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Abstract. We consider a diffusion process under a local weak Hörmander condition on the coefficients. We find Gaussian estimates
for the density in short time and exponential lower and upper bounds for the probability that the diffusion remains in a small tube
around a deterministic trajectory (skeleton path). These bounds depend explicitly on the radius of the tube and on the energy of
the skeleton path. We use a norm which reflects the non-isotropic structure of the problem, meaning that the diffusion propagates
in R

2 with different speeds in the directions σ and [σ,b]. We establish a connection between this norm and the standard control
distance.

Résumé. On considère une diffusion dont les coefficients satisfont une condition d’Hörmander faible locale. On obtient des es-
timées gaussiennes de la densité en temps court et des bornes inférieures et supérieures exponentielles pour la probabilité que la
diffusion reste dans un petit tube autour d’une trajectoire déterministe (« squelette »). Ces bornes dépendent explicitement du rayon
du tube et de l’énergie du squelette. On utilise une norme qui prend en compte la structure non isotrope du problème, dans le sens
où la diffusion se propage dans R2 avec des vitesses différentes dans la direction de σ et [σ,b]. On établit un lien entre cette norme
et la distance de contrôle standard.
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1. Introduction

In this article we consider the following stochastic differential equation on [0, T ]:

Xt = x0 +
∫ t

0
σ(Xs) ◦ dWs +

∫ t

0
b(Xs) ds, (1.1)

where the diffusion X is two-dimensional and the Brownian Motion W is one-dimensional. ◦dWs denotes the
Stratonovich integral, and we suppose a certain geometric property for the diffusion coefficient (which holds true
in particular for the equation associated with the Asian option). Since σ is just a column vector, the ellipticity as-
sumption fails at any point, and the strong Hörmander condition fails as well, so we investigate the regularity of this
process assuming a hypoellipticity condition of weak Hörmander type. The prototype of this kind of problems is a
two dimensional system where the first component X1 follows a stochastic dynamic, and the second component X2

is a deterministic functional of X1, so the randomness acts indirectly on X2. Besides the natural application to the
Asian option, there are others such as in [23,24]. In these papers the functioning of a neuron is modeled: X2 is the
concentration of some chemicals resulting from a reaction involving the first component X1. Differently from our set-
ting, though, there are several measurements corresponding to the input X1, so X2 is multi-dimensional. The pattern,
however, is similar.
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We find Gaussian estimates for the density in short time, supposing the process satisfies a weak Hörmander condi-
tion. Ben Arous and Léandre investigate the decay of the heat kernel of a hypoelliptic diffusion over the diagonal in
their celebrated papers [10,11]. Their framework is different because they work under a strong Hörmander condition
and because they are interested in asymptotic results, whereas we provide results holding for finite positive times. In
[28] explicit two-sided bounds for the density of diffusion processes are established under strong Hörmander condi-
tions, if the drift is generated by the vector fields of the diffusive part. On the opposite, the problem we consider here
is of weak Hörmander type, meaning that the drift has a key role in the propagation of the noise. In this case, the drift
gives an additional specific contribution which is usually difficult to handle when trying to estimate the density of the
solution. In [7] and [19] bounds are provided for the density of the Asian type SDE and for a chain of SDEs, in a
weak Hörmander framework. An analytical approach to a similar density estimate is given by Polidoro, Pascucci and
Boscain in [13,33,35].

In this paper, we obtain a more general result than those known in the cited literature, as we allow for a more
general coefficient for the Brownian Motion. Indeed we suppose that locally the vector field σ has the same direction
of the directional derivative ∂σ σ , whereas the works mentioned above would apply for σ = (σ1,0) which is a more
restrictive condition. Moreover, our coefficients are just locally hypoelliptic. The other novelty is that thanks to our
short time non-asymptotic result we are able to find exponential lower and upper bounds for the probability that the
diffusion remains in a small tube around a deterministic trajectory. More precisely we consider (1.1) and introduce
the associated skeleton path solution of the following ODE:

xt (φ) = x0 +
∫ t

0
σ
(
xs(φ)

)
φs ds +

∫ t

0
b
(
xs(φ)

)
ds,

for a control φ ∈ L2[0, T ]. We assume the following weak Hörmander condition: σ, [σ,b] span R
2 locally around

x(φ). This is enough to ensure the existence of the density in the case of diffusions (see [32,37]). Similar results are
also available for SDEs with coefficients with dependence on time, under very weak regularity assumptions ([17]),
SDEs driven by a fractional Brownian Motion ([8]) and for rough differential equations ([16]).

We prove here a tube estimate for (1.1), meaning that we find upper and lower bounds for P(sup0≤t≤T ‖Xt −
xt (φ)‖ ≤ R), explicitly depending on the energy of the skeleton path and on the radius of the tube, that can be time-
dependent. Several works have considered this subject, starting from Stroock and Varadhan in [38], where such result
is used to prove the support theorem for diffusion processes. In their work ‖ · ‖ is the Euclidean norm, but later on
different norms have been used to take into account the regularity of the trajectories (about this, see for example [9]
and [21]). This problem is interesting for physicists because of the Onsager–Machlup functional (see [14,25]), and is
also related to large and moderate deviation theory (see [12,22]).

Since we work under Hörmander-type conditions, in order to give accurate estimates we consider a norm account-
ing for the non-diffusive time scale of the process. Indeed, thanks to the Hörmander condition, the noise propagates in
the whole R

2, but with with speed t1/2 in the direction σ and t3/2 in the direction [σ,b]. We also introduce a suitable
control metric, adapting the classic control-Carathéodory distance, which is equivalent to this norm.

We apply techniques based on the recent work by Bally and Caramellino ([1–3]) on density estimates for random
variables. In Section 3 we recall some of these results and derive an upper and a lower bound for the density in a fairly
abstract framework, starting from the Malliavin–Thalmaier representation formula for the density. The importance of
these abstract estimates may go beyond our particular problem.

This paper is organized as follows. In Section 2 we introduce notations and state our main results: the short-time
density estimate and the tube estimate. In Section 3 we develop the Malliavin calculus techniques that we apply to
estimate the density of our diffusion. In Section 4 we apply these techniques, finding the short-time density estimates
mentioned above. In Section 5 we use the short-time result and a concatenation procedure to prove the tube estimate.

2. Notations and results

2.1. Notations

We start introducing some notations. We write α = (α1, . . . , αk) ∈ {1, . . . , n}k for a multi-index with length |α| = k

and ∂α
x = ∂xα1

· · ·∂xαk
. For f,g : Rn →R

n we recall the definition of the directional derivative of f in the direction g
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as

∂gf (x) = (∇f )g(x) =
n∑

i=1

gi(x)∂xi
f (x).

The Lie bracket [f,g] in x is defined as

[f,g](x) = ∂f g(x) − ∂gf (x).

We denote by MT the transpose of a 2 × 2 matrix M . We also use the notation λ∗(M) for the smallest singular value
of M , and λ∗(M) for the largest one. We recall that singular values are the square roots of the eigenvalues of MMT ,
and that, when M is symmetric and semi-definite, singular values coincide with the eigenvalues of M . In particular,
when M is a covariance matrix, λ∗(M) and λ∗(M) are the smallest and the largest eigenvalues of M .

If M is invertible we also associate to M the norm on R
2

|ξ |M =
√〈(

MMT
)−1

ξ, ξ
〉= ∣∣M−1ξ

∣∣.
For two 2 × 2 positive semi-definite symmetric matrices B1,B2, we write B1 ≤ B2 for

ξT B1ξ ≤ ξT B2ξ, for all ξ ∈R
2.

As we said, we consider the diffusion

Xt = x0 +
∫ t

0
σ(Xs) ◦ dWs +

∫ t

0
b(Xs) ds, (2.1)

where X is in dimension two, W is in dimension one. For x ∈R
2, we set

A(x) = (σ(x), [σ,b](x)
)

(2.2)

and, for any R > 0,

AR(x) = (R1/2σ(x),R3/2[σ,b](x)
)
. (2.3)

2.2. Density estimate

In the first part of the paper we prove an estimate for the density of the solution of (2.1). We consider the following
assumptions on the coefficients:

A1 The “first order” weak Hörmander condition holds at the initial point of the diffusion:

λ∗
(
A(x0)

)
> 0.

