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In the present paper, we consider the application of overcomplete dic-
tionaries to the solution of general ill-posed linear inverse problems. In the
context of regression problems, there has been an enormous amount of ef-
fort to recover an unknown function using an overcomplete dictionary. One
of the most popular methods, Lasso and its variants, is based on maximizing
the likelihood, and relies on stringent assumptions on the dictionary, the so-
called compatibility conditions, for a proof of its convergence rates. While
these conditions may be satisfied for the original dictionary functions, they
usually do not hold for their images due to contraction properties imposed by
the linear operator.

In what follows, we bypass this difficulty by a novel approach, which is
based on inverting each of the dictionary functions and matching the resulting
expansion to the true function, thus, avoiding unrealistic assumptions on the
dictionary and using Lasso in a predictive setting. We examine both the white
noise and the observational model formulations, and also discuss how exact
inverse images of the dictionary functions can be replaced by their approx-
imate counterparts. Furthermore, we show how the suggested methodology
can be extended to the problem of estimation of a mixing density in a con-
tinuous mixture. For all the situations listed above, we provide sharp oracle
inequalities for the risk in a non-asymptotic setting.

1. Introduction. In this paper, we consider the solution of a general ill-posed
linear inverse problem Qf = q where Q is a bounded linear operator that does not
have a bounded inverse and the right-hand side q is measured with error. Problems
of this kind appear in many areas of application such as astronomy (blurred im-
ages), econometrics (instrumental variables), medical imaging (tomography, dy-
namic contrast enhanced Computerized Tomography and Magnetic Resonance
Imaging), finance (model calibration of volatility) and many others.

In particular, we consider the equation

y = q + σn−1/2η, q = Qf.(1.1)
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Here, η is a Gaussian process representing the noise, σn−1/2 is the noise level,
and Q :H1 → H2 is a bounded linear operator without a bounded inverse. Hence,
problem (1.1) is indeed ill-posed. Here, H1 and H2 are Hilbert spaces. We assume
that observations are taken as functionals of y

〈y,g〉H2 = 〈Qf,g〉H2 + σn−1/2η(g), g ∈ H2,(1.2)

where, for any g ∈ H2, η(g) is a Gaussian random variable with zero mean and
E[η(g1)η(g2)] = 〈g1, g2〉H2 , so that Var[η(g)] = ‖g‖2

H2
. The formulation above

refers to the scenario where one cannot measure function y(t) everywhere: only
functionals of y are available. Such functionals may, for example, be coefficients of
y in some orthonormal basis (e.g., Fourier, wavelet, eigenbasis of Q). The situation
where one observes values of function y at some points is studied in depth in
Section 5.

In order to understand the formulation above, consider a common situation
where the operator Q is of the form

(Qf )(x) =
∫ b

a
g(x, t)f (t) dt, x ∈ (c, d),(1.3)

and f (t), g(x, t), q(x) and y(x), t ∈ (a, b), x ∈ (c, d), are square integrable func-
tions. In this case, Q : H1 → H2 where H1 = L2(a, b) and H2 = L2(c, d). For-
mula (1.2) refers to the fact that function y(x) = (Qf )(x) + σn−1/2η(x) cannot
be measured for all points x. One can only observe linear functionals

〈y,ψ〉H2 =
∫ d

c
y(x)ψ(x)dx =

∫ d

c
q(x)ψ(x)dx + σn−1/2η(ψ),

where η(ψ) ∼ N(0,‖ψ‖2
H2

).
Solutions of statistical inverse problem (1.1) usually rely on the reduction of the

problem to the sequence model by carrying out the singular value decomposition
(SVD) [see, e.g., Cavalier and Golubev (2006), Cavalier et al. (2002), Cavalier
and Reiß (2014), Golubev (2010) and Kalifa and Mallat (2003), or its relaxed
version, the wavelet-vaguelette decomposition proposed by Donoho (1995) and
further studies by Abramovich and Silverman (1998)]. Another general approach is
the Galerkin method with subsequent model selection [see, e.g., Cohen, Hoffmann
and Reiß (2004), Efromovich and Koltchinskii (2001) and Hoffmann and Reiss
(2008)].

The advantage of the methodologies listed above is that they are asymptoti-
cally optimal in a minimax sense, and hence, deliver the best possible rates in the
“worst case scenario” setting. A function of interest is usually represented via an
orthonormal basis which is motivated by the form of the operator Q. However,
in spite of being minimax optimal in many contexts, these approaches have two
drawbacks. The first one is that, in many situations, these techniques may not be
applicable. Indeed, for the majority of linear operators, the SVD decomposition
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is unknown, and hence cannot be applied. Wavelet-vaguelette decomposition re-
lies on relatively stringent conditions that are satisfied only for specific operators,
mainly, of the convolution type. In addition, wavelet-based methods are advanta-
geous when one recovers a one-dimensional function defined on a finite interval.
However, they do not perform as well for a function of several variables or with an
infinite domain [see, e.g., Candès (2003) or Le Pennec and Mallat (2005)]. Another
shortcoming is that an orthonormal dictionary may not be “rich enough”. If the un-
known function does not have a relatively compact and accurate representation in
the chosen basis, the accuracy of the resulting estimator will be poor. In Section 3,
we provide detailed explanations of how application of overcomplete dictionaries
can improve the precision of solutions of ill-posed linear inverse problems.

In the last decade, a great deal of effort was spent on the use of overcomplete
dictionaries for the recovery of an unknown function f in a regression setting from
its noisy observations. In particular, if f has a sparse representation in a dictionary,
then it can be recovered with a much better precision than, for example, when it
is expanded over an orthonormal basis. The methodology is based on the idea
that the error of an estimator of f is approximately proportional to the number
of dictionary functions that are used for representing it. Therefore, expanding the
function of interest over fewer dictionary elements decreases the estimation error.
In order to represent a variety of functions efficiently, one would need to consider
a dictionary of much larger size than the number of available observations, the
so-called overcomplete dictionary, and also to develop tools for choosing a linear
combination of the elements of the dictionary that deliver efficient representation
of f .

A variety of techniques have been developed for solution of those problems
including likelihood penalization methods and greedy algorithms. The most pop-
ular of those methods (due to its computational convenience), Lasso and its vari-
ants, has been used for the solution of a number of theoretical and applied sta-
tistical problems [see, e.g., Bickel, Ritov and Tsybakov (2009), Bunea, Tsybakov
and Wegkamp (2007), Dalalyan, Hebiri and Lederer (2014), Lounici et al. (2011),
Yuan and Lin (2006), and also Bühlmann and van de Geer (2011) and references
therein]. However, the application of Lasso is based on maximizing the likelihood
and, unfortunately, relies on stringent assumptions on the dictionary {ϕk}pj=1, the
so-called compatibility conditions, for a proof of its convergence rates. In the re-
gression set up [with Q = I , the identity operator, in (1.1)], as long as one of the
compatibility conditions holds, Lasso identifies a linear combination of the dic-
tionary elements which represent the function of interest best of all at the “price”
which is proportional to σn−1/2√logp, where p is the dictionary size [see, e.g.,
Bühlmann and van de Geer (2011)]. Regrettably, while the compatibility condi-
tions may be satisfied for the functions ϕj in the original dictionary, they usu-
ally do not hold for their images Qϕj due to contraction imposed by the opera-
tor Q. In order to illustrate this issue, one should expand f over the dictionary
as fθ =∑p

j=1 θjϕj . Then qθ =∑p
j=1 θjuj with uj = Qϕj . In a nutshell, in order
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one can prove that Lasso can recover function f with nearly optimal convergence
rates, matrix A with elements Akj = 〈uk,uj 〉 should be such that its principal sub-
matrices of a small order have eigenvalues that are uniformly separated from zero
and infinity [see, e.g., Bickel, Ritov and Tsybakov (2009)]. The latter usually does
not hold for the ill-posed problems where the smallest eigenvalue can decrease
polynomially or even exponentially as a function of j .

