fs(y) is the density under the simulation truth at location s and f̂s(y) is the corre-
sponding density estimate. The integral was approximated numerically using Simpson’s
3/8 rule over a grid of 200 equally-spaced points in the interval [−6, 6]. We also report
the deviance information criterion (DIC), introduced by Spiegelhalter et al. (2002) and
the log-pseudo marginal likelihood (LPML) defined as the sum of log conditional predic-
tive ordinates (CPO) (Geisser and Eddy, 1979). Celeux et al. (2006) discussed 8 versions
of DICs for models with missing variables. When there are many latent variables in the
models, due to poor performance of the estimators, the effective number of parameters
pD can be negative. We compute DIC as

DIC = −4E[log f(y|θ)|y] + 2 logE[f(y|θ)|y],

which is one of two recommended versions by Celeux et al. (2006). Although Celeux
et al. (2006) cautioned against this version because its pD can be negative in some
models, we use it because our focus of estimation is f(y|θ) and in our examples pD was
never negative.

Both, the conditional density of the CPO statistic and DIC, are evaluated for

f(ysi,j |θ) =
K∑

h=1

Psi,hN(ysi,j |μh, σ
2
h), i = 1, . . . , n, j = 1, 2, . . . , Ni. (15)

Higher LPML values and lower DIC values are indicative of better models.

http://mcmc-jags.sourceforge.net
http://sites.google.com/site/joseongil/software/
http://sites.google.com/site/joseongil/software/
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Figure 1: Simulation 1. Boxplots of IAE values under the CAR SSMs, an independent
SSM and a sDP for 100 data sets generated from simulation model defined in (16c).
The boxplots show results under the following models: CKCS(G0, a, b, τ

2, ρ, B) (white),
MCS(G0, a, b, τ

2, ρ) (gray), Independent SSM (red), and sDP (blue).

One-Dimensional Data

In the first simulation study, we compare the proposed CAR SSMs with inference un-
der a spatially independent SSM and inference under the sDP. The hypothetical data
are generated from three simulation truths consisting of mixtures of two normal distri-
butions, a modified version of the simulation model used by Rodŕıguez and ter Horst
(2008). The first two models only have spatially varying weights or atoms, while the
third model has both, spatially varying locations and weights. Also, in all models we fix
the scale parameters.

Model 1: fs(y) = wsN(y;−1.5, 1) + (1− ws)N(y; 1.5, 1), (16a)

Model 2: fs(y) = 0.7N(y;μs,1, 1) + 0.3N(y;μs,2, 1), (16b)

Model 3: fs(y) = wsN(y;μs,1, 1) + (1− ws)N(y;μs,2, 1), (16c)

where ws = 0.15 + 0.05s, μs,1 = −2 + 0.05s and μs,2 = 2− 0.05s, for s = 1, . . . , 13. We
generated 100 independent data sets, each of which consists of 260 observations for all
13 locations, i.e., 20 observations for each location.

Figure 1 shows box plots of IAE values across all locations for Model 3 (16c) and
Table 1 reports the LPML and DIC values, obtained for the generated datasets of the
first simulation study under the proposed CAR SSMs, the independent SSM, and the
sDP.
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The density estimates under both mixture of CAR SSMs perform favorably com-
pared to estimates under the competing models. The results from these examples sug-
gest that the proposed methods utilize information across space and estimate spatially
varying densities effectively. The proposed models also provide a better fit to the data.
The two proposed CAR SSMs perform comparably with each other. However, the sDP
performs less favorably for these data. The model is not flexible enough to identify the
two modes of both densities. This may be due to the fact that the dependency of the
sDP is modeled through atoms only and not through weights.

Model 1 Model 2 Model 3
Models LPML DIC LPML DIC LPML DIC
Independent SSM – 553.91 1097.89 – 547.55 1086.06 – 556.08 1102.82
sDP – 547.70 1095.26 – 537.12 1074.07 – 555.13 1110.09
Mercer CAR SSM – 529.29 1056.64 – 522.83 1043.85 – 531.21 1060.44
CK CAR SSM – 529.43 1056.92 -523.42 1044.84 – 532.25 1062.41

Table 1: Simulation 1. Goodness of fit for simulated data under (16).

