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Abstract. We prove a quenched central limit theorem for balanced random walks in time-dependent ergodic random environ-
ments which is not necessarily nearest-neighbor. We assume that the environment satisfies appropriate ergodicity and ellipticity
conditions. The proof is based on the use of a maximum principle for parabolic difference operators.

Résumé. Nous démontrons un théorème de loi limite centrale presque sûr pour des marches aléatoires équilibrées non nécessai-
rement aux plus proches voisins, dans un milieu aléatoire ergodique. Nous supposons que l’environnement satisfait des conditions
d’ergodicité et d’ellipicité appropriées. Notre preuve est basée sur un principe du maximum pour des opérateurs aux différences
paraboliques.
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1. Introduction

We consider random walks in a balanced time-dependent random environment. Under a mild ergodicity assumption
on the law of the environment and a moment condition on the jump probabilities, we prove a quenched central limit
theorem (QCLT). Our results extend previous results of Lawler [21] and of Guo and Zeitouni [13] and are based on the
use of a new maximum principle for parabolic difference operators. Furthermore, they can be considered as a version
of discrete homogenization of stochastic parabolic operators in non-divergence form without uniform ellipticity (for
homogenization results in a similar PDE settings, we refer to [5,22]).

We state our results in both discrete and continuous time settings.

1.1. Discrete time RWRE

Let U be a nonempty finite subset of Zd which will be called the jump range. Define a set of probability vectors

P =P(U) :=
{
v = {

v(e) > 0 : e ∈ U
} :

∑
e∈U

v(e) = 1

}
.
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Consider a discrete time stochastic process ω := {ωn : n ∈ N} with state space � := PZd
, so that ωn := {ωn(x) : x ∈

Zd} with ωn(x) := {ωn(x, e) : e ∈ U} ∈ P . We call �N the environmental space while an element

ω ∈ �N (1.1)

a discrete time environment. Note that throughout this construction the set U is fixed and is not dependent on ω. Let
us denote by P the law of ω and EP its expectation. Given ω ∈ �N, x ∈ Zd and n ∈ Z consider the random walk
{Xm : m ≥ 0} with a law Px,n,ω on (Zd)N defined through Px,n,ω(Xn = x) = 1 and the transition probabilities

Px,n,ω(Xn+k+1 = y + e|Xn+k = y) = ωn+k(y, e),

for k ≥ 0, y ∈ Zd and e ∈ U . We call this process a discrete time random walk in time-dependent random environment
and call Px,n,ω the quenched law of the random walk starting from x at time n. The expectation of the law Px,n,ω is
denoted by Ex,n,ω .

Given any topological space T , we will denote by B(T ) the corresponding Borel sets. For x ∈ Zd and n ≥ 0
define the space–time shift θn,x : �N → �N by (θn,xω)m(y) := ωn+m(y + x) for all m ≥ 0 and y ∈ Zd . Throughout,
we will assume that P is stationary under the action of {θn,x : n ≥ 0, x ∈ Zd}. Let now Z ⊂ N × Zd . We will say
that {θn,e : (n, e) ∈ Z} is an ergodic family of transformations for the probability space (�N,B(�N),P) if whenever
A ∈ B(�N) satisfies θ−1

n,eA = A for all (n, e) ∈ Z, then P(A) ∈ {0,1}. Note that {θn,e : (n, e) ∈ Z} is an ergodic family
of transformations for P if and only if {θn,e : (n, e) ∈ 〈Z〉} is an ergodic family for P, where 〈Z〉 denotes the subset of
N×Zd generated by Z.

When the environment is time-independent, i.e., ωn = ωn+1 for all n ≥ 0, we call ω a static environment. In this
case, we may drop the time subscripts. E.g., we may write ωn(x, e), θn,x and Px,n,ω simply as ω(x, e), θx and Px,ω .

Define the space–time environmental process as the discrete time Markov chain

ω̄n := θn,Xnω, n ≥ 0,

with state space �N. Here the random walk {Xn : n ≥ 0} has law P0,0,ω . In general, if ω is distributed according to
some law μ on �, we define Pμ := ∫

P0,0,ω dμ. We will say that μ is an invariant distribution for the environmental
process if ω̄n under Pμ has identical distribution for n ≥ 0.

Let D ⊂ U . We say that a random environment with law P is balanced in D if for every x ∈ Zd and n ≥ 0

P

(∑
e∈D

eωn(x, e) = 0

)
= 1.

We say that the environment is uniformly elliptic in D with ellipticity constant κ > 0 if

P
(
ωn(x, e) > κ for all e ∈ D \ {0}, x ∈ Zd and n ≥ 0

) = 1.

When the environment is balanced (resp. uniformly elliptic) in U , we simply say that it is balanced (resp. uniformly
elliptic). We call the environment elliptic if the jump range U spans Rd .

Let us now recursively define the range of the random walk after n steps as U1 := U , while for n ≥ 1

Un+1 := {
y ∈ Zd : y = x + e for some x ∈ Un and e ∈ U

}
.

Let also for n ≥ 1 and x, y ∈ Zd

pn(x, y) := Px,0,ω(Xn = y).

Now set

Vn(x) := {
pn(x, x + z)z : z ∈ Un

} ⊂ Rd . (1.2)
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Throughout, given a subset V ⊂ Rd , we will denote by conv(V ) its convex hull and by |V | its Lebesgue measure.
Define for n ≥ 1

εn(x) := (
pn(x, x)

∣∣conv
(
Vn(x)

)∣∣)1/(d+1)
. (1.3)

Denote also by {e1, . . . , ed} the canonical basis of Zd .
We say that the random walk X· in random environment satisfies the quenched central limit theorem (QCLT) with

a non-degenerate covariance matrix A if

For almost all environments ω, under P0,0,ω , the sequence X[n·]/
√

n converges in law to a Brownian motion with a deterministic non-
degenerate covariance matrix A.

Theorem 1.1. Consider a discrete time random walk in an elliptic balanced time-dependent random environment
with law P. Suppose that the family of shifts {θ1,e : e ∈ U} is ergodic and that

inf
n≥1

EP

[
ε−(d+1)
n (0)

]
< ∞. (1.4)

Then, the following are satisfied.

(i) The environmental process has a unique invariant probability measure ν which is absolutely continuous with
respect to P.

(ii) The QCLT holds with a non-degenerate covariance matrix A = {ai,j : 1 ≤ i, j ≤ d}, where

ai,j :=
∑
e∈U

(e · ei)(e · ej )

∫
ω0(0, e)dν.

Theorem 1.1 extends the static version of the QCLT proved by Lawler [21] for uniformly elliptic environments and
by Guo and Zeitouni [13] for elliptic environments. Other recent related results for random walks in balanced static
environments include Berger and Deuschel [9] and Baur [7]. On the other hand, it should be pointed out that several
results exist proving QCLT for random walks in time-dependent environments, but in general under mixing condition
which are stronger that our ergodicity assumption (see for example [11] or [3]). Recently in [4], the QCLT is obtained
for continuous-time random walk in time-dependent ergodic random conductance under similar moment conditions
as in (1.8) on the jump rates.

Remark 1.1. For nearest-neighbor random walks in a static random environment, a similar criteria for QCLT as (1.4)
for n = 1 is obtained by Guo and Zeitouni [13], where P is ergodic with respect to the spatial shifts {θx : x ∈ Zd}.
Note that in the time-dependent case, neither do we demand the environment to be ergodic under the spatial shifts,
nor under the time shifts alone.