A2 σ,b ∈ C5(R2) and there exists a constant ρ > 0 such that, ∀x ∈R
2:∑

1≤|α|≤5

∣∣∂α
x σ (x)

∣∣+ ∣∣∂α
x b(x)

∣∣≤ ρ.

A3 There exist a neighborhood V ⊂R
2 of x0 and a differentiable scalar function κσ : V →R such that for all x ∈ V

∂σ σ(x) = κσ (x)σ (x). (2.4)

We suppose that
∑

0≤|α|≤1 |∂α
x κσ (x0)| ≤ ρ. If σ(x) = (σ1(x),0), the Asian option stochastic differential equation,

this property holds true with κσ = ∂x1σ1.

We prove the following Gaussian bound:
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Theorem 4.5. Suppose A1, A2, A3 hold. Let (Xt )t∈[0,T ] be the solution of (2.1), and for t ∈ [0, T ], let pt (x0, y) be
the density of Xt at y. Then there exist constants L,C, δ∗ such that, for any r > 0, if 0 < δ ≤ δ∗ exp(−Lr2), setting
x̂0 = x0 + b(x0)δ, for |y − x̂0|Aδ(x0) ≤ r

1

Cδ2
exp
(−C|y − x̂0|2Aδ(x0)

)≤ pδ(x0, y) ≤ C

δ2
exp
(−C−1|y − x̂0|2Aδ(x0)

)
. (2.5)

This estimate is local around the point x̂0 = x0 + δb(x0). Since we assume the weak Hörmander condition only
at x0, it is not possible to obtain global lower bounds. Indeed the “local” weak Hörmander condition ensures the
existence of the density ([26]), but not its positivity. See Example 2.3 for more details on this aspect.

2.3. Tube estimate

We suppose σ, b ∈ C5(R2). For x ∈R
2 define

n(x) =
5∑

k=0

∑
|α|=k

∣∣∂α
x b(x)

∣∣+ ∣∣∂α
x σ (x)

∣∣,
and set λ(x) = λ∗(A(x)). We take now a control φ ∈ L2[0, T ], and the associated skeleton path solution of

xt (φ) = x0 +
∫ t

0
σ
(
xs(φ)

)
φs ds +

∫ t

0
b
(
xs(φ)

)
ds. (2.6)

We denote by L(μ,h) the class of non-negative functions which have the property

f (t) ≤ μf (s) for |t − s| ≤ h. (2.7)

These functions have been used in [7], in the choice of an “elliptic evolution sequence,” and in [6]. They allow us to
control the variation of the quantities we are concerned with, along the skeleton path. In Section 5, when considering
the tube estimate, we assume that:

H1 There exists a function λ· : [0, T ] → (0,1] such that

λ(y) ≥ λt , ∀∣∣y − xt (φ)
∣∣< 1,∀t ∈ [0, T ].

H2 There exists a function n· : [0, T ] → [1,∞) such that

n(y) ≤ nt , ∀∣∣y − xt (φ)
∣∣< 1,∀t ∈ [0, T ].

H3 There exists a differentiable scalar function κσ :R2 → R s.t.

∂σ σ (y) = κσ (y)σ (y), ∀∣∣y − xt (φ)
∣∣< 1,∀t ∈ [0, T ].

We suppose also that |κσ (y)| ≤ n(y), |∇κσ (y)| ≤ n(y).
H4 We suppose |φ·|2, λ·, n·,R· ∈ L(μ,h), for some h > 0, μ ≥ 1.

Notice that the above hypothesis do not involve global controls of our bounds on R
2: they concern the behavior of

the coefficients only along the tube, and may vary with t ∈ [0, T ]. We stress that also R·, the radius of the tube, may
vary with t , but that H4 implies that inft∈[0,T ] Rt > 0. This means that we cannot “squeeze” the tube to 0 at any time.

For K,q,K∗, q∗ > 0, for 0 ≤ t ≤ T , we denote

Ht = K

(
μnt

λt

)q

,

R∗
t (φ) = exp

(
−K∗

(
μnt

λt

)q∗
μ2q∗
)(

h ∧ inf
0≤δ≤h

{
δ
/∫ t+δ

t

|φs |2 ds

})
.
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Theorem 5.1. Let Xt be given by (2.1), xt (φ) by (2.6), and suppose H1, H2, H3, H4. There exist positive constants
K,q,K∗, q∗ such that, for Ht and R∗

t (φ) as above, if Rt ≤ R∗
t (φ) for 0 ≤ t ≤ T ,

exp

(
−
∫ T

0
Ht

(
1

Rt

+ |φt |2
)

dt

)
≤ P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)

≤ exp

(
−
∫ T

0
e−Ht

(
1

Rt

+ |φt |2
)

dt

)
. (2.8)

In general, even if R· does not satisfy Rt ≤ R∗
t (φ) for 0 ≤ t ≤ T , the lower bound holds in the form

exp

(
−
∫ T

0
Ht

(
1

h
+ 1

Rt

+ |φt |2 dt

))
≤ P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)
.

Remark 2.1. Notice that estimate (2.8) holds for the controls φ which belong to the class L(μ,h), and μ is involved
in the definition of Ht . In this sense, Ht depends on the “growth property” (2.7) of φ.

Both these theorems can also be stated in a variant of the Carathéodory distance which looks appropriate to
our framework. Here we just briefly give the definition, for more details see Appendix 6.2. For φ = (φ1

s , φ2
s ) ∈

L2((0,1),R2), set

‖φ‖2
1,3 =

∫ 1

0

∣∣φ1
s

∣∣2 ds +
(∫ 1

0

∣∣φ2
s

∣∣2 ds

) 1
3

and define the class of controls

CA(x, y) = {φ ∈ L2((0,1),R2) : dvs = A(vs)φs ds, x = v0, y = v1
}

(recall A = (σ, [σ,b])). We set dc(x, y) = inf{‖φ‖1,3 : φ ∈ CA(x, y)}. Just remark that ‖φ‖1,3 accounts of the different
speed in the [σ,b] direction. We define also the following quasi-distance on � = {x ∈ R

2 : λ∗(A(x)) > 0}. For x, y ∈
�,

d(x, y) <
√

R ⇔ |x − y|AR(x) < 1.

In Section 6.2 we prove that d and dc are equivalent quasi-distances, and that Theorem 5.1 also holds in the following
form:

Corollary 2.2. Let Xt be given by (2.1), xt (φ) by (2.6), and suppose H1, H2, H3, H4. There exist constants CT > 0
and R∗ > 0 depending on σ, b, μ, h such that, if Rt ≤ R∗ for every t ∈ [0, T ], it holds

exp

(
−CT

∫ T

0

(
1

Rt

+ |φt |2
)

dt

)
≤ P
(
dc

(
Xt, xt (φ)

)≤√Rt ,∀t ∈ [0, T ])

≤ exp

(
− 1

CT

∫ T

0

(
1

Rt

+ |φt |2
)

dt

)
.

2.4. Examples and comments

Example 2.3. As mentioned before, assuming the weak Hörmander condition only in the initial point x0 ensures
the existence of the density pδ(x0, y), but not its positivity. It does not even ensure that the density is positive locally
around x0. In [19], a multidimensional system under a weak Hörmander condition is studied, and a global lower bound
for the density is provided, but the coefficients are hypoelliptic uniformly on the whole space where the diffusion
propagates.
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The fact that we have lower bounds for the density supposing only A1 might appear contradictory. In fact, our
estimates are local around x̂0, the translated initial condition, and there is no contradiction, as we see in the following
classical example (see for instance (3.2.6) in [18]). Take

X1
t = 1 + Wt, X2

t =
∫ t

0
b2
(
X1

s

)
ds,

where

b2(ξ) = ξ21{|ξ |≤1} + b̄(ξ)1{|ξ |>1}

and b̄ is chosen non-negative and such that A2 is satisfied. Weak Hörmander holds at

X0 = x0 =
(

1
0

)
,

but for any

y =
(

y1

y2

)

with y2 < 0, pδ(x0, y) = 0, ∀δ > 0. We have

σ(x0) =
(

1
0

)
, b(x0) =

(
0

(x1
0)2

)
=
(

0
1

)
, [σ,b](x0) =

(
0

2x1
0

)
=
(

0
2

)
.

