Annales de I’Institut Henri Poincaré - Probabilités et Statistiques

2018, Vol. 54, No. 1, 466-513 ANNALES

DE LINSTITUT
https://doi.org/10.1214/16-AIHP812 HENRI
© Association des Publications de I’Institut Henri Poincaré, 2018 POINCARE
PROBABILITES

ET STATISTIQUES

www.imstat.org/aihp

Range and critical generations of a random walk
on Galton—Watson trees

Pierre Andreoletti® and Xinxin Chen®

AL aboratoire MAPMO — C.N.R.S. UMR 7349 — Fédération Denis-Poisson, Université d’Orléans, France.
E-mail: pierre.andreoletti@univ-orleans.fr
b Institut Camille Jordan — C.N.R.S. UMR 5208 — Université Claude Bernard Lyon 1, France

Received 14 October 2015; revised 24 October 2016; accepted 28 November 2016

Abstract. In this paper we consider a random walk in random environment on a tree and focus on the boundary case for the
underlying branching potential. We study the range R, of this walk up to time » and obtain its correct asymptotic in probability
which is of order n/logn. This result is a consequence of the asymptotical behavior of the number of visited sites at generations of
order (log n)2, which turn out to be the most visited generations. Our proof which involves a quenched analysis gives a description
of the typical environments responsible for the behavior of R;,.

Résumé. Dans cet article nous considérons une marche aléatoire en milieu aléatoire sur un arbre, en nous concentrant sur le cas
frontiere du potentiel branchant sous-jacent. Nous étudions le nombre de points visités par cette marche avant 'instant n, Ry,
et obtenons son comportement asymptotique en probabilité qui est de I’ordre de n/logn. Ce résultat est une conséquence du
comportement asymptotique du nombre de points visités par la marche au niveau des générations critiques, c’est a dire en (log n)2.
La preuve permet une description des environnements typiques qui conduisent au comportement de R;;.
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1. Introduction

Let us consider a random walk with a random environment given by a branching random walk. This branching random
walk is governed by a point process £ :={A1, Ay, ..., Ay} on the real line, where N is also random in NU {oo}. The
initial ancestor (i.e. the root), denoted by ¢, gives birth to N children with displacements A1, A, ..., Ay they form
the first generation. Then, for any integer n > 1, each individual in the nth generation gives birth independently of all
others to its own children in the (n + 1)th generation. Their displacements are given by independent copies of L.

We thus obtain a genealogical tree, denoted by T, which is a Galton—Watson tree with offspring N. For each vertex
(individual or site) z € T, A(z) denotes its displacement and V (z) its position with respect to the root. If y is the parent
of z, write T =y, also if y is an ancestor of z, write y < z. V can then be written as

V@@= ) AW,
p<y=z

with V(¢) = 0. In particular £ = {V (z), |z| = 1}, with |z| the generation of z.
The branching random walk (V(z),z € T) serves as a random environment £ (also called random potential).
Conditionally on the environment £ = (V (z), z € T), a random walk (X,,, n € N*, X = ¢) starting from the root and
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Fig. 1. Recurrence criteria for (X, n).

taking values on the vertices of T can be defined, with probabilities of transition:

e~V
V() V@)
£ _Je + 5=z
p (Z, M) - e,v(z)

T e

if u is a child of z,

(1.1)

if u is the parent of z.

For convenience, we add a parent 27 to the root and assume that (1.1) holds also for z = ¢ with ps (<¢T, ¢)=1.

Let P be the probability measure of the environment and P*, the probability conditioned on the survival set of
the tree T (which is assumed to be supercritical, see (1.2) below). Let P¢, the quenched probability measure of this
random walk that is P€ () :=P(|E) and P(-) := f PEwW) (-)P(dw) the annealed probability measure. Similarly we also
define P* with respect to P*.

The walk (X, n € N*, Xy = ¢) belongs to the family of biased random walks on a tree first introduced by R. Lyons
([21] and [22]). In our case where the bias is random, the first references go back to R. Lyons and R. Pemantle [23] and
M.V. Menshikov and D. Petritis [25]. These works give a classification of these random walks on a regular tree in term
of recurrence criteria, their results are extended lately for Galton—Watson trees by G. Faraud [12]. This classification
which can be determined from the fluctuations of the log-Laplace transform 1 defined below is resumed in Figure 1.
Assume that there exists 6 > 0, such that Vs € [—1, 1 + 0] then

P(s) = logE<Z esv(Z)> < 400,
[z]=1

where ZI <j=k With k € Ny means sum over all the individuals z of generation k.
In this paper we focus on the boundary case for the environment (in the sense of Biggins—Kyprianou [10]), that is:

E[N]> 1, v(l) = logE[Z e—V@} =0, V(1) = E[ Z V(z)e_v(z)} =0. (1.2)

lz|=1 lz]=1

Notice that the first hypothesis E[N] > 1 implies that we work on a supercritical Galton—Watson tree. In particular
(Xy; n > 0) can not be reduced to the one-dimensional random walk in random environment. Also we need additional
hypothesis given below: there exists 6 > 0 such that

E[Z e—<1+9>V<Z>} +E[Z e9V<Z>] <0, (1.3)

lz|=1 lzl=1
2
E[(Z(1+ |V(u)|)e—V<“>) i|<oo. (1.4)
|z]=1

The hypothesis (1.4) will be required in Lemma 4.3. But the hypothesis (1.3) is more elementary which gives finite
exponential moments.
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It is proved in [12], see also Figure 1, that the random walk X is null recurrent under (1.2). Moreover in this
case X is very slow, indeed Y. Hu and Z. Shi [15] (see also [13] with G. Faraud) proved that the largest generation
visited up to time n, X} := maxy<, | Xx| behaves in (log n)3. In fact it is the slowest null recurrent random walk in
random environment on the tree, the other cases that is when v//(1) < 0 being diffusive or sub-diffusive but without
logarithmic behavior (see [3,12,16]). One of the questions raised by the authors at this time was: is (logn)® the
typical fluctuation of this walk, that is of | X,,| for example? If we now look at the largest generation entirely visited
M, :=max{k > 1:{|z| =k} C {X;;0 <i <n}}, then it is of order logn as shown in P. Andreoletti and P. Debs [5],
and we could also ask here the same question. It turns out that neither of the two is the good answer. A first result in
that direction is obtained in the work of [6]. For any z € T, define

T, = TZ1 =inflm>1:X,,=z} and Tzk ::inf{m > Tzkf1 X = z}, Vk > 2. (1.5)
Then for any generation £ > 1, the number of sites visited at this generation up to time n is given by

Nu(@© =) 11, <.

|z]=¢
We also introduce the same variable stopped at the nth return to the root:

Kn(0) 1= Ny (0).

It is proved in [6] that the typical generations which maximise the number of distinct visited sites are of the order
(log n)2 :

E(K,((logn)?
Jim ]E(I((,,Z((l(()gi)l)Jrz))) =00, V¢#1 and E(K,((logn)?))=<n/logn.! (1.6)

They also notice that only the sites such that the branching potentiel V (-) is high enough (typically larger than
logn) are of importance. That is to say produce the main contribution for E(K, ((logn)?)), conversely the sites with
low potential are mostly visited but there are very few of them (typically of order n/(logn)? compared to n/(logn)).
More recently, in [19], it is proved that (logn)? is actually the right normalisation for the generation of X at the instant
n, this unexpected behavior makes us think to the one dimensional case of Sinai’s walk [27]. However the walk on the
tree has its own particularities, for example, contrarily to the one-dimensional case which remains in the site of low
potential, it can reach height of potential of order (log n)? (see [18]).

Another motivation, as working on the tree, is to understand more precisely the way the walk spread on the tree
so we turn back to the number of distinct visited sites. The main lack in the paper [6] is first that nothing precise is
said on the behavior in probability of N, (neither for K},), and that their annealed results say few things on the typical
behavior of the potentials leading to this critical (logn)*th generation. Our results here bring answers to these points.

We have split our results into two parts, the first subsection below deals with the normalization for the number of
distinct visited sites per critical generation as well as for the total number of distinct visited sites up to time n. The
second subsection is devoted to a quenched results making a link between the range of X and the behavior of the
environment. In a the third subsection we present the key ideas of proofs.

1.1. Annealed results

Our first theorem shows that the behavior in probability of the number of distinct visited sites at critical generations
is of order n/(logn)>.

Theorem 1.1. For any integers € = £(n) such that lim,_, 4« (logLn)z =y > 0, there exists a positive constant L(y) > 0
such that as n — o0,

(logn)3N (0 " My)o?
n 4 E)

where 62 :=E[}_,_; VZ(x)e™" ] € (0, 00) by (1.3).

1.7)

OIn [6] the lower bound obtained is actually a little smaller than n/logn.
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The function A(y) can be written explicitly (see below (1.21)), it is related to the convergence of variables depend-
ing only on the environment. This theorem is the consequence of the behaviors of K, and of the local time at the root.
To be more precise, let us introduce the derivative martingale (D,,, m) given by

D,, := Z V(z)e VO, (1.8)

|z|=m

and denote its almost sure limit by Do, (see [10] for its existence and [11] for its positivity under P*). The behavior
in probability of K, is given by

Theorem 1.2. For any £ = £(n) such that lim,_, 4 (log%)z =y >0,

(logn)?

in P* £ <=
Ky (£) — A(¥)p (¢, ¢ ) Do. (1.9)

If we compare this results with the behavior in mean (see (1.6)), a multiplicative (logn) appears. It comes from the
behavior of the branching potential which typically remains positive in probability (see (2.1)) reducing the number of
possible visited sites.

Also the main difference between N, (£) and K, (£) comes essentially from the normalisation. The additional logn
which appears above for K, (£) comes from the local time of X at the root of the tree, it is indeed proved in [19]:

Proposition 1.3 ([19]).

n

™
4D (b, D)o (1.10)
nlogn

Instead of one critical generation, we now turn to consider the total number of visited sites, in other words, the
range of the random walk:

R, = Z L7, <n)-

zeT

Following (1.6) and Theorem 1.1 we can ask wether or not critical generations contribute mainly to R, ? The answer
is yes: Proposition 1.4 below states that for non-critical generations, the total number of visited sites contributes
to something negligible compared to n/logn, while the range R, is of order n/logn in probability, as stated in
Theorem 1.5.

Proposition 1.4. For any § > 0,

limlimsupIE”|:< Y Lnem+ Y l{TZSn}>28n/logn]:0.

e—>0 p—ooo
|z|<e(logn)? |z|>(logn)?/e

So as the main contribution comes from generations of order (logn)?, we have that with high probability, R, ~
2 e(ogn)2<t<(logn)?/e Nn(£) with & | 0. As a consequence we obtain the following result for the range of X:

Theorem 1.5. We have

I inp* o2
0N p P T 4, (1.11)
n 4

where A := fooo)»(y)dy € (0, 00).
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Remark 1.6. In fact, once again by Proposition 1.3, this theorem follows from the following convergence:
RT" in P* <
—& == ApE($, §)Dwe.

Also, the integrability of X is stated in Lemma A.1 of the Appendix.

These first results give a quantitative description of the number of visited sites and of the generations involved, but
no description of the underlying environment is given. In the following section we discuss what we have learnt about
the typical behavior of the potential that leads to the above behavior of R,,.

1.2. A quenched point of view

Like we said in the first part of the introduction, Andreoletti—-Debs [6] observe that the sites where the potential remains
small (always lower than logn) have a negligible contribution for the number of visited sites. One of the reasons for
this is the fact that the number of such sites is actually negligible on the tree (see their Proposition 1.3). Intuitively
these sites are easily accessible as the potential remains low, but the set of these sites still has a low conductance.

Here we give some more details of the sites that the random walk is inclined to visit, i.e. the sites that contribute
importantly to the range.

For sites y, z € T, recall that y < z means that y belongs to the shortest path from the root ¢ to z. Let V(z) :=
maxg<y<; V(y). Define for any ag > 1,

Al = {z eT: logn < max (V(y) — V(y)) <logn +g(n)},

ap p<y=z

where {g(n),n} is a positive increasing function such that lim,_, 4 (g(n) — loglogn) = +00. Moreover, for any
a; > 0, let

Ay :={z€eT:logn+loglogn < V(z) <ajlogny/loglogn},
and

Az = {zeT:V(z)> max 1/3‘/()’)}-

y=zlyl=lzl =zl

Let us introduce a notation for truncated versions of K,,, R, and their quenched mean: if A is an event depending only
on the environment &, then for any £ > 1,

K=Y L7, <17 Lizea)s R?(g =Y K}m). (1.12)
|z|=¢ m=>0
KA0) :=E° (K (), ,ﬂf‘g = ]ES(RTA(;). (1.13)

Notice that the above means are easily computable (see Section 2), but we are not interested in their expressions
for now. The following result proves tightness of the range up to Tq’f minus the truncated quenched mean of RTJ;:

RMNA2N43 his makes appear favorite environments described by potential V.

Proposition 1.7. For any n > 0, there exists a; > 0 such that

1
lim limsup P* (; ’RT(;; - ﬁAimAznA3’ > 77) =0.

ap—>~+00 ;s 1o T¢

From this result together with the well known fact in [2] about the potential: P(inf,eT V(z) > —a) > 1 —e™¢

are able to draw a typical trajectory of potential that maximises the number of visited sites (see Figure 2).

, We
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ay log ny/ lOg log - i',»f//;}:»:: -]

logn/ag < | <logn+g(n)

logn +loglogn

S ‘ =
|z = ¢ ~ y(logn)>

Fig. 2. Typical accessible environments within time 7.