One may replace the ergodic family of transformations {θ1,e, e ∈ U} with {θn,x : (n, x) ∈ Z} for some set Z ⊂
N × Zd . Clearly, the smaller the set Z is, the stronger our ergodicity assumption is. A natural question is, can we
weaken our condition by enlarging the ergodic family of transformations? We give a negative answer through a
counterexample in Section 7, where the ergodic family of transformations is larger than {θ1,e, e ∈ U} but the QCLT
fails. (In that case, a CLT holds for almost all ω but with a random covariance matrix dependent on ω.)

Remark 1.2. The non-degeneracy of the matrix A of part (ii) of Theorem 1.1 follows from the fact that for any vector
u = (u1, . . . , ud) one has that

u · Au =
∑
e∈U

(e · u)2
∫

ω0(0, e)dν > 0.

Indeed, (1.4) implies that the vectors of U span Rd . On the other hand, ν is absolutely continuous with respect to P,
which implies that A is a positive-definite matrix.
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Remark 1.3. Condition (1.4) of Theorem 1.1 is always satisfied if the environment is balanced and uniformly elliptic
(with constant κ > 0) in a subset D ⊂ U such that | conv(D)| > 0. Indeed, since the environment is balanced in D, we
see that 0 ∈ conv(D), so that for some constants λe > 0, e ∈ D, we have

∑
e∈D λee = 0. Moreover, the coefficients λe

can always be chosen as integer numbers, as all e ∈ U have integer coordinates. Therefore, the random walk returns
to the origin after N = ∑

e∈D λe steps with a probability larger than κN , so that pN(0) ≥ κN . On the other hand, the
fact that | conv(D)| > 0 implies that | conv(VN)| > 0, cf. (1.2), is also bounded by some positive constant so that εN ,
cf. (1.3), is bounded from below by some positive constant.

1.2. Continuous time RWRE

We can also formulate a continuous time version of Theorem 1.1. Recall that U is a finite subset of Zd . Define

Q := {
v = {

v(e) > 0 : e ∈ U
}}

.

Note that we do not assume any upper bound on the transition rates v(·) ∈ Q. We call D([0,∞);H), where H := QZd
,

the environmental space while an element

ω := {ωt : t ≥ 0} ∈ D
([0,∞);H)

a continuous time environment, so that ωt := {ωt(x) : x ∈ Zd} with ωt(x) := {ωt(x, e) : e ∈ U} ∈ Q. Let us denote by
Q the law of the continuous time environment ω. Given an environment ω, for u : Zd × [0,∞) → R bounded and
differentiable in time for each x ∈ Zd , we define the parabolic difference operator

Lωu(x, t) :=
∑
e∈U

ωt (x, e)
[
u(x + e, t) − u(x, t)

] + ∂tu(x, t).

Let (Xt , t)t≥0 be the Markov process on Zd × [0,∞) with generator Lω and initial state (0,0). We call (Xt )t≥0 a
continuous time random walk in the time-dependent environment ω and denote for each x ∈ Zd by P c

x,t,ω the law on
D([0,∞);Zd) of this random walk starting from x at time t . We call P c

x,t,ω the quenched law of the random walk.
For each s ≥ 0 and x ∈ Zd define the transformation

θs,x : D([0,∞);H) → D
([0,∞);H)

by (θs,xω)t (y) := ωt+s(x + y). We assume that the law of the environment Q is stationary under the action of the
shifts {θs,x : s ≥ 0, x ∈ Zd}.

We say that the random environment ω with law Q is balanced if for every t ≥ 0, x ∈ Zd ,∑
e∈U

eωt (x, e) = 0 Q-a.s. (1.5)

As in the discrete-time case, we can also define the environmental process as the continuous time Markov process

ω̄t := θt,Xt ω

for t ≥ 0. Here the process (Xt )t≥0 is sampled according to P c
0,0,ω . In general, if ω is distributed according to some

law μ, we define P c
μ := ∫

P c
0,0,ω dμ. We will say that μ is an invariant distribution for the environmental process if

the law of ω̄t under P c
μ is independent of t for t ≥ 0.

For each (x, t) ∈ Zd × [0,∞), let

Ux,t = {
ωt(x, e)e : e ∈ U

}
(1.6)

and

ε(x, t) = εω(x, t) := ∣∣conv(Ux,t )
∣∣1/(d+1)

,

υ(x, t) = υω(x, t) :=
∑
e∈U

ωt (x, e).
(1.7)
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We will denote by EQ the expectation with respect to the law Q of the environment and write ε = ε(0,0) and υ =
υ(0,0).

Theorem 1.2. Consider a continuous time random walk in an elliptic time-dependent balanced random environment
with law Q. Suppose that the family of shifts {θs,x : s > 0, x ∈ U} is ergodic. Assume that

EQ

[
υd+1 + 1

εd+1

]
< ∞. (1.8)

Then, the following are satisfied.

(i) The environmental process has a unique invariant distribution which is absolutely continuous with respect to Q.
(ii) Q-a.s. under P c

0,0,ω the sequence Xt ·/
√

t converges, as t → ∞, in law on the Skorokhod space D([0,∞);Rd) to
a Brownian motion with a deterministic non-degenerate covariance matrix.

1.3. Applications of the QCLTs

Theorem 1.2 can be applied to derive quenched central limit theorems for balanced environments driven by some
interacting particle systems. An example of this situation is a random walk moving among the zero-range process.
Given a function g :N→ [0,∞) satisfying g(k) > g(0) = 0 for all k > 0, the zero-range process can be constructed as
a Markov process describing the movement of particles on the lattice Zd , so that if at a site x ∈ Zd and time t ≥ 0 there
are ηt (x) particles, a particle jumps uniformly to the nearest neighboring sites of x at a rate g(ηt (x)). The infinitesimal
generator L of this interacting particle system is defined by its action on functions f : NZd →R depending on a finite
number of coordinates of η = {η(x) : x ∈ Zd} ∈ NZd

by

Lf (η) =
∑

x,y∈Zd :|x−y|1=1

g
(
η(x)

)(
f

(
ηx,y

) − f (η)
)
,

where

ηx,y(z) := η(z) − 1z=x + 1z=y.

Under the condition

sup
k∈N

∣∣g(k + 1) − g(k)
∣∣ < ∞,

this process is well defined whenever the initial condition η ∈ S, where

S :=
{
η ∈ NZd :

∑
x∈Zd

η(x)α(x) < ∞
}
,

and

α(x) :=
∞∑

n=0

1

2n
pn(0, x),

with pn(0, x) the probability that a discrete time simple symmetric random walk starting from 0 is at position x at
time n (see [2] for this construction). The above process is called zero-range process, and we will denote by Pη its law
on D([0,∞);S) starting from η ∈ S. This process has a family of invariant measures (see also [2]) defined through
the partition function Z : [0,∞) → [0,∞) by

Z(α) =
∑
k≥0

αk

g(1) · · ·g(k)
.
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Define

α∗ := sup
{
α ∈ [0,∞) : Z(α) < ∞}

.

Assume also that

lim
α→α∗ Z(α) = ∞.

Now, for each 0 ≤ α < α∗ define the product probability measure μα on the Borel σ -algebra of NZd
, with marginals

given by

μα(k) = 1

Z(α)

αk

g(1) · · ·g(k)
.

As a matter of fact μα(S) = 1, so that we can define a probability measure

Pα :=
∫

Pη dμα(η).

Let us assume that the function g is non-decreasing, so that for each 0 ≤ α < α∗, the invariant measure μα is also
extremal [2]. Therefore, for α ∈ [0, α∗), the shifts {θs,x : s > 0, x ∈ Zd} form an ergodic family of transformations for
Pα . For each e ∈ {e1, . . . , ed}, fix a finite range function u(e, ·) : S → (0,∞): in other words, there is an R > 0 such
that for each η ∈ S, u(e, η) depends only on η(x) for |x|1 ≤ R. Define for e ∈ {e1, . . . , ed},

u(−e, ·) := u(e, ·).
Now, define the stochastic process for t ≥ 0, ωt := {ωt(x) : x ∈ Zd} where for x ∈ Zd , we define

ωt(x) := {
u(e, θxηt ) : e such that |e|1 = 1

}
.