In fact, for any fixed r > 0, the set {y : |y − x̂0|Aδ(x0) ≤ r}, on which Theorem 4.5 holds, is included in R× R
+, the

support of Xδ . Indeed y satisfies

|y − x̂0|Aδ(x0) =
√

δ−1
(
y1 − 1

)2 + 1

4
δ−3
(
y2 − δ

)2 ≤ r.

For y2 < 0,

|y − x̂0|Aδ(x0) ≤ r ⇒ 1

2
δ−1/2 ≤ r ⇒ δ ≥ 1

4r2
≥ δ∗ exp

(−2Lr2)
if δ∗ ≤ 1

4 , and this is in contrast with condition δ ≤ δ∗ exp(−Lr2) of Theorem 4.5.

Example 2.4. Looking at the geometric condition ∂σ σ (x) = κσ (x)σ (x) (see A3 and H3) on the coefficients, it is easy
to see that it holds if σ = (σ1,0). We give here some other simple examples of diffusion coefficient σ satisfying this
condition, but with σ2 �= 0:

• If σ = (σ1, σ2), with σ2 = Cσ1 for some constant C, we have that the condition is satisfied with κσ = ∂x1σ1 +∂x2σ2.
Remark that with C = 0 we recover the Asian option SDE.

• If, for α,β, γ constants,

σ(x1, x2) =
(

αx1 + β

αx2 + γ

)

the condition is satisfied with κσ = α.
• If, for α,C constants,

σ(x1, x2) = C

(
(x1/x2)

α

(x1/x2)
α−1

)

the condition is satisfied with κσ = 0.
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These examples show that our estimates are applicable to systems where the regimes of propagation are not completely
separated, meaning that the one-dimensional Brownian Motion W can act on both the components of X (improving
in this sense the results in [7] and [19]). On the other hand, the condition required on ∂σ σ has in some sense the same
role of “separating” the different speeds of propagation. Indeed, we need this assumption to deal with a term of order
t , which is hard to handle because of its fast speed of propagation, in comparison with the speed t3/2 associated to
[σ,b].

For this reason, a multidimensional extension of these results looks quite hard to obtain, especially if we want
to consider systems where W is multi-dimensional. This would produce terms of order t , associated to the brackets
[σ i, σ j ]. To handle these terms we could imagine a generalization of the condition on ∂σ σ , but we believe that this
is not an easy task. On the other hand, similar results on a multidimensional system, but of strong Hörmander type,
are the subject of the recent work with Bally and Caramellino ([4,5]), and the techniques used in this paper are also
applicable to the system studied in [19] (cf. [34]).

Example 2.5. Consider the geometric Asian option with time horizon T on the Black & Scholes model ([20]). This
can be expressed as

dX1
t = σ ◦ dWt + r dt = σ dWt + r dt; X1

0 = ξ, dX2
t = X1

t

T
dt; X2

0 = 0.

In this case, for R > 0 fixed constant,

A−1
R (x) =

(
σR1/2 0

0 σ
T

R3/2

)−1

= 1

σ

(
1

R1/2 0
0 T

R3/2

)

does not depend on x. We take as control φt = 0 so xt (φ) = (ξ + rt,
ξ t+rt2/2

T
). We have

∣∣Xt − xt (φ)
∣∣
AR(xt (φ))

= 1

σ

√
|X1

t − (ξ + rt)|2
R

+ T 2|X2
t − (ξ t + rt2/2)/T |2

R3

= 1

σ

√
|σWt |2

R
+ |σ ∫ t

0 Ws ds|2
R3

,

and (2.8) gives

e−C1T/R ≤ P

(
sup
t≤T

{ |Wt |2
R

+ | ∫ t

0 Ws ds|2
R3

}
≤ 1

)
≤ e−C2T/R.

Example 2.6. Consider a system given by the Black and Scholes model for the price of an asset, and an (arithmetic
average) Asian option on that asset with time horizon T (see for instance [15,20,40]). This is a model of real interest
in mathematical finance. The associated SDE is

dX1
t = X1

t (σ ◦ dWt + r dt); X1
0 = ξ > 0, dX2

t = X1
t

T
dt; X2

0 = 0,

and X1
t = ξeσWt+rt . The stochastic integral is in Stratonovich form so to recover the classical formulation r →

r + σ 2/2. In this case, for R > 0 fixed constant,

A−1
R (x) =

(
σx1R1/2 0

0 σx1

T
R3/2

)−1

= 1

σx1

(
1

R1/2 0
0 T

R3/2

)
.

Remark that this matrix is invertible for x1 �= 0. Since we are working under local non-degeneracy assumptions,
our tube estimates hold for any initial condition ξ > 0, provided that R > 0 is small enough, since this implies the
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positivity of the first component of the skeleton path at any time t > 0. On the other hand, results requiring “global”
non degeneracy, such as the density estimates in [19], do not hold for this model. We take as control φt = 0 so
xt (φ) = ξ(ert , 1

T

∫ t

0 ers ds). We have

∣∣Xt − xt (φ)
∣∣
AR(xt (φ))

= 1

σξert

√
|X1

t − ξert |2
R

+ T 2|X2
t − ξ

T

∫ t

0 ers ds|2
R3

= 1

σξert

√
ξ2|ert (eσWt − 1)|2

R
+ ξ2| ∫ t

0 ers+σWs ds − ∫ t

0 ers ds|2
R3

= 1

σert

√
|ert (eσWt − 1)|2

R
+ | ∫ t

0 ers(eσWs − 1) ds|2
R3

and (2.8) gives

e−C1T/R ≤ P

(
sup
t≤T

{ |eσWt − 1|2
Rσ 2

+ | ∫ t

0 er(s−t)(eσWs − 1) ds|2
R3σ 2

}
≤ 1

)
≤ e−C2T/R.

3. Malliavin calculus and density estimates

3.1. Notations

Our main reference for this section is [32]. We consider a probability space (�,F,P) and a Brownian motion W =
(W 1

t , . . . ,Wd
t )t≥0. We denote by D

k,p the space of the random variables which are k times differentiable in the
Malliavin sense in Lp , and D

k,∞ =⋂∞
p=1 D

k,p . For a multi-index α = (α1, . . . , αm) we denote by DαF the Malliavin
derivative of F corresponding to the multi-index α.

D
k,p is the closure of the space of the simple functionals with respect to the Malliavin Sobolev norm

‖F‖k,p =
[
E|F |p +

k∑
j=1

E
∣∣D(j)F

∣∣p]
1
p

,

where

∣∣D(j)F
∣∣= (∑

|α|=j

∫
[0,T ]j

∣∣Dα
s1,...,sj

F
∣∣2 ds1 · · ·dsj

)1/2

.

For the special case j = 1, we use the standard notation

|DF | = ∣∣D(1)F
∣∣=
(

d∑
m=1

∫
[0,T ]
∣∣Dm

s F
∣∣2 ds

)1/2

.

Hereafter, for j ∈ N \ {0}, we write D(j) for the “derivative of order j” and Dj for the “derivative with respect to
Wj .”

As usual, we also denote by L the Ornstein–Uhlenbeck operator, i.e. L = −δ ◦ D, where δ is the adjoint operator
of D.

For a random vector F = (F1, . . . ,Fn) in the domain of D, we define its Malliavin covariance matrix as follows:

γ
i,j
F = 〈DFi,DFj 〉H =

d∑
k=1

∫ T

0
Dk

s Fi × Dk
s Fj ds.



Tube estimates for diffusion processes under a weak Hörmander condition 307

We say that F is non-degenerate if its Malliavin covariance matrix is invertible and

E
(|detγF |−p

)
< ∞, ∀p ∈N. (3.1)

We denote by γ̂F the inverse of γF .