The objective of this paper is to circumvent this difficulty and apply the Lasso
methodology to solution of linear inverse problem (1.1). For this purpose, in Sec-
tion 4, instead of matching the expansion qθ to data y, we invert each of the dic-
tionary functions ϕj and match expansion fθ to the true function f . This approach
has several advantages. First, it allows the use of Lasso in a prediction setting
where it requires much milder assumptions. In this setting, Lasso converges to
the true solution, although at a slow rate, under practically no assumptions on
the dictionary. Second, inverting fully known functions ϕj is an easier task than
inverting an unknown function measured with noise. In addition, the norms of
the inverted images can be viewed as the “price” of including each of the dictio-
nary functions ϕj . In order to ensure that the estimator fθ̂ attains fast convergence
rates, we formulate a compatibility assumption and discuss sufficient conditions
that guarantee its validity. Under this compatibility condition, we obtain a sharp
oracle inequality for the risk of the Lasso estimator that holds with an arbitrarily
large probability in non-asymptotic settings. In particular, we show that our risk
bounds are smaller than those derived in Dalalyan and Salmon (2012). In the case
of an orthonormal dictionary, they are also simpler than the ones derived in Cohen,
Hoffmann and Reiß (2004) and also hold true for any sample size.

The Lasso methodology developed for equations (1.1) and (1.2) allows a variety
of generalizations. First, in Section 5, we extend formulations (1.1) and (1.2) to ob-
servational models where only the values y(ti), i = 1, . . . , n, of y(t) are available.
Second, in Section 6, we explain how, with very minor modifications, the Lasso
technique can be used for estimation of a mixing density in a continuous mixture.
Third, in Section 7, we show that, even if the exact inverse images of the dictio-
nary functions do not exist, one can use their approximations and take advantage
of the exact knowledge of the dictionary functions, which allows the optimal bias-
variance decomposition. This implies that the latter technique, in essence, replaces
the Lasso by the elastic net technique.

We would like to emphasize that the Lasso methodology for solution of lin-
ear inverse problems can be viewed as an extension of both the Galerkin method
and the wavelet-vaguelette decomposition. Really, if instead of an overcomplete
dictionary, one were to use an orthonormal basis, then the Lasso methodology
just reduces to the Galerkin method with the model selection carried out by a
soft thresholding technique. Moreover, if this orthonormal basis is comprised of
wavelet functions and conditions for validity of the wavelet-vaguelette decompo-
sition hold, the Lasso penalty just imposes soft thresholding on the wavelet coeffi-
cients.
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The rest of the paper is organized as follows. After introducing notation (Sec-
tion 2), Section 3 explains why application of overcomplete dictionaries allows a
significant improvement of the estimation accuracy in inverse linear ill-posed prob-
lems. Section 4 develops the theoretical foundations of the paper by justifying the
application of the Lasso technique to the solution of the general linear inverse prob-
lem (1.1). In particular, it introduces a compatibility assumption which guarantees
that the Lasso estimator attains fast convergence rates for any function f which
has a sparse representation in the dictionary, and thereby also provides a sharp
oracle inequality for its risk. The compatibility condition is further discussed in
the Appendix. In particular, Section A.1, formulates simpler sufficient conditions
under which it holds. Sections 5 and 6 clarify how the theory can be applied to
real life observational models and also to the estimation of a mixing density on
the basis of observations of a continuous mixture. Section 7 demonstrates how
exact inverse images of the dictionary functions can be replaced by their approxi-
mate counterparts. Section 8 considers the application of Lasso to the estimation of
the unknown density function of the matrix parameter of the Wishart distribution.
Section 9 concludes the paper with a discussion of the results. Finally, Appendix
contains a detailed discussion of the compatibility condition (Section A.1), and
proofs of the statements formulated in earlier sections (Section A.2).

2. Notation. In the paper, we use the following notation.

• For any vector t ∈ R
p , denote its �2, �1, �0 and �∞ norms by, respectively, ‖t‖2,

‖t‖1, ‖t‖0 and ‖t‖∞. Similarly, for any function f , denote by ‖f ‖2, ‖f ‖1 and
‖f ‖∞ its L2, L1 and L∞ norms.

• For any matrix A, denote its spectral and Frobenius norms by, respectively, ‖A‖
and ‖A‖2. Notation A > 0 or A ≥ 0 means, respectively, that A is positive or
nonnegative definite. Denote determinant of A by |A| and the largest, in absolute
value, element of A by ‖A‖∞. Denote the Moore–Penrose inverse of matrix A
by A+.

• Denote P = {1, . . . , p}. For any subset of indices J ⊆ P , subset J c is its com-
plement in P and |J | is its cardinality, so that |P| = p. Let LJ = Span{ϕj , j ∈
J }.

• If J ⊂ P and t ∈ R
p , then tJ ∈ R

|J | denotes reduction of vector t to subset of
indices J .

• Denote by λmin(m;�) and λmax(m;�) the minimum and the maximum re-
stricted eigenvalues of matrix �

λmin(m;�) = min
t∈Rp

‖t‖0≤m

tT �t

‖t‖2
2

, λmax(m;�) = max
t∈Rp

‖t‖0≤m

tT �t

‖t‖2
2

.(2.1)

Also, denote by 	(�) the maximum of a non-diagonal element of matrix �:

	(�) = max
j �=k

|
jk|.(2.2)
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Whenever there is no ambiguity, we drop � in the above notation and write
simply λmin(m), λmax(m) and 	.

• am � bm means that there exist constants 0 < C1 < C2 < ∞ independent of m

such that C1am < bm < C2am.

3. Advantages of overcomplete dictionaries. The purpose of this section is
to demonstrate how application of a rich overcomplete dictionary can reduce esti-
mation error in inverse linear ill-posed problems. Indeed, if an overcomplete dic-
tionary allows an efficient representation of f , it leads to a smaller estimation error.
In order to understand the roots of this phenomenon, consider the situation where
operator Q is self-adjoint and has a singular value decomposition Qek = λkek ,
k = 1,2, . . . , and function f can be represented as f =∑

k ckek . Assume, without
loss of generality, that for some μ > 0 and ρ > 0

|ck| ≤ C0k
−(μ+1/2) and |λk| ≥ Cλk

−ρ.(3.1)

In this case, one can construct the SVD estimator f̂SVD =∑m
k=1 λ−1

k 〈y, ek〉ek of f

with the mean squared error (MSE) of the form

E‖f̂SVD − f ‖2
2 =

∞∑
k=m+1

c2
k + σ 2

n

m∑
k=1

λ−2
k � m−2μ + σ 2

n
m1+2ρ

(3.2)
� n−2μ/(2μ+2ρ+1),

where the value of m is chosen to minimize the right-hand side of (3.2). The advan-
tage of the SVD is that its error rates hold in the “worst case” minimax estimation
scenario where f is the hardest to estimate in the chosen class of functions.

On the other hand, consider the “best case” scenario where one has an extensive
overcomplete dictionary ϕl with ‖ϕl‖ = 1, l = 1, . . . , p, and f is proportional to
one of the dictionary functions, say, ϕj . Expand dictionary functions ϕl in the
eigenbasis ek and find their inverse images ψl obtaining

ϕl =
∞∑

k=1

clkek, ψl =
∞∑

k=1

clkλ
−1
k ek.

If one had an oracle which identifies the function ϕj that is proportional to f , then
cjk = ck/‖f ‖ and f would be estimated by f̂or = 〈y,ψj 〉ϕj with the error

E‖f̂or − f ‖2
2 = σ 2

n
‖ψj‖2

2 = σ 2

n

∞∑
k=1

λ−2
k c2

jk = σ 2

n
‖f ‖−2

2

∞∑
k=1

λ−2
k c2

k.(3.3)

Moreover, if μ > ρ in (3.1), then the series in the right-hand side of (3.3) is con-
vergent and f̂or has parametric error rate E‖f̂or −f ‖2 � n−1. Otherwise, if μ ≤ ρ,
one can replace ψj by

ψj,Mj
=

Mj∑
k=1

cjkek(3.4)
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and estimate f by f̂or,M = 〈y,ψj,Mj
〉ϕj . It is easy to calculate that

E‖f̂or,Mj
− f ‖2

2 =
[

σ 2

n

Mj∑
k=1

λ−2
k c2

jk +
∞∑

k=Mj+1

c2
jk

]
(3.5)

� Mj
2ρ−2μ

n
+ Mj

−2μ.