Let us call ω := {ωt : t ≥ 0} a an environment generated by an attractive zero-range process. We then have the
following immediate corollary to Theorem 1.2.

Corollary 1.1. Consider a continuous time random walk {Xt : t ≥ 0} in an environment ω generated by an attractive
zero-range process, with law Pα for some α ∈ [0, α∗). Assume that

∫
(
∑

e∈U u(e, η))d+1 + 1∏d
i=1 u(ei, η)

dμα < ∞. (1.9)

Then Pα-a.s. the random walk {Xt : t ≥ 0} satisfies the quenched central limit theorem with nondegenerate covariance
matrix.

The condition (1.9) is satisfied when the function u is bounded from both above and below. Furthermore, Corol-
lary 1.1 includes the case of a second class particle in the zero-range process, solved by Saada in [26], where never-
theless the main problem we face here, which is the construction of the invariant measure, is not present.

Theorem 1.1 can be applied to derive QCLTs for a certain class of random walks in static random environment.
In order to give a simple example, we will consider a random walk on Zd1+d2 , d1, d2 ∈ N. For x ∈ Zd1+d2 , we write
x = (x(1), x(2)) so that x(1) ∈ Zd1 and x(2) ∈ Zd2 . We say that a static environment ω ∈ PZd1+d2 is autonomous in the
first coordinates if Px,ω(X

(1)
1 = e(1)) depends only on the first d1 coordinates of x. That is, for x, z ∈ Zd1+d2 ,

Px,ω

(
X

(1)
1 = e(1)

) = Pz,ω

(
X

(1)
1 = e(1)

)
if x(1) = z(1).

In other words, X
(1)
n is a Markov chain under P0,ω .
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Corollary 1.2. Consider a random walk Xn = (X
(1)
n ,X

(2)
n ) on Zd1+d2 in a static random environment with jump

range U = {e ∈ Zd1+d2 : |e| ≤ 1}. Assume that P is stationary under {θx : x ∈ Zd1+d2} and for all i = 1, . . . , d1, it is
ergodic under the shifts {θ±ei

}. Suppose the following are satisfied.

(a) (autonomous first coordinates) P-almost surely, the environment is autonomous in the first coordinates.
(b) (equivalent ergodic invariant measure for the first coordinates) There is an invariant measure ν which is equivalent

to P such that the environmental process (θ
(X

(1)
n ,0)

ω)n∈N is an ergodic sequence under ν × P0,ω .

(c) (QCLT for the first coordinates of the random walk) There exists a deterministic vector v1 ∈ Zd1 such that P-
a.s. under P0,ω , the sequence (X

(1)
[n·] − v1n·)/√n converges in law to a Brownian motion with a deterministic

non-degenerate covariance matrix.
(d) (balanced and uniformly-elliptic in the second coordinates) P-a.s., ω is uniformly-elliptic and balanced in {±ei :

i = d1 + 1, . . . , d1 + d2}.
Then P-a.s. under P0,ω , the sequence (X[n·] − nv)/

√
n converges in law to a Brownian motion with a deterministic

non-degenerate covariance matrix, where v := (v1,0) ∈ Zd1+d2 .

Remark 1.4. As an application of Corollary 1.2, we will obtain QCLT for an environment which is “ballistic and
autonomous in the first d1 directions and balanced in the other d2 coordinates.”

We let α ∈ PZd1 and β ∈ PZd1+d2 be static random environments which are independent under their joint law. We
construct α,β such that

(i) α is an iid uniformly-elliptic environment on Zd1 , d1 ≥ 4, with jump range {y ∈ Zd1 : |y| ≤ 1} and it satisfies the
ballisticity condition (P ), cf. [8, Theorem 1.10].

(ii) β is a stationary (under the shifts {θx : x ∈ Zd1+d2}) balanced environment on Zd1+d2 which is uniformly-elliptic
on its jump range {x ∈ Zd1+d2 : x(1) = 0, |x(2)| ≤ 1}.

Define the environment ω ∈ PZd1+d2 such that for x, e ∈ Zd1+d2 ,

ω(x, e) =
{

α(x(1), e(1)) if e = ±ei, i = 1, . . . , d1,

α(x(1),0)β(x, e) if e = 0 or e = ±ed1+j , j = 1, . . . , d2.

Then the law of ω satisfies all conditions of Corollary 1.2 and the QCLT holds.

Remark 1.5. One may replace α in the above example with any environment that satisfies conditions (b) and (c)
of Corollary 1.2. For instance, let ξ(y, e) be the transition probability of an iid conductance model, we may take a
constant r ∈ (0,1) and let α(x, e) := (1− r)ξ(x, e)+ r1e=0. Clearly, the presence of r is to guarantee that α(x,0) > 0.

Remark 1.6. Recently Baur [7] proved a QCLT with similar flavor for iid static environment on Zd, d ≥ 3, where the
environment is a small perturbation of the simple random walk and is balanced in a fixed coordinate direction. The
law of the environment is also assumed to be invariant under antipodal reflections.

1.4. Organization of the article

Since the proofs of Theorem 1.1 and 1.2 are similar, most of the subsequent sections of this paper will give the details
of the proof of the discrete time Theorem 1.1, while an outline of the proof of the continuous time Theorem 1.2 is
given in Section 5. In Section 2.1, we state the version of Kozlov’s theorem that will be used to construct the absolutely
continuous invariant measure for the discrete time random walk. In Section 2.2, the parabolic maximum principle for
general meshes is stated while its proof is deferred to Section 4. Both Kozlov’s theorem and the parabolic maximum
principle are subsequently used in Section 3 to prove Theorem 1.1. Corollary 1.2 is proved in Section 6. In Section 7,
we give an example that the ergodicity hypothesis of Theorem 1.1 cannot be weakened by enlarging the ergodic family
of transformations.
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2. Two preliminary tools

Here we state two theorems that will be used to prove Theorem 1.1. The first is a version of a well known theorem of
Kozlov for time dependent random walks, while the second is the parabolic maximum principle for general meshes,
whose proof is given in Section 4. The parabolic maximum principle is a crucial tool to construct the absolutely
continuous invariant measure of part (i) of Theorem 1.1, while Kozlov’s theorem is required to derive part (ii) of the
same theorem.

2.1. Kozlov’s theorem

The proof of Theorem 1.1 will require the following version of Kozlov’s theorem [14] for time dependent random
walks.

Theorem 2.1. Consider a random walk in a time-dependent elliptic random environment which has a law P. Assume
that {θ1,z : z ∈ U} is an ergodic family of transformations with respect to P. Assume that there exists an invariant
measure ν for the environmental process, which is absolutely continuous with respect to P. Then, the following are
satisfied:

(i) ν is equivalent to P.
(ii) The environment as seen from the random walk with initial law ν is ergodic.

(iii) ν is the unique probability measure for the environmental process which is absolutely continuous with respect
to P.

Proof. Since the proof is similar to the case of random walks in static random environments, we will stress the steps
which are different (see Theorem 1.2 of Lecture 1 of [10], for example, for a proof of the theorem for static random
walk in random environment).

To prove part (i), let f be the Radon-Nikodym derivative of ν with respect to P and define E := {f = 0}. We will
prove that P(E) = 0. Using the fact that ν is invariant, we can conclude that P-a.s. for every z ∈ U ,

1E(ω) ≥
∑
z′∈U

ω0
(
0, z′)1E(θ1,z′ω) ≥ ω0(0, z)1E(θ1,zω).