3.2. Localization

The following notion of localization is introduced in [2]. Consider a random variable U ∈ [0,1] and denote

dPU = U dP.

PU is a non-negative measure (not a probability measure, in general). We also set EU the expectation (integral) w.r.t.
PU , and denote

‖F‖p
p,U = EU

(|F |p)= E
(|F |pU

)
, ‖F‖p

k,p,U = ‖F‖p
p,U +

k∑
j=1

EU

(∣∣D(j)F
∣∣p).

We assume that U ∈D
2,∞ and for every p ≥ 1

mU(p) := 1 + (EU |D lnU |p)1/p + (EU

∣∣D(2) lnU
∣∣p)1/p

< ∞
(notice that our definition of mU is slightly different from the definition in [2]: we are taking p-norms instead of
moments, and we also consider D(2), whereas in [2] only the first order derivative D appears in mU ). For F =
(F 1, . . . ,F n) such that F 1, . . . ,F n ∈D

2,∞ and V ∈D
1,∞, for any localization function U we introduce the localized

Malliavin weights

Hi,U (F,V ) =
n∑

j=1

V γ̂
i,j
F LF j − 〈D(V γ̂

i,j
F

)
,DF j

〉− V γ̂
i,j
F

〈
D lnU,DFj

〉

and the vector

HU(F,V ) = (Hi,U (F,V )
)
i=1,...,n

.

The following representation formula for the localized density has been proved in [1].

Theorem 3.1. Let U be a localizing r.v. such that under PU (3.1) holds, i.e.

EU

[|detγF |−p
]
< ∞, ∀p ∈ N.

Then, under PU the law of F is absolutely continuous and has a continuous density pF,U which may be represented
as

pF,U (x) =
n∑

i=1

EU

[
∂iQn(F − x)Hi,U (F,1)

]
, (3.2)

where Qn denotes the Poisson kernel on R
n, i.e. the fundamental solution of the Laplace operator �Qn = δ0. This is

given by

Q1(x) = max(x,0); Q2(x) =A−1
2 ln |x|; Qn(x) = −A−1

n |x|2−n, n > 2,

where An is the area of the unit sphere in R
n.
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This is a localized version of the formula

pF (x) =
n∑

i=1

E
[
∂iQn(F − x)Hi(F,1)

]
,

where the Malliavin weights are given by

H(F,G) = Gγ̂F × LF − 〈D(γ̂F G),DF
〉

for which we refer to [29]. We recall the following relation between localized weights, which can be easily checked
(a similar formula is proved in [2]). For any U,V localizing r.v.s, F,G ∈ D

2,∞

HU(F,V G) = V HUV (F,G). (3.3)

Example 3.2. The following example of localizing function is taken from [2]. Consider the function depending on a
parameter a > 0:

ψa(x) = 1|x|≤a + exp

(
1 − a2

a2 − (x − a)2

)
1a<|x|<2a,

which is a smooth version of the indicator function 1{|x|≤a}. For �i ∈ D
1,∞, i = 1, . . . , n, and r > 0, we define the

localization r.v.

Ur =
n∏

i=1

ψr(�i). (3.4)

For this choice of Ur we have that for any p ≥ 1,

mUr (p) ≤ Cp

(
1 + ‖�‖2

2,p

r2

)
(3.5)

and

‖1 − Ur‖1,p ≤ C

(
1 + ‖�‖1,2p

r

) n∑
i=1

P
(|�i | ≥ r

)1/2p
. (3.6)

The proof of (3.5) follows from inequalities

sup
x

∣∣(lnψa)
′(x)
∣∣pψa(x) ≤ 4p

ap
sup
t≥0

(
t2pe1−t

)≤ Cp

ap
< ∞ (3.7)

and

sup
x

∣∣(lnψa)
′′(x)
∣∣pψa(x) ≤ 8p

a2p
sup
t≥0

(
t3pe1−t

)+ 2p

a2p
sup
t≥0

(
t2pe1−t

)≤ Cp

a2p
< ∞. (3.8)

Indeed

Ur |D lnUr |p =
n∏

i=1

ψr(�i)

∣∣∣∣∣
n∑

i=1

(lnψr)
′(�i)D�i

∣∣∣∣∣
p

≤
n∏

i=1

ψr(�i)

(
n∑

i=1

∣∣(lnψr)
′(�i)

∣∣2)p/2( n∑
i=1

|D�i |2
)p/2

≤ cp

(
n∑

i=1

∣∣(lnψr)
′(�i)

∣∣pψr(�i)

)
|D�|p.
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Here we apply (3.7), and find

Ur |D lnUr |p ≤ Cp

|D�|p
rp

. (3.9)

This implies (EUr |D lnUr |p)1/p ≤ Cp
‖�‖1,p

r
. We also have, using (3.7) and (3.8),

Ur

∣∣D(2) lnUr

∣∣p =
n∏

i=1

ψr(�i)

∣∣∣∣∣D
(

n∑
i=1

(lnψr)
′(�i)D�i

)∣∣∣∣∣
p

≤ Cp

n∏
i=1

ψr(�i)

[∣∣∣∣∣
n∑

i=1

(lnψr)
′′(�i)(D�i)

2

∣∣∣∣∣
p

+
∣∣∣∣∣

n∑
i=1

(lnψr)
′(�i)D

(2)�i

∣∣∣∣∣
p]

≤ Cp

(
n∑

i=1

∣∣(lnψr)
′′(�i)

∣∣pψr(�i)

)
|D�|2p + Cp

(
n∑

i=1

∣∣(lnψr)
′(�i)

∣∣pψr(�i)

)∣∣D(2)�
∣∣p

≤ Cp

( |D�|2p

r2p
+ |D(2)�|p

rp

)

and so

(
EUr

∣∣D(2) lnUr

∣∣p)1/p ≤ Cp

((‖�‖1,p

r

)2

+ ‖�‖2,p

r

)
.

This proves (3.5) Moreover, since DsUr = 0 on
⋂

i{|�i | < r} = (
⋃

i{|�i | ≥ r})c ,

Ds(1 − Ur) = −1{⋃i {|�i |≥r}}DsUr

and from Hölder inequality

E
∣∣Ds(1 − Ur)

∣∣p ≤ (E1{⋃i {|�i |≥r}})1/2(
E|DsUr |2p

)1/2
.

We control the first factor with the tail estimate

(E1{⋃i {|�i |≥r}})1/2 ≤ C

n∑
i=1

P
(|�i | ≥ r

)1/2
,

and we also have

|DsUr |2p ≤ Ur |D lnUr |2p,

and from (3.9)

(
E
∣∣Ds(1 − Ur)

∣∣p)1/p ≤ Cp

‖�‖1,2p

r

n∑
i=1

P
(|�i | ≥ r

)1/2p
.

Moreover

E|1 − Ur |p ≤ P(1 − Ur > 0) ≤ P
(|�i | > r, ∃i = 1, . . . , n

)≤ n∑
i=1

P
(|�i | > r

)
,

so (3.6) is proved.
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3.3. The distance between two local densities

We discuss some techniques, based on Malliavin calculus, for estimating the density of a random variable. These ideas
are based on the recent work of Bally and Caramellino ([2,3]).

In what follows for a given matrix A we consider its Frobenius norm, given as

‖A‖Fr =
√∑

i,j

∣∣A2
i,j

∣∣=√Tr
(
AT A

)
.

We will employ the fact that the Frobenius norm is sub-multiplicative. Take a square d × d matrix γ , symmetric and
positive definite. Recall that we denote by λ∗(γ ) and λ∗(γ ) the largest and the smallest singular values of γ , which
in this case coincide with the largest and smallest eigenvalues. From the equivalence between Frobenius and spectral
norm we have

λ∗(γ ) ≤ ‖γ ‖Fr ≤ √
dλ∗(γ ).

Denoting γ̂ = γ −1, it holds λ∗(γ̂ ) = 1/λ∗(γ ). So

1

λ∗(γ )
≤ ‖γ̂ ‖Fr ≤

√
d

λ∗(γ )
.