To have a closer look at the density estimates, we present in Figure 2 density esti-
mates for one simulated data set. For comparison the densities under the respective sim-
ulation truth are overlayed in the same plot. Generally speaking, the proposed estimates
are closer to the simulation truth than under the competing models. The independent
SSM overfits the data by following the empirical distribution (histograms) too closely.
For some locations the density estimate has three modes, while each of the proposed
CAR SSM density estimates correctly identify two modes.

Two-Dimensional Data

We consider data indexed by bivariate spatial coordinates. We generate data with spatial
correlation on a 10 × 10 two-dimensional lattice. In the data set, each location has
20 observations and each observation follows a mixture of two normals with spatially
varying weights and locations, similar to Model 3 of the first simulation study,

fs1,s2(y) = w1(s1, s2)N{y;μ1(s1, s2), 1}+ w2(s1, s2)N{y;μ2(s1, s2), 1}, (17)

where w1(s1, s2) = 0.14 + 0.08(s1 − 1), w2(s1, s2) = 1 − w1(s1, s2), s1, s2 = 1, . . . , 10
and

μ1(s1, s2) = −2 + 0.06s2, μ2(s1, s2) = 2− 0.06s2, s1, s2 = 1, . . . , 10.

The data set consists of 2,000 observations for all 100 locations, i.e., 20 observations for
each location. In this study, we compare inference under the CAR SSMs with inference
under the sDP, the gsDP, and the sPSBP models.

Table 2 shows LPML, DIC and run times. Figure 3 displays box plots of IAE values,
obtained from data generated under the simulation truth (17). In Table 2, the CK CAR
SSM appears to be the best by both criteria, while the Mercer CAR SSM is slightly worse
than gsDP. However, the proposed CAR SSMs have the smaller IAE values (Figure 3)
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Figure 2: Simulation 1. Density estimates and simulation truth under (16c): true den-
sities (black solid), MCS(G0, a, b, τ

2, ρ) (green dashed), CKCS(G0, a, b, τ
2, ρ, B) (red

solid), independent SSM (brown dashed) and sDP (blue solid).

Models LPML DIC run time software
Independent SSM –3997.19 7890.92 2 hours R and Fortran
sDP –4118.85 8237.02 10 hours rjags
gsDP –3871.71 7727.65 72 hours rjags
sPSBP –3881.06 7761.94 11 hours rjags
Mercer CAR SSM –3883.51 7746.96 5 hours R and Fortran
CK CAR SSM –3837.46 7672.76 5 hours R and Fortran

Table 2: Simulation 2. Goodness of fit measures for simulated 10× 10 grid data defined
in (17) and computation times. The computation times reported here are not for com-
parison of computation times of the models, because Fortran is considerably faster than
rjags.

for most locations. Figure 4 shows density estimates for one of the simulated data sets.

Similar to the first simulation study, the proposed estimates are closer to the simulation

truth than under the competing models.
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Figure 3: Simulation 2. Boxplots of IAE values under the CAR SSMs, an independent
SSM, a sDP, and a gsDP under simulation truth (17). The boxplots show results un-
der the following models: CKCS(G0, a, b, τ

2, ρ, B) (white), MCS(G0, a, b, τ
2, ρ) (gray),

independent SSM (red), sDP (blue), gsDP (skyblue), and sPSBP (brown).

Figure 5 shows the number of dominant weights, which is the smallest number of
mixture components with the sum of weights larger than 0.9,for the Mercer CAR SSM
(black), the CK CAR SSM (red), and gsDP (green) at each location. The proposed
CAR SSMs use more dominant weights than gsDP at most locations. In particular,
the CK CAR SSM uses more dominant weights than gsDP at all locations. The gsDP
captures the spatial structure through both the weights and atoms, while CAR SSMs fits
the spatial dependencies with spatially varying weights only. A larger number of non-
negligible weights provides more flexibility to model the desired heterogeneity across
locations.

We also examine the prediction performance of the proposed CAR SSMs for 13
unobserved new sites. Figure 6 displays the posterior predictive densities for five selected
locations and box plot of IAE values for 13 new sites. Predictive inference under the
proposed models is quite accurate, even with the small sample sizes. The proposed
methods borrow information across space effectively.