From the ellipticity assumption and the fact that 1E(ω) and 1E(θ1,zω) only take the values 0 and 1 we see that for
each z ∈ U , P-a.s.

1E(ω) ≥ 1E(θ1,zω).

Now since P(E) = P(θ−1
1,z E), we conclude that for each z ∈ U , P-a.s.

1E = 1
θ−1

1,z E
.

Thus the function 1E : �N → {0,1} is a.s. shift-invariant under {θ1,z : z ∈ U}. By our ergodicity assumption, we
conclude that 1E is a.s. a constant and so

P(E) ∈ {0,1}.
But

∫
Ec f dP= ∫

f dP= 1 implies that P(Ec) > 0, so that necessarily P(E) = 0.

Let T : �N×N → �N×N denote the left-shift that maps the sequence (ω̄n)n≥0 to (ω̄n+1)n≥0. To prove part (ii) as in
the static case (see [10]) it is possible to prove that for every A ∈ B((�N)N) such that T −1A = A, the process

φ(ω̄n) := Pω̄n(A),

is a martingale and also there is a set B ∈ B(�N) such that

φ = 1B.
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We then show that P-a.s. for each z ∈ U , the inequality

1B(ω) ≥
∑
z′∈U

ω0
(
0, z′)1B(θ1,z′ω) ≥ ω0(0, z)1B(θ1,zω)

is satisfied. Using an argument similar to the one employed in part (i) we now see that ν(B) ∈ {0,1}, which proves
that Pν(A) = ν(B) ∈ {0,1}.

The uniqueness of ν stated in part (iii) can be obtained following exactly the same argument as in the static case
[10]. �

2.2. A new maximum principle for parabolic difference operators on general meshes

The quenched central limit theorem for random walks in static balanced random environments [21] can be proved
using lattice versions of the maximum principle for elliptic operators of Aleksandrov–Bakel’man–Pucci [1,6,25] for
elliptic partial differential equations (see Papanicolaou and Varadhan [24] for an application to prove a QCLT for
diffusions with random coefficients). The maximum principle for elliptic difference operators were proved by Kuo
and Trudinger in a series of papers (see for example [18]).

Nevertheless, to prove Theorem 1.1, we will need a parabolic maximum principle. Within the context of diffusions,
this was first established by Krylov [15], and subsequently a discrete version for general meshes proved by Kuo and
Trudinger in [16,19,20]. Here we state a new parabolic maximum principle, Theorem 2.2, for difference operators and
prove it in Section 4 using a geometric approach.

We firstly introduce some notation. Given x ∈ Zd , we denote by |x|2 its l2 norm. For x0 ∈ Zd , R > 0, let

BR(x0) := {
x ∈ Zd : |x − x0|2 ≤ R

}
.

Consider a balanced time dependent environment a = {an : n ≥ 0} ∈ �N (cf. (1.1)). For any finite subset D ⊂ Zd ×Z,
define its parabolic boundary (see Figure 1) by

Dp := {
(y,n + 1) /∈D : an(x, y − x) > 0 for some (x,n) ∈D

}
.

Define the parabolic operator

Lau(x,n) :=
∑
z∈U

an(x, z)u(x + z,n + 1) − u(x,n).

For a real function g defined on D ⊂ Zd ×Z and p > 0 define

‖g‖D,p :=
( ∑

(x,n)∈D

∣∣g(x,n)
∣∣p)1/p

. (2.1)

Fig. 1. The thick black lines represent the parabolic boundary of BR × [0, T ).
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Set

Ux,n := {
an(x, z)z : z ∈ U

}
, v(x,n) := ∣∣conv(Ux,n)

∣∣, (2.2)

and define

εa(x,n) :=
(

an(x,0)
v(x,n)

#U

)1/(d+1)

,

where #U denotes the cardinality of the discrete set U ∈ Zd .

Theorem 2.2. Assume that D ⊂ Zd × Z is a finite set and D ∪ Dp ⊂ BR × [0, T ] for some R,T > 0. Let u be a
function on D ∪Dp that satisfies

Lau ≥ −f in D (2.3)

for some function f on D. Then, if εa(x,n) > 0 for all (x,n) ∈D, we have

max
D

u ≤ max
Dp

u + CRd/(d+1)‖f/εa‖D,d+1,

where C = C(U,d) is a constant.

Remark 2.1. The elliptic version of Theorem 2.2 was implicitly obtained in [17, (44)]. However, there is a minor
gap in its proof. That is, [17, Lemma 3] is not true for general non-symmetric convex bodies. This can be fixed by
symmetrization and using the balanced assumption (see (4.5)).

3. Proof of the discrete time QCLT (Theorem 1.1)

It is easy to check, as in the case of random walks in static balanced random environments, that part (i) of Theorem 1.1
implies, through Theorem 2.1, part (ii) (see [21]). We therefore will concentrate on the proof of part (i).

Throughout this section, we fix a balanced environment ω ∈ �N, so that for all x ∈ Zd and n ≥ 0,∑
e∈U

eωn(x, e) = 0.

By (1.4), we know that there is k ∈ N such that the random walk returns to its starting point after k steps and such
that

EP

[
ε
−(d+1)
k

]
< ∞. (3.1)

We will soon see that the case in which k > 1 can be reduced to the case k = 1. Therefore, let us first assume that
k = 1. Let N be an even natural number. We introduce for (x,n) ∈ Zd ×Z the equivalence classes

(x,n) := (x,n) + (2N + 1)Zd × (
N2 + 1

)
Z. (3.2)

In addition we define the periodized version ω(N) of ω so that ω
(N)
m (y) = ωn(x) for (y,m) ∈ Zd × Z with (y,m) =

(x,n) and

(x,n) ∈ KN := {
z ∈ Zd : |z|∞ ≤ N

} × {
n′ : 0 ≤ n′ ≤ N2}.

Set

�N,ω = �N := {
θn,xω

(N) : (x,n) ∈ Zd ×Z
}
.
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It is straightforward to see that the process (θn,Xnω
(N))n≥0 is a Markov chain with a finite state space �N and has an

invariant measure νN � PN , where

PN := 1

(N2 + 1)

1

(2N + 1)d

∑
(x,n)∈KN

δθn,xω(N) .

Although it will not be used in this proof, note that the measure νN is of the form

νN =
∑

(x,n)∈KN

φN(x,n)δθn,xω(N) ,

where φN = φN,ω is also the density of an invariant measure of the random walk {(Xn,n) : n ≥ 0}, cf. (3.2), on KN

in the environment ω(N).
Note that since P is ergodic under the action of {θ1,x : x ∈ U} which is a subset of the transformations {θn,x :

(n, x) ∈ N×Zd}, by the multidimensional ergodic theorem (see [12, Theorem VIII.6.9]),

lim
N→∞PN = P, P-a.s.

Define the stopping times τ0 = 0 and

τj+1 = inf
{
i > τj : |Xi − Xτj

|∞ > N or i − τj > N2}, j ≥ 0.

Lemma 3.1. There exists a constant c2 > 0 such that for all c ≥ c2, there is an N0 such that for N ≥ N0 we have that

sup
x∈Zd ,n≥0,ξ∈�N

Ex,n,ξ

[(
1 − c

N2

)τ1
]

≤ 1

2
. (3.3)

Proof. The proof follows the lines of [13, Lemma 4]. Since {Xn : n ≥ 0} is a martingale, by Doob’s martingale
inequality, for any 1 ≤ K < N2,

Px,n,ξ (τ1 ≤ K) ≤ 2
d∑

i=1

sup
ξ∈�N

Px,n,ξ

(
max

0<m≤K
(Xn+m − x)+(i) > N

)

≤ 2

N

d∑
i=1

sup
ξ∈�N

Ex,n,ξ

[
(Xn+K − x)+(i)

] ≤ 2dCU

√
K

N
,

where for each y ∈ Zd , y(i) denotes its ith coordinate and CU = max{|e| : e ∈ U}. Hence for every c > 0 we have that

Ex,n,ξ

[(
1 − c

N2

)τ1
]

≤
(

1 − c

N2

)K

+ 2dCU

√
K

N
.