For two time dependent matrices As,Bs , we have the following “Cauchy–Schwarz” inequality:

∥∥∥∥
∫

AsBs ds

∥∥∥∥
2

Fr
≤
∫

‖As‖2
Fr ds

∫
‖Bs‖2

Fr ds.

In particular, if Bs = vs is a vector,

∣∣∣∣
∫

Asvs ds

∣∣∣∣
2

≤
∫

‖As‖2
Fr ds

∫
|vs |2 ds.

We fix some notation. Let W be a Brownian Motion in R
d . For two random variables F = (F1, . . . ,Fn), G =

(G1, . . . ,Gn) in D
3,∞ and a localizing r.v. U , we denote

�F,U (p) = 1 + (EUλ∗(γF )−p
)1/p

,

�F,G,U (p) = 1 + sup
0≤ε≤1

(
EUλ∗(γG+ε(F−G))

−p
)1/p

,

nF,G,U (p) = 1 + ‖F‖3,p,U + ‖G‖3,p,U + ‖LF‖1,p,U + ‖LG‖1,p,U ,

�2(F,G) = ∣∣D(F − G)
∣∣+ ∣∣D(2)(F − G)

∣∣+ ∣∣L(F − G)
∣∣.

We also write nF,U (p) for nF,0,U (p). Moreover, in all the above notations, when U = 1, i.e. the localization is
“trivial,” we omit it in the notation. Remark that notations nF,U and nF,G, although similar, denote different things.
Since we are differentiating with respect to a Brownian Motion, as a direct consequence of Meyer’s inequality (see
for instance [32]), we have

nF,G,U (p) ≤ 1 + C
(‖F‖3,p + ‖G‖3,p

)
for every F,G,U .

We now give the main result of this section, comparing the densities of the laws of two random variables under PU .
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Theorem 3.3. Let U be a localizing r.v. with mU(32n) < ∞. Let F = (F1, . . . ,Fn), G = (G1, . . . ,Gn) ∈ D
3,32n.

Suppose �G,U (p) < ∞ and �F,U (p) < ∞ for any p > 1. Then there exists a constant C1 such that

pG,U (y) − C1
∥∥�2(F,G)

∥∥
32n,U

≤ pF,U (y) ≤ pF (y).

If, in addition, �F (32n) < ∞, there exists a constant C2 such that

pF (y) ≤ pG,U (y) + C2
(∥∥�2(F,G)

∥∥
32n,U

+ ‖1 − U‖1,14n

)
.

Remark 3.4. We can take

C1 = C
[
mU(32n)�G,U (32n)nF,G,U (32n)

]24n2
,

C2 = C
[
mU(32n)�F (32n)nF,G(32n)

]24n2
,

where C is a constant depending only on the dimension n.

The lower bound for pF,U is a version of Proposition 2.5. in [2], where here we have specified as possible choice
for the exponent p = 32n. Moreover, we find here that in mU and nF,G,U we need to consider one more order of
derivatives with respect to [2]. Similar estimates can be found also in [3].

Before proceeding with the proof we need some preliminary results. We start with an estimate for the localized
Malliavin weights and for the difference of weights:

Lemma 3.5. Let U be a localizing r.v., V ∈ D
1,∞, F = (F1, . . . ,Fn) ∈ D

3,∞. Suppose �F,U (q) < ∞ for any q > 1.
For fixed p ≥ 1, pi ≥ 1, i = 1, . . . ,4, with 1

p
= 1

p1
+ 1

p2
+ 2

p3
+ 3

p4
, there exists a constant C depending only on p

and the dimension n such that∥∥HU(F,V )
∥∥

p,U
≤ C‖V ‖1,p1mU(p2)�F,U (p3)

2nF,U (p4)
3. (3.10)

Moreover if 1
p

= 1
p1

+ 1
p2

+ 3
p3

+ 5
p4

and V ∈D
2,∞,

∥∥HU(F,V )
∥∥

1,p,U
≤ C‖V ‖2,p1mU(p2)�F,U (p3)

3nF,U (p4)
5. (3.11)

Let now G = (G1, . . . ,Gn) ∈ D
3,∞. If �F,G,U (q) < ∞ for any q > 1, for fixed pi ≥ 1, i = 1, . . . ,5 with 1

p
= 1

p1
+

1
p2

+ 3
p3

+ 4
p4

+ 1
p5

, it also holds

∥∥HU(F,V ) − HU(G,V )
∥∥

p,U
≤ C‖V ‖1,p1mU(p2)�F,G,U (p3)

3nF,G,U (p4)
4
∥∥�2(F,G)

∥∥
p5,U

. (3.12)

Proof. Consider the weight:

HU(F,V ) = V
[
γ̂F × LF − 〈Dγ̂F ,DF 〉]− 〈γ̂F (DV + V D lnU),DF

〉
. (3.13)

Recall that D(k) means “derivative of order k” and Dk means “derivative with respect to Wk .” We first consider DγF

and have the following estimate:

d∑
l=1

∫ ∥∥Dl
sγF

∥∥2
Fr ds

=
d∑

l=1

∫ ∥∥∥∥∥
(

d∑
k=1

∫ t

0
Dl

sD
k
uFi × Dk

uFj + Dk
uFi × Dl

sD
k
uFj du

)
i,j

∥∥∥∥∥
2

Fr

ds

≤ 4
∣∣D(2)F

∣∣2|DF |2.
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We now consider Dγ̂F . From the chain rule and the derivative of the inversion of matrices,

Dkγ̂F = −γ̂F

(
DkγF

)
γ̂F . (3.14)

So, applying also the previous estimate

d∑
k=1

∫ ∥∥Dk
s γ̂F

∥∥2
Fr ds ≤ ‖γ̂F ‖4

Fr

d∑
k=1

∫ ∥∥Dk
s γF

∥∥2
Fr ds ≤ 4‖γ̂F ‖4

Fr|DF |2∣∣D(2)F
∣∣2.

From (3.13) we see that

∣∣HU(F,V )
∣∣≤ |V |

(
‖γ̂F ‖Fr|LF | +

(
d∑

k=1

∫ ∥∥Dkγ̂F

∥∥2
Fr ds

)1/2

|DF |
)

+ ‖γ̂F ‖Fr
(|DV | + |V ||D lnU |)|DF |

≤ C
(|V | + |DV |)(1 + |D lnU |)(|DF | + |LF |)

(
‖γ̂F ‖Fr +

(
d∑

k=1

∫ ∥∥Dkγ̂F

∥∥2
Fr ds

)1/2)

≤ C
(|V | + |DV |)(1 + |D lnU |)(1 + |DF | + ∣∣D(2)F

∣∣+ |LF |)3(1 + ‖γ̂F ‖Fr
)2

.

Now ∥∥HU(F,V )
∥∥

p,U
≤ C‖V ‖1,p1mU(p2)�F,U (p3)

2nF,U (p4)
3,

for 1
p

= 1
p1

+ 1
p2

+ 2
p3

+ 3
p4

, follows easily applying Hölder and Minkowski inequalities for Lp norms.

The estimate of ‖HU(F,V )‖1,p,U follows using very similar techniques. The part giving the “main” contribution
is D(2)γ̂F , for which, iterating (3.14), it is not difficult to see

∣∣D(2)γ̂F

∣∣≤ C
(|DF | + · · · + ∣∣D(3)F

∣∣)4 ‖γ̂F ‖3
Fr.

This term is also multiplied by |DF |, so we have the estimate of the term giving the main contribution. We leave out
the similar estimate of the other terms.

When considering the difference ‖HU(F,V ) − HU(G,V )‖p,U , we use similar arguments and the following prop-
erty of norms: |ab − cd| ≤ |a − c||b| + |c||b − d|. As before the main contribution comes from D(γ̂F − γ̂G), so we
consider this and leave out the estimates of the other terms. We remark that

γ̂F − γ̂G = γ̂F (γG − γF )γ̂G

and differentiate this product, finding

∣∣D(γ̂F − γ̂G)
∣∣≤ C

(
1 + ‖γ̂F ‖Fr ∨ ‖γ̂G‖Fr

)3(1 + |DγF | ∨ |DγG|)(|γF − γG| + ∣∣D(γF − γG)
∣∣),

where

1 + |DγF | ∨ |DγG| ≤ C

(
1 +

2∑
i=1

∣∣D(i)F
∣∣∨ ∣∣D(i)G

∣∣)2

.