Choosing Mj that minimizes the right-hand side of (3.5), obtain

E‖f̂or,Mj
− f ‖2

2 � n−2μ/(2ρ) = o
(
n−2μ/(2μ+2ρ+1))� E‖f̂SVD − f ‖2

2,

n → ∞,

that is, the error of f̂or,Mj
is smaller than the error of the SVD estimator. The ad-

vantage comes from the fact that, unlike in (3.2), in the right-hand sides of (3.3)
and (3.5), the “large” values λ−2

k are multiplied by “small” values c2
jk in the ex-

pression for the MSE.
One would argue that the assumption that f is proportional to one of the dic-

tionary elements is not very realistic. However, it is very likely that f can be
represented by a small subset of the dictionary functions ϕj , j ∈ J, of cardinality
|J | = s. Then f can be estimated by

f̂or,M = ∑
j∈J

〈y,ψj,Mj
〉ϕj , M = (M1, . . . ,Ms),

where ψj,Mj
are defined in (3.4) and the values Mj are found by minimizing the

right-hand side of (3.5). If, for example, the dictionary functions are not “much
harder” than f , that is, if there exists a constant Cf such that for j ∈ J one
has c2

jk ≤ Cf c2
k , then E‖f̂or,M − f ‖2 � sn−1 if μ > ρ and E‖f̂or,M − f ‖2 �

sn−2μ/(2ρ) otherwise. Note also that there is a significant difference between
choosing optimal values of Mj in (3.5) and m in (3.2). Indeed, the coefficients
of the dictionary functions cjk in (3.5) are known, while coefficients ck of f in
(3.2) are unknown, so the former problem is a straightforward one while the latter
one is not.

Since one does not have an oracle which allows to choose the “right” subset of
dictionary functions ϕj , j ∈ J , Lasso is instrumental for choosing an appropriate
subset such that, even if it does not coincide with the “true” subset J , it provides
an estimator of a similar quality.

4. Lasso solution of a general linear inverse problem. Consider equation
(1.1) described above with observations defined in (1.2). Denote by Q∗ the conju-
gate operator for Q, so that 〈Qf,g〉H2 = 〈f,Q∗g〉H1 for any f ∈ H1 and g ∈ H2.
Unless there is an ambiguity, in what follows, we denote the scalar product induced
norms in both H1 and H2 by ‖ · ‖2.
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Let {ϕj , j ∈ P} be a dictionary such that ‖ϕj‖H1 = 1. Denote by f the true
solution of the problem (1.1) and by fθ the projection of this true solution on the
linear span of functions {ϕj , j ∈ P} where, for any t ∈R

p , we denote

ft =
p∑

j=1

tj ϕj .(4.1)

If function f were known, we would search for the vector of coefficients θ of fθ

as a solution of the optimization problem

θ = arg min
t

‖f − ft‖2
2,

where ft is defined in (4.1). Note that, although f is unknown,

‖f − ft‖2
2 = ‖f ‖2

2 + ‖ft‖2
2 − 2

p∑
j=1

〈f,ϕj 〉H1 tj(4.2)

is the sum of three components where the first one, ‖f ‖2
2, is independent of t,

and the second one, ‖ft‖2
2, is completely known. In order to estimate the last term

in (4.2), we assume that the following condition holds:

(A0) There exist ψj ∈ H2 such that Q∗ψj = ϕj and νj = ‖ψj‖H2 < ∞.

For example, if operator Q is defined by formula (1.3), then ψj in Assump-
tion (A0) are solutions of the following equations:(

Q∗ψj

)
(t) =

∫ d

c
g(x, t)ψj (x) dx = ϕj (t), t ∈ (a, b).(4.3)

Observe that equations resulting from Assumption (A0) have completely known
right-hand sides. The values of νj can be viewed as the “price” of estimating
coefficient θj of fθ . While, in the regression set up, this “price” is uniform for
all coefficients, this is no longer true in the case of ill-posed problems. In gen-
eral, evaluating ψj , j = 1, . . . , p, in Assumption (A0) can be computationally
expensive. However, in many cases (as it happens, for instance, in Section 8), ϕj ,
j = 1, . . . , p, can be inverted analytically, so one can evaluate ψj , j = 1, . . . , p,

directly. If this is impossible, one can evaluate functions ψj in advance, in an “off-
line” mode, since functions ϕj are data independent. Moreover, since the inversion
of each function ϕj is done independently, the procedure can be sped up by the use
of parallel computing.

Under Assumption (A0), one can write

βj = 〈f,ϕj 〉H1 = 〈
f,Q∗ψj

〉
H1

= 〈Qf,ψj 〉H2 = 〈q,ψj 〉H2,(4.4)

so that

βj = E〈y,ψj 〉H2 .(4.5)
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For this reason, we can replace βj = 〈f,ϕj 〉H1 in (4.2) by its estimator

β̂j = 〈y,ψj 〉H2(4.6)

and estimate the vector of coefficients θ by

θ̂ = arg min
t

{
‖ft‖2

2 − 2
p∑

j=1

β̂j tj + α

p∑
j=1

νj |tj |
}
.(4.7)

Note that (4.7) is the weighted Lasso problem with the penalty parameter α. The
coefficients νj in front of |tj | are motivated by the fact that β̂j are centered normal
variables with the variances ν2

j = ‖ψj‖2
2.

In order to reduce optimization problem (4.7) to familiar matrix formulation, we
introduce matrix � with elements 
jk = 〈ϕj ,ϕk〉 and vector β̂ with elements β̂j .
Define matrices W and ϒ by

WT W = �, ϒ = diag(ν1, . . . , νp).(4.8)

Then (4.7) can be re-written as

θ̂ = arg min
t

{
tT WWT t − 2tT β̂ + α‖ϒt‖1

}
.(4.9)

Introducing vector γ such that WT γ = β̂ we reduce (4.9) to

θ̂ = arg min
t

{‖Wt − γ ‖2
2 + α‖ϒt‖1

}
.(4.10)

Here, ‖ϒt‖1 is the weighted Lasso penalty, α is the penalty parameter and γ =
(WT )+β̂ = (WWT )−1Wβ̂ is the right-hand side.

Since we are interested in recovering f rather that θ itself, we are using Lasso
for solution of the prediction problem where it requires milder conditions on the
dictionary. In particular, estimator fθ̂ converges to the true function f with no
additional assumptions on the dictionary.

THEOREM 1. Let Assumption (A0) hold. Let τ > 0 and

α0 = σn−1/2
√

2(τ + 1) logp.(4.11)

Then, for any α ≥ α0, with probability at least 1 − 2p−τ , one has

‖fθ̂ − f ‖2
2 ≤ inf

t

[
‖ft − f ‖2

2 + 4α

p∑
j=1

νj |tj |
]
.(4.12)

If the dictionary is large enough, so that fθ = f where vector θ has support J

of size |J | = s and components of θ are uniformly bounded, then with high prob-
ability, the error of estimating f by fθ̂ is ‖fθ̂ − f ‖2

2 � σn−1/2√logp
∑

j∈J νj .
In the case of the regression problem, νj = 1, so that convergence rate appears
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as sσn−1/2√logp and is called the slow Lasso rate, in comparison with the fast
Lasso rate σ 2sn−1 logp that can be obtained only if one of the, so-called, compat-
ibility assumptions [see, e.g., Bühlmann and van de Geer (2011)] is satisfied.