Taking K = ( N
8dCU

)2 it follows that for c large enough whenever N is large enough then inequality (3.3) is satisfied. �

Denote by S = Sω(N) the transition semigroup of the environment Markov chain {ξn : n ≥ 0} defined for each
ξ ∈ �N as ξn := θn,Xnξ for n ≥ 0. That is, for every function g on �N and ξ ∈ �N , for k ≥ 0 define

Skg(ξ) := E0,0,ξ

[
g(ξk)

]
, ∀k ∈N.

Since νN is the invariant distribution for the finite-state Markov chain (ξk)k≥0, we have∫
g dνN =

∫
Skg dνN, ∀k ∈ N.
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Let c2,N0 be the same constants as in Lemma 3.1. For N ≥ N0, putting ρ = ρ(ω,N) := 1 − c2
N2 ∈ (0,1), we see that

(1 − ρ)−1
∫

g dνN =
∞∑

k=0

ρk

∫
Skg dνN ≤ max

ξ∈�N

∞∑
k=0

ρkSkg(ξ) = max
ξ∈�N

E0,0,ξ

[ ∞∑
k=0

ρkg(ξk)

]
. (3.4)

On the other hand, we have that

max
ξ∈�N

E0,0,ξ

[ ∞∑
k=0

ρkg(ξk)

]
≤

∞∑
m=0

max
ξ∈�N

E0,0,ξ

[
ρτm

∑
k∈[τm,τm+1)

g(ξk)

]

≤
∞∑

m=0

(
max
ξ∈�N

E0,0,ξ

[
ρτ1

])m

max
ξ∈�N

E0,0,ξ

[
τ1−1∑
k=0

g(ξk)

]

≤ 2 max
ξ∈�N

E0,0,ξ

[
τ1−1∑
k=0

g(ξk)

]
, (3.5)

where in the first inequality we used the strong Markov property at times τm, τm−1 up to τ1 successively, and in the
last inequality we used inequality (3.3) of Lemma 3.1. Recall that K

p
N denotes the parabolic boundary of KN . Now,

for any (x,n) ∈ KN ∪ K
p
N and ξ ∈ �N , define

fξ (x,n) := Ex,n,ξ

[
τ−1∑
k=0

g(ξk)

]
,

where τ = inf{i ≥ 0 : |Xi |∞ > N or i > N2}. Then fξ satisfies{
Lafξ (x,n) = −Gξ(x,n), if (x,n) ∈ KN,

fξ (x,n) = 0, if (x,n) ∈ K
p
N,

where Gξ(x,n) := g(θx,nξ). We can now apply Theorem 2.2 to conclude

max
ξ∈�N

fξ (0,0) ≤ max
ξ∈�N

CNd/(d+1)‖Gξ/ε1‖KN,d+1

= CN2‖g/ε1‖Ld+1(PN), (3.6)

where the norm ‖ · ‖KN,d+1 is defined in (2.1). Therefore, combining (3.4), (3.5) and (3.6), we conclude that for some
constant C > 0,∫

g dνN ≤ C‖g/ε1‖Ld+1(PN).

Since � is pre-compact, using Prohorov’s theorem, we can extract a subsequence νNk
of νN which converges weakly

to some limit ν as k → ∞. Note that by the construction, any limit of νN is an invariant distribution for the Markov
chain (ω̄n), cf. [13] or [21]. Then, by the ergodic theorem and the assumption EP[1/εd+1

1 ] < ∞, cf. (3.1), we would
conclude that∫

g dν ≤ C‖g/ε1‖Ld+1(P) for any continuous function g on �N.

The above inequality implies that ν is absolutely continuous with respect to the probability measure μ defined by

dμ := 1

EP[ε−(d+1)
1 (0,0)]

1

εd+1
1 (0,0)

dP.
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Since μ is by definition absolutely continuous with respect to P, we conclude that ν � P. Now, note also that Theo-
rem 2.1 ensures that ν is unique.

In the case in which (3.1) is satisfied for k > 1, by the same argument as in the case k = 1, we can construct an
invariant measure νk which is absolutely continuous with respect to P, for the environmental process looked at times
which are multiples of k, defined for n ≥ 0 by

ω̄(k)
n := θnk,Xnk

ω.

We will now show how to construct from νk an invariant measure ν which is absolutely continuous with respect to P,
for the environmental process {ω̄n : n ≥ 0}. Define for every bounded and continuous function g, the measure ν by

∫
g dν := 1

k

∫ k−1∑
i=0

Rig dνk,

where the operator R is defined by

Rg(ω) := E0,0,ω

[
g(θ1,X1ω)

] =
∑
e∈U

ω0(0, e)g(θ1,eω)

and R0 = I is the identity map. Then note that

∫
Rg dν = 1

k

∫ k∑
i=1

Rig dνk =
∫

g dν + 1

k

∫ (
Rkg − g

)
dνk =

∫
g dν,

where in the last equality we used the fact that νk is an invariant distribution for the kernel Rk . This proves that ν is
an invariant measure for the environmental process. To see that ν is absolutely continuous with respect to P note that
for each measurable A in �, with P(A) = 0, we have∫

Ri1A dνk ≤
∑
z∈Ui

νk

(
θ−1
i,z A

) = 0 ∀i = 1, . . . , k,

since the stationarity of P implies that P(θ−1
i,z A) = 0 which in turn implies by the fact that νk � P that νk(θ

−1
i,z A) = 0.

Therefore we conclude that ν(A) = 0 and hence ν is absolutely continuous with respect to P.

4. Proof of the maximum principle (Theorem 2.2)

Here we will prove the maximum principle in Theorem 2.2. Define

M := max
D

u.

Without loss of generality assume that M > 0, maxDp u ≤ 0, εa > 0 and f ≥ 0 in D. For each (x,n) ∈D define

Iu(x,n) := {
p ∈Rd : u(x,n) − u(y,m) ≥ p · (x − y) for all (y,m) ∈D ∪Dp with m > n

}
.

Let also

� = �(u,D) := {
(x,n) ∈D : Iu(x,n) �=∅

}
,

�+ = �+(u,D) := {
(x,n) ∈ � : R|p|2 < u(x,n) − p · x for some p ∈ Iu(x,n)

}
and

� :=
{
(ξ, h) ∈Rd ×R : R|ξ |2 < h <

M

2

}
⊂Rd+1.
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For (x,n) ∈ D define the set

χ(x,n) := {
(p, q − x · p) : p ∈ Iu(x,n), q ∈ [

u(x,n + 1), u(x,n)
]} ⊂Rd+1.

Step 1. We will first show that

� ⊂ χ
(
�+) =

⋃
(x,n)∈�+

χ(x,n). (4.1)

Indeed, let (ξ, h) ∈ �, and define for (x,n) ∈D,

φ(x,n) := u(x,n) − ξ · x − h.

Let (x0, n0) ∈ D be such that u(x0, n0) = M . Then, by the definition of �, we see that φ(x0, n0) > 0 and

φ(x,n) < 0,

for (x,n) ∈ Dp . We now claim that there exists (x1, n1) ∈ �+ with n1 ≥ n0 such that φ(x1, n1) ≥ 0 and (ξ, h) ∈
χ(x1, n1). Indeed, for x ∈ BR , let

Nx := max
{
n : (n, x) ∈D and φ(x,n) ≥ 0

}
and

n1 := max
x∈BR

Nx ≥ n0 ≥ 0,

with the convention max∅ = −∞. Let x1 ∈ BR be such that n1 = Nx1 . Thus, for all (x,n) ∈ D ∪Dp with n > n1,

u(x,n) − ξ · x < h ≤ u(x1, n1) − ξ · x1.