We have

|γF − γG| ≤ C
∣∣D(F − G)

∣∣ ∣∣D(F + G)
∣∣
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and ∣∣D(γF − γG)
∣∣≤ C

(∣∣D(F − G)
∣∣+ ∣∣D(2)(F − G)

∣∣)(∣∣D(F + G)
∣∣+ ∣∣D(2)(F + G)

∣∣).
Multiplying with |DF |, and applying Hölder inequality, we prove the statement. �

Lemma 3.6. Let U be a localizing r.v., F = (F1, . . . ,Fn),G = (G1, . . . ,Gn) ∈ D
3,∞. If �F,G,U (q) < ∞ for any

q > 1, there exists a constant C depending only on the dimension n such that

∣∣pF,U (y) − pG,U (y)
∣∣≤ C

[
mU(32n)�F,G,U (32n)nF,G,U (32n)

]12n2∥∥�2(F,G)
∥∥

32n,U
.

Proof. We write the densities using (3.2):

pF,U (y) − pG,U (y) = EU

(〈∇Qn(F − y),HU(F,1)
〉− 〈∇Qn(G − y),HU(G,1)

〉)
= EU

〈∇Qn(F − y),HU(G,1) − HU(F,1)
〉

+ EU

〈∇Qn(G − y) − ∇Qn(F − y),HU(G,1)
〉

= I + J.

We recall the following inequality proved in [1]. For p > n, with p′ = p/(p − 1),

(
EU

∣∣∇Qn(F − y)
∣∣p′)1/p′ ≤ Cp,n

(
EU

∣∣HU(F,1)
∣∣p)p n−1

p−n .

In particular, for p = 2n (fixed from now on), applying (3.10) with k = 0,p1 = p2 = p3 = p4 = 7p = 14n,

(
EU

∣∣∇Qn(F − y)
∣∣2n/(2n−1))(2n−1)/(2n)

≤ C
(
EU

∣∣HU(F,1)
∣∣2n)2(n−1)

≤ C
[
mU(14n)�F,U (14n)2nF,U (14n)3]4n(n−1)

. (3.15)

We use now Lemma 3.5 to estimate I and J . From Hölder inequality

I = EU

∣∣〈∇Qn(F − y),HU(G,1) − HU(F,1)
〉∣∣

≤ ∥∥∇Qn(F − y)
∥∥ 2n

2n−1 ,U

∥∥HU(G,1) − HU(F,1)
∥∥

2n,U

and we have just provided the estimate for the first factor. For the second we apply (3.12) with p1 = p2 = p3 = p4 =
p5 = 20n∥∥HU(F,1) − HU(G,1)

∥∥
2n,U

≤ CmU(20n)�F,G,U (20n)3nF,G,U (20n)4
∥∥�2(F,G)

∥∥
20n,U

.

We now study J . For λ ∈ [0,1] we denote Fλ = G + λ(F − G). With a Taylor expansion, applying Hölder inequality,
integrating again by parts and denoting Vj,k = Hj,U (G,1)(F − G)k .

EU

〈∇Qn(F − y) − ∇Qn(G − y),HU(G,1)
〉

=
d∑

k,j=1

∫ 1

0
EU

(
∂k∂jQn(Fλ − y)Hj,U (G,1)(F − G)k

)
dλ

=
d∑

k,j=1

∫ 1

0
EU

(
∂jQn(Fλ − y)Hk,U

(
Fλ,Hj,U (G,1)(F − G)k

))
dλ
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=
d∑

k,j=1

∫ 1

0
EU

(
∂jQn(Fλ − y)Hk,U (Fλ,Vj,k)

)
dλ.

Now, applying first (3.10) and then (3.11), with some computations in the same fashion as before, it is possible to
show ∥∥(Hk,U (Fλ,Vj,k)

)
j=1,...,n

∥∥
2n,U

≤ CmU(32n)2�F,G,U (32n)5nF,G,U (32n)8‖F − G‖1,32n,U .

From (3.15) and Hölder as before,

|J | ≤ C
[
mU(32n)�F,G,U (32n)2nF,G,U (32n)3]4n2‖F − G‖1,32n,U .

The statement follows. �

Lemma 3.7. Let U be a localizing r.v., F = (F1, . . . ,Fn),G = (G1, . . . ,Gn) ∈ D
3,∞. If �F,U (q) < ∞, �G,U (q) < ∞

for any q > 1, there exists a constant C depending only on the dimension n such that∣∣pF,U (y) − pG,U (y)
∣∣

≤ C
[
mU(32n)(�F,U ∨ �G,U )(32n)nF,G,U (32n)

]24n2∥∥�2(F,G)
∥∥

32n,U
.

Proof. We denote in this proof M = γ̂G(γFλ − γG), and define, as in (3.4),

V =
∏

1≤i,j≤n

ψ1/(8n2)(Mi,j ). (3.16)

We have from Lemma 3.6 that if �F,G,UV (q) is finite for q > 0∣∣pF,UV (y) − pG,UV (y)
∣∣

≤ C
[
mUV (32n)�F,G,UV (32n)nF,G,UV (32n)

]12n2∥∥�2(F,G)
∥∥

32n,UV
. (3.17)

Remark

γ̂G − γ̂Fλ = γ̂G(γFλ − γG)γ̂Fλ,

so

‖γ̂Fλ − γ̂G‖Fr ≤ ∥∥γ̂G(γFλ − γG)
∥∥

Fr‖γ̂Fλ‖Fr.

On V �= 0 we have ‖γ̂G(γFλ − γG)‖Fr ≤ 1/2, because of definition (3.16), so

‖γ̂Fλ‖Fr ≤ 2‖γ̂G‖Fr

and therefore

�F,G,UV (32n) ≤ 2�G,UV (32n) ≤ 2�G,U (32n). (3.18)

Now, using (3.3) with G = 1,

pF,U(1−V )(y) = EU(1−V )

[∇Q(F − y),HU(1−V )(F,1)
]

= EU

[∇Q(F − y), (1 − V )HU(1−V )(F,1)
]

= EU

[∇Q(F − y),HU(F,1 − V )
]
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which implies, using as before (3.10) and (3.15)

pF,U(1−V )(y) = EU(1−V )

〈∇Qd(F − y),HU(F,1 − V )
〉

≤ C
[
mU(14n)�F,U (14n)2nF,U (14n)3]4n(n−1)∥∥HU(F,1 − V )

∥∥
2n,U

≤ C
[
mU(24n)�F,U (24n)2nF,U (24n)3]8n(n−1)+1‖1 − V ‖1,4n,U

and, using (3.6),

‖1 − V ‖1,4n,U ≤ C
∥∥γ̂G(γFλ − γG)

∥∥
1,4n,U

.

Now, we first apply Hölder inequality and then

|γFλ − γG| ≤ C
∣∣D(Fλ − G)

∣∣∣∣D(Fλ + G)
∣∣

and ∣∣D(γFλ − γG)
∣∣≤ C

(∣∣D(Fλ − G)
∣∣+ ∣∣D(2)(Fλ − G)

∣∣)(∣∣D(Fλ + G)
∣∣+ ∣∣D(2)(Fλ + G)

∣∣).
We find

‖1 − V ‖1,4n,U ≤ C�G,U (12n)nF,G,U (12n)‖F − G‖2,12n,U

so

pF,U(1−V )(y) ≤ C
[
mU(24n)(�F,U ∨ �G,U )(24n)2nF,G,U (24n)3]8n2∥∥�2(F,G)

∥∥
32n,U

.