In the case of the ill-posed problem (1.1), in order to achieve fast Lasso rate, we
also need to formulate a compatibility assumption. For this purpose, we consider
a set of p-dimensional vectors

J (μ,J ) = {
d ∈ R

p : ∥∥(ϒd)J c

∥∥
1 ≤ μ

∥∥(ϒd)J
∥∥

1

}
, μ > 1,(4.13)

where matrix ϒ is defined in (4.8). We assume that the following condition holds:

(A) Matrices � and ϒ are such that for some μ > 1 and any J ⊂ P

κ2(μ,J ) = min
{

d ∈ J (μ,J ),‖d‖2 �= 0 : dT �d · Tr(ϒ2
J )

‖(ϒd)J ‖2
1

}
> 0.(4.14)

Assumption (4.14) is not easy to check in practice. For this reason, in Sec-
tion A.1 in the Appendix, we provide verifiable sufficient conditions that guaran-
tee that condition (A) holds with κ2(μ,J ) being uniformly bounded below by a
quantity which is separated from zero.

Observe that, in the regression setup, ϒ is the identity matrix, and condition (A)
reduces to the compatibility condition for general sets formulated in Section 6.2.3
of Bühlmann and van de Geer (2011). If one has an orthonormal basis instead
of an overcomplete dictionary, then matrix � is an identity matrix and, due to
the Cauchy inequality, κ2(μ,J ) ≥ 1 for any μ and J . On the other hand, for an
orthonormal basis, the bias ‖ft − f ‖2

2 in (4.12) may be large. Under conditions
(A0) and (A), one obtains fast convergence rates for the Lasso estimator.

THEOREM 2. Let Assumptions (A0) and (A) hold. Let τ > 0, K0 = 2 and
α = �α0 where � ≥ (μ + 1)/(μ − 1) and α0 is defined in (4.11). Then, with
probability at least 1 − 2p−τ , one has

‖fθ̂ − f ‖2
2 ≤ inf

t,J⊆P

[
‖ft − f ‖2

2 + 4α
∑
j∈J c

νj |tj |
(4.15)

+ σ 2K0(1 + �)2(τ + 1)

κ2(μ,J )

logp

n

∑
j∈J

ν2
j

]
.

Therefore,

‖fθ̂ − f ‖2
2 ≤ inf

J⊆P

[
‖f − fLJ

‖2
2 + σ 2K0(1 + �)2(τ + 1)

κ2(μ,J )

logp

n

∑
j∈J

ν2
j

]
,(4.16)

where fLJ
= projLJ

f .
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Note that inequality (4.16) ensures that, up to a logp factor, the estimator fθ̂ at-
tains the minimum possible mean squared error for a particular function of interest
f as long as compatibility factor κ2(μ,J ) stays uniformly bounded below. Indeed,
if f were known, one would choose J ⊆ P and estimate f by its projection f̃ on
LJ , so that the overall error is bounded below by

E‖f̃ − f ‖2
2 ≥ min

J⊂P

{
‖f − fLJ

‖2
2 + σ 2 logp

nλmax(|J |,�)

∑
j∈J

ν2
j

}
,(4.17)

where λmax(·) is defined in (2.1). If κ2(μ,J ) is bounded below by a constant, then
the lower bound in (4.17) differs from the upper bound in (4.16) by a logarithmic
factor logp that serves as a price for choosing a subset of dictionary functions.

Note that oracle inequalities (4.15) and (4.16) are sharp and, if compatibility
condition holds, they contain smaller remainder term than the remainder term in
Proposition 3 of Dalalyan and Salmon (2012). Indeed, for an arbitrary dictionary,
Dalalyan and Salmon (2012) obtained the remainder term which is proportional to
n−1 logp|J |maxj∈J ν2

j and is larger than n−1 logp
∑

j∈J ν2
j in Theorem 2.

If one imposes a somewhat stronger condition,

max
j ′

∑
j �=j ′

|
jj ′ | ≤ 1 − κ0 < 1(4.18)

for some κ0 ≥ 0, then λmin(�) ≥ κ0 ≥ κ2(μ,J ) and Assumption (A) holds. This
is a “low-dimensional” application of Lasso technique which, however, may be of
use in some practical situations. In particular, if one uses an orthonormal dictio-
nary, then κ0 = 1 for any μ and J . Applying Theorem 2 with μ = 3 and � = 2,
we obtain that

‖fθ̂ − f ‖2
2 ≤ inf

t,J⊆P

[
‖ft − f ‖2

2 + 8σn−1/2
√

2(τ + 1) logp
∑
j∈J c

νj |tj |

+ 18(τ + 1)σ 2n−1 logp
∑
j∈J

ν2
j

]
and

‖fθ̂ − f ‖2
2 ≤ inf

J⊆P

{
‖f − fLJ

‖2
2 + 18(τ + 1)σ 2n−1 logp

∑
j∈J

ν2
j

]
.

The bounds above are simpler than the ones derived in Cohen, Hoffmann and Reiß
(2004) and, in addition, they hold for any p and n.

5. Observational model. Consider a real-life observational model corre-
sponding to equation (1.1)

yi = q(xi) + ξi, i = 1, . . . , n,(5.1)
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where ξi are i.i.d. centered sub-Gaussian random variables such that for some σ

and any t

P
(|ξi | > t

)≤ exp
(−t2/2σ 2).(5.2)

Assume that xi ∈ X , i = 1, . . . , n, are fixed nonrandom points where y(x) in equa-
tion (1.1) is measured. To be more specific, we consider the case when X = [a, b]
is an interval, a = x0 < x1 < · · · < xn = b and H2 = L2[a, b], so that

βj = 〈q,ψj 〉H2 =
∫ b

a
q(x)ψj (x) dx.(5.3)

Denote T = b − a, �xi = xi − xi−1. Observe that, similarly to the white noise
model, estimator θ̂ can be recovered as a solution of optimization problem (4.7)
with the only difference that βj in (5.3) can no longer be estimated by (4.6). In-
stead, we approximate βj in (5.3) using rectangle formula and then replace q(xi)

by yi , i = 1, . . . , n, obtaining new values of νj and β̂j

β̂j = 1

n

n∑
i=1

yiψj (xi)�xi, ν2
j = T 2

n

n∑
i=1

ψ2
j (xi).(5.4)

We search for θ̂ as a solution of optimization problem (4.7) [or (4.9)] with β̂j

and νj given by (5.4). If |�xi | are small and n is large enough, then rectangle
rule approximations of βj , j = 1, . . . , p, have good precisions, so one expects to
estimate f on the basis of discrete data in (5.1) as well as on the basis of the white
noise model (1.1). Theorem 3 below shows that this indeed is true.

THEOREM 3. Let Assumptions (A0) and (A) hold and τ > 0 be an arbitrary
constant. Denote

ℵ = max
1≤j≤p

[
1

νj

max
x∈X

∣∣∣∣d[q(x)ψj (x)]
dx

∣∣∣∣].(5.5)

If for some nonnegative constant ϑ, one has

max
i

|�xi | ≤ ϑ
T

n
and n ≥ N = T 4ℵ2

4K0σ 2(τ + 1) logp
,(5.6)

then, for α0 = 2ϑn−1/2σ
√

2(τ + 1) logp, α = �α0 with � ≥ (μ + 1)/(μ − 1)

and K0 = 8ϑ2, inequalities (4.15) and (4.16) hold with probability at least 1 −
ep−τ .

Note that the estimator fθ̂ is fully adaptive since α0 is known. The lower bound
n ≥ N for n is motivated by the fact that the rectangular rule approximations of
the integrals in (5.3) should be close in value to those integrals. In addition, if
functions ψj and q are smooth, so that functions qψj have uniformly bounded
second derivatives, one can replace the rectangular rule for calculating βj by the
trapezoid rule. In this case, oracle inequalities in Theorem 3 can be obtained with
a smaller value of N .
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6. Lasso recovery of a mixing density from a continuous mixture. In this
section, we show that, with a small modification, the method used in the previous
sections, can be applied to estimation of the mixing density in a continuous mix-
ture. Consider the situation when one observes a random sample Y1, Y2, . . . , Yn of
a random variable Y with an unknown probability density function q(y), y ∈ Y , of
the form

q(y) =
∫
X

g(y | x)f (x) dx, y ∈ Y,(6.1)

where g(y | x) is a known conditional density of Y given X = x, x ∈ X , and f (x),
x ∈ X , is an unknown mixing density of interest. If g(y | x) = g(y −x), then prob-
lem (6.1) reduces to the extensively studied density deconvolution problem [see,
e.g., Meister (2009) and references therein]. In a general set up, problem (6.1) is
usually solved by expanding f over some orthonormal dictionary and then recov-
ering coefficients of the expansion [see, e.g., Comte and Genon-Catalot (2015),
Hengartner (1997) and Walter (1981)], by the kernel method [see, e.g., Goutis
(1997)] or by maximizing the likelihood [see, e.g., Liu, Levine and Zhu (2009)]. It
is easy to see that when the conditional density g(y | x) is known, the problem of
recovering f in (6.1) on the basis of observations from q can be viewed as a par-
ticular case of the linear inverse problem (5.1) with the main difference that one
can sample from the p.d.f. q instead of having noisy observations of the values
of q . Therefore, one can easily estimate any linear functional of q , so that, indeed,
observations are taken in the form (1.2). For this reason, in this set up, one again
can benefit from using a large overcomplete dictionary which allows a compact
representation of f .