Hence ξ ∈ Iu(x1, n1) �= ∅ and h + ξ · x1 ∈ (u(x1, n1 + 1), u(x1, n1)], which proves the claim and the statement of
display (4.1).

Step 2. We will now show that for each (x,n) ∈ �+,

∣∣Iu(x,n)
∣∣ ≤ C(#U)d

(L∗
au(x,n))d

| conv(Ux,n)| , (4.2)

where for every (x,n) ∈ �+ and function h(x,n) : �+ → R we define

L∗
ah(x,n) :=

∑
z �=0

an(x, z)
(
h(x,n) − h(x + z,n + 1)

)
.

Fix p ∈ Iu(x,n) and set

w(y,m) := u(y,m) − p · y.

Then Iw(x,n) = Iu(x,n) − p. In particular, 0 ∈ Iw(x,n) and we have w(x,n) − w(x + e,n + 1) ≥ 0 for all e ∈ U .
Furthermore, if q ∈ Iw(x,n) and e ∈ U then

w(x,n) − w(x + e,n + 1) ≥ −e · q.

Hence, for each q ∈ Iw(x,n) and z ∈ Ux,n we have

L∗
au(x,n) = L∗

aw(x,n) =
∑
e �=0

an(x, e)
(
w(x,n) − w(x + e,n + 1)

) ≥ −z · q. (4.3)
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Recall the definition of the Ux,n in (2.2). Let now Vx,n := conv(Ux,n) and consider the polar body of Vx,n, given by
V o

x,n := {z ∈Rd : z · y ≤ 1forally ∈ Vx,n}. Display (4.3) implies that

−Iw(x,n) ⊂ L∗
au(x,n)V o

x,n. (4.4)

Using the fact that
∑

l∈Ux,n
l = 0, note that if z ∈ V o

x,n, then for each y ∈ Ux,n,

z · (−y) = z ·
∑

l∈Ux,n\{y}
l ≤ C(#U).

Hence, setting Ũx,n := {±y : y ∈ Ux,n} and Ṽx,n := conv(Ũx,n) we see that

V o
x,n ⊂ {

z : z · y ≤ (#U) for all y ∈ Ũx,n

} = (#U)Ṽ o
x,n. (4.5)

Combining (4.4) with (4.5) we conclude that

−Iw(x,n) ⊂ (#U)L∗
au(x,n)Ṽ o

x,n.

Now, since Ṽ o
x,n is a symmetric convex body, by Mahler’s inequality [23], we see that

∣∣Ṽ o
x,n

∣∣ ≤ 4d

|Ṽx,n|
,

which finishes the proof of (4.2).
Step 3. Here we derive the maximum inequality from steps 1 and 2. Set

χ
(
�+, x

) :=
⋃

m:(x,m)∈�+
χ(x,m).

For each x ∈ D, define ρx : Rd → Rd by

ρx(y,m) = (y,m + y · x)

and let

χ̃(x, n) := ρx ◦ χ(x,n) = Iu(x,n) × [
u(x,n + 1), u(x,n)

] ⊂Rd+1.

Then, using the inequality a
1

d+1 b
d

d+1 ≤ a+db
d+1 , valid for a ≥ 0, b ≥ 0, and the notation

∑′ for the sum running from
n = 1 to n = T with u(x,n) − u(x,n + 1) and L∗

au(x,n) positive we see that∣∣χ(
�+, x

)∣∣ = ∣∣χ̃(
�+, x

)∣∣
≤

∑′(
u(x,n) − u(x,n + 1)

)∣∣Iu(x,n)
∣∣1(x,n)∈�+

≤ (#U)d
∑′(

u(x,n) − u(x,n + 1)
) (L∗

au(x,n))d

v(x,n)
1(x,n)∈�+

≤ C(#U)d
∑′(an(x,0)(u(x,n) − u(x,n + 1)) + L∗

au(x,n)

(d + 1)ε(x,n)

)d+1

1(x,n)∈�+

= C(#U)d
∑′(−Lau(x,n)

ε(x,n)

)d+1

1(x,n)∈�+ . (4.6)
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Now, note that

|�| = C
Md+1

Rd
.

Combining this with inequalities (4.1), (4.6) and using the hypothesis (2.3), we see that

C
Md+1

Rd
≤

∑
(x,n)∈D

1

εd+1
|f |d+11(x,n)∈�+ .

Therefore,

max
(x,n)∈D

u(x,n) ≤ CR
d

d+1

∥∥∥∥f

ε

∥∥∥∥
D,d+1

.

5. Proof of the continuous time QCLT (Theorem 1.2)

The proof of Theorem 1.2 follows a strategy similar to that of Theorem 1.1. In other words, since the continuous time
random walk is also Q-a.s. a martingale, it suffices to construct an invariant measure for the environmental process
which is absolutely continuous with respect to the initial law Q of the environment. However, unlike the discrete time
case, the continuous time process is allowed to jump at unbounded rates. To obtain a QCLT, we need not only to deal
with the degeneracy of the ellipticity, but also to control the jump rates. This is achieved by first performing a time
change to “slow-down” the original RWRE, and then applying a maximum principle for (continuous-time) parabolic
difference operators to construct the invariant measure.

Let us state the version of the parabolic maximum principle that we use. Consider a balanced continuous time-
dependent environment {at : t ≥ 0}, cf. (1.5), with at := {at (x) : x ∈ Zd} and at (x) := {at (x, e) : e ∈ U} ∈ Q. Given
any finite set D ⊂ Zd and T > 0, we define

D := D × [0, T ).

Define the parabolic boundary of D by

Dp := D� ∪DT ,

where DT = D × {T } denotes its time boundary and

D� := {
(x, t) /∈ D : at (y, x − y) > 0 for some (y, t) ∈ D

}
is the lateral boundary of D.

For p > 0 and any real-valued function g that is summable on D, define

‖g‖D,p :=
(∫ T

0

∑
x∈D

∣∣g(x, t)
∣∣p dt

)1/p

.

We can now state the maximum principle.

Theorem 5.1. Assume that a is a balanced environment. Let u be a function on D ∪Dp which is differentiable with
respect to t in (0, T ). Let f be an integrable function in D. Assume that u satisfies

Lau ≥ f in D.

Then, there is a constant C = C(U,d) > 0 such that

sup
D

u ≤ sup
Dp

u + CRd/(d+1)‖f/ε‖D,d+1,

where R := diam(D) and ε is as defined in (1.7).
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Recall that the space–time process (Xt , t)t≥0 is a Markov process on Zd × R with generator Lω. To show that
(Xt )t≥0 does not explode, i.e., there are only finitely many jumps within finite time, we will first consider a slowed-
down process. Recall the definition of υω in (1.7). Let

(Yt , Tt )t≥0

be the Markov process on Zd × R with generator (υω + 1)−1Lω and initial state (Y0, T0) = (0,0). Note that the
process (Y·, T·) has slower transition rates on both the Zd -coordinate and the R-coordinate, compared to (Xt , t). Note
also that

Tt =
∫ t

0

1

υω(Ys, Ts) + 1
ds (5.1)

and

XTt

d= Yt . (5.2)

Define the stopping times τ0 = τ0(Y·, T·) = 0, and

τj+1 = τj+1(Y·, T·) = inf
{
t > τj : |Yt − Yτj

|∞ > N or Tt − τj > N2}.
With abuse of notation, we enlarge the probability space and still use P c

0,0,ω to denote the joint law of X·, the
environmental process ω̄· and the process (Y·, T·) with initial state (0,0). We let Ec

0,0,ω denote the expectation under
P c

0,0,ω . We have the following analogue of Lemma 3.1.