5.2 Precipitation over East Asia

We use the proposed CAR SSM models to analyze summer precipitation data collected
for 216 sites over East Asia over 33 years, from 1979 to 2011. Figure 7 displays the
216 observation sites over East Asia. For each grid point, we have only 33 observations
to construct probability density estimates, which is not enough for precise estimates.
However, we expect the nearby densities are similar to each other and therefore expect
better estimates if neighborhood information is utilized, as it is implemented in the



394 Dependent Species Sampling Models for Spatial Density Estimation

Figure 4: Simulation 2. Density estimates under simulation truth (17): true densities
(black solid), MCS(G0, a, b, τ

2, ρ) (gray dashed), CKCS(G0, a, b, τ
2, ρ, B) (green solid),

independent SSM (red dashed), sDP (blue solid), gsDP (skyblue dotted), and sPSBP
(brown dashed).

CAR SSM models. Good inference for summer precipitation is of critical importance
in South Korea. The country frequently suffers floods in summer that can cause large
monetary loss as well as human casualties. For this reason, at the beginning of each
season the Korean meteorology administration (KMA) publishes precipitation estimates
as probabilities for three categories (below, normal and above) for subregions of Korea.
The category “normal” means that in the coming season the precipitation will be in the
middle 1/3 probability range of the past precipitations. The validity of these forecast
probabilities hinges on good density estimates that make efficient use of the available
data while honestly reporting relevant uncertainties.

In the following analysis we show how the proposed CAR SSM models can provide
such density estimates (still without a temporal component for prediction). We carry
out inference under the proposed models to obtain the desired density estimates using
recorded summer (i.e. June, July and August) precipitation for grid points over East
Asia (21.25◦N – 48.75◦, 101.25◦E – 143.75◦E). We use the Climate Prediction Center
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Figure 5: Simulation 2. The number of dominant weights under the Mercer CAR SSM
(black), the CK CAR SSM (red) and under the gsDP (green) for data under simulation
truth (17).

Merged Analysis of Precipitation (CMAP) data set. See Figure 7 for the grid points.

As before we fix the hyperparameters of the CAR SSMs. We use B = 13 so that the
neighborhood of each grid point consists of 8 points around it; and K = 16 (K = n/2)
for the discrete probability measures. Inference is based on 20,000 posterior samples
from Markov chain Monte Carlo (MCMC) posterior simulation after a burn-in period
of 10,000 samples.

Table 3 shows LPML and DIC values for fits under both CAR SSMs, MCS(G0, a, b,
τ2, ρ) and CKCS(G0, a, b, τ

2, ρ, B), and under sDP, and sPSBP. The Mercer CAR SSM is
favored by both criteria. Both CAR SSMs provide better fits than the competitors. The
results suggest that the proposed methods utilize information across space and estimate
spatially varying densities effectively. Figure 8 shows the posterior mean estimates under
the proposed CAR SSMs, sDP and sPBSP. Figure 9 shows the estimated 33.33 % and
66.66 % percentiles of the precipitation density functions, based on the density estimates,
on each grid.

Figure 10 shows a predictive density estimate for a single site whose observations
were excluded from the analyses. That is, no observations at this site were used for the
fit. The predictive density estimates show the difference of Mercer CARSSM and CK
CARSSM. The smaller mode in the density estimate of the Mercer CARSSM appears to
be an effect from distant observations; while the density estimate of the CK CARSSM
seems to have limited effect from distant observations.

We investigate sensitivity with respect to some prior specifications. We first repeated
the analysis using (a, b) ∈ {(1, 10), (0.5, 20)} and τ ∈ {0.1, 0.5, 1, 4} for both CAR SSMs.
The values were chosen to correspond to prior mean weights shown in Figure 11. In
all cases, the remaining parameters were fixed as in the simulation study. Figure 12
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Figure 6: Simulation 2. Predictive density estimates and true densities for selected 5
new sites and box plot of IAE values for 13 new sites: true densities (black solid),
MCS(G0, a, b, τ

2, ρ) (green dotted) and CKCS(G0, a, b, τ
2, ρ, B) (red dashed).

compares density estimates for a location over the Korean peninsula in Figure 7 and

the posterior distribution for the number of clusters. Both are sensitive with respect to

the choices of a, b and τ .
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Figure 7: East Asia; resolution of grid point is 2.5◦ × 2.5◦.

Models LPML DIC
sDP –13847.85 27800.25
sPSBP –12863.77 25721.10
Mercer CAR SSM –11264.91 22513.65
CK CAR SSM –11640.27 23269.93

Table 3: East Asia precipitation. Goodness of fit measures.