Let, as before, {ϕk}pk=1 be a dictionary and function f be expanded over this
dictionary yielding its approximation (4.1). The goal is to recover the vector of
coefficients θ . By introducing Hilbert spaces H1 = L2(X ) and H2 = L2(Y) and a
linear operator Q : H1 → H2 given by

(Qf )(y) =
∫
X

g(y | x)f (x) dx with
(
Q∗u

)
(x) =

∫
Y

g(y | x)u(y) dy,(6.2)

one can essentially reduce the problem (6.1) to (1.1). Indeed, observe that in (4.4)
one has

βj = 〈f,ϕj 〉H1 = 〈q,ψj 〉H2 = E
[
ψj(Y1)

]
.

Hence, once again we search for θ̂ as a solution of optimization problem (4.7)
[or (4.9)] with β̂j and νj given by

β̂j = 1

n

n∑
i=1

ψj(Yi), νj = ‖ψj‖∞.(6.3)

Since β̂j are unbiased estimators of βj , j = 1, . . . , p, with variances bounded
by ν2

j , then, for n large enough, the values of β̂j are uniformly close to βj , j =
1, . . . , p, so that following statement is true.
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THEOREM 4. Let Assumptions (A0) and (A) hold. Let β̂j and νj be defined
in (6.3), τ be any positive constant and α0 = 2n−1/2√(τ + 1) logp. Let α = �α0
with � ≥ (μ + 1)/(μ − 1). If n ≥ N0 = 16/9(τ + 1) logp, then with probability
at least 1 − 2p−τ , inequalities (4.15) and (4.16) hold with K0 = 4.

Note that, despite the fact that the idea of this section seems to be similar to
Bunea et al. (2010), we consider a different problem and apply a completely novel
approach. Indeed, in Bunea et al. (2010), the authors assumed that observations
from the density of interest are available which makes their problem similar to the
regression problem. On the contrary, in our case, observations from the density of
interest are unavailable which leads to the difficulties that are experienced in the
context of the ill-posed linear inverse problems. Really, though expansion (4.1)
leads to q =∑

j θjuj with uj = Qϕj , due to contraction imposed by operator Q,
the system of functions {uj , j ∈ P} does not meet compatibility condition even if
{ϕj , j ∈ P} does. On the other hand, if one starts with an incoherent dictionary
{uj , j ∈ P}, the system of functions vj = Q−1uj may be totally inappropriate for
estimating f .

REMARK 1 (Smaller penalties). Note that ν2
j = ‖ψj‖2∞ in (6.3) can be re-

placed by a smaller value ν2
j = Var[ψj(Y1)] which leads to a smaller overall error,

provided the number of observations n is large enough, in particular,

n ≥ N1 = max
1≤j≤p

[
16(τ + 1) logp‖ψj‖2∞

9 Var[ψj ]
]
.

The latter guarantees that the values of
√

n|β̂j − βj |/νj are uniformly bounded
above with high probability.

Note that, though Var[ψj(Y1)] is unavailable (since f is unknown), one can
easily construct an upper bound for ν2

j

ν2
j ≤ max

x∈X

[∫
Y

g(y | x)ψ2
j (y) dy

]
(6.4)

or estimate Var[ψj(Y1)] from observations.

REMARK 2 (Estimation by a density function). Estimator fθ̂ obtained as a
solution of optimization problem (4.7) with β̂j and νj given by (6.3) is not neces-
sarily a probability density function since we do not require the dictionary func-
tions to be nonnegative and the weights to be such that fθ̂ integrates to one. This,
however, can be easily accomplished in the context of Lasso estimator if one uses
dictionary functions that are p.d.f.s themselves and adds the constraints that the
coefficients are nonnegative and sum to one. Note that since we are using the
weighted Lasso penalty, those constraints do not allow to get rid of the penalty
term altogether though the nonnegativity condition should make compatibility as-
sumption (A) weaker. However, pursuing this extension of the Lasso solution is a
matter of a future investigation.
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7. Approximate inverse images of the dictionary functions. Condition
(A0) requires that each dictionary function ϕj has an exact inverse image ψj such
that Q∗ψj = ϕj and νj = ‖ψj‖2 < ∞. Sometimes this is not true since functions
ψj may not be easy to construct or they may have infinite norms. In this situation,
arguments of Section 3 suggest that exact inverse images ψj can be replaced by
approximate ones ψj,δ .

First, let us consider the setting of Section 4 where observations are taken in the
form (1.2) and H1 and H2 are spaces of square integrable functions. Let functions
ϕj,δ be such that ‖ϕj,δ − ϕj‖2 ≤ δj and ψj,δ be the solutions of the equations
Q∗ψj,δ = ϕj,δ with νj,δ = ‖ψj,δ‖2 < ∞. Then βj can be estimated by β̂j,δ =
〈y,ψj,δ〉, so that

β̂j,δ = βj + σn−1/2νj,δηj + hj,δ, hj,δ = 〈q,ψj,δ − ψj 〉,(7.1)

where ηj are standard normal variables. Hence, application of Lemma 2 with K =√
2, τ > 0,

Chδ = max
1≤j≤p

[ |hj,δ|√n

σνj,δ

√
2(τ + 1) logp

]
,

(7.2)
Cαδ =√

2(τ + 1)(1 + Chδ),

α0 = Cαδσn−1/2√logp and α = �α0 where � ≥ (μ + 1)/(μ − 1), yields with
probability at least 1 − 2p−τ , that (4.12), (4.15) and (4.16) hold [with K0 = 2(1 +
Chδ)

2].
In order to construct functions ϕj,δ and ψj,δ for a given dictionary function ϕj

and a given operator Q, consider operator QQ∗ : H1 → H1 and a parameter δ > 0.
Construct function ψj,δ = (QQ∗ + δI )−1Qϕj where I : H1 → H1 is the identity
operator. Since the relation (7.1) holds for any δ > 0, the value of δ can be chosen
so to minimize the mean squared error of estimating βj by β̂j,δ

E(β̂j,δ − βj )
2 = σ 2n−1ν2

j,δ + h2
j,δ = σ 2n−1ν2

j,δ + [〈q,ψj,δ − ψj 〉]2.(7.3)

Note that the values of νj,δ in (7.3) are completely known. The values of hj,δ

are unknown but can be estimated from observations. Indeed, if observations are
available in the form (1.2) or (5.1), one can construct a kernel or a projection
estimator q̂ of q and then replace q by q̂ in (7.3). In the case of recovery of a
mixing density in a continuous mixture considered in Section 6, the values of hj,δ

in (7.3) are of the forms

hj,δ = E(β̂j,δ) − βj = E
[
ψj,δ(Y ) − ψj(Y )

]
, j = 1, . . . , p,

and can be estimated by their sample averages.
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8. Estimation of the density of the matrix parameter of the Wishart distri-
bution. In this section, we consider an application of the theory above. In order
to show capabilities of the Lasso technique, in Section 8, we study estimation of
the unknown density function of the matrix parameter of the Wishart distribution.
This type of problems is very hard to handle by traditional methods due to the
curse of dimensionality.