Lemma 5.1. There exists a constant c > 0 such that for all N large and any ω ∈ �,

Ec
0,0,ω

[(
1 − c

N2

)τ1(Y·,T·)]
≤ 1

2
.

Proof. The proof follows similar argument as in Lemma 3.1. Recall that CU = max{|e| : e ∈ U}. Note that (Yt )t≥0 is

a martingale and (|Yt |2 − CU t)t≥0 is a super-martingale. Let K = N2

2CU
. Then, by Doob’s L2-martingale inequality,

P c
0,0,ω(τ1 ≤ K) = P c

0,0,ω

(
max

0<t≤K
|Yt | > N

)

≤ 1

N2
Ec

0,0,ω

[|YK |2] ≤ CUK

N2
= 1

2
,

where in the first equality we used the fact that TK ≤ K < N2. �

Theorem 5.2. Assume the same conditions as in Theorem 1.2. Then the environmental process (θTt ,Yt ω)t≥0 has a
unique invariant probability measure ν̄ which is equivalent to Q.

Proof. Let QN = {z ∈ Zd : |z|∞ ≤ N} × [0,N2). We introduce on Zd the equivalent classes

(x, t) := (x, t) + (2N + 1)Zd × N2Z.

Fix a balanced environment ω ∈Q, and define its periodized environment ω(N) so that for any (x, t) ∈ QN ,

ω(N)
s (y) = ωt(x)

whenever (y, s) = (x, t).
Set

�N,ω = �N := {
θt,xω

(N) : (x, t) ∈ QN

}
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and let PN = PN,ω denote the probability measure

PN(dξ) = 1

Nd+2

∑
x:(x,t)∈QN

1θt,xω(N)=ξ dt.

Under the environment ω(N), recall that Yt is the slowed-down process. Since under P c
0,0,ω(N) , the process (Yt , Tt )t≥0

is a Markov process on the compact set QN , it has an invariant distribution whose density we denote by φN(x, t)δx dt ,
with (x, t) ∈ QN and δx denotes the Dirac mass. As in the proof of Theorem 1.1, the probability measure νN � PN

defined by

νN(dξ) =
∑

x:(x,t)∈QN

φN(x, t)1θt,xω(N)=ξ dt,

is an invariant distribution of the Markov process (θTt ,Yt ω
(N))t≥0.

For ξ ∈ �N , let ξt := θTt ,Yt ξ denote the environmental process. By similar arguments as in Section 3, Lemma 5.1
implies that for any bounded continuous function g on �N,∫

g dνN ≤ CN−2 max
ξ∈�N

Ec
0,0,ξ

[∫ τ1

0
g(ξt )dt

]
.

Letting

u(x, t) = Ec
0,0,θt,x ξ

[∫ τ1

0
g(ξs)ds

]
,

we have{
(υω + 1)−1Lξ u = −g(θt,xξ) in QN,

u = 0 in Q
p
N.

Then, applying Theorem 5.1 to the operator Lξ , we get

max
QN

u ≤ CN2
∥∥(υ + 1)g/ε

∥∥
Ld+1(PN)

and so∫
g dνN ≤ C

∥∥(υ + 1)g/ε
∥∥

Ld+1(PN)
.

Since, limN→∞ PN,ω =Q,Q-a.s. and

EQ

[
(υ + 1)d+1/εd+1

ω

] ≤ 2dEQ

[(
υd+1 + 1

)
/εd+1

ω

]
< ∞,

using the ergodic theorem and Kozlov’s argument, the conclusion follows. �

Corollary 5.1. Assume the same conditions as in Theorem 1.2. For Q-almost all ω, P c
0,0,ω-almost surely the process

(Xt )t≥0 does not explode. Moreover, the environmental process (θt,Xt ω)t≥0 has a unique invariant probability measure
ν which is equivalent to Q.

Proof. Set ω̄t := θt,Xt ω. By (5.1), Theorem 5.2 and the ergodic theorem,

lim
t→∞

Tt

t
= Eν̄

[
1

υ + 1

]
∈ (0,1) Q⊗ P0,0,ω-a.s.
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Hence, by (5.2), (Xt )t≥0 is not explosive. Furthermore, let

dν := N

υ + 1
dν̄,

where N = (Eν̄[ 1
υ+1 ])−1 is a normalization constant. Then ν is the invariant measure of (ω̄t )t≥0 and it is equivalent

to Q. �

Theorem 1.2(i) is proved in the above corollary. As in Theorem 1.1, this implies the invariance principle Theo-
rem 1.2(ii).

6. Proof of Corollary 1.2

Recall the definitions of x(1), x(2) before Corollary 1.2. We set

Yn := (
X(1)

n ,0
) ∈ Zd1+d2 and Zn := (

0,X(2)
n

) ∈ Zd1+d2 ,

so that Xn = Yn +Zn. For each n ≥ 0, denote by FY the σ -algebra generated by {Y0, Y1, . . .}. Furthermore, we define
a time-dependent environment ωY on PZd2 by

ωY
n (z, e) := ω(Yn + (0, z), Yn+1 − Yn + (0, e))

ω(Yn,Yn+1 − Yn)
for z, e ∈ Zd2 , n ∈N.

Lemma 6.1. P × P0,ω-a.s. under the law P0,ω(·|FY ), {X(2)
n : n ≥ 0} is a random walk on the lattice Zd2 in the time

dependent environment ωY .

Proof. For 0 ≤ m < n − 1 and any two sequences z1, . . . , zm+1 ∈ Zd2 and y1, . . . , yn ∈ Zd1 , we let xi = (yi, zi) for
1 ≤ i ≤ m + 1. By the Markov property,

P0,ω

(
X

(2)
m+1 = zm+1|X(2)

1 = z1, . . . ,X
(2)
m = zm,X

(1)
1 = y1, . . . ,X

(1)
n = yn

)
= P0,ω(X1 = x1, . . . ,Xm+1 = xm+1,X

(1)
m+2 = ym+2, . . . ,X

(1)
n = yn)

P0,ω(X1 = x1, . . . ,Xm = xm,X
(1)
m+1 = ym+1, . . . ,X

(1)
n = yn)

= P0,ω(X
(1)
m+2 = ym+2, . . . ,X

(1)
n = yn|Xm+1 = xm+1)P0,ω(Xm+1 = xm+1|Xm = xm)

P0,ω(X
(1)
m+1 = ym+1, . . . ,X

(1)
n = yn|Xm = xm)

= ω(xm,xm+1 − xm)

Pxm,ω(X
(1)
1 = ym+1)

,

where in the last equality we used condition (a) which says that X
(1)
n is a Markov chain. We finish the proof by

observing that

ω(xm,xm+1 − xm)

Pxm,ω(X
(1)
1 = ym+1)

= ωY
m(zm, zm+1 − zm)|Yi=yi ,i=1,...,n. �

Proof of Corollary 1.2. Let � =PZd1+d2 . We will only consider the non-trivial case where P-almost surely, θei
ω �= ω

for all i = 1, . . . , d1. (Otherwise, since {ω : θei
ω = ω} is shift-invariant under all shifts {θx : x ∈ Zd1+d2}, it follows

by ergodicity that P(θei
ω = ω) = 1 for some i ∈ {1, . . . , d1}, which then implies that every measurable set A ⊂ � is

shift-invariant under the shift θei
. By our ergodicity assumption, we conclude that P is a singleton, i.e., P(ω = ξ) = 1

for some ξ ∈ �. In this case, the RWRE is a simple random walk and the QCLT is trivial.)
For any z ∈ Zd2 , we denote by ẑ := (0, z) ∈ Zd1+d2 so that ẑ(2) = z. Our proof contains several steps.
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Step 1. Set ω̃n := θYnω. By the ergodic theorem, the measure ν that satisfies the properties in condition (b) of
Corollary 1.2 is unique. Let us denote by Qν the law of (ω̃n)n≥0 starting from ν.