We conclude writing∣∣pF,U (y) − pG,U (y)
∣∣= ∣∣pF,UV (y) + pF,U(1−V )(y) − pG,UV (y) − pG,U(1−V )(y)

∣∣
≤ ∣∣pF,UV (y) − pG,UV (y)

∣∣+ pF,U(1−V )(y) + pG,U(1−V )(y)

and the statement follows easily. �

Proof of Theorem 3.3. Let V as in the last proof. We can write

pF,U (y) ≥ pF,UV (y) ≥ pG,UV (y) − ∣∣pF,UV (y) − pG,UV (y)
∣∣

= pG,U (y) − pG,U(1−V )(y) − ∣∣pF,UV (y) − pG,UV (y)
∣∣.

From (3.10) and (3.15) as before

pG,U(1−V )(y) ≤ C
[
mU(14n)�G,U (14n)2nF,G,U (14n)3]8n2∥∥�2(F,G)

∥∥
32n,U

.

Using also (3.17) and (3.18) we obtain the desired lower bound for pF .
For the upper bound we apply Proposition 3.2 localizing on 1 − U . We have

pF,1−U(x) = E(1−U)

[∇Qn(F − x)H(1−U)(F,1)
]= E

[∇Qn(F − x)H(1−U)(F,1) (1 − U)
]
.

From (3.3), H(F,1 − U) = (1 − U)H(1−U)(F,1), so

pF,1−U(x) = E
[∇Qn(F − x)H(F,1 − U)

]
.

Now we apply Hölder and find

pF,1−U(x) = ∥∥∇Qn(F − x)
∥∥ 2n

2n−1

∥∥H(F,1 − U)
∥∥

2n
.
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We use (3.15), with U = 1, to deal with the gradient of the Poisson kernel:

(
E
∣∣∇Qn(F − y)

∣∣2n/(2n−1))(2n−1)/(2n) ≤ C
(
�F (14n)2nF (14n)3)4n(n−1)

.

Now consider the non-localized version of (3.10):∥∥H(F,V )
∥∥

p
≤ C‖V ‖1,14n�F (14n)2nF (14n)3

and take V = 1 − U . We obtain

pF,1−U ≤ C‖1 − U‖1,14n

[
�F (14n)2nF (14n)3]4n2

. (3.19)

We apply now the lower bound result to pG,U , interchanging the roles of F and G, and find

pF,U (y) ≤ pG,U (y) + [mU(32n)�F,U (32n)nF,G(32n)
]24n2∥∥�2(F,G)

∥∥
32n,U

.

Putting together this inequality and (3.19), we have the upper bound. �

3.4. Density estimates via local inversion

We recall some results from [4]. We see how to use the local inversion theorem to transfer a known estimate for a
Gaussian random variable to its image via a function η such that

η ∈ C3(
R

n,Rn
)
, η(0) = 0, λ∗(∇η(0)

)≤ 1

2
.

Define, for h > 0,

c∗(η,h) = sup
|x|≤2h

max
i,j

∣∣∂iη
j (x)
∣∣

and

c2(η) = max
i,j=1,...,n

sup
|x|≤1

∣∣∂2
ij η(x)

∣∣, c3(η) = max
i,j,k=1,...,n

sup
|x|≤1

∣∣∂3
ijkη(x)

∣∣.
Let now � be a n-dimensional centered Gaussian variable with covariance matrix Q, non-degenerate. Denote by λ

and λ the lower and the upper eigenvalues of Q. Suppose to have r > 0 such that

c∗(η,16r) ≤ 1

2n

√
λ

λ
, r ≤ hη = 1

16n2(c2(η) + √
c3(η))

. (3.20)

We take a localizing function as in (3.4): Ur =∏n
i=1 ψr(�i). We also define �(θ) = θ + η(θ).

Lemma 3.8. The density pG,Ur of

G := �(�) = � + η(�)

under PUr has the following bounds on B(0, r):

1

C detQ1/2
exp

(
−C

λ
|z|2
)

≤ pG,Ur (z) ≤ C

detQ1/2
exp

(
− 1

Cλ
|z|2
)

.

This result is proved in [4] under a slightly stronger constraint on r , but going trough the proof it is easy to see that
what we suppose here is enough. For details see [34]. The proof is quite standard and follows from the local inversion
theorem (see [36] for a standard version of this theorem).
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4. Density estimates of the diffusion process

In this section we prove lower and upper bounds for the density of Xδ .

4.1. Development

In this section, in order to lighten the notation, we do not mention the dependence of the parameters on the initial
condition (so, for example, we write A instead of A(x0), and so on). We need to introduce some notation. Consider a
small time δ ∈ (0,1]. We define

• The translated initial condition

x̂0 = x0 + b(x0)δ.

• The matrices Ā and Āδ as

Ā = (σ + δ∂bσ, [σ,b])
and

Āδ = (δ1/2(σ + δ∂bσ ), δ3/2[σ,b]).
Recall (2.2), (2.3), and remark that A1 implies that these matrices are always invertible if δ is small enough.

• The Gaussian r.v.

� =
(

�1
�2

)
=
(

δ−1/2Wδ

δ−3/2
∫ δ

0 (δ − s) dWs

)
.

• The polynomial of degree 3 and direction σ(x0) (recall κσ defined in (2.4)):

η(u) =
(

κσ (x0)

2
u2 + (∂σ κσ + κ2

σ )(x0)

6
u3
)

σ(x0). (4.1)

• The principal term

G = � + η̃δ(�), (4.2)

where η̃δ(�) = Ā−1
δ η(δ1/2�1).

• The remainder Rδ :

Rδ =
∫ δ

0

∫ s

0

(
∂bσ (Xu) − ∂bσ (x0)

)
du ◦ dWs

+
∫ δ

0

∫ s

0

(
∂σ b(Xu) − ∂σ b(x0)

) ◦ dWu ds

+
∫ δ

0

∫ s

0
∂bb(Xu)duds

+
∫ δ

0

∫ s

0

∫ u

0

(
∂σ ∂σ σ (Xv) − ∂σ ∂σ σ (x0)

) ◦ dWv ◦ dWu ◦ dWs

+
∫ δ

0

∫ s

0

∫ u

0
∂b∂σ σ (Xv) ◦ dv ◦ dWu ◦ dWs. (4.3)

Notice that Rδ ∼O(δ2). We also denote R̃δ := Ā−1
δ Rδ .
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We now prove that the following decomposition holds:

Xδ = x̂0 + Āδ(G + R̃δ). (4.4)

This is a main tool in our approach. Indeed, we find Gaussian bounds for the density of the variable F := Ā−1
δ (Xδ −

x̂0) = G + R̃δ in the Euclidean metric of R2. The fact that in Theorem 4.5 the bounds for the diffusion are in the
Aδ(x0)-norm follows from the change of variable suggested by (4.4).

Let us prove (4.4). We write the stochastic Taylor development of Xt with a remainder of order t2:

Xt = x0 + b(x0)t + Ut + Rt ,

where

Ut = σ(x0)Wt + ∂σ σ (x0)

∫ t

0
Ws ◦ dWs

+ ∂σ ∂σ σ (x0)

∫ t

0

∫ s

0
Wu ◦ dWu ◦ dWs

+ ∂bσ (x0)

∫ t

0
s dWs + ∂σ b(x0)

∫ t

0
Ws ds.

Now we write∫ t

0
Ws ds =

∫ t

0
(t − s) dWs,

∫ t

0
s dWs = −

∫ t

0
(t − s) dWs + tWt .

Therefore

Ut = (σ(x0) + t∂bσ (x0)
)
Wt + (∂σ b(x0) − ∂bσ (x0)

)∫ t

0
(t − s) dWs

+ ∂σ σ (x0)
W 2

t

2
+ ∂σ ∂σ σ (x0)

W 3
t

6
.

So we have the following decomposition of Xt :

Xt = x0 + b(x0)t + (σ(x0) + t∂bσ (x0)
)
Wt + [σ,b](x0)

∫ t

0
(t − s) dWs + η(Wt) + Rt , (4.5)

where x0 is the initial condition. Remark that A3 implies that both the coefficients of η have the same direction as
σ(x0):

η(u) = ∂σ σ (x0)

2
u2 + ∂σ ∂σ σ (x0)

6
u3 =

(
κσ (x0)

2
u2 + (∂σ κσ + κ2

σ )(x0)

6
u3
)

σ(x0).