Let Y | X ∼ Wishart(m,X), where X,Y ∈ R
r×r are symmetric positive definite

r-dimensional matrices:

g(Y | X) = |Y|(m−r−1)/22−mr/2

|X|m/2�r(m/2)
exp

{
−1

2
Tr
(
X−1Y

)}
,

(8.1)
X,Y > 0,m > 3r,

where �r(a) is the multivariate gamma function [see, e.g., Gupta and Nagar
(2000), Section 1.4]

�r(a) = πr(r−1)/4
r∏

l=1

�

(
2a − l + 1

2

)
.(8.2)

Consider the situation when, given Xi = X, matrix Yi has the Wishart p.d.f.
of the form (8.1), i = 1, . . . , n, and matrices X1, . . . ,Xn are independent with the
common unknown p.d.f. f (X). Here, matrices Y1, . . . ,Yn are available for ob-
servation but X1, . . . ,Xn are not. The objective is to estimate the p.d.f. f (X) of
the unknown matrix parameter X on the basis of observations Y1, . . . ,Yn of Y.
This problem appears, for example, when one has several equal size samples from
the multivariate normal distributions with the different unknown covariance matri-
ces X1, . . . ,Xn that are related by a common p.d.f. f (X). An estimator f̂ (X) of
f (X) can be used, for example, as a prior distribution in the subsequent Bayesian
inference.

It is a well-known fact that, even for moderate values of r , an estimator will
suffer from the curse of dimensionality. In order to circumvent this difficulty, we
estimate f (X) using an overcomplete dictionary. In this example, X = Y are the
spaces of symmetric nonnegative definite matrices in R

r×r and H1 = H2 are the
Hilbert spaces of square integrable functions on X = Y . We choose a dictionary
that consists of a collection of mixtures of inverse Wishart densities since this is
a wide class, so that, the true density f (X) either belongs to this class or is well
approximated by it. In particular, we choose the dictionary functions of the form

ϕj (X) = CAj ,γj
u(X | Aj , γj ), j = 1, . . . , p,

with 2r < γj < m − r , where u(X | A, γ ) is the inverse Wishart density and CA,γ

is the normalizing constant, such that u(X | A, γ ) has the unit L2-norm:

ϕ(X) = ϕ(X | A, γ ) = CA,γ u(X | A, γ ) with
∥∥ϕ(X)

∥∥
2 = 1,

(8.3)

u(X | A, γ ) = 2−(γ−r−1)r/2|A|(γ−r−1)/2

�r((γ − r − 1)/2)|X|γ /2 exp
{
−1

2
Tr
(
X−1A

)}
, X,A > 0.
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By direct calculations (see Section A.3), it is easy to check that

CA,γ = �r

(
γ − r − 1

2

)[
�r

(
2γ − r − 1

2

)]−1/2

2r(γ−r−1)/2|A|(r+1)/4,(8.4)

and that matrix � in (4.8) has components of the forms


i,j = 〈ϕi, ϕj 〉

= �r((γi + γj − r − 1)/2)2r(γi+γj−r−1)/2

[�r((2γi − r − 1)/2)�r(2γj − r − 1/2)]1/2(8.5)

× |Ai |(2γi−r−1)/4|Aj |(2γj−r−1)/4

|Ai + Aj |(γi+γj−r−1)/2 .

Functions ψj(Y) in (6.3) are solutions of equations Q∗ψj = ϕj where operator
Q∗ is defined in (6.2). It is easy to verify (see Section A.3) that functions ψj(Y)

are of the forms

ψj(Y) = ψ(Y | Aj , γj ) = CAj ,γj
v(Y | Aj , γj ), j = 1, . . . , p,(8.6)

where CA,γ is defined in (8.4) and v(Y | A, γ ) is the solution of the equation∫
Y

g(Y | X)v(Y | A, γ ) dY = u(X | A, γ ).(8.7)

Here, g(Y | X) and u(X | A, γ ) are defined by, respectively, formulae (8.1) and
(8.3), and the integral is calculated over the space Y of all (r × r) symmetric non-
negative definite matrices. By straightforward calculus (see Section A.3), derive
that

ψ(Y | A, γ ) = �r(m/2)2γ r/2|A|(2γ−r−1)/4

�r(m − γ /2)
√

�r(2γ − r − 1/2)
(8.8)

× |Y − A|(m−γ−r−1)/2

|Y|(m−r−1)/2 I(Y − A > 0).

Then Theorem 4 yields the following corollary.

COROLLARY 1. Let Assumption (A) hold with the matrix � defined in (8.5)
and

νj = ‖ψAj ,γj
‖∞

= �r(m/2)(m − γj − r − 1)r(m−γj−r−1)/2(2γj )
rγj /2

�r((m − γj )/2)
√

�r((2γj − r − 1)/2)(m − r − 1)r(m−r−1)/2
(8.9)

× |Aj |−(r+1)/4.

Let β̂j be given by (6.3), τ be any positive constant, α0 = 2n−1/2√(τ + 1) logp

and α = �α0 with � ≥ (μ+1)/(μ−1). If n ≥ N0 = 16/9(τ +1) logp, then with
probability at least 1 − 2p−τ , inequalities (4.15) and (4.16) hold with K0 = 4.
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9. Discussion. In the present paper, we consider application of the Lasso tech-
nique to a general linear inverse problem. The approach is based on expanding the
unknown function over an overcomplete dictionary and inverting of each of the
dictionary functions in order to match the resulting expansion to the true func-
tion f . We investigate the white noise formulation of the problem and further ex-
tend the theory to the case of discrete observations with Gaussian or sub-Gaussian
noise. In addition, we explain how this methodology can be used when the inverse
images of the dictionary functions are replaced by their approximate versions. We
also show how the technique suggested in the paper can be extended to the problem
of estimation of a mixing density in a continuous mixture.

Using an example of the Laplace convolution equation, we study performance
of the Lasso-based estimators via simulations and compare their precisions with
the SVD estimators, the wavelet-vaguelette estimators and the estimators based
on the expansion of the unknown function via the Laguerre functions basis. We
show that as long as the function of interest f has an efficient representation in the
overcomplete dictionary, the Lasso estimator yields satisfactory reconstruction.

Although in the paper we assume that the linear operator Q is completely
known, the theory can be extended to the case when operator Q is measured with
error or is estimated from the data. The advantage of the approach of the paper is
that it naturally partitions the problem of solution of a linear inverse problem with
a noisy operator and a right-hand side measured with error into two easier prob-
lems: solution of an inverse linear problem with the noisy operator and completely
known right-hand side, and estimation of the linear functional of the right-hand
side on the basis of its noisy version. However, solution of a general linear ill-
posed problems with a noisy operator lies outside the scope of the present paper
and will be treated in future.

APPENDIX

A.1. Discussion of the compatibility condition. Note that condition (4.14)
is guaranteed by combination of two kinds of assumptions.

The first condition needs to ensure that the dictionary {ϕj , j ∈ P} is incoherent.
The latter can be warranted by one of the following alternative assumptions intro-
duced in Bickel, Ritov and Tsybakov (2009). In what follows, λmin, λmax and 	

refer to matrix �.

(A1(a)) For some s, 1 ≤ s ≤ p/2, some m ≥ s such that s + m ≤ p and some
constant C0 one has

mλmin(s + m) > C2
0sλmax(m),(A.1)

where λmin(s + m) and λmax(m) are restricted eigenvalues defined in (2.1).

(A1(b)) For some s, 1 ≤ s ≤ p/2, and some constant C0 one has

	 <
[
s(2C0 + 1)

]−1
,(A.2)

where 	 is defined in (2.2).
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Under Assumption (A1(a)) or (A1(b)), small modifications of Lemma 4.1 of
Bickel, Ritov and Tsybakov (2009) leads to the following result:

LEMMA 1 [Lemma 4.1 of Bickel, Ritov and Tsybakov (2009)]. Let Assump-
tion (A1(a)) or (A1(b)) be valid with C0 = μCν . Then, for any set J ∈ G(Cν) of
cardinality |J | ≤ s, Assumption (A) holds with κ2(μ,J ) ≥ ϑ(s,m,μ,Cν) where

ϑ(s,m,μ,Cν)

(A.3)

=

⎧⎪⎪⎨⎪⎪⎩
λmin(s + m)

(
1 − μCν

√
sλmax(m)√

mλmin(s + m)

)2

, if (A1(a)) holds,

1 − [
s(2μCν + 1)

]−1
, if (A1(b)) holds.