1.3. Sketch of proofs and organization of the paper

As we have already seen, Theorem 1.1, comes from Proposition 1.3 together with Remark 1.6, so only the remark as
to be proved. Also thanks to Proposition 1.4 (which is a consequence of Lemma 2.4 for which the proof is postponed
in Section 4.2.4) together with Proposition 1.3, only the critical generations of order (logn)? have to be considered.
For that we first study individually each of these generations which is the purpose of Theorem 1.2:

Skech of proof of Theorem 1.2

The first step for the study of K, (£) for £ ~ y(logn)? is to compare it with its quenched expectation K, (£) :=
E€[K,(£)]. The main idea here is simple: we would like to apply Tchebychev’s inequality to the quenched prob-
ability P (1K, (8) — K,y (0)] = ek (€)). Unfortunately this gives nothing usable if we do it directly. Indeed it turns
out that the quenched variance V€ (K, (£)) which appears when applying this inequality can not be controlled prop-
erly with respect to measure P*. In order to overcome this, we add restrictions to the environment. The first one
comes from the reflecting barrier introduced by [19]: let § > 0, introduce Ls :={z € T : maxy<y<;, (V(y) -V <
logn — (1 4+ 8)loglogn}. In other words, we consider the restriction of K, to the sites of Ls, that is to say
KLy = D= L7, <12y LizeLs) and its quenched mean

K@) =Y PE(T < T))Lizeryy = D (1= (1 —a:)")1jzeL,).  Where
lzl=t lzl=¢

£ <
P9, ¢)
Z¢<y§zev(y)7

obtained by the strong Markov property, also the last equality in (1.14) comes from Lemma C.1 in [6]. Then, following
the ideas of [6], we add a second restriction by defining the set U :={z € T : V(z) > logn +loglogn}. This restriction,

which comes from the fact that only sites with a high level of potential count, contributes to a simplification of the

expression of the quenched mean defined above: for any z € U, a; < e V@ < @, thus

az :=P5(T. < Typ) = p° (¢ 2)PE (T2 < Ty) = (1.14)

1
0<na,—[1-(1 —az)"]fnzagfl—naz, (1.15)
ogn
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so in particular 1 — (1 — a;)" = (1 4 0,(1))na;, and for any event D C {z € T : V(z) > logn + loglogn} depending
only on the environment

KPe) = Eg[z 1{TZ<T£}1{&D}} ~n Y algep) = KP ). (1.16)
|z|=¢ |z|=¢

We prove rigorously, in Section 2.1, that the cost of these restrictions Ls N U is negligible for the number of distinct

visited sites before n return to the origin (see Lemmata 2.1 and 2.2). So we are left to study the restriction K ,EJ NLs ).

For that we apply Tchebychev’s inequality (see Section 2.2) and, thanks to the restriction, the expectation with respect
to measure P* of the quenched variance (Section 4.1) Ve (K,smL‘S (¢)) is well controlled. Finally we obtain that in

probability K,,(£) can be approximated for large n by IEf,j L3 (p):
V@

P ~ <~ _
Kn(0) ~ KV (0) = 3" nazlier,nmy =npt(¢, ¢) x Y e V(Z)mﬂ{zEUﬁLa}' (1.17)
|z|=¢ lz|=¢ <y=<z

The second step is to obtain the convergence of (log n)2l%,llj NLs (€)/n to some non trivial limit under P*. For that we
introduce the following martingale-like variable, for any m > 1 and a, b > 0,

Wi (Fap) = Z e VOF, 4(z), where
lz|l=m
V(z)
Farl@) = MW1{V(Z)Zb}1{max¢<ysz(V(y)*V(y))Sa}' (1.18)

With this notation I%,l,] NLs () can be re-write,

b G
= np= (¢, ¢)
IC,I,JOL5 ) = «/Z WZ(Flogn—(l+8)loglogn,logn—i-loglogn)- (1.19)

Notice that if F, (z) =1 for any of its arguments, then W,,(F, ;) is exactly the well-known additive martingale
Wi = ZI Zl=m e~V Aidékon and Shi [4] showed that \/mW,, converge in P*-probability to the positive martingale
Doy =: lim,;, s o ZI ZJ=m V(z)e‘V(Z). More recently Madaule [24] proved that if one chooses one site z at the mth gen-
eration, according to the measure e~V /W,,, the corresponding rescaled trajectory (V) L{jy=lmi),y<z}/vMo<i<1
is asymptotically a Brownian meander.

Unfortunately in our case Fy,, 5, (z) is not simply a functional of this rescaled trajectory, so their results cannot be
applied directly. However, our proof of Proposition 1.8 below (see Section 3.2) is mainly inspired by their arguments.

. . V@
We are going to take a = O (4/m), and the factor /m is used to “balance” Wﬂv@zb.

Proposition 1.8. If (a,,; m > 0) and (b,,; m > 0) are positive sequences such that lim,,_, « “—J;% =ace Rj_ and
limy,; s o b—ﬁ =b e Ry, then as m — oo, there exists Cq,pp € (0, 00) such that
o P
V1 Won (Fay ) = Ca,p Do, (1.20)

see (1.8) for definition of Doo. Cq4.p, which definition is given in Section 3.2, is continuous, increasing in a and
decreasing in b, and we state that Cp , = 0.

With this result we obtain the convergence of the quenched random variable /E,ﬁ’ NLs (€): for £ ~ y (logn)? and any
6 > 0, by (1.19) and (1.20), as n — oo,

KYOF 0y i pr

£ = — Gy—l/Z,V—l/ZDoo. (1.21)
npc(p. ¢)
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Then (1.17) and (1.21) yield Theorem 1.2, with A(y) := y‘ley_| /2,,-1/2. More details about the properties of A are
given in Lemma A.1.

Final ideas for the proof of Remark 1.6
As C,,p is continuous and monotone on (a, b) € Ri and that W, (F), Jmb ﬁ) is also monotone on (a, b) € Ri. It

follows that (1.20) holds uniformly for Wy, (F,, sz p, /m) in (a, b) € Ri in the following sense: for any ¢ > 0,

lim P*( Sup | W (Fy i o) — ea,,,Doo|zg)=o. (1.22)

m—00 a>0,b>0

This induces the following corollary which proof can be found Section 3.3.

Corollary 1.9.

Wi (F 00 d
Z ( ”) ADeo,  in P*-probability with A = / e, 2 (1.23)
0 VrTyx X

ﬁaoo

This corollary still holds if we replace Fg g by Fg+o(ogp),s in the sum. This result brings out Remark 1.6 and
therefore Theorem 1.5. In fact, the range RT(; can be approximated by its quenched expectation, which is close to

Z(sz;l E}(q/mLa (€). By (1.19), the latter is np5 (9, ?) Zz’il %. The detailed arguments will be given below in
Section 2.2.

Remark 1.10. (1.22) suggests that uniformity may also occur in probability for K, (¢), meaning that the “for any £”
in Theorem 1.1 could actually be placed inside the probability. Unfortunately, this uniformity can not be obtained by
the way of our proofs and we believe in fact that this is not true and that the right normalisation for max; N, (£) could
be different from n/(logn)>.

The rest of the paper is organized as follows:

In Section 2 we use results of Sections 3 and 4 to give the main steps of the proofs of theorems and propositions
stated in Section 1.1. In Section 3 we focus on the environment and show Proposition 1.8 and Corollary 1.9. This
section is independent of the other sections and uses only the Appendix. In Section 4 we compute the annealed mean
of K, and give an upper bound for the mean of the quenched variance. Also we prove lemmata used in Section 2 and
finish with the proof of Proposition 1.7. In the Appendix we collect and prove many estimations for centered random
walk with i.i.d increments.

In this paper, we use ¢ or ¢’ for constants which may change from line to line. We write c(x) when that constant
depends on some parameter x.

2. Proofs of the theorems

This section is devoted to proving Theorems 1.2 and 1.5, i.e. the convergence in probability of K,,(£). Theorem 1.1 fol-
lows immediately from Theorem 1.2 and Proposition 1.3, so we feel free to omit its proof. Recall that for convenience,
we fixe some y € (0, o) and always write £ for the integer sequence {£(n); n > 1} such that

lim £(n)/(logn)* =y.
n——400

Our arguments are based on the study of truncated versions of K. This decomposition of K, appears naturally
when computing the mean of K, as well as the mean of its quenched variance. We therefore start with this decompo-
sition.
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2.1. Quenched expectation and truncated versions of K, (£)

For any measurable event C obtained from the environment, the number of visited sites at generation £ up to the nth
return to ¢ can be written as

Ka@© =K (O +K (O =) Lrompliec) + ) Lz<rp)lizece).
|z|=¢ |z|=¢

To exclude the sites in C that make few contribution to K,,, we add restrictions for the potentials on the above sum.
First (see [2]) for any ¢ > 0, we can choose « > 0 such that

P(inf V) < —a) <e % <e. (2.1)
ueT

Let V(z) :=ming.y<; V(y), it is then natural to consider the set
B :={zeT:V(z) > —a}.

Secondly, in [19], a reflecting barrier is introduced by

L, = {z eT: Z eVW=V@ S ) max VW=V < r} with r > 0.

<y<z
Pp<u<z ¢<y d<u<y

This reflecting barrier allows to reduce the number of interesting sites for the walk in the following sense: let f be a
positive increasing function such that lim,,_, y o f(n) = 400, then

lim P(3k < T}, X € cw) = 0. 2.2)
ogn

n——+00

The above result is a direct consequence of Theorem 2.8 (in [19]) together with Proposition 1.3. Following this idea,
we introduce the following sets

B, = {ZGT: max eV(“)_V(y)fn}z: {zeT:z<L,},

<
¢<y_z¢<ufy

then according to (2.2)

lim P(Vk <Tj,X;€By)=1.

n——+00

Also, for any 8 > 0 let s, :=n(logn)~'~% and

BY:=1zeT: max VW=V <o b (- eT:i7 <L ).
? { p<y=z Z =iy =1z o}

~¢p<u<y
We will see that for our specific problem, we can restrict the set B, to Bg for well chosen §. For convenience,
denote B := By N By and B® := B; N Bg. Because of (2.1) and (2.2), one sees that with high probability, K, (£) ~
K,f(ﬁ) = Z|z|=e ]l{TZ<T£}]1{Z53}. Moreover, if z € BS, we have z € L (recall the definition of Lg just above (1.14)),
and conversely, if z € Ls4» and |z| = ¢, then z € Bg.
Also we add the last restriction over the values of V: U = {z € T : V(z) > logn + loglogn}. The following lemma
shows that the cost of this restriction is negligible.

Lemma 2.1.

B\U _ BNU _ n
E[K, " (©)] =o(E[K, (e)])_o<—(]ogn)2>. (2.3)
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Our arguments will show indeed that E[K 2"V (¢)] = ®((10é—1n)2)’ so that the sites in B N U mainly contribute. We
postpone the proof of this lemma to Section 4.2.

Here is our strategy to obtain Theorem 1.1. We first show that for suitable § > 0, with high probability, K, (£) &
KBOU(g) ~ KB’V (¢), while the last quantity can be approached by its quenched mean by bounding its quenched
variance. This observation combined with the fact that the quenched mean Kf nu (€) converges in probability because
of Proposition 1.8, imply our theorem.

We stress on the fact that replacement of B by B? helps to correctly bound the quenched variance, it appears that
the price of this replacement is negligible, as shown in the following lemma:

Lemma 2.2. For any § > 0, we have

E[KB () — KBV (0)] = o —— ). 24
(K2 @ = K7 O] =o( g (2.4)
The next step is to approach K ,famU (£) by its quenched mean IC,?EOU (£), or more conveniently by EE%U @) =

Z|z|=l na;1cpsnyy- Notice indeed that, in view of (1.15), we have
~pé s 1 ~ps
0< KB ey — kB () < @Kf Up). (2.5)

Proposition 2.3. Forany n > 0 and § > 3,

n——+00

lim P(|KEY @) - KBV ()| = n—— ) =0. (2.6)
" " (logn)?

The proof of this proposition can be found in Section 4.2, now with these restrictions introduced, we are ready to
prove the theorems.

2.2. Convergence of K,,(£) and R,: Proofs of Theorems 1.2 and 1.5

We are now ready to prove Theorem 1.2: it suffices to show that for any 1 > 0,

2
lim n»(‘ “‘)i”) Ka(0) — 201 pS (@, 3)Doc

n—-+00

> n) —0. 2.7)

Proof of (2.7). Let p, :=P(] MK,, ) — )L(y)p5 (o, ?)D(XJ > 1n). We first add the restrictions B; and B; (recall-
ing that B = B| N By). For that let us introduce the events By := {inf,cT V(1) > —a}, B> := {ﬂiTil{Xi < L.}
and for any x > 0 and random variable H, B3(H, x) := {I(loi—")zH — A(y)p5(¢>, ?)DOOI > x}. We have p, <
P(B)) +P(By) +P(B3(K B (), n)). That is to say using (2.2), limsup,,_, . p» < P(B1) + limsup, P(B3(K B (¢), n)).
For the second term on the right hand side of the previous inequality, we involve the restrictions Bg and U, it then fol-
lows from (2.3) and (2.4) that lim sup,,_, ., p, < P(B}) +limsup, P(; (KfamU (£),1/2). Then by Proposition 2.3, we
can use Ef%y (€) to approach K,?SQU (£) and obtain that limsup,,_, ., Pn < P(B)) + lim sup,, P(33 (sz%U @), n/4)).

_ ~ RS
By releasing the restriction Bj, one gets that limsup,_, ., p» < 2P(31) + limsup, P(33 (IC,?ZmU (£), n/4). Recall that

~ B ~
by definition (see above (1.14), and below (2.2)) Lsi» C Bg C Ls so clearly ,f“zm] ) < fan () < KLU p).

So by (1.21) limsup,,_, o, Pn < 2P(B)). Letting « 1 0o, we deduce (2.7) from (2.1). O

It remains to show the convergence of the range R,,, that is Theorem 1.5. As mentioned in Remark 1.6, by Propo-
sition 1.3, we only need to prove that
R n

—2 25 ApE 9, 9D, 238)



476 P. Andreoletti and X. Chen

with RT(;: =Y o Kn(m). First, we claim that only the critical generations really count in this sum, and that the
truncated version of (K, (m), m) make the main contribution:

Lemma 2.4. We have
Efghnnlsolip;{E[ > K| (m)] —|—IE|: > K (m)“ =0, (2.9)
m<e(logn)? m>(logn)?/e

and for any & > 0,

| (logn)? /e (logn)?/e s
. B\U (BNU)\(B°NU) _
Jim -~ {E[ > K, (m)] + E[ Y K, (m)i| } =0. (2.10)
m=e(logn)? m=e(logn)?

The proof of this lemma is postponed in Section 4.2.4. Notice here that Proposition 1.4 follows from (2.9) and
Proposition 1.3. As non-critical generations are negligible, we can borrow the previous arguments for K, (£) to show
the convergence for RT(;.

Proof of Theorem 1.5 (i.e. (2.8)). For any n > 0, let us consider ]P’(|RT(;; — Apg (o, g)Doo’” > nn). Considering
restrictions By and B, one sees that for any « > 0,
> nn).