4.2. Preliminary estimates

We introduce the following class of constants:

C =
{
C > 0 : C = K

(
ρ

λ∗(A(x0))

)q

,∃K,q ≥ 1

}
. (4.6)

We stress that the constants defined above depend on the parameters of the diffusion through the ratio ρ/λ∗(A(x0))

(cf. A1, A2), but K,q do not depend on σ,b. We will also denote by 1/C = {δ > 0 : 1/δ ∈ C}.
We keep using the notations of the previous development.
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Lemma 4.1. There exist L1,L2,K1,K2 positive constants not depending on the parameters, δ∗ ∈ 1/C such that: for
any fixed r > 0 and δ such that δ ≤ δ∗ exp(−2L1r

2), let G = � + η̃δ(�) be the r.v. defined in (4.2); let Ur be the
localizing r.v. defined in (3.4), and pG,Ur the local density of G; then the following estimate holds for |z| ≤ r :

K1 exp
(−L1|z|2

)≤ pG,Ur (z) ≤ K2 exp
(−L2|z|2

)
. (4.7)

Proof. In what follows, C ∈ C, and may vary from line to line (meaning that K,q may vary in (4.6)). We start by
computing the derivatives of η:

η(y) =
(

κσ

2
y2 + ∂σ κσ + κ2

σ

6
y3
)

σ,

η′(y) =
(

κσ y + ∂σ κσ + κ2
σ

2
y2
)

σ,

η′′(y) = (κσ + (∂σ κσ + κ2
σ

)
y
)
σ,

η′′′(y) = (∂σ κσ + κ2
σ

)
σ.

By the definition of Ā−1
δ ,

Ā−1
δ δ1/2(σ + δ∂bσ ) = (1, 0)T .

Therefore

Ā−1
δ σ = δ−1/2(1, 0)T − Ā−1

δ δ∂bσ.

By (6.2) and (6.4) (see Section 6.1) we have |Ā−1
δ δ∂bσ | ≤ Cδ−1/2, so that |Ā−1

δ σ | ≤ Cδ−1/2. We stress that this upper
bound is δ−1/2 in contrast with δ−3/2 in (6.2), because Āδ works in the specific direction σ . Now we can estimate the
norms of η̃δ and its derivatives. Since they are collinear with σ , we have∣∣η̃δ(u)

∣∣= ∣∣Ā−1
δ η
(
δ1/2u1

)∣∣≤ C
(|u1|2δ1/2 + |u1|3δ

)
,∣∣∂u1 η̃δ(u)

∣∣= ∣∣Ā−1
δ δ1/2η′(δ1/2u1

)∣∣≤ C
(|u1|δ1/2 + |u1|2δ

)
,∣∣∂2

u1
η̃δ(u)

∣∣= ∣∣Ā−1
δ δη′′(δ1/2u1

)∣∣≤ C
(
δ1/2 + |u1|δ

)
,∣∣∂3

u1
η̃δ(u)

∣∣= ∣∣Ā−1
δ δ3/2η′′′(δ1/2u1

)∣∣≤ Cδ,

|∂u2 η̃δ(u)
∣∣= 0.

So, referring to the notation of Section 3.4, we have

c∗(η̃δ, h) = sup
|u|≤2h

max
i,j

∣∣∂i η̃
j
δ (u)
∣∣≤ Chδ1/2,

c2(η̃δ) = max
i,j

sup
|u|≤1

∣∣∂2
i,j η̃δ(u)

∣∣≤ Cδ1/2, (4.8)

c3(η̃δ) = max
i,j,k

sup
|u|≤1

∣∣∂3
i,j,kη̃δ(u)

∣∣≤ Cδ.

We first want to apply Lemma 3.8 to G = � + η̃δ(�). Here n = 2, and the covariance matrix of � is

γ� =
(

1 1/2
1/2 1/3

)
.
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It has 2 positive eigenvalues, 0 < λ1 < λ2, and det(γ�) = 1/12. We are supposing here δ ≤ δ∗ exp(−2L1r
2) ≤ δ∗/r2.

Since

hη̃δ
= 1

64(c2(η̃δ) +√c3(η̃δ))
≥ 1

C1
√

δ
≥ r

C1
√

δ∗

and

c∗(η̃δ,16r) ≤ C2r
√

δ ≤ C2
√

δ∗,

choosing δ∗ ≤ 1
16

λ1
λ2

1
C2

1C2
2

the conditions (3.20) are satisfied:

c∗(η̃δ,16r) ≤ 1

4

√
λ1

λ2
, r ≤ hη̃δ

. (4.9)

So there exist L1,L2,K1,K2 universal constants, such that for |z| ≤ r ,

K1 exp
(−L1|z|2

)≤ pG,Ur (z) ≤ K2 exp
(−L2|z|2

)
. �

The following lemma is a slight modification of Lemma 2.3.1 in [32].

Lemma 4.2. Let γ be a symmetric non-negative definite n × n matrix. We assume that, for fixed p ≥ 2, E[‖γ ‖p+1
Fr ] <

∞, and that ∃ ε0 > 0 s.t. for ε ≤ ε0,

sup
|ξ |=1

P
[〈γ ξ, ξ 〉 < ε

]≤ εp+2n.

Then there exist a constant C depending only on the dimension n such that

E
[
λ∗(γ )−p

]≤ CE
[‖γ ‖p+1

Fr

]
ε
−p

0 .

We consider now

F = Ā−1
δ (Xδ − x̂0). (4.10)

We will use the general estimates of Section 3. We denote by D the Malliavin derivative with respect to W , the
Brownian motion driving (2.1). We first prove that the moments of λ∗(γ −1

F ) = λ∗(γF )−1 are bounded, and these
bounds do not depend on δ. This result looks interesting by itself, since it means that we are able to account precisely
of the scaling of the diffusion in the two main directions σ and [σ,b]. In this particular case this is a refinement of the
classical result on the bounds of the Malliavin covariance under the (weak) Hörmander condition (cf. [27,31,32]).

Lemma 4.3. Let F = Ā−1
δ (Xδ − x̂0). For any p > 1, there exists C ∈ C such that for any δ ≤ 1, �F (p) ≤ eC .

Proof. Following [32] we define the tangent flow of X as the derivative with respect to the initial condition of X,
Yt := ∂xXt . We also denote its inverse Zt = Y−1

t . They satisfy the following stochastic differential equations

Yt = Id+
∫ t

0
∇σ(Xs)Ys ◦ dWs +

∫ t

0
∇b(Xs)Ys ds,

Zt = Id−
∫ t

0
Zs∇σ(Xs) ◦ dWs −

∫ t

0
Zs∇b(Xs) ds.

The Malliavin derivative of X is

DsXt = YtZsσ (Xs),
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so

DsF = DsĀ
−1
δ (Xδ − x̂0) = Ā−1

δ YδZsσ (Xs).

We define

γ̄δ =
∫ δ

0
A−1

δ Zsσ (Xs)σ (Xs)
T ZT

s A
−1,T
δ ds.

Then

γF = 〈DF,DF 〉 = Ā−1
δ YδAδγ̄δA

T
δ Y T

δ Ā
−1,T
δ .

Remark that

γ −1
F = ĀT

δ ZT
δ A

−1,T
δ γ̄ −1

δ A−1
δ ZδĀδ,

and that in this representation we have both Aδ and its “perturbed” version Āδ . We have to check the integrability
of λ∗(γF )−1 = λ∗(γ −1

F ). Recall that λ∗(·) is a norm on the set of matrices, and that for two 2 × 2 matrices M1,M2,
λ∗(M1M2) ≤ 2λ∗(M1)λ

∗(M2). We have

λ∗(γF )−1 ≤ 4λ∗(γ̄ −1
δ

)
λ∗(A−1

δ ZδĀδ

)2
.

We need to bound A−1
δ ZδĀδ , which we expect to be close to the identity matrix for small δ, and γ̄ −1

δ .
We take care first of the moments of λ∗(γ̄ −1

δ ). We use the following representation, holding for general φ, which
follows applying Ito