The second assumption guarantees that the function of interest is not too hard
to estimate. As we have already mentioned, since the “price” of estimating coeffi-
cients varies from one dictionary function to the other, one needs to make sure that
Lasso selects coefficients with relatively low variances and sets to zero the ones
with high variances. This would be useful if the true function f does not have
those components. For this purpose, we consider the set of subsets J ⊂ P such
that

G(Cν) =
{
J ⊆ P : max

j∈J,j ′∈J c

νj

νj ′
≤ Cν

}
.(A.4)

We assume that the true function f is such that its best approximation can be
achieved using J ∈ G(Cν).

(A2) For some μ > 0, Cν > 0 and some H0 > 0, one has

Ĵ = arg min
{
J ⊂ P : ‖f − fLJ

‖2
2 + H0σ

2

ϑ(s,m,μ,Cν)

logp

n

∑
j∈J

ν2
j

}
(A.5)

∈ G(Cν).

Note that Assumption (A2) is natural and is similar to the usual assumptions that
f is smooth and does not have fast oscillating components. In the context of the
ill-posed problems, Assumption (A2) means that f is not “too hard” to estimate.

If Assumption (A2) is valid, then one can replace J ⊂ P by J ∈ G(Cν) in the
inequality (4.16). For J ∈ G(Cν), Assumption (A1(a)) [or (A1(b))] yields conve-
nient lower bound (A.3) on the compatibility factor κ2(μ,J ) in Assumption (A).
Combination of (4.16) and (A.3) ensures that if f allows sparse representation in
the dictionary {ϕj , j ∈ P}, so that set Ĵ in Assumption (A2) has at most s compo-
nents, then Lasso provides an optimal (up to a logarithmic factor) representation
of the function f . In particular, the following Corollary of Theorem 2 is valid.
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COROLLARY 2. Let τ > 0 and α = �α0 where α0 is defined in (4.11). Let
Assumptions (A0), (A1(a)) or (A1(b)) and (A2) hold with some μ > 0 and Cν > 0,
|Ĵ | ≤ s, C0 = μCν and H0 ≥ 8(1 + �)2(τ + 1). If � ≥ (μ + 1)/(μ − 1), then,
with probability at least 1 − 2p−τ , one has

‖fθ̂ − f ‖2
2 ≤ inf

J⊆P

{
‖f − fLJ

‖2 + H0σ
2

ϑ(s,m,μ,Cν)

logp

n

∑
j∈J

ν2
j

}
.(A.6)

Finally, we comment about the choice of m in Assumption (A1(a)). Similarly
to regression set up, this choice depends on how fast the minimal eigenvalues of
the order m sub-matrices of � are decreasing as functions of m [see, e.g., Bickel,
Ritov and Tsybakov (2009)].

A.2. Proofs. Validity of Theorems 1–4 rely on the following Lemma, the
proof of which follows the lines of reasoning in Dalalyan, Hebiri and Lederer
(2014). However, since we are interested in weighted Lasso and allow for non-
centered errors, for completeness, we provide the proof of the lemma below.

LEMMA 2. Let f be the true function and fθ be its projection onto the linear
span of the dictionary LP . Consider solution of the weighted Lasso problem (4.9)
with � = WT W, β = �θ and β̂ = WT γ . Let

β̂ = β + √
εϒη + h, η,h ∈ R

p,(A.7)

where h is a nonrandom vector, Eη = 0 and components ηj of η are sub-Gaussian
random variables satisfying, for some K > 0 and any t ,

P
(|ηi | > t

)≤ 2 exp
(−t2/K2).(A.8)

Choose τ > 0 and denote

Ch = max
1≤j≤p

[ |hj |
νj

√
ε logp

]
, Cα = K

√
τ + 1 + Ch.(A.9)

If α0 = Cα

√
ε logp, then for any τ > 0 and any α ≥ α0, with probability at least

1 − 2p−τ , one has

‖fθ̂ − f ‖2
2 ≤ inf

t

[‖ft − f ‖2
2 + 4α‖ϒt‖1

]
.(A.10)

Moreover, if Assumption (A) holds and α = �α0 where � ≥ (μ + 1)/(μ − 1),
then for any τ > 0 with probability at least 1 − 2p−τ , one has

‖fθ̂ − f ‖2
2 ≤ inf

t,J⊆P

[
‖ft − f ‖2

2 + 4α
∥∥(ϒt)J c

∥∥
1

(A.11)

+ (1 + �)2C2
α

κ2(μ,J )
ε logp

∑
j∈J

ν2
j

]
.
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PROOF. Following Dalalyan, Hebiri and Lederer (2014), by K–K–T condi-
tion, we derive for any t ∈R

p

θ̂
T
(β̂ − �θ̂) = α‖ϒθ̂‖1, tT (β̂ − �θ̂) ≤ α‖ϒt‖1,

so that, subtracting the first line from the second, we obtain

(̂θ − t)T (�θ̂ − β̂) ≤ α
(‖ϒt‖1 − ‖ϒθ̂‖1

)
.(A.12)

Since �θ = β , (A.12) yields

(̂θ − t)T �(̂θ − θ) ≤ √
ε(̂θ − t)T ϒη + (̂θ − t)T h + α

(‖ϒt‖1 − ‖ϒθ̂‖1
)
.

Since for any u,v ∈ R
p one has vT �u = 1

2 [vT �v + uT �u − (v − u)T �(v − u)],
choosing v = θ̂ − t and u = θ̂ − θ and observing that for any t (and, in particular,
for t = θ̂ ), ‖ft −f ‖2

2 = (t− θ)T �(t− θ)+‖fθ −f ‖2
2, for any t ∈ R

p , one obtains

‖fθ̂ − f ‖2
2 + (̂θ − t)T �(̂θ − t)

(A.13)
≤ ‖ft − f ‖2

2 + √
ε(̂θ − t)T ϒη + (̂θ − t)T h + 2α

(‖ϒt‖1 − ‖ϒθ̂‖1
)
.

By setting t = K
√

(τ + 1) logp in (A.8) and using (A.9), observe that, on the set

� =
{
ω : max

1≤j≤p
|ηj | ≤ K

√
(τ + 1) logp

}
with P(�) ≥ 1 − 2p−τ(A.14)

one has |√ε(̂θ − t)T ϒη + (̂θ − t)T h| ≤ √
ε logp(K

√
τ + 1 + Ch)‖ϒ (̂θ − t‖1 =

α0‖ϒ (̂θ − t)‖1. Combining the last inequality with (A.13), obtain that, for any
α > 0, on the set �,

‖fθ̂ − f ‖2 + (̂θ − t)T �(̂θ − t)
(A.15)

≤ ‖ft − f ‖2 + 2α
(‖ϒt‖1 − ‖ϒθ̂‖1

)+ 2α0
∥∥ϒ (̂θ − t)

∥∥
1.

Application of inequality ‖ϒ (̂θ − t)‖t1 ≤ |ϒt‖1 + ‖ϒθ̂‖1 combined with α ≥ α0
completes the proof of inequality (A.10).

In order to prove inequality (A.11), denote d = θ̂ − t and observe that, due to
|tj | − |θ̂j | ≤ |θ̂j − tj | and |θ̂j | ≥ |θ̂j − tj | − |tj |, inequality (A.15) implies that, for
any set J ⊆ P , one obtains

‖fθ̂ − f ‖2
2 + dT �d

≤ ‖ft − f ‖2
2 + 4α

∥∥(ϒt)J c

∥∥
1 + 2(α + α0)

∥∥(ϒd)J
∥∥

1(A.16)

− 2(α − α0)
∥∥(ϒd)J c

∥∥
1.