> " KE(m) — ApE (. §)Docn

m=0

P(|Rpy — Ap (@, §)Doon| = n) <P(By) +P(Ba) +P<

By (2.1) and (2.2),

limsup]P’(‘RTg — ApE (o, ?)Doorﬂ > nn)

n—oo

> KE(m) — ApE (. §)Doon

n—00
m=0

<e *+41lim supP(

> nn). 2.11)

For the K, (m), we only need to consider the generations m of order (logn)?. For any & > 0, define for any x > 0 and
2
random variables (H (m), m > 0), B4(H, x) := {| Z(log") /¢ H(m) — ApE (8, g)Doon| > xn}, we have

m=¢(logn)?
P(

where the first probability on the right hand side is negligible because of (2.9). For the second probability, we consider
only the sites z € B N U and obtain that

> KEm) = Ap (@, @) Doon

m=1

> nn> <p( > Klm= nn/2> +P(By(K, . n/2)),
m=(logn)*/e,
or mfes(logn)2

(logn)z/e n (logn)z/s s n
B\U BNU)\(B°NU
P(B4(Kf(m),n/2))§IP’< > kN an>+ﬂ"( Yo g PONEND zng>
m=e(logn)? m=e(logn)?

+P(Bs(KE"Y, n/6)).

In view of (2.10) together with (2.9), we obtain that

3" kEm) - Apf (@, &) Doon

m=0

limsupP (

n—oo

> nn) <0,(1) +lim sup[P(&;(KfaﬂU, n/6)). (2.12)

n—oo
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It remains to bound the second term on the right hand side. Recall that the quenched expectation of KfsmU(m)
2

is denoted ]Cfs"‘U(m), introducing the variable A,(H,G) := Zf:):g:(iog)z |H(m) — G(m)| for any sequences

(H(m), G(m), m > 0), we can write

P(By(KE OV, /6)) <P(An(KE MY, KEVY > yn/12) + P(By (K2 n/12)). 2.13)
First, by Markov inequality,

P (KK ) 2 0n/12) < 144(0%n%) T E] (A (KO KT OY))],
which by Cauchy—Schwartz inequality is bounded by

144 (10gn)2/8 (10gn)2/£ )

=1 2 b2 BV em)).
n-n

m=e(logn)? m=e(logn)?

Applying Lemma 4.3 with § > 5 to this term implies that

limsup]P’(A,, (KE'NU (B V) > ””) —0. (2.14)

n—>oo - E
Second, by replacing K3""W by KBV (recall the definition of K in (1.16)), one sees that

P(Bs (KB 0/12)) < P(A, (KE'V (), KE'OU) > nnj24) + P(Ba(RE'"Y  n/24))

IA

P( (1ogi)2/s LﬁB‘SﬂU(m) - ﬂ) +P(B (IEB‘SHU /24))
oy logn " — 24 AR ’
= RH +P(B4(RE'™V 5/24)).
where the last inequality follows from (2.5). Plugging this inequality and (2.14) into (2.13) yields
P(Ba(KE'" (m), n/6)) < 0a(1) + RH; +P(B4(KE'V n/24)).
Now, observe that

RH; <P(B4(KE"Y, 3/24)) + P(ApE (@, @) Doon > nn(logn — 1)/24),

where the second probability on the right hand side vanishes as n — 0o because (9, (E)Doo is finite P-a.s. So
moving back to (2.12), we deduce that

o0
lim sup]P( > KEm) — ApE (o, ®)Doont| > nn) < 0. (1) +2P(B4(RE'Y 1 /24)). (2.15)
n—oo m=1
So in view of (2.11) and (2.15), we have
limsupP(|Rry — Ap® (9. ) Doon| = nn) < ™ + 0.(1) + 2P(By(RE'V  n/24)). (2.16)
n—oo
We claim here that
lim sup lim sup 2P(B4 (K27, n/24)) < e, 2.17)

£l0 n— 00
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which, together with (2.16) concludes the convergence in probability of RTn /n by lettlng o —ooand ¢ = 0. It

remains to show (2.17). We observe that on {1nfu€11~ Vu) > —al, ICB U (m ) B n (m) for any m > 0, hence

P(B4(IC£3 U /24)) < P(By) + P(Ba(Ky B3 , 17/48)) where the first term on the right hand side is bounded by e .
So again by Lemma 2.4, we have

P(Ba(KE"Y (m). 1/24)) < €™ + 000 (1) + P(

SR )~ ApE (. ) Doen
m=1

> 77n/96>.

Recall that Lsyp C Bg C Ls, by (1.19), we have

~BSNU
Wm(Flogn—(3+8)loglogn,logn+10glogn) < ’C : ( ) Wm(Flogn—(1+6)loglogiz,logn+log10gn) (2.18)
Vm e @, ) Vm
Finally, (2.17) follows immediately from Corollary 1.9. (]

3. Convergence of martingale-like variables (W, (Fy, p, ), m = 1)

This section is devoted to proving Proposition 1.8 and Corollary 1.9 which only concern the environment. The main
idea is borrowed from [4], on the Seneta—Heyde norm of the additive martingale W,, in the boundary case (1.2). To
do so, we need to introduce a change of measure and the corresponding spinal decomposition.

3.1. Lyons’ change of measures and spinal decomposition
We begin with the following Biggins—Kyprianou [9] identity usually called Many-to-one lemma:

Lemma 3.1. In the boundary case (1.2), there exists a sequence of i.i.d. real-valued random variables (S; —
Si—1,1 > 0) with So = 0 such that for any n > 1 and any Borel function g : R" — R,

E[Z g(V(x,-),l§i§m)]=E[eS”g(Si;1§i§n)]. 3.1)

|x|=n

It immediately follows from (1.2) and (1.3) that the sequence (S,,n > 0) is a centered random walk of finite
variance o2 := E[Y - V (z)%>e~"@]. For notational simplicity, let

S, = min §;, S, ;= max §;.
1<i<n 1<i<n

Also let R(-) be the renewal function associated with the strict descending ladder heights of (S;, ), it can be expressed
as
o0
Ru) = ZP(Sk <Si 1Sk =—u), Yu=0. (3.2)
k=0

Obviously, R(u) > R(0) = 1. The renewal theorem implies the existence of ¢ € (0, +00) such that

. Ru)
cp:= lim .

u——+00 u

(3.3)

Moreover, there exist two constants 0 < C_ < C4 < oo such that for any u > 0,

C_(14u)<R@u) <Cy(1+u). 34
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For o > 0, define the truncated variables adapted to {F,, := 0 ((z, V(2)); |z] < n); n > 0}, the natural filtration of
the branching random walk, for any n > 0:

Wi (Fap) =Y e " OFy b, @OLyez—a), D= Rl@+V@)e " lyes—a)

|z]=n |z|=n

See (1.18) for the definition of F,, ;, (z). For any a € R, let P, be the probability measure such that P,({V (z),z €
T}e:)=P{a+ V(z),z€T}e-). Fora > —o«, we introduce the change of measure as follows:

DY

@] .
Qa Fn " R(a+a)e

(3.5)

a

Fn

The fact that D,(fl) is a non-negative martingale which converges a.s. to some limit Dé‘é) has been proved by Biggins
and Kyprianou [10, Th. 5.1]. So QE,“) is well define. Following their ideas, we present a spinal decomposition of the
branching random walk under Qéa):
any n >0,

we start with one individual wq (i.e., the root ¢), located at V (wg) = a. Then for

1. in the nth generation, each individual u except w,, gives birth independently of all others to its children of the
(n + 1)th generation whose positions constitute a point process distributed as (V (z), |z| = 1) under Py ,;

2. w, produces, independently, its children in the (n 4 1)th generation, whose positions are given by a point process
distributed as (V (2), |z| = 1) under Q{? .

3. Among the children of w,,, w,+ is chosen to be z with probability proportional to R (c« + V(z))e‘v(z)ﬂ{z(z)z_a}.

In this description, the infinite ray (w,, n > 0) is called the spine under Q((f[). For simplicity, we write Q@ for Q(()a).
The following fact makes explicit the distribution of w, and (V (wy), 1 <k < n) under Q®.

Fact 3.2 ([10]). Assume (1.2). Let o >0, foranyn > 1 and |z| = n,

R+ V(@)e DLy ()>—a)

QW (w, =z|Fy) =
n n D}gla)

. (3.6)

The spine process (V(wy), m > 0) under QY s distributed as the random walk (S,, n > 0) under P conditioned to
stay above —a. In other words, for any n > 1 and any measurable function g : R* — R,

1
Eqw [g(V(wi). 1 <k <n)]= WE[g(Sk, 1<k <n)R(+S,);8,>—al (3.7)

3.2. Convergence in probability of W,ﬁ"‘)(F)/D,S"’ under Q@

In this section we prove that if a, = a\/n + o(s/n) and b, = b./n + o(y/n) for some a, b > 0, then there exists some
constant C, 5 € (0, 0o) such that under Q("‘),

W (Fyy )
Dy

Jn — C,p, in probability. (3.8)

This convergence also holds for » = 0. When a =0, C,  is trivially zero by first moment estimation.

It is known that lim,,_, oo minj;—, V (z) = oo, P-a.s. (See for instance [17, (1.6)].) As a consequence of (3.3),
ng) =c¢gDeo on {inf,c7 V(z) > —a}. Asitis shownin [10, Th 5.1] and [11], D,(la) converges P-a.s and in L'to ng)
which is positive under P*. So Q@ is absolutely continuous with respect to P. We thus deduce Proposition 1.8 from
(3.8) with G, ., = ¢oC, p (one can refer to [4, Section 5] for more details).
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()
The proof of (3.8) is based on the computations of the first and second moments of %. By (3.6), for any
measurable function F : R" — R of the trajectory of V thatisthat F(z) = F(V(y); ¢ <y % z), we have

. [ F(wy)
Q| Ria + V(wp))

e VOF@QLyv@z—a) W
n]= @DLy@z—a) Wy (F) (3.9)

Dy oY

|z|=n

In particular, D(O’) W(a)(R ) with Ry (z) := R(a + V(z)). Taking expectation under Q@ then applying (3.7)
yields that

E[F(S;1<k=<n); S, >—al. (3.10)

WA (F) F(wy) 1
] - EQ(‘”[ } =R

Eo@ [7
Q D Ria+ V(wy))
Recall that for |z| = n (see (1.18))

V@
Fa.b,(2) = /n S poe 270 MV @2by) Hmaxg < (Vo) V) <an)*
<y<z

V@

Z¢<}<

In order to deal with the factor v We have to add some restrictions to the sites. Observe that if V (z) < V (2),
then

eV (@

V()-V(2)
—_ - =<e < 1.
Z¢<y<z e V(y) —

So it is reasonable to count only the sites |z| = n such that V (z) &~ V(z). And this choice gives an extra factor ﬁ

That is why we multiply /» in the definition of F, p, (). Let us introduce the following notations. For any |z| = n
and 0 <m <n, let z,, be the ancestor of z in the mth generation and define

Y, = inf{k :Vi(zx) = V(z) = max V(zm)], V(pnny) = min V(zg).
0<m=<n m<k<n

Similarly, we also define Y5 = inf{k : Sy = S(k) := maxo<m<n Sm} and Q[m’n] ‘= miny, <<, Sk for one-dimensional
random walk (Sk, k). Instead of Fj, p, (), it is more convenient to consider

V(z)

e

G():= \/ﬁ V( ):U‘{V(z)zbn,maxvg(V(y)—V(y))fan}:U‘{Tz>”0}]]'{K(Z[Tz.nj)2hn/2}’ (3.11)
Z¢<Y§ze Y ’

with ng := [n —n'/3].

Moreover, following [4], let us introduce the events EZ for |z| =n as follows. Let Q(y) :={u e T:u #y, W= ()7}

be the collection of brothers of y. If (k,, n) is a positive sequence such that k,, = o(n'/?) and (log n)°® = o(ky), let

E% :=EZ OEZZDE,M,
where

n
1/3 1/6
E ={k" <V, <k} 0 (V@) =k}
i=ky,
n
Ei = m { Z [1 + (V(y) _ V(Zi))+]e_[v(y)_V(Zi)] < eV(Zi)/z}; (3.12)

i=kp " y€Q(zit1)

E, 3= [ X2 2 RletvVw)e " Mywsz-o < iz}

n
i=kp yEQ(zi+1) lul=n,uzy
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with x4 :=max(x, 0). In particular, for w,, write E, (resp. Ey ;) instead of E," (resp. E,"). Let H(z) := G(2)1:.
Vw).

ﬁ bl
Brownian meander. At the same time, we take (log n)® = o(k,) to make sure that the probability in (3.30) is 0, (1).
Moreover, it is proved in Lemma 4.7 of [4] that for (k,, n) chosen as stated above,

Here we choose k, = o(n'/?) so that E,.1 happens with high probability and ( k, <i <n) is still asymptotically

lim QW (E,) =1,
n—0o0

3.13
lim  inf Q@ (E,|V(wy,)=u)=1. (-13)
"0 uelky k)

W (F)

One will see later that involving E, helps us to control the second moment of —“—— without influencing its first

moment. Let us now state the main lemma of this section.

Lemma 3.3. Let o > 0, we have

() (@)
WX (H W, (F,
lim v/nEqg [”T())] =lim/nEgw [%} =Cyup, (3.14)
n Dn n Dn
(@) 2
. W, (H) 2
ll?EQ(a)[(ﬁw) ] :Ca,b' (315)

(@)
This lemma shows immediately that under Q®), \/ﬁ% converges in probability towards C,; while

(@) _
\/ﬁ Wn (Fa,go;l))n H)
Dy
Moreover, by the change of measures (3.5), this means that

= 0, (1) in probability. We hence conclude the convergence (3.8).

VIE[W (F,, )] = CapR(@). (3.16)

Before starting the proof of Lemma 3.3, let us state a useful result on the random walk {Sy; k > 0} and the definition
of constants Cy, 5, C4 p and A(-).
It is proved in [1] that the following joint convergence in law holds

Sint) ) S
—,t€[0,1]); ) e
:(ngn ;

where (i, ¢ € [0, 1]) is a Brownian meander independent of H, € [1, 00). In fact, in the sense of [7], the associated
random walk conditioned to stay positive, denoted (¢,,n > 0), is a Markov chain with probabilities of transition

p(x,dy) = %R{PO}PX (S1 € dy), with P(¢p = 0) = 1. Consequently H o, can be defined as

o
Hoo := Z e b,
=0

Also we denote

§n>0}:>{(mt,te[0, 1), Hoo ), (3.17)

¢ == lim /nP(S, > 0), ¢ == lim /nP(S, > 0), (3.18)
n—o00 n—o0

where the existence and positivity of ci” and c;' have been proved in [14, Th. 1 in XIL.7 & Th. 1 in XVIIL.5]. We
also introduce two functions which appears in the definition of A(-). The first one involves the discrete random walk

(S8j,j).Forany j >1and x > 1, define

G g 5. ith G, ! 3.19
i(x):= ;S <0f, t = .