We also assessed sensitivity of posterior inference with respect to changing the type
of kernel in the Mercer CAR SSM from Gaussian, to exponential, Cauchy, or Matérn
(Whittle, 1954) kernels and varying the value of the B parameter that specifies the
neighborhood size, from B = 6.25 to B = 31.25. The grid for B corresponds to neigh-
borhood sizes from 4 to 12. We find little change in the reported density estimates.
Summaries are shown in Figure 13. We conclude that posterior inference is robust with
respect to the choice of the kernel and B.

6 Conclusion

In this paper we proposed dependent species sampling models as an alternative class
of nonparametric priors for the estimation of spatially varying densities. The proposed
CAR SSMs introduce the desired spatial dependence in the random weights of dis-
crete probability measures. We use CAR models to construct such spatially dependent
weights. Since the dependence is modeled through weights, the CAR SSMs are flexible
to accommodate spatial variations of densities. This is confirmed by the simulation stud-
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Figure 8: East Asia precipitation. Fits under the MCS(G0, a, b, τ
2, ρ) (red dashed),

CKCS(G0, a, b, τ
2, ρ, B) (green solid), sDP (blue solid), and sPSBP (brown dotted).

ies and the real data example. An appealing feature of the proposed models is that the

modeling of dependence remains intuitive, as the CAR models are a well-understood

class of statistical models. The posterior sampling algorithm we described is greatly
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Figure 9: East Asia precipitation. A connected line represents the estimated 33.33 %
(left) and 66.66 % (right) percentiles of the precipitation density functions at a latitude.
The darkest and brightest lines correspond to the latitudes of 48.75◦ and 21.25◦ degrees,
respectively.

simplified after introducing the data augmentation via auxiliary latent variables. CAR
SSMs can be applied in any problem where a group of distributions indexed by locations
or time need to be estimated simultaneously. One advantage of the posterior sampling
algorithm for CAR SSMs is that the two components of the MCMC iterations, (i) clus-
ter membership imputation of each observation and (ii) conditional sampling of the
mixture weights Ps,h, present strict similarities with extensively studied computational
procedures. The first component is present in a large portion of algorithms dedicated
to Dirichlet mixture models, and the second component is nearly identical to widely
used MCMC strategies for posterior sampling under logit binary regression models. In
different words, procedures designed to solve these two important sampling problems
can be plugged in and structure the MCMC for CAR SSMs. Additionally, the compu-
tational advantages associated to the conditional independence structure of CK CAR
models can be inherited in the posterior sampling of the unnormalized weights ws,h. In
particular, the conditional independence structure in the models can be capitalized in
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Figure 10: East Asia precipitation. Predictive density estimates under the proposed
CAR SSMs; MCS(G0, a, b, τ

2, ρ) (red solid) and CKCS(G0, a, b, τ
2, ρ, B) (black solid).

Vertical lines (red) on x-axis correspond to actual observations.

Figure 11: Mean weights (8) a priori versus h, under different choices of (a, b).

the implementation of multiprocessing or parallel posterior simulations.

In this paper we included an application to inference for precipitation density regres-
sion. But CAR SSMs can be applied in many other problems, including other climate
variables such as temperature, ozone or CO2, density estimation for housing prices,
stock market prices etc.

In future work we plan to generalize the precipitation density regression with the
inclusion of temporal components. An important remaining hurdle is computation time.
New computational methods such as parallel MCMC or variational methods are promis-
ing directions. Other important generalizations are the inclusion of discrete and contin-
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Figure 12: Sensitivity. Inference under alternative hyperparameter choices (a, b, τ).

Figure 13: Sensitivity. Inference under alternative kernels for the Mercer CAR SSM and
alternative B for the CK CAR SSM.
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uous components in the distributions as well as a regression on covariates. The latter
can easily be achieved by introducing a regression in the sampling model. Suppose re-
sponse ysi,j has associated covariate xsi,j . The response ysi,j could then be modeled as
ysi,j = x′

si,j
β+ εsi,j , where β is a regression coefficient and εsi,j follows the mixtures of

CAR SSMs. When the covariate is discrete, assuming only a few values, the mixtures of
CAR SSMs could be applied with covariates being accommodated in the model in the
same way as spatial locations. For example, see, e.g., Gelfand et al. (2005) and Duan
et al. (2007).

Supplementary Material

Supplementary Material for Dependent Species Sampling Models for Spatial Density
Estimation (DOI: 10.1214/16-BA1006SUPP; .pdf).
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