Now, we consider two possibilities. If (α + α0)‖(ϒd)J ‖1 ≤ (α − α0)‖(ϒd)J c‖1,
then ‖fθ̂ − f ‖2

2 + dT �d ≤ ‖ft − f ‖2
2 + 4α‖(ϒt)J c‖1 and (A.11) is valid. Other-

wise, since α = �α0 with � ≥ (μ + 1)/(μ − 1) implies that μ ≥ (α + α0)/(α −
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α0), one has d ∈ J (μ,J ). Therefore, due to compatibility condition (4.14) and
inequality 2ab ≤ a2 + b2, one derives

2(α + α0)
∥∥(ϒd)J

∥∥
1 ≤ 2(α + α0)

√
Tr
(
ϒ2

J

)
dT �d/κ(μ,J )

≤ dT �d + (α + α0)
2 Tr

(
ϒ2

J

)
/κ2(μ,J ).

Plugging the latter into (A.16) and using α = �α0, obtain that (A.11) holds for
any t. �

PROOF OF THEOREM 1. Let β and β̂ be the vectors with components βj =
〈f,ϕj 〉H1 and β̂j = 〈y,ψj 〉H2 , j = 1, . . . , p. Then, due to (4.5), one has β̂j =
βj + √

ενjηj where ηj are standard normal variables and ε = σ/
√

n. Moreover,
if f is the true function and fθ is its projection onto the span of the dictionary
LP , then, 〈f − fθ ;ϕj 〉 = 0 for j = 1, . . . , p, and β = �θ . Therefore, validity of
Theorem 1 follows from Lemma 2 with K = √

2, h = 0 and Ch = 0 in (A.9). �

PROOF OF THEOREM 2. Validity of (4.15) follows from Lemma 2 with ε =
σ/

√
n, K = √

2, h = 0 and Ch = 0 in (A.9), so that Cα = √
2(τ + 1) and K0 = 2

in (4.15). In order to prove (4.16), choose ft = projLJ
f , then tj = 0 for j ∈ J c.

�

PROOF OF THEOREM 3. Note that vector β̂ has components β̂j = βj + δj1 +
δj2, j = 1, . . . , p, where

δj1 =
n∑

i=1

ξiψj (xi)�xi,

δj2 =
n∑

i=1

q(xi)ψj (xi)�xi −
∫
X

q(x)ψj (x) dx,

are, respectively, the random error component and the bias of β̂j . In order to bound
above the random term, apply Proposition 5.10 of Vershynin (2012) which implies
that, for any vector a and any z > 0, one has

P

(∣∣∣∣∣
n∑

i=1

aiξi

∣∣∣∣∣> z

)
≤ e exp

(
− z2

2σ 2‖a‖2
2

)
.

Choosing aj = ψj(xi)�xi and z = σνj t/
√

n and noting that, by assumption (5.6),
one has ‖a‖2

2 ≤ n−1ν2
j ϑ2, obtain

P

(
|δj1| > σνj t√

n

)
≤ e exp

{
− t2

2ϑ2

}
.
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Also, it is known that the error of the rectangular approximation of an integral
obeys |δj2| ≤ νjℵT 2/(2n). Apply Lemma 2 with ε = σ 2/n, K = ϑ

√
2, hj = δj2

and Ch = T 2ϑℵ/(2σ
√

n logp) and observe that for n ≥ N , one has K
√

τ + 1 ≥
Ch. Then, for Cα = 2ϑ

√
2(τ + 1) and K0 = 8ϑ2, obtain that inequalities (4.15)

and (4.16) hold with probability at least 1 − ep−τ . �

PROOF OF THEOREM 4. To prove the theorem, apply Lemma 2 with h = 0
and ηj = √

n(β̂j − βj )/νj in (A.7). The main difference between the proof of this
theorem and Theorem 2 is that we need to establish existence of set � in (A.14)
directly instead of relying on assumption (A.8). For this purpose, we observe that

ηj = n−1
n∑

i=1

zij with zij =
√

n

νj

ψj (Yi) −
√

n

νj

Eψj(Yi)

with Ezij = 0, Ez2
ij = σ 2

z = nν−2
j Var[ψj(Y1)] ≤ 1 and ‖zij‖∞ = max |zij | <

2
√

n‖ψj‖∞/νj . Applying Bernstein inequality, we obtain

P
(|ηj | > z

)≤ 2 exp
{
−z2

2

(
1 + 2z‖ψj‖∞

3
√

nνj

)−1}
.(A.17)

Choosing z = 2
√

(τ + 1) logp in (A.17) and noting that 2z‖ψj‖∞/(3
√

nνj ) ≤ 1
for n ≥ N0, we obtain (A.14) with K = 2. Application of Lemma 2 completes the
proof. �

PROOF OF COROLLARY 1. In order to prove validity of the corollary, we just
need to verify the expression for νj in (8.9). For simplicity, we drop the index j .
Observe that since A is symmetric and positive definite, there exists a symmetric
square root

√
A = A1/2 and that expression (8.8) can be re-written as

ψ(Y | A, γ ) = �r(m/2)2γ r/2|A|−(r+1)/4

�r((m − γ )/2)
√

�r(2γ − r − 1/2)

× |A−1/2YA−1/2 − I|(m−γ−r−1)/2

|A−1/2YA−1/2|(m−r−1)/2 I(ℵ),

where ℵ = {ω : A−1/2YA−1/2 − I > 0}. Furthermore, note that matrix
A−1/2YA−1/2 is symmetric, so that there exists a diagonal matrix D ∈ R

r×r with
components Dk > 1, k = 1, . . . , r , due to A−1/2YA−1/2 > I, and an orthogonal
matrix U such that A−1/2YA−1/2 = UDUT . Using the fact that |U| = 1, obtain
that

|A−1/2YA−1/2 − I|(m−γ−r−1)/2

|A−1/2YA−1/2|(m−r−1)/2 =
r∏

k=1

[
(Dk − 1)(m−γ−r−1)/2(Dk)

−(m−r−1)/2].
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Maximizing the last expression with respect to Dk > 1 and noting that

max
x>1

[
(x − 1)(m−γ−r−1)/2x−(m−r−1)/2]
= (m − γ − r − 1)m−γ−r−1γ γ (m − r − 1)m−r−1,

obtain (8.9). �

A.3. Calculations for Section 8. First, let us show that CA,γ is given by for-
mula (8.4). For this purpose, note that∫

Y
u(X | Ai , γi)u(X | Aj , γj ) dX

= 2(d−1)d/2�r(γi + γj − r − 1/2)

�r((γi − r − 1)/2)�r(γj − r − 1/2)
F (Ai ,Aj ),

where F(Ai ,Aj ) = |Ai |(γi−r−1)/2Aj |(γj−r−1)/2|Ai + Aj |−(γi+γj−r−1)/2. By set-
ting Ai = Aj = A, γ1 = γ2 = γ and noting that ‖ϕ(X | A, γ )‖2 = 1, we derive
that CA,γ is indeed of the form (8.4). Now, in order to verify expression (8.5), it is
sufficient to note that


i,j = CAi ,γi
CAj ,γj

∫
Y

u(X | Ai , γi)u(X | Aj , γj ) dX.

Next, let us verify expression (8.8). For this purpose, we re-arrange equation (8.7),
arriving at∫

Y

|Y|(m−r−1)/22−mr/2

|X|(m−γ )/2�r(m/2)
v(Y | A, γ ) exp

{−Tr
(
X−1(Y − A)/2

)}
dY

= |A|(γ−r−1)/22−(γ−r−1)r/2
[
�r

(
γ − r − 1

2

)]−1

.

By comparing the integrand with the p.d.f. of the Wishart distribution, we gather
that

v(Y | A, γ ) = �r(m/2)2(r+1)r/2|A|(γ−r−1)/2

�r((m − γ )/2)�r(γ − r − 1/2)
(A.18)

× |Y − A|(m−γ−r−1)/2

|Y|(m−r−1)/2 I(Y − A > 0).

Combination of (8.4) and (A.18) yields (8.8).
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