]()C) |:x+21§i§j eSi J i| w1 O(X) X ( )
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The second function depends on Brownian meander (s, 0 < s < 1). Let fify := sup, <, ; and #; 1} := infy<, <1 m;
for any s € [0, 1]. Take a > 0 and b > O, for any (x, k) € Ri, let

\Il“'b(x’ h) = ch(aml > (x/Eb —x)Vh,o@m —m) < (\/Ea —h)4 Ax, Omaxla(ms — M p) < \/Ea).
<s< ’
Finally, let

Copi= 2cfc;rE(\lJa’b(am1 Lo @y —m)); max. o i —m,) < «/Ea), and (3.20)

)
0<s<

+o0
Cab:=Cap Y _E[G;(Hx)]. 3.21)
Jj=0

Ca.p is well defined positive and finite [see Lemma A.1 and its proof in Appendix A.1], also we set Cp = 0. Note
also that G;(x) < G, := E[e5i 1?,50] for any j > 1 and x > 1 so C, ; is finite [see (A.13)]. This implies that for any
y >0, '

@y—l/Z’y—l/Z_ Cy—l/z’y—l/Z
_CO

Ay) = € (0, 00).

The integrability of A is stated in Lemma A.1 of the Appendix, so A in Theorem 1.5 is well defined, i.e.
+o0
A =f A(x)dx € (0, 00). (3.22)
0

3.2.1. First moment estimate: Proof of (3.14)
Let us turn to the proof of Lemma 3.3. First of all, note that 0 < H < G < F,, ,,. (3.14) follows from the following
lemma.

Lemma 3.4. Iflim, o0 %= = a € (0, 00) and limy % =b € (0, 00), then

-y (@)
. W, (G)
lim vnE @ ”T] =Cup, (3.23)
n L Dn
- (@)
Wi (Fy b, — G
lim v/nEqe | — ( “'E;f;" )] —0, (3.24)
n - DI‘L
-y (@)
Wy (G — H
lim vnE @ %] =0. (3.25)
n L Dn

Proof. Proof of (3.24): For any |z| = n, comparing (1.18) and (3.11), we define

eV @
r(z)i=+n m]l{V(z)zbn,maxygz(Wy)—V(y))San}]leS"o}’

V(z)
e
/ Cp— — J—
= ﬁm1{V<z>zb,l,maX>vgz<V(y>—V(y>>5an}1{Tz>"0’K<Zm,nl>5bn/2}’
<y<z

recalling ng = |n — n]/3j. Observe that 0 < F,, 5, — G <r +r’. So to obtain (3.24), it suffices to show that

(@) ’ (@) (@) s
Wy (r+71') - W, (r) Wy (r") i on(1)
koo | F g | e B e [ | = a9
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Applying (3.10) for r yields that

w7 Vn eS"
EQ(a) (Ol) = E
Dn R(Ol) Z 1<j< <n€

Partitioning on the values of Y'g gives that

>bn,max(S —8j))<ay,Ys<no,S, > a:|
i=

Wrg()l)(r)] _ HZO 1 E[ ﬁeSn

EQ(O() [W = ~ R(@) i Ys=k, S, > by, I?g?(sj - Sj) < ay, ﬁn = _aj|

Di<j<n eSi”
< Sn_Skﬂ _ _ .
< g R@E (Ys=k.8,>—a}]

Notice that {Ys =k} = {Sx = Sk > Sk—1} N {maxy.j<, S; — Sk <0}. By Markov property at time k,

Wi (r)
EQ(‘”[ <“>] ZR()

which by (3.4), (A.4) and (A.13) implies that

> —q, Sk—Sk)E[e ", A<0}]

RV

W (r) n c(1+a) ) 1 1
EQ(”[ 5 ] ZR(&)(kJrl)(n Kz =€ IZ (k+ 1)(n — k)32 0(1127)

. 1 logn 1
Obsel‘Vlng that ZOSkSn/ZW = n"$/2 Zo<k<n/2 k+1 — = 0( 3%2) and that, Zn/ZSkfn—nlB W =

1/3y—
% X:n/ZSkSnfnl/3 (n—llc)3/2 = 0( = n) ) Thus (3.26) holds.
For r/, again by (3.10), one has

E [W’Ea)(r/)} Z [Ys =k, S 1 <bn/2, Sk > buS; > —at]
Q@ @ S =Ky 90k n] =Pn/2 Ok Z Ondy = —U].
D"a R(a)k no+1

Applying Markov property at time k implies that

. [W,Ea)(r/)} Z Se =S P(S, . < —by/2)
Q@ @ > —o, Sk =SkIP(§,,_ < —by
D"a R(Ol) k=ngp+1

which by (A.4) and then (A.17) is bounded by R(a) Zk not1 ‘(lkﬂ‘)e—c'«/ﬁ =0 Yoe='"?y as b, ~ by/n and

n—k <n'/3.So (3.26) is checked. This completes the proof of (3.24).
Proof of (3.23): It follows from (3.10) that

(@) ’ S,
W, (G "
EQ(a)|: " ((a)-i-r)i|= Vn E[ ¢ o5t s > 10,5, 2 by max(S) — 5)) <. 8, = a]
Dy, R(O[) Zl<j<)’l j=
Partioning over the values of Yg implies that EQ(M[ Wy (g)’L ) R(a) Zk —no+1 Ok where
eSr

ak;=E|: - Vs =k, S, >bn,max(S -Sp)<anS,> a:|

Zl<j<n
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Let T; = Si1x — Sk, and notice that {S;; 0 < j <k} and {T;; 0 <i < n — k} are independent, we have
[ eTn—k _ .
or=E — =3 Sk—1 < Sk, Sk = by, S = —o, max(S; — ;) < ay,
Zlgjgkesj St +Zl§j§n—k eli i<k

T k= (—a = Sp) Vv (—ay), Tn—k =< O:|

Zn

Note that {(—a — Sg) V (—an) = —((& + by) A ay))} as Sk > by, while with high probability, |T,_,| = O (#n!/%) for
n —k < n'/3. The next step is to approximate oy by o}, which is defined as follows

eTnfk

o :=E[ 5 Sk—1 < Sk, Sk > by, S > —Ol,malgi(gi —8) <an, Thg < 0]~
i<

Si—S, T:’
lejske ik +Z]§j§n—ke !

Observe that 0 < o,é — o <P(Sk_1 < S, Sy =>—o, T, , <(—a,)V (—a—by,)). By independence of S and T, then
using (A.4) and (A.17), one sees that

of — 0k <P(S; >~ Sg = SOP(T,_ < (—an) V (—a — by))

<c(l+a)k temcVn,

Hence, R(a) Sl Zpys1 (0] —ox) = Oy) Also, /n EQ(Q)[ (a) 21 = 0,(1) by (3.26). This implies that

Wn(”(G)} 1

\/EEQ@[)[ @ ) Z noj +on(1). (3.27)

k=no+1

We now turn to consider o;. By independence of S and T again,

= E|:gn—k< > eSjS">; Sk—1 < Sk, Sk = bu, Sy = —«, I}gﬁ((gi =S8 = an],

1<j<k

where G (x) is defined in (3.19). Observe that for k =n — i with i € N fixed,

0'1220',:_1‘ =E|:gi< E e5i=5n- l>§§nil < Sn—i>»Sn—i = bn,S,_; = —a, glax,(gi _Si)fani|a
n—
I<j=n—i =

n

which by (A.12), is asymptotically, + ”"T(l) Moreover, as sup, - Gix) < E[eS’; S, <0]< ci—3/?,

by (A.4), one sees that forng <n —1i <n,

c(l+a)
i < 3/2P(S” =1 < Snmis Sni 2 bns S, 2 —e) = i32(n — i)
As a result, for any integer K > 1 fixed,
Z nok—Zn oni+ y. no,_ —cabR(ooZE Gi (Hoo)] + 0n(1) + 0 (1),
k=ng+1 K<i<nl/3 i=0

where Y"1 EIGi (Hoo)] = Y72 EIGi (Hoo)] + 0k (1).
Plugging this into (3.27), letting n — oo then K — oo implies that,

. Wi (G) &
nll)ngo ﬁEQ(a) [W} =Cab ZE[gj (Hoo)] = Ca,b,

j=0

which ends the proof of (3.23).
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Proof of (3.25): by (3.10), we only need to prove that

@~ _
O ] B | o) | = its = oy

 DP — Y " Tge
v Q“[ D@ R(o+ V(wy) o

We first observe from (3.11) that

ev(wn)_v(wn)]]_E(.ﬂ_.r
LHS < nEg@ n_ _wn =0 lyw y>bp/2 | < LHS1 + LHS> + LHS3,
- Rl@+ V) et =
where
'ev(w”)iv(w”)]lEc 1
LHS) :=nEgw TR+ Vwn) Tmn>no,1(wm,,",n1)>krl,/6i|’

_ev(w”)_v(w”)]lE

n1NEy
LHS, := nEQ(a) =~

I Twn > no]a

Ria + V(wy))

-ev(wn)_v(wn)]]_E
LHS3 = nEQ(u)

n,1 nEn,ZmE;J i|
Ria + V(wn))

Each term LHS;, i = 1,2, 3, are treated separately.
For LHS1, by (3.7), we have

1/3

LHS| < —E[¢55: 5y, € [k

n 1/6
= m ) kn]» §[kanS] S kn ) TS > no, §n Z _a]

+ Rl(qa)E[eS”_E”; Sk, & [kn'> Kn]. Y5 > 0. S, > —a] =1 &1 + &

Arguing over the values of Y then using Markov property at Y =k,

n

<o 3 E[eS g o IP(Sk € [k’ kal, Sy g <k’ Sk > Skt Sy = —a)

~ R(a) Pt
n
n c 1/3 1/6 <
< R k Z+1 T 1)MP(Skn € [kn”” k], S, i) <kn' s Sk > Sk, Sp > —av),
=ny

where the second inequality holds because of (A.13). Moreover, by (A.20), uniformly on k € [ng,n] N Z,

on(1)

P(Sk, € [ k], S < ka'® Sk > Skc1, S = —a) = "

We hence deduce that & = 0,,(1) since ZZ:,IOH m is finite.
For &/, similarly, applying Markov property at time Ys = k then (A.13), we have

n

H< o 3 E[e% Sk <OIP(Sk, ¢ [k k], S; = —at, Sc = Si)
R(O() k=no+1
< 1 1/3 <
= R k:%l it S # [ k] S 2 e, S = i)

485

(3.28)

(3.29)
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which by (A.21) yields that

c'n " 1
172
Ri@) kengt1 (n —k + 1)32nky!

£ < = 0, (1).

For LHS3, let G be the sigma-field generated by the spine and all siblings of the spine. We know from ([4],
eq. (4.9)) that

1/6

Q (En1 NEn2 NE; 51900) < O(nPe™ 0 13), (3.30)
which implies that

e 14 (wn)_v(wn)

LHS;y < nEpe | ——
3=t Q()[R(a+V(wn))

L 1/6
x QY (E,1 NEy2N E;’3|goo)} < O(n*e™ " P) =0,(1).

For LHS;, we follow the same lines as in ([4], page 18, below (4.8)) using the same notations. For any 1 <i <n,

Q(a)(Efl‘i [V (wi); 0 <k <n) <ch(V(w)),

X1, 5. _ _ S
where for any u > —a, h(u) ;== E[X1y 5 .2, + %ﬁ/z], with X :=)" eV @and X :=Y"__ Vi(2) x

¢~V@ _ Note that E[(X + X)?] < 0o because of (1.4). Markov inequality gives that i (u) < e~*/2. Recall that V (w;) >

k,l,/6 on E, ;. Therefore,

ev(wn)_v(wn)

n
LHS, < ¢/ nEqw| ————h(V(w;))1 Yy >n
T igk;, Q()|:R(05+V(wn)) ( ( l)) Eyp1s Lw, 0i|

V(“’n)*V(WH)

1/6

<n(n —ky)e™* /2EQ(a) [67; Yo, > n0:|.
Rl + V(wn))

Applying (3.7) then partitioning on the values of Y yields

1

n
6
LHS, < c'n(n — ky)e ™ /2 Z R

k=no+1

E[eS"_Sk; ’Y‘S — k’ﬁn > —Ol]

n
1 _
< 2 —k,l,/6/2 _ E S"_k]l— P(S. > —a. S <
cn-e kzzn0+l R(x) [e S,,,kSO] (—k > —a, Sk = Sk),

by Markov property. By (3.4), (A.13) and (A.4),

n
2,k ! _
LHS, < cn”e Z K kT =0,(1),
k=np+1

since (log n)® = o(ky).
Collecting all the estimations for the LHS;, this ends the proof of (3.25). ]

3.2.2. Second moment estimate: Proof of (3.15)
Recall the definitions of G in (3.11) and H below (3.12). In view of (3.14), it suffices to show that

(@) 2

. nW, " (H)

lznlsolipEQm[(%) i| < CZ,b. (3.31)
n
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By (3.6),

_ AW (H)\? AW (H)  /nH (wy)

()
JaW(G) «/EG(wn)JlE,,] (3.32)

< En@
= Q”[ D@ Ria+ V(wn)

For convenience, for any measurable function G : T — R, let

n—1
W (Gy = e VGl ywz-ar + ) D, D € PC@Lyez-w.

i=kn yeQ(wi+1) |2zl=n,z>y

kn—1

WG =3 Y Y e OC@ ez

i=0 yeQ(wi41) lz|=n,z>y

with Q(wip1) = {|x| =i +1: ¥ = w;, x # wi41}. In the similar way, by replacing G by Re(-) = R(ax + V(-)), we
see that

Dr(la) — Wrga),[oykn)(Ra) + Wn(a),[kn,n](Ra).