Step 2. We will show that the law Qν of the space–time environment {ω̃n(x) : (x,n) ∈ Zd1+d2 ×N} is translation
invariant under the spatial shifts {θ0,ẑ : z ∈ Zd2}. To this end, it is enough to prove that ν, as a measure on the static

environments �, is translation invariant under these spatial shifts. Indeed, since by condition (a), the law of {X(1)
n :

n ∈ N} under Px,ω depends only on the first d1 coordinates of x, we conclude that for any z ∈ Zd2 , the law ν̂z defined
by ν̂z(A) := ν(θẑA) is still an invariant measure for the Markov chain (θYnω)n∈N. Furthermore, by the stationarity of
P under the spatial shifts, ν̂z is also equivalent to P. Therefore by the uniqueness of ν, we have ν̂z = ν for any z ∈ Zd2

and so Qν is translation invariant under {θ0,ẑ : z ∈ Zd2}.
Step 3. Next, we claim that P×P0,ω-almost surely, ωY

n can be written as a function of ω̃n and ω̃n+1, n ≥ 0. Indeed,
for any n ≥ 0,

Qν(ω̃n = ω̃n+1, Yn − Yn+1 �= 0) ≤ Qν

(
θei

ω̃n = ω̃n for some i ∈ {1, . . . , d1}
)

= ν
(
θei

ω = ω for some i ∈ {1, . . . , d1}
)

= 0,

where in the first equality we used that (ω̃n)n≥0 is a stationary sequence under Qν and in the last equality we used ν ≈
P and the assumption at the beginning of the proof. Hence, the events {Yn = Yn+1} and {ω̃n = ω̃n+1} are equivalent.
In particular, we write for z, e ∈ Zd2 ,

ωY
n (z, e) = ω̃n(ẑ, ê)

ω̃n(0,0)
1ω̃n=ω̃n+1 + 1e=0,ω̃n �=ω̃n+1 . (6.1)

Step 4. Notice that ωY is not an elliptic environment. However, we will show that under a time change, X
(2)
n

is a random walk in an ergodic uniformly-elliptic random environment (conditioning on Y·). Indeed, let D = {ξ =
(ξi)i≥0 ∈ �N : ξ0 = ξ1} and

φD(ω̃) = inf{n ≥ 0 : θn,0ω̃ ∈ D} = inf{n ≥ 0 : ω̃n = ω̃n+1}.
Since Qν(ω̃ ∈ D) = EQν [P0,ω(Y1 = 0)] > 0 and the law Qν of ω̃ is ergodic under the time shift θ1,0, by ergodicity,
φD < ∞ almost surely. Moreover, defining the induced shift TD : �N → �N as

TDω̃ := θφD(ω̃),0ω̃,

then (T k
Dω̃)k≥1 (under law Qν ) is still an ergodic sequence, cf. [27, Theorem 1.6]. Recall that by (6.1), ωY

n is a function

of ω̃n and ω̃n+1. Hence, by ergodicity of the sequence (ω̃n)n≥0, the time-dependent environment ζ Y ∈PZd2 ×N defined
by

ζ Y
n (x, e) := (

T n+1
D ωY

)
0(x, e), x ∈ Zd2 , n ≥ 0

is ergodic under time-shifts and stationary (by Step 2) under the spatial shifts. We thus conclude that ζ Y is a uniformly-
elliptic balanced time-dependent random environment which (conditioning on Y· and under Qν ) is ergodic with respect
to the space–time shifts {θ1,z : |z| ≤ 1, z ∈ Zd2}. Furthermore, define recursively random times φ0 := φD and

φi+1(ω̃) := inf{n > φi : ω̃n = ω̃n+1}.
Then, conditioning on Y·,

W ′
n := X

(2)

φn(ω̃)
, n ≥ 0 (6.2)

is a random walk in the time-dependent environment ζ Y defined above.



Quenched invariance principle for random walk in time-dependent balanced random environment 383

Step 5. Now, we will prove a QCLT for X
(2)
n . First, since for ω̃ sampled according to Qν , the sequence W ′

n is a
random walk in a uniformly elliptic and ergodic (with respect to {θ1,z : |z| ≤ 1, z ∈ Zd2}) balanced environment with
jump range {z ∈ Zd2 : |z| ≤ 1}, by Theorem 1.1, we obtain for W ′

n a QCLT with non-degenerate d2 × d2 covariance
matrix. Then, noticing that by Kac’s formula, for Qν -almost every ω̃,

lim
n→∞

φn(ω̃)

n
= 1

Qν(ω̃ ∈ D)
= 1

EQν [P0,ω(Y1 = 0)] < ∞,

with a standard time-change argument, we conclude a QCLT for X
(2)
n (conditioning on Y·). That is, P-a.s., for almost

all trajectories {Y0, Y1, . . .} and any open B ∈ C([0,∞);Zd2),

lim
n→∞P0,ω

(
X

(2)
[n·]√
n

∈ B

∣∣∣FY

)
= Q(B), (6.3)

where Q denotes the law of a Brownian motion on Rd2 with a deterministic non-degenerate covariance matrix.
Step 6. With condition (c), we can now conclude that for any pair of open sets A ∈ C([0,∞);Zd1) and B ∈

C([0,∞);Zd2),

P0,ω

(
X

(1)
[n·] − v1n·√

n
∈ A,

X
(2)
[n·]√
n

∈ B

)
= E0,ω

[
1

X
(1)
[n·]−v1n·/√n∈A

P0,ω

(
X

(2)
[n·]√
n

∈ B

∣∣∣FY

)]
,

which by (6.3) converges to the probability that a Brownian motion (with a deterministic non-degenerate covariance
matrix) in Rd1+d2 belongs to A × B . Using the fact that any open set in C([0,∞) : Zd1+d2) is a countable union of
sets of the form A × B , we conclude the proof. �

7. An example that QCLT fails when the environment is not ergodic enough

Here we show that the QCLT could fail if the ergodicity hypothesis of Theorem 1.1 is weakened.
Consider a discrete time-dependent balanced random environment on Z2. Let p = {p(e) : |e|1 = 1}, q = {q(e) :

|e|1 = 1} be two probability vectors such that p(e) = 1
4 for all e ∈ Z2 with |e|1 = 1, and q(±e1) = 1

6 , q(±e2) = 1
3 . For

any (x,n) ∈ Z2 ×Z, define two space–time environments ξ, ξ ′ such that

ξn(x, e) =
{

p(e) if |x|1 + n is even,

q(e) if |x|1 + n is odd,

ξ ′
n(x, e) =

{
p(e) if |x|1 + n is odd,

q(e) if |x|1 + n is even.

Define the environment measure P to be

P(ω = ξ) = P
(
ω = ξ ′) = 1

2
.

Noting that θ1,0ξ = ξ ′ and the jump range U = {e ∈ Zd : |e| = 1}. The measure P is ergodic under the shifts {θ1,e :
|e| ≤ 1}. However, P is not ergodic under the set of shifts {θ1,e : e ∈ U} and the QCLT fails, since Xn·/

√
n converges

to a Brownian motion with a random covariance matrix

�(ω) =
(

1/2 0
0 1/2

)
1ω=ξ +

(
1/3 0
0 2/3

)
1ω=ξ ′ .
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