Recall (3.12), the event E,, 3 = {W,ga)’[k"’"](Ra) <n~2}. So under Q@ the descendants of the (w;; k, <i < n) make

(a) (e)[0,kn)
little contribution to D,(,“). The same thing happens to W,Ea). We thus approximate \/ﬁg,éa)(G) f,%f’m, o, )(R(G))

right hand side of (3.32). Then Markov property at k,, makes it possible to deal with these two terms in the product
separately. Clearly

on the

1 o~ ~ ~
LHS331) < Ege [«/EW,EO[)’U(”’"](G)(D;“)) X GnﬂE,,] +Eqw[Wn x G,1g,],

with W, := aw, % Gy w1 (R,) and G, := /nG(wy)/Ra(wy). Recalling (3.11), G(z) < /n x
1y (2)zb,/2- Therefore, Gy < =51y (w,)=b,/2 < m Moreover, as Ry > 1, we have G(z) < /nRq(2). This
implies that

7 o AW (aRe)

Wn <

b

Wyga)‘[O)kn)(Rot) (333)
«/ﬁWrga)’[k’“n](G) < «/ﬁWn(“)’[k’“"](\/ﬁRa) —n x W,Ea)’[k"'n](Ra)‘
Note that, given Ey, (CEyn.3), W " (R o) < n=2. In view of (3.4), it follows that

(@), [kn,n] 1
W, G ~ 1
EQ(Q)[ﬁ"—)() X Gn]]-E,,] SEQ(a)|:n( X " lEn] < ;EQ(U()[—]
D D Rla+by/2) l+o+0by/2 D

1/2

;-
<cn

(@)\—17 _ (@)y—1 Dy y _ —1
where Eg [(Dp )" 1=E[(Dy ) R(a)] =TR(x)”" <1 because of (3.5). As a consequence,

/
C ~ o~
LHS331) < 7T Egw[W,G,lE,]

NG

¢ _ ~
= ﬁ + EQ(H)[Wn x 1 X sup EQ<") [G”|V(wk") = u]’

uelky” k1

(V (weyelk do )]
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where the second inequality follows from Markov property at k,,. Let

1/3

RHSl = EQ(a)[Wn X ﬂ{V(wk,’)e[k,, ,kn]}]’

RHS>(u) := Eq [Gal V (w,) = u].

Next we are going to show that

limsupRHS1 <C,p, and (3.34)
n—>0o0

limsup sup RHS>(u) <Cgp. (3.35)
"0 welky k)

For RHS1, note that by Markov property

RHS; x inf  Q“(E,|V(wi,) =u) < Eqw[W, x 1g,].

welky’® kn
By (3.13),inf, 153, ]Q("‘)(En|V(wkn) =u) =1+ 0,(1), therefore, by (3.33)

RHS < (1+ 04(1))Eq [Wy x 1£,]

< (14 00(D)Equ [Wo X 15,1 . a1+ (14 0,(1)nQ@ (D) ™ > n*/2),
Again by Markov inequality with Egw) [(D,(,a))_l] =R(a)" ' <1,
nQ(a)((D’(la))—l > n3/2) < w2
On the other hand, given E, N (D > =32y, W@kl p y <=2 < Df,a)/ﬁ. So,

W05 (Ry) = D — Wil (R = (1 = 1//m) DY,

7 < WG W,(G)
< Xl -2 = — =
Consequently, W,, < 1=/ 7 D@ (14 o0,(1))s/n PR Therefore,

JAW,(G)

DY

RHS) = (14 0,(1)Equ [Wy X 15,1, por, 321+ 04 (D) = (14 04(1)) Eqo [ } +on(1).

So (3.34) follows from (3.23).
It remains to prove (3.35). Let m :=n — k, and mq :=ng — k,, for any u € [k,l/S, kn1, RHS>(u) is bounded by

n eVwm)
EQ(a)|: V(w )ﬂ{Y, > 1m0,V (W) =by, maxg<n (V(wi) =V (i) <an }
R(O{ + V(wm)) Zo<j§m e m wn ’ m)Z0n, <n <an

V(wg) = u]

which by Markov property and (3.7) is less than

S,
n e m _ _

E smax(S; — S;) <a,, Ys>mo, Sy =>b, —u,S, >—a—ul.
R(a+u) I:Zlgjgmesm ism( 1 i) <apn S 05 Om n Em :|

Following the same arguments used for (3.23), one obtains that for all u € [k,ll/ 3, knl, RHS2(u) < Cy4.p + 0,(1), which

completes the proof of (3.35) and conclude (3.31).
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3.3. Proof of Corollary 1.9

In this subsection, we show that as 8 — o0,
in P* probability
_— . .
Z Z > eV())]l{ma"¢<\< V)~V NPTV (2p£00g )} ADeo (3.36)
m=1 |z]=m —$<y=z

Proof of Corollary 1.9. Denote

* —
W)= 2 Z¢<y<zev(y)]1{max¢<)<<V<v> von=pvozs) = Win(Fp.p)/</m.

|z|=m

In fact, only those m that are comparable to ,32 really contribute to the sum. First, for m < sﬂ2 and m > ﬂ2 /& with
¢ |} 0, we claim that for any n > 0,

lim hmsupP< Z Wr(B) > n) 0, (3.37)
e—0 B—00 o
lmbllmsupP( > W)= n) =0. (3.38)
TN B Nspre

We postpone the proof of the above facts to Section 4.2.4 as the arguments are similar to the proof of (2.9). Moreover,
as C,,p 1s continuous, monotone, integrable on R, we get that

1 l/e d
Y. Cormpim =/ eyfl/z,yfl/z% +0p(1) = A +0e(1) + 0g(1). (3.39)
&

eBr<m=p?/e

Therefore, it suffices to show that for any ¢ € (0, 1) fixed, for any n > 0, P(U (B, n)) ﬂ_>—oo> 0, where
1
U(ﬁ,n):H Y. WaB-Dw Y~ o zn}.

ef2<m<p?/e efr<m=<p2/e
Recall (see below (3.4)) that a.s. lim,, D,(la) = Dc(g) =¢gDso on {infer V(2) > —a} and that Gy = ¢9Cqy . S0 we

, Wi (F, @
consider U% (8, n) :={| ZsﬁZSmfﬁz/s % - Zaﬁzémfﬂz/g %%Gﬁ/ﬂyﬁ/ﬁl > n/2}. It follows that

_ 1
P(U(B.m) <PB)) +P(U“(B, n>)+P(Bl m{ sup [D\¥ /eo — Doo| > Zeﬁ/ﬁ,ﬁ/ﬁznﬂ})

mzep? B2 <m=p2/e

with B; defined below (2.7). In view of (3.39), the third probability on the right hand side vanishes as 8 — oo. Then
using Markov inequality to the second term implies that

limsup P(U (B, m)) < P(By) + limsup P(U* (B, n))
B—00 B—o00

<P(B) + limsup > 3 lE[@,;w], (3.40)

p=oo T g2 cm<pr/e

where J)(D‘) 1= SUD, pel 7,1/ 7] |/m W,fla)( aim b)) — ,(,‘,Y)Ca bl By monotonicity of F, 5 and C, 5 and continuity

of C,.», we deduce from (3.5) and Lemma 3.3 that E[JD(“)] = EQ@[ ] 7% 0. In fact, this uniform convergence

(Dt)
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in L! holds for (a, b) in a compact of (0, oo)z. Consequently, as 8 — oo,

1 1
> —E[D,"] < sfsz[.:ojn“)] > — 0.
ef?=m<p?/e e ep?<m<p?/e
Finally letting « — 00, (3.40) yields limsupg_, ., P(U (8, 1)) =0. ]

4. Variance of K,, and secondary results
In this section, we complete the proof of the main theorems by proving Lemmata 2.1, 2.2, 2.4 and Proposition 2.3.
4.1. Variance of K,?SHU (€) and proof of Proposition 2.3

Recall the definition of B® N U in Section 2.1, in this section we focus on the mean of the quenched variance of
K B'"U (¢) which is a key step in the proof of Proposition 2.3.

4.1.1. Quenched expression for the variance
Lemma 4.1. Recall that a, = ]P’g(TZ < Ty) and let a, ; == PE(T, A T, < Ty). For every event A measurable with
respect to £, denote the quenched variance of K,f‘ (€) as follows:

VE(KA0) :=EE[(KA @) — K2 @©)),
then

VE(KA©) =Y [ —a)" — (1 —a)™zen)
|z|=¢

+ Y [0=a)" = (1 —a)"( = a)"|lieaLpea).
lzI=¢,|v|=¢,zv

Proof. Note that

KO =K@ =) (r,erp = (1= (= a2)")lgeay = Y ((1 = a0)" = Ar.277)Lien).
|z|=¢ |z|=¢

So the lemma comes directly. (]

A corollary of this lemma is the following result, which gives a simple upper bound of the quenched variance when
A=BNU:

Lemma 4.2. Recall the definition of B® N U in Section 2.1, we have:

8
VE(RE @)= DT [na:PE, (Ty < Ty, yepsnyy + nanPia (T: < Ty) L, yepinuy ]
lzl=lvl=¢.

Z#v

+ ) nazlicpsnu. @.1)
lz|=¢

where v A z is the latest common ancestor of v and z in the tree T, and IE”f, is the quenched probability of the random
walk started from y.
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Proof. This upper bound is actually true for every truncated version of K, (£), however it is optimized here for events
included in U, in particular for B® N U. For a,,, one sees that

ay . =PE(Ty < T, ATy) +PE(T, < Ty ATy) =1 dy, +d .
‘We have,

(I—-ay)" =1 —a)"(0—ay)" <1 —dy;—d; )" — (1 —a; —a)" <nla; —d; v +ay—dy ).
Observe that

a; —dgy +ay —dy, =PE(T, v T, < Ty) <PE(T, < Ty)PE, (T, < Tp) + BE (T, < Ty)PE, (T, < Tp)

= a.PE, (T, < Tp) + a,P5, (T, < Tp).

This together with Lemma 4.1 yields that

Z [((1—ay)" — (1 —a)"(1 —a))" | L epsrvy Leniny)

|z|=£,|v|=¢,
Z#v
E E
= Z naz Py, (Ty < Tp)Lzepinu vepsnuy + Z nay Py (T; < Ty) e ponu veinuy-
lzI=lv]=¢, lz|=lv|=¢,
7F#V 7F#v
Moreover, we have (1 —a.)" — (1 — a;)*" < na,. This leads to (4.1). O

4.1.2. Upper bound for the mean of the quenched variance
In this section we obtain an upper bound of the mean E(Vg (K f nu ©0))).

Lemma 4.3. For £ ~ y(logn)?, every 8 > 0 and n large enough,
E(VE (KB (0))) < en?(logn) >+,
Proof. Because of (4.1), we only have to bound the means of

~ps
ty = Z aZIP’fAZ(Tv < T¢)1{z,vEBaﬂU} and ’Cf nu (Z) = Z naz]l{zeBamU}
lzl=lv|=¢,z7#v |z|=¢

since the second term on the RHS of (4.1) is the symmetric of #,. We begin with IE,‘?S“U ©). As Bg C Ls, recalling
(1.14) and (1.19), one sees that szﬁmU ) < %pgw, (5)Wéa)(ﬂogsn,logwloglogn) since the truncated martingale-
like variable is obtained by adding the restriction Bj. By (3.16), one gets that

S=BINU _ ny _ n
E[K; ()] = 0<£> = 0<—(1ogn)2)' “4.2)

The main idea of the rest proof is to decompose the double sum ZI z|=[v|=¢ according to the latest common ancestor
ZA .

Define X1:=3 4y, ARRACARID YEEDY
have

eV@O=VEAY) apd 33 = 3 eV ©=V@AY) We then

VAZ<S=<Z VAZ<S=<V

X

& by —V(vAz)
a_P(¢,¢)€ and TE o
X1+ 23

raa El +22 AV

(T, < Td)) =
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By comparing X1, ¥», X3, we get 1, < t,} + t,% + t,? + t,f, with

| e—V(Z/\v)
Iy '= Z Tﬂ{zeBb‘nU,ueBé‘mu,zlzzzvzg}v
lzl=lv|=¢
Z#V
5 e—V(zAv)
Iy = Z Ty, 1{zeB‘3ﬂU,ueB5r1U,22§2]523}’
lzl=lv]=¢
Z#V
3 e*V(z/\v)
Iy = Z T, LieBonu veBsnU, 53<3, <50}
lzl=lv]=¢
z#v
P e~V (@A) X 1
n-— SN {zeBNU,veBSNU, 21 <XTrAX3)"
lzl=lv|=¢
Z#V

We treat each term separately. Notice that by symmetry E(t,%) = E(t,f), so we only estimate E(t,}), E(t,%) and E(tﬁ ).

Recall that for every z € U, V(z) > logn + loglogn and a;, < (nlogn)~!. Clearly, {E| + I5 > ¢V @~V >
nlogne™V @ Y} In addition, if {¥ > X}, we have

o 3 V(zAv) 1
V(izAv) > logle— > log<n ogn).

|z Av| 2¢

*_Upper bound for E(t,}), as X is the largest term here, using the above remark we have {z,v € U, X1 > 3 vV 23} C
{V(zAv)>logn +loglogn —log2¢ =:m,}, also as z € Bg, 21 <sp =n/(ogn)'*?, so

e*V(zAv)
fn = T, HVGEADSm. B <6, D1z 5V S V@AY )z )
j2l=lvl=¢
zF#v
el eV
= s LT wsm Stza vwz—a D D Lpprerovocsty D Ligyrvm vz,
J=0lul=j 1 T=u=5 lzl=¢, lv]=t.
x#y =X v>y

where XY 1= Z¢<S§u eV®=V and oyt = D or<s<z eV ®=V() and recall that X is the parent of x.
Applying Markov property at time |#| 4+ 1 and then Many-to-one equation (3.1) yields

el ~Vu)
e _ —
E[,] < E[ > i Wwemsien vz D Fie(Be TV f (21 V(y))}v
0

lul=j 1 T=u=5

xXEy

where fj ¢(1) ;= E[e5-1-1; 3207/ €5 < 1]. By (A.14), f}.¢(t) < E(e5-1-7; S j <log, 1) < c(log, 1+ 1)t/(£ —
7)3/2. Plugging this into the previous inequality yields

—1
_ 2
E[,] < ZE[ 2 OB 102 29) Ly m,, vz, V=)
=0 L=

X 7@ _CJ)% Z [1 + (V(M) — V()C))+]6V(x)—V(u)[l + (V(l/t) o V(y))+]eV(y)—V(u):|
oy

xFEy
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By (3.1) and hypothesis (1.4), we get E(t}) < ¥"(} Tl +1log, 5,)?P[S; > my, Tf < 5,.8; = —e, with

=Y/, e57Si. Also by (A.2), P[S; > —a] < (1 +a)j /2 s0
—1

| , (I+oa) c(l+oa)n
E(t,) < Z A (0 - )33"(1 +1log, sn) TEE = (logny—172°

x Upper bound for E(t,%), with the same ideas as for the upper bound of t,} , we have

e—V(Z/\v)

2 _
I = Z 3 ]l{V(zAv)>mn,E|SSn»EZSEhK(Z/\U)Z—W}
lz|=[v|=¢ .
Z#v
—1 1
< Z Z e VW - u Z Z Lisxz,v-v Z — T
- . {V(“)Zmnyzl <sn,V(u)>—a} {221 el W <sp} ZyvUeV(y)_V(u) :
J=0ul=j T=u=Y lzl=t.z=x lv|=€,v=y =2

X#y
By Markov property then by (3.1), it follows that

-1 Se—j—1
2 -v V-V e V()-V
< ZE[ Z e (u)]l{z(u)zfa} Z eV (y)E|: p—— 5 ]flﬁ@(s"e () (x))i|’

j=0 “ul=j S 2ich
X#y

which by (A.14) and (A.15), is less than

-
Z sn(1+log+sn) [Ze_v(”)ll{vmp—a} Z eV(u)—V(y)[l+(V(u)_v(x))+]eV(u)—V(x):|

Y
= =9 lul=j Foue¥
xF#y
-1 2
csp(1+log, s ) _ B
=2 gy Bl ez B D[4 (V@) ) |
j=0 jul=J Ixl=1
Applying again (3.1), (1.4), and then (A.2) we have,
i cs, (1 +10g+s")P(S > o)< c(1 +a)n.
— (E— )2 =j (10gn)1+5
x Upper bound for E(t;:), we have:
_ |
s ) eV v 5, LAz B <n)
lzl=lv|=¢
ZF#v
-1 1
SZ Z eV sy =) Z Z S V(x) V) Z YU V)V
- . e Y5 e
Jj=0lul=j —u— 5 lzl €z>x lv|=€,v>y T2

x#y
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With the same arguments as above, one sees that

-1 Se-j-1 2

4 —y 2V )=V (x)—V e’
SZE[Ze slywz—a ) MOV (Y)E[W] }
j=0 “ul=j Y=u=Yy 2izo €

xFEy

which by (A.15) and (1.4) is less than Z] 0 (ecs"J)E[Zlu‘ _je e V@ 1y (4)>—q}]. Once again by (3.1) and (A.2), we
end up with

-1 -1
E(t,‘:) < Z csy PS> —a) < Z cs,',(l.—i— o) - c(1 —f—ot)n(loglogn).
=gy — (L= )G+ D172 (logm)>+
Consequently, we have #, < cn/(logn)®, which concludes the proof. ]

4.2. Complementary arguments: Proofs of Lemmas 2.1, 2.2, 2.4 and Proposition 2.3

4.2.1. Proof of Lemma 2.1
In fact, as in (2.5), E[K 2"V (£)] = ©(E[KE (¢)]).

Then similar to (4.2), E[KE"V (¢)] = ©(n/(logn)?). Let us show that E[K
PE(T, < T}) <na; A 1. We have

B\U(0)] = o(n/(logn)?). Note that

[ B\U(ﬂ)]
= E( Y (naz A 1)1{V<z><1ogn+1oglogn,V<z>>—a})
|z|=¢
= E(Z ”“Zﬂ{logn3loglognsV(z)slognHoglogn,z<z>za}) + E(Z ﬂ{V(z)slognﬂoglogn})‘
|z|=£ |z|=¢

It follows immediately from (3.1) that

E(Z 1{V(z)§logn—3loglogn}) :E(e ]]'{Sg<logn 310glogn})

|z|=¢
< plogn—3loglogn __ n — n .
=¢ (logny> "\ logn)?

On the other hand, for the second term, as a, < e~V @,

E[ Z n‘aZ]l{logn—3 loglogn<V (z)<logn+log logn,V(z)>—0t}]
lz=¢

- ”E[Z V@YDV

{logn—3loglogn<V (z)<log n+10g]ogn,z(z)za}:| ’
lz|=¢

which by (3.1) is equal to

nE[eS“_EZ, logn — 3loglogn < S¢ <logn +loglogn, $;, > —a].
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By Markov property at the first hitting time Sy, one sees that

E[ Z nazjl{logn—3 loglogn<V (z)<logn+log logn,§e>—a}i|
lz|=¢

¢
< nZE[eS“_Sf;Ej_l <, Sj =S¢ €llogn —3loglogn,logn +loglogn], S; > —a]

j=1

¢
<n ZP(Q/ > —a,§;=S5; €[logn —3loglogn, logn + loglogn])E[e*~/; §,_; < 0].
j=1

By (A.5) and (A.13), one obtains that

E( Z 1 <c nloglogn n
na; {logn—31log logn§V(z)§logn+loglogn,Z(z)z—a} 3 =0 2 )
it (logn) (logn)

which completes the proof.

4.2.2. Proof of Lemma 2.2
8
The quenched mean IC,(leU)\(B ﬁU)(E) of K,fnU ) — K,?SQU(E) satisfies that

BNU)\(B°NU ~(BNU)\(B’NU
0 < K PMNEND ) < RIFVONETD (0) = N na e s poyuy-

|z|=¢€
As{ze B\ B%} implies that log s, — log¢ < max¢<y§Z(V(y) — V(y)) <logn, similarly to (1.19), we have

BNU\(B°nNU
’C( A )(5) = \/—(W( (Flogn logn+10glogn) g(a)(Flogs,,—log@,logn+10glogn))7

with s, = n/(logn)' 9. Taking expectation and using change of measures (3.5) yields that
=(B\BHNU
B[R 0]

() ()
W, (F W, (F _
< —R(O{) (EQ(Q) |: ¢ ( ]ogn,l(zg;nﬂoglogn) i| _ EQ(a) [ ¢ ( log s, lozg;),lognﬂoglogn) i|> ) (4.3)
\/_ D(Z Dé

In view of (3.14), as £ ~ y (log n)%, we have

\/ZWéa) (Flogn,log n+log logn) \/ZWéa) (Flog sp—log ¢, logn+log logn)
Eqw —Eqo =on(1)

@ @
DZ DE

and 7 = O( )2) This implies that

(logn

BNU (py _ g BNU F(BOUNBNU) 7 _ n
E[K,;," @) — K, "] <E[K, (z)]_o<(logn)2>.

This ends the proof of Lemma 2.2.
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4.2.3. Proof of Proposition 2.3
Observe that

p( |k BNV gy _ B NU n
(\ w0 =K (fz)|zn(logn)2

< P(\K,f“”l’(a — KB (0] = nm()”w) + P(|K,?5”U(z) — KB ()| = n (4.4)

n
2(logn)? )’
For the second term on the right hand side, by Markov inequality and (2.5), we have

P(|KCEY (0) — RE'"U (0)] = pn(2010gm)?) ") < 2(ogn)?(qm) 'E[RE Y () — KBV ()]
<2logn(nm) 'E[KE""Y (0)].
In view of (1.19), E[KE"Y (£)] < ne=2E[W* (Fiogs, logn-+1oglogn)] which implies
P(IKCE Y () — RE'OU (0| = nn(200gn)?) ) < S R(@)E Wi (F) _of
(‘ n &) =K, ()\_nn((Ogn)) )_7 (@) Q(a)W = ﬁ’

where the last equalities come from the change of measures (3.5) and (3.14).
For the first term on the right hand side of (4.4), using Tchebychev inequality on the quenched probability yields
that

PE( | KB (py — KCB'OU (py| > n <
<| OOl g ) = e

So,

4(logn)*
(K80 k0] g5 ) = HEEE R (k)

n°n
Using Lemma 4.3 with § =5 gives what we need.

4.2.4. Proofs of Lemma 2.4, (3.37) and (3.38)

Proof of (2.9). Let us show that

lim lim sup g > > k! (z)} =0, (4.5)

el0 n
e 0> (logn)2 /e lzl=¢

lim lim sup lE[ > Y kf (z)} =0. (4.6)

el0 n
oo t<e(logn)? |z|=¢

e Proof of (4.5) and (3.38). Recall that a, < ¢=V@_ One sees that

LHS45) := E|: Z Z Kf (E)] < E[ Z Z (na; A 1)]12€Bj|

£>(logn)? /e |z|=¢ ¢>(logn)? /e lz|=¢

A

-V
DR PIRAC TR D DI~ D SETTR——

£>(logn)?/e |z|=¢ >(logn)?/e “lzl=t

=:R; + Ry @.7)
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Applying (3.1) to Ry yields that

Ry = Z E[e%: S, <logn, S, > —a],
£>(logn)?/e

which by (A.22) is bounded by

Z cn(1+a)(1+logn + @) <Cn(1+oc)(1+logn+a)

32 =
> (logn)?/e & v (logn)?/e

For any o > 0 fixed, letting ¢ | O implies that lim, o limsup,,_, ., n~'Ry=0.Alsoby 3.1), R; = Zéz(logn)z/s n x
-V
E[le‘ze e (Z)]]'{V(z)zlogn,z<ﬁn,Z(Z)Z—Ol}] equals to

k
Z nE|: =St ; S¢ > logn, max eSi=Sk <, Sy = a:|.

1<k<¢t
£>(logn)?/e i=

Observe that e3¢5k < Zi‘: 1 ¢5i=5k 1t then follows that
R < E[e% 5, max (S - $) <logn, $, = —a,
[ < Z nE|e lsk;l(k k) <logn,S, = —a
£=(logn)?/e

which by (A.23) is less than

4

11—t
en(l+a) Z <£77+Ze C“Og">2>.

£>(logn)?/e

Clearly, Z€>(logn)2 /e T % < ce'/%(logn)~!/3. On the other hand, by monotonicity and change of variables, one sees
that

r_ L e ¢} /st o0
E le_c (logn)2 S / e—c (logn)2 ﬂ :/ efc/sﬁ S €/C/.
14 (logn)?/e ! 1/e s

>(logn)?/e

Consequently, R; < (1 +a)en/c’ +c(1 + a)81/6(log n)~13n. We hence deduce that lim,_, ¢ lim SUp,,_, oo R1/n=0.
Collecting estimates for R; and Ry together Wit_h (4.7), (4.5) follows immediately.
Moreover, observe that Wy (8) < 3. _,, eV O nax

P< Yo owr) = n) < P(ggqfrv(z) < _a>

m>p2/e
V()
+P( Z Z ¢ Lmax, . 7)-von=s Porzp v @02 —o) = 7)>’

m>p2 /e |z|l=m

sy T)-von<p sl SO for any &,n >0,

where the second probability on the right hand side vanishes as § — oo then ¢ — 0 because of the convergence of
R;/n by replacing logn by S. The first probability on the right hand side is negligible in view of (2.1).
e Proof of (4.6) and (3.37). Similarly as above,

LHS4.6) :=]E[ >y K,f(ﬁ)] SE[ D) (ne V@ A 1{Z<£n,v(z)2_a}] <R, + Ry,

t<e(logn)? |z|=¢ t<e(logn)? 1z|=¢
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where

Ry= Y E[Z”e "L ©ziosn vz~ ‘”}

¢<e(logn)? |z]=¢
I _
YEEDY E[Z ﬂ{V(z)glogn/z,wz)z—a}]'
t<e(logn)? ~lz|=L
Again by (3.1),
R’I =n Z E[ese_gl;gg >logn/2,8,> —O{]
£<e(logn)?

which by (A.24) is bounded by

c(l+a) ,
n Z W < (1 +a)en.
£<e(logn)?

Therefore, lim, o limsup,_, o, Rjn~! =0.
It remains to bound Rj;. By (3.1),

R, = Z E[eS‘;Eg <logn/2,8,> —a] < Z €°2"/2 < ¢(logn)>/n,

¢<e(logn)? t<e(logn)?
so lim, o limsup,,_, ., R} ”n_ = 0. This completes the proof of (4.6).
Similarly to the proof of (3.38), the convergence (3.37) follows from (2.1) and the convergence of R’ /n. O

Proof of (2.10). We now prove that for any ¢ > 0,

(logn)?/e
> BN )] = o), 4.8)
m=¢(logn)2
(logn)?/e
S E[KENED )] = o(m). (4.9)

m=e(logn)?

As shown in the proof of Lemma 2.1, for any m > ¢(log n)2, there exists some constant c(g) € R such that
loglogn

(logn)3’

so (4.8) follows. It remains to show (4.9). Observe that

8 8
E[K(BQU)\(B QU)( )] <E[IC(BQU)\(B QU)( ) |:Z nazﬂ-{ze(B\B5)ﬂU}:|

|z|=m

B[k (m)] < c(e)n

Take B8 = logn + loglogn. Because of (4.3), for any ¢ > 0 fixed, there exists ¢; > 0 such that when n > 10, for any
m € [ep?/2, B% /el N Z,

(@) (o)
~ 5 Wy ' (F, Fg_
E[RFONE0) (1 < 1 R(a)(EQ(a)[ m (()ﬁ,ﬁ):|_EQ(a)[Wm ( ,B(c)llogﬂ,ﬂ):|).
vim Dy Dy,
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It follows immediately that

(logn)*/e s
BNU\(B*NU
m=e(logn)?
B*/e (@) B/e (@)
1 W, F W, Fg_
< nR(@) x g | LT | N g, [ B Ticosnp) 1) (4.10)
Jm Q D@ Q D@
m=eB2/2 m m=gB2/2 m

Wi (F,
LGB | — Coal = 0.
Moreover, sup,,> .42 D ﬁ_)—oo> 0. Following the arguments used to prove Corollary 1.9, we deduce that for any ¢ > 0,

as f — oo,

(o) 1/e
1 Wi (Fgp) / dy
E —Egw| ———— | = C, - —-1/2—— ).
NG Q¢ )|: @ : yo12,-172 ” +opg(1)

eB2/2<m<p? /e /2

Similarly to (1.22), the convergence (3.14) holds uniformly. So Dy, = sup,~¢ [Eqwl

Similarly, we also have

(o) 1/e
I [Win (Fg—cilogp.8) dy

E EQ(a)ﬁ[ (a)l = Cy 112 ,-12— +0p(1).
£ﬁ2/2§m§ﬂ2/s Dm £/2 14

As a consequence, (4.10) becomes

(logn)*/e s
Y BTN )] < op (R (@),

m=e(logn)?

which ends the proof. O
4.3. Proof of Proposition 1.7

Most of the arguments are already present in the proof of Theorem 1.5 in Section 2.2. Indeed we have stressed
on the fact that the main contribution of visited sites comes from the set of individuals of the tree truncated by
B NU.

Similarly to the proof of (2.10), the restriction A3 :={z € T: V(z) > MAX|y) <|7|—|7|1/3 V(y)} follows easily

»Y=2Z

from (3.26). So it remains to consider D := {z € T : maxp<y<,(V(y) — V() < %}, and F:={zeT:V(z) >
aylogn./loglogn}. We only need to show that

(logn)? /e
. . -1 BNDNA3 —
m=¢(logn)?
and
(logn)*/e
: —1 BNF _
nETOOE[n > K (m):|—0. 4.12)
m=¢e(logn)?
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For (4.11) we do as usual and get that the expectation is smaller than

(logn)?/e B
Z E[eSm_S’”; max (S; — S;) < logn/ag, S, > —a, Ts >m — m1/3]
1<i<m
m=¢(logn)?
(logn)z/a m
Sm—' — q. . q. .
< > Y E[ fﬂsmijSO]P[lrgianj(S, —5) <logn/ap, Sj-1 <. 5, = —a]

m=e(logn)? j=m—m!/3

2
Similarly to (A.30) and the lines that follow, the above sum is bounded by Ziozgs'?loé Sn)z Z'I.":m_m 13 %
e=¢'mao/(ogm? < _ 7 (Jog £)e~¢'#40 which goes to zero as ay — co.
Also for the expectation in (4.12) we have that it is smaller than

(logn)? /e _
Z E[es’”_s’”; Sm = ailogn,/loglogn, S,, > —a]
m=¢(logn)?

(logn)z/a m
< Z ZE[eS'"—-f;Em_j < O]P[Qj > —a,S; >ajlogn/loglogn]

m=¢(logn)? j=1
2 /
which by (A.13) and (A.18) is bounded by czi"js”gog e e =+ )T *a} — 9, (1) by choosing a
properly.
Appendix
A.l. Finiteness of A [see (3.22)]

Lemma A.1. The function X : (0, 00) — (0, 00) is well defined and integrable, i.e.,

% M)CY—UZV—UZ
A:/ A(y)dy:cof ————dy <o0. (A.1)
0 0 Y

Further, for any a,b >0, C,,,-1/2 ,,-12/y is integrable.

Proof. Recalling (3.21), it suffices to show that C, , € (0, 0o) and that Cy—] 2y-172]Y is integrable. Recall that for any
a,b>0,

Cap = 2c1+c2+E<\IJ“'b (omy, o (@ —m)); Jmax o (il; — ) < ﬁa)
=s=<
with
WO G ) = e P(om > (V2b —x) Vo () — ) < (vV2a — b Ax, max ol — ) < V2a).
<s< ’

Obviously, Cy p < ZCTc;c; < 00. Moreover,

2
Cap > 2c1+c;c2+P(om1 > \/2b, o (i) —my) < ga, [max oy = 1)) < ﬁa)
<s=< ’

2 2
x Pl om > £a, max o (i — ) < £(a AD) ).
2 0ss<Il 2
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On the one hand, Biane and Yor [8] showed that

(g, 1); 0 <5 < 1) =a ((Ibs] + 24, 27); 0 <5 < 1),

s20s

where (by, s € [0, 1]) is a Brownian bridge and (A?, 0 <s < 1) its local time at 0. On the other hand, if (Ry;0<s <1)
a Bessel(3) process, Imhof [20] showed that for any x > 0,

(g, s €10, 1]) given {m = x} =4 (Rs, s € [0, 1]) given {R| =x},

where P(m € dx) = xe"‘z/z]l{xzo} dx. By the continuity of the distribution of (b, 29) and R, one sees that Cap is
continuous and strictly positive.
Let (g, s € [0, 1]) and (#iig, s € [0, 1]) be two independent Brownian meanders. Then

Cop < cP(o (my +1ii) > v/2b),
“r= CP(maXse[O,l] o (my — m[s,l]) =< \/Ea)~

It follows from the first inequality that

2b
Ca,b < cP<m1 > \g__> — ce*b2/4‘72_

o

On the other hand, according to [8],

P( max o (m; — ) < x/ia) =P( max |bg| < x/ia/cr) < P( max by < x/za/o).
s€[0,1] ’ s€[0,1] 5€[0,1]

This shows that

2a\* 4
Cabch< max bsfx/za/o):c 1 —expl —2 Q f—caz.
’ s€l0,1] o 2

o

We are now ready to prove the integrability. Observe that

©C 12,172 LC _ip -1 ©C _1j2 ,-1)2
/ )4 4 d)/ :/ Y sV d]/ +/ Y 4 d]/
0 14 0 14 1 14

1 00 1
5/ ce 4a2yd_y+/ 4_§d_);=/ ce 4U2Vd—y~|—4—cz,
0 Y 1 oY 0 14 o

By change of variables r = 1/y,

L % t_dt
/ ce 402V—y=/ ce 4% — < 00.
0 14 1 t

. o C —12.,-12
We hence conclude the integrability of %

C.—1/2,,-12
, as well as % for any a, b > 0. O

A.2. Results on one-dimensional random walks

In this section we state technical inequalities that are used all along the paper. The sequence (Sk, k) which appears
here is the one defined in (3.1). The proofs are postpone Section A.3.

We start with two well know inequalities (see [4] for instance) and some basic facts. There exists constant ¢ > 0
such that foranyn > 1 and u >0

cdFw PG, <uy<4EW

7 < NG (A2)

P(S, > —u) =
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By Lemma 2.2 in [4], there exists some constant ¢ > 0 such that for any u >0, b >a > —u and any n > 1,

cl+u)(I+b+u)(1+b—a)

Fact A.2.
1. Foranyu,a >0andV¥n > 1,
— 1
P.(S, > —a.5, =5, < LTetY (A4)
n

2. (a) Foranyn > 1, B > 0 fixed, there exists c(B) > 0 such that for any u >0, —B\/n < —a <0 <a <b < B/n,

— c(BY1l+a+u)lb—a)
Pu (§n 2 —aQ, S}’l = Sn € [a7 b]) S I’l3/2 . (AS)
(b) Foranyn>1,A >0,
— c(l+a)
PS,>—a, 5, =5,>A)< An2 (A.6)
3. Foranya,A,o >0andV¥n >m > 1,
- = < c(I+A)d+a+A)1+a)
P(ﬁnz_a, S =80, 8Sm =S =—A, Sy —Sn<a) < ml/z(n—m)3/2 (A7)
We now state the following lemma which is mostly a consequence of the above facts.
Lemma A.3. Foranya >0,0<a <bandn > 1, we have
c(1+a)?
P(Sp=5,>—a) < a2 (A.8)
1 1 +1logh)(1+1logh—1 1
P( Z 575 e la,b), S, > —a) < c( o) +logh)(1 +logh —loga + Ogn), (A.9)
1<i<n n
b
b DA+b—a)(1
E(e%: S, ela,b]. S, = —a) < LT DUADZ Ut e) (A.10)
n3/2
Following lemma focus on asymptotic results.
Lemma A4. Let a,b > 0 fixed and lim,, ”—\/”ﬁ =lim, % = 0. We have the following convergences.
1. Moreover, for any o > 0 fixed,
1imnP<§n > —at. 8, > Syo1. max (5, = S)) < avn +an. Sy = by + b,,) = CypR(@), (A.11)
n <i<n

where C, p € (0, 00) is a constant depending on a and b, defined in (3.20).
2. Let g : [1, 00) — Ry be a uniformly continuous and bounded function. Then,

n—o00

n
lim l’lE|:g <Zesj_5”>;§n = —a, Sn > Enfl’ lm_ax (El - Sl) = a\/’;‘i’an, Sn = bﬁ+bn:|
<i<n
j=1 ==

= Cap R(@E[g(Ho0)]. (A.12)
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Below we collect some more basic facts.

Fact A.5.

1. Foranyn>1,

E[e%: 5, <0] < — (A.13)
E) n = — n3/2 .
. Forany A>0andn > 1,
— c(1+ A)e?
. Foranyn>1,
E e < (A.15)
leisn eS| T nl/2 .
. Forany A,§ >0andVn > ky > k1 > 1,
P(S;, . <A,S >0 < U+ (A.16)
Elkikp] = 0 2(1+8)n =Y = \/M : :

. IfE[eigS'] < 00 for some 0 > 0 [see (1.3)], then for any § > O there exists c(8,0) > O such that for any n > 1,
P(S, > n') < c(s,0)e " "2, (A.17)

. Let a > 0. With the same hypothesis as above there exists ¢y > 0 such that

P(S, > ay/nlogn, S, > —a) < ;C . (A.18)
n 2
The following corollaries follow from above lemmas.
Corollary A.6. Leta >0, b, >0 and lim, T =lim, bT =0. Take no =n —n'/3, then
— on(1)

P(Spy 201 = bn 8, 2 — 0ty > Sumn) = 72 . (A.19)

Lemma A.7. For any o > 0 fixed and k, = o(n'/?), the following estimates hold uniformly for n/2 <k <n,
1/3 1/6 < _on(D)
P(Sk, € ki’ ). Sy, py < ', S > Sir 8y = —a) = (A20)
P(Si, ¢ [kn/ ka], S, > —at, Sk =5)) < —— (A21)
k” n s>in|s 2L — sk = Vk) = 1/2° .
nky,
Corollary A.8.
1. Ifa e Ry is fixed, then for any £ > 1 and A e Ry,
A
— ce"(l+a) 1+ A+

E[e%; S, <A, 8, > —a] < 7 ) (A.22)

2. For A > 0 sufficiently large and any £ > 1,
< — 1 1 oL
E[ES‘Z_S‘Z; max (Sx — Sp) <A, S, > —06] = o + cdta) 5, (A.23)
1<k<¢ 07/6 1
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3. Forany A>1land > 1,

c(l+aw)

S¢—S¢. T
E[e( e,SzZA,ﬁgZ—CY]SW-

(A.24)

A.3. Proofs of (A.4)—(A.19)
We show these results one by one.

Proof of (A.4). Let Ry :=S,, — S;,—x for 0 <k <n. Clearly, (Ry,0 <k <n/2) is an independent copy of (S, 0 <
k <n/2). Hence,

Py(S, > =, Sy =8,) <Pu(S,p > —, R, ), > 0) =P(S, > —a —u)P(R, ), > 0).
Applying (A.2) to both (S.) and (R.) yields that
P,(S, >0, Sy =38, <c(l+a+un', (A.25)
which is exactly (A.4). [l
Proof of (A.5)-(A.6). Using the same arguments as above, as S, = S,/2 + R;,/2, we get that
P.(S,>—-a, Sy =S,€la,bl)=P(S,>—a—u,S, =S8, €la—u,b—ul)
§P(§n/22— uR 2>0,8:2+ Ruypp€la—u, b—u])
=E(V(81/2); S, 0 = —a — ),
where 1 (x) := P(En/z >0, Ryppell@a—u—x)g,b—u—xDI{_g_y<x<b—u)- By (A.3),

cl+b—u—x)1+b—a)
Y(x) < 372 {(—a—u<x<b—u}-

It follows that

— cl+b—a)
P,(S, > —a, Sy =8, €la,b]) < TE((I +b—u—=5u2)4:8, =~ — u)
_¢ 1 —l—b

which by (A.2) is less than C(H'l; 2 (1+“+Li)/>(nl+b+a) O(l)M since b V a < B./n. This completes the
proof of (A.5).
Similarly for (A.6), we have

P(S,>~a, Sy =82A) <P, =~ R, /» =0, Rypp+ Sp2 = A)
<P(Sn/2> —a, R 5 >0, Rn/2>A/2)+P(Sn/2> —a, R 220,85,20>A/2),
which by independence between (S;,i <n/2) and (R;,i <n/2) and (A.2), is bounded by

c(1 +a)P(Sn/2 >0,8,20>A/2) cP(Sn/2 > —a, Sy > A/2)
nl/2 nl/2

By Lemma 2.3 in [4], there exists a constant ¢ such that for any « > 0,

supE[[S,1; S, = —a] < cla+ D).
n>1
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It follows from this lemma and Markov’s inequality that for any o > 0,

|Sn /2] c(l1+a)
P(S, ),z —a, S11/22A/2)§2E|:T;§n/22_05 =< —
As a consequence,
— c(l+aw)
P(Enz—a,sn:SnZA)fTﬁ- 0

Proof of (A.7). To obtain (A.7), we consider the two independent random walks (S;,0 <k <m) and (R;,0 <k <
n—m).As S, = R,_,;, + Sp, one immediately sees that

P(in >—a, S, =§na§m -8, > —A, Em —Sm<a)
< P(ém > -0, Em —Sn <a, En—m >0,R—n € [Em — Sm, Em —Sm + A])
= E[P(Bn_m >0,Ry—m € [Em - Sm’gm = Sm + All(Sk, 0<k < m))» §m > —a, Em —8m =< a]~
Applying (A.3) to this conditional probability implies that
P(En > —a, S, =§n, Em -S> —A, Em —Sm<a)

SE[C(1+A)(1+A+Sm—Sm)' < }

(n_m)3/2 ,_mZ_OlySm_SmSa

(1+AA+A+a)
<c
- (n _m)3/2

P(S,, > —a),

which by (A.2) is bounded by

(I+a)(1+A)(1+A+a)
m1/2(n _ m)3/2

This ends the proof of (A.7). O

Proof of (A.8). Let Ty :=S,_r — S, = —Rk. Then (T}, 0 < k < n) is a random walk distributed as (—S;, 0 <k <n).
It follows from (A.3) that

c(l +a)?

PSS, =8,>—-a)<P(T,>0,T, 501)5’137' 0

Proof of (A.9). Observe that eSn=5n <Y i<i<n eSi—Sh < neSn—5Sn , then

{ Y eSiSe [a,b]} C {loga —logn <'S,, — S, <logh}.

1<i<n

We thus bound the left hand side of (A.9) as follows

LHS(A9) := P< > eSS elab). s, > —a) <P(loga —logn < S, — S, <logh, S, > —a)

1<i<n

n
= ZP(Ek_l < Sk =Sy, loga —logn < S, — S, <logh, S, > —a).
k=1
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By Markov property at the first hitting time S,,,

n
LHS(A9) < ZP(gk > —at, S = S)P(Sy—k <0, Sy—i € [—logb,logn —logal).
k=1

By (A.4) and (A.3), we deduce that

c(l+a) (1+1logh)(1+logh—loga +logn)

LHS(A9) < ]; —k+ 132
- c(1+a)(l+1logh)(1+logh —loga + logn)
n
which ends the proof. ]

Proof of (A.10). By (A.3), one sees that
LHS (A 10 :=E(es";§n >—a, S, €la, b]) < ebP(ﬁn >—a, S, €la, b])
<ce’(1+a)(1+b—a)(b+a+n /2 O
Proof of (A.11). Consider the two independent random walks (S, 0 <k <n) and (R, 0 <k <n). One observes that

max (S; — S;) = maX{ max (S Si), lglgx/z(Rk = Ry ny2p) Snj2— Suj2+ Ruj2 — Rn/z},
<i<n

I<izn 1<i<n/2
and that
{S,>—a, S, >S,—1}=1{S Sy = —a} N{Ru2 — Ruj2 < Snpp + ) N{R,,, >0}
N {Rnj2 > Suja — Suja}-
Let
Paiy = P(in > —a, S, > Sp_1, 1n<1?§,-(§i —S) <avn+ap, Sy >b/n+ bn>.
It is immediate that

Painy = P(Qn/z >-a, R, >0, li?g;i/z(gi — 8i) <ax/n+an, Ruja + Sujp > (b/n+by) V Sy,

Rujp— Rupp < (av/n+an — Sppo+ Sp2) A (Sujz + @), 1<H_12X/2(Rk = Rypnpp) <avn+ an)
<i<n

which equals to

S Supn—S
E(qu,b( n2  Snp2 n/2> I s G, —S)<af+a,,>

«/I’l/ /\/I’l/ <i<n
where
a,b i n/2 _
W (x,h)._P(En/2>O)xP<W («/—b+m>v(x+h) x

nj2 — Kny2 _ an o
N (ﬁ“ ht J_n/z) " (x - «/_n/2>’

511/2 > 0)

max (Rx — Ry ,/2)) < ax/n+ay,

1<i<n/2
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Again by invariance principle and (3.18), as n — oo,
V2wl (x, h)y — WP (x, h)
= c;‘P(aml > (\/Eb —x)Vh,om —om; < (\/Ea —h) Ax, Omaxla(ms —mp ) < ﬁa). (A.27)
<s< ’

Because WV, ’b(x, h) is monotone for x > 0 and 2 > 0 and Wb is continuous, by Dini’s theorem, we have uniformly
for (x, h) e RZ,

Wb (x ) 4+ 0,(1)
Jn/2 '

Wab(x n) =

Asa consequence,

q"a,b( Sn/2 Sn/Zfsn/Z)_'_o (1)
Vnj2®  Jn/2 e <
P(A‘11)=E< . ﬁ Sz —a, 1;?2/2(& _Si)faﬁ+an>
1 abl Snj2 Snp2—Sup -
= ’ N =) < > —
mE<‘” (m i) T max Si—S) savntanS,, = —a
x P(S, ), = —a).
Once again by invariance principle and the fact that lim,,—, o \/%P(gn > —a) = ’R(oz)cf,
R(@)Cap | 0n(1)
Painy = 22
n n
with C, p, defined in (3.20). O

Proof of (A.12). We turn to consider
n
nE|:g (ZeSan);ﬁn >—a, S, > Su_1, lm;lx (S; — Si) <a~n+ay, Sp > b/n+ bn:|.
<i<n
j=1 -
First, we show that in this case with high probability, S, 7258, — n~1/3 . 1n fact,
n
E|:g (Z gSj_Sn>;§n >—a,Spp2 >S5 — n_1/3, Sy > Sn-1, 1m_aX (S; —S) <a~/n+ay, Sy, > b/n+ bni|
<i<n
j=1 -

= ||g||OOP(§n > —a, En/2 > S — I’l_l/3, Sp = Env Sn/2 - En/Z = aﬁ"‘ an)

a(l + o)
SC”g”mW’

where the last inequality follows from (A.7). Now, given S, 2= 8 — n—1/3, Z?:] ¢35 can be replaced by
> /2= j<n €% 75" which is independent of (S¢; 0 <k <n/2). Note thaton {S,/2 < S, —n~'/3},

n

3
Z eSf*S"SZeSFS"Sne*”'/ + Z eSi=Sn

n/2<j<n j=1 n/2<j<n

and that g is uniformly continuous. Hence,

g( > eS"‘S">—g(ZeS"S">‘=on(1>.
j=1

n/2<j<n
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Therefore, we deduce that

n
g e ) S, > —a, Sy > Sp—1, max (S; — ;) <av/n+ay, Sy > b/n+by,
E Si=Sn); s, S, >S (S; — Si) <a/n S, >b/n+b
j=1

1<i<n

Now we use (Rg,0 <k <n/2) in replace of (S, — S,—k, 0 < k <n/2) and recount on the same arguments as in the
proof of (A.11). Thanks to (3.17), (A.12) follows immediately. O

_ — 1
Z eS,—S,,>;§n > —a, Sy > Sy—1, max (S; _Si)fa\/"—l“‘an, A\ zbﬁ‘i‘bn]‘i‘on( )
n

1<i<
n/2<j<n ==

Proof of (A.13). Let S, := —S,,. Observe that

oo
E[¢%:S, <0]=E[e ®:S,>0] <> e *P[S, >0.S, e [k.k+ )]

»
Il
)

Applying (A.3) to S implies that

o
S, _rc(1+k) c
E[é’ 5 Sn 50]5;6 32 Sm,

since Y- o(1 + ke ™ < oo. |

Proof of (A.14). By applying Markov property at the first hitting time S, one sees that

n
E[es”; Sy < A] = ZE[eS";Ek,1 <S8k <A, Sk > E[k,n]]
k=0

n
= ZE[€Sk§§k—l < 8 < A]E[es"_k; Snk < 0]
k=0

n
=Y E[e%: S, >0, 8 < AJE[e%+: S, <0], (A.28)
k=0

where the last equality follows from time-reversing. Next, one observes that for any k > 1, by (A.3),

E[e%:8,>0,Sc=A] = ) eTP(S,>0,Sel),j+1)

jel0,A)NZ
A
c i1 . c(l+Ae
Sm Z e’ (l‘f‘])ST,
jel0,A)NZ

since Zje[O,Aﬁ)ﬂZ e+ Jj) <c(A+ De?. Plugging this inequality and (A.13) into (A.28) yields that

n

Z c(l+ A)ed _cd + A)e4

E[e5: 5, <Al < :
(€73 80 = 4] k+D)P2m—k+ 12~ 2

k=0

which is what we need. O
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Proof of (A.15). We have,

€S"

_ n
E[is} < E[es”fs”] = ZE[eS’ﬁS"; Sk > Sk_1, Sk > E[k,n]],
Zlfifne ! k=0

then by Markov property and a time reversal for (S;,0 < j < k), one gets that

Sn n _ —
E[eis} < PS> SiDE[e5 5,4 < 0]
Zlfifne ! k=0

n
<) P(S; > OE[e™+; S, <0].

k=0
By (A.2) and (A.13)
eS" - C C
E[ S-:| = Z 1/2 32 S
leiinez k:O(k+1)/(n—k+1)/ Jn 0

(A.16) follows immediately from Lemma 3 in [26].

Proof of (A.17). For 6 > 0 such that ¢(0) :=logE[¢?51] € (—00, 00), {?57%®): n > 0} is a non-negative martin-
gale. The existence of & comes from (1.3). Therefore, by Doob’s inequality,

P(S, =n'") < P( max /Skk¢®) > e9”1+5*n¢(9))

0<k<n

< e—en1+5+n<p(9)E[eesn—mp(e)] — o' np(®)

For n large enough, On'*® — np(0) > 6n'+%/2. Hence, for any n > 1,
P(S, = n't?) < c(s,0)e /2,
(A.18) can be treated similarly choosing 6 properly as a, decreasing to zero, function of n. (]
Proof of (A.19). Let
Pa19) :=P(Sp, /0,0 <bn. S, = —a, Sp > Su—1).
Use again the notation Ry = S, — S;—k, we observe that

P19 = P(§n/2 > —at, Ryj2 — Rup2 € [(Snj2 = bu) 4. Sujo + @, R,/»>0,Rnp2 > Snj2 = Sup2)

A Sn/2
<E[5,02 e i 25|

where
A Ru2— Rup by ) o } )
=P ——— ¢ — , X+ R 0).
oy s=p(B e (5= )+ + i e
By invariance principle, P(% <x|R,/, > 0) converges to P(iti; —m < x) uniformly for x € R. Consequently,

on(1)

Su(x) = x/ﬁ ,

uniformly for x € R,
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SO

on(D) o)
Pa19) < Wp(ﬁn/z >—a) = P 0

Proof of (A.20). We need to obtain an upper bound for P(S, € [k,ll/S, knl, Sp, i < k,1,/6, Sk > Sk—1, S; > —a). One
sees that by (A.19), for any ng < k <n,

P(Sk, € [l Kn]. Syt sy < Ka'®, Sk > S, S = —a)

. 1/6 < 1/6 1/6 <
< P(k/inJ}Lk Sy < kil Sk > Sker, Sy = ) + P(Sy, wym =k’ Syni = k' Sk > S, Sy = —)

_ on(1)
- n

1/6 i
+ P(ﬁ[kn,k/ZJ =< kn/ < §(k/2,k]v Sk > Sk—1,8;, > —01)-

By (3.29), to conclude that &1 = 0,(1), it suffices to show that uniformly on k € [ng,n] N Z,

1/6 = on(1)
P(Q[kmk/z] < kn/ < Q(k/z,k]’ Sk > Sk—1, 8, = —Ol) = nn .

Considering the first hitting time of S; which should be before k/2, one has
P(ﬁ[kmk/z] = krlz/6 < §(k/2,k]’ Sk > Sk—1, S > —05)

< 3 P(Sy s <kl Sk > Sie1. 8y > 8 =8, = —a). (A.29)
0<j<k/2

For any k,,/2 < j <k/2 and ng < k < n, by Markov property at time j,
1/6 i
Z P(ﬁ[kn,k/z] Skn/ , Sk > Sk—hﬁj_] >§8;=58> —Ol)
kn/2<j<k/2

< Y PS; >8PS ;20,5 =S))
kn/2<j<k/2

which by (A.8) and (A.4) is bounded by > > i<t/ C(jl;/’;’;)z = O"T(l) Also when j < k; /2, applying Markov property
at time 2k /3 then at time j implies that

P(Syi, a2 <k'* Sk > Sie1. 8, > Sj =5, = —a)
<P(Syp, iy <k’ 81 > S = S5 2 @) P(Sky3 > Sisa-1)
<P(S;_; > S; = ~a)P(Sy 10 = 0.5, /o < kn'® + @)P(Sk/3 > Skya-1),
where for the random walk from the time j to 2k/3, we use the fact that {§[k,,—j,k/2—j] < k,,l/6 to, Sy = 0} C
{§7k/12 >0, i[kn/Z,k/Z] < krll/6 +a}as j <k,/2.

By time reversal together with (A.2), P(Ek/3_1 < Sk/3) < ¢/+/k/3. Also, in view of (A.8) and (A.16), for any
ng<k=<n,

2 1/6
1/6 = cl+a)*(0+a+k,)
E P(g[k,,,k/Z] <k, Sk > Sk—l»ﬁj_1 >8;=8 > _Ol) =< g - 32 1/2n
J<kn/2 j<kn/2 (J + D/ nky

~ou(D)
= 2D,
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Proof of (A.21). Applying Markov property at time k,, yields that

< 1/3
P2y =E(Ps, (S;_; = —a, Skk, = Sk—,): Sp, = —at, S, ¢ [kn/ ckn]),

and recall that Py, is for the distribution of the random walk starting from u. By (A.4), Pg, (S;_, > —a, Sk—k, =
Sk—k,) < c(1+a+ Sk,)/(k — k). This yields

(1 4o+ Sk,)

P <E
A21) = [ Kk,

;Qk,, = —a, Skn ¢ [krll/3v kn]:|

We now split the above expectation into two terms, first by Markov’s inequality,

A +oa+S,) c 4 c
El —————; 8, >—a,8, 6 >k, | <— FE|(l S < ,

and also by (A.3)

1/3

k
1 S c 1 S
[( P ) kn);Sk,,E—a,Sankrlz/3:|5 ZE[( g

k—k, = San—a,Skne[l,l+l]]

k—k,

l=—«

K73

n l l
= wp(gkn > —a, S, €11+ 1]) < Ll/z
I=—« n nkﬂ

These two inequalities conclude (A.21). U

Proof of (A.22). Arguing over the first time hitting Sy then by Markov property, we have

12
Enxa) < ZE[eSj; S; <A, §j > —Ol]E[eS[’j]].{gzijgo}]
j=1

IA

14

o> MPsjelk k4118, > _a]E[eSlij]l@HfO}]'
j=1—a<k<A

By (A.13) and (A.3), we have

¢ A
cl+a)l+k+a) ce’(I+a)(1+A+a)
Eaxy <)y > < _

i3/20p — 5 3/2 — 3/2
i B3R —j+ 13 03/ 0

Proof of (A.23). Arguing over the value of Y'g implies that

En23) = E[ese_sl: 1@}?@(@ -8 <A S, > —a]

12
= E[e% 08,0 <8 =50 max Sk - S0 4.5,z —a],
= 1<k<t

which by Markov property at time j, is bounded by

4
_ _ .
> oP[S;i <), max (S50 <A, S; = ] G E |
j=1 ==
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By (A.13),
¢
E(A23) Z I:S/ 1<Sj,max(Sk—Sk)<A S ];
o —j+1)32
[
=Y ru;. (A.30)
j=1
We split this sum into two parts: Zﬁ;‘;m and ) ,_1/3 ;- For the first sum, by (A.4), one sees that
-l /3
- c
g = X Pz =S G

j=1

IA

X ca+w _+o
X_: J— )32 = g6

For the second sum, by Markov property at j/3 and 2j/3 then by reversing time,
_ — c

S PS5 = ~a)P(max Sk — S0 < A)P(Sj3=53) =3

rej <P(§S;3>—a) 12?73( k= Sk = (Sj/3 ,/3)(5_].+1)3/2

Cc

= P(S,3 = —e)P(max (5 — 50 < A)P(S,3 20—

It is known by [19] that for sufficiently large A > 0, P(max|<g<; Sk—Sp) <A <e le . This together with (A.2)
implies that for any n large enough,

/ / e
Y onys Y RO e U e

—el3<j<t —e3<j<t Jje=j+h ¢
which ends the proof. ]

Proof of (A.24). By Markov property at time Ys = j,

4
E(A.24) = E[eSg—Sz; Ee > A, §@ = _05] = Zp(gj > —a, Ej = Sj z A)E[eSFj]l{gz_‘,-fO}]’
j=1

which by (A.13), is bounded by Z/ lP(S > —a, S, =S5 >A)cl—-j+1)" 3/2 Then by (A.6), Ena24) <

14 c(1+a) c(l4a)
Z] 1j1/2(l j+1)3/2A = VAYE R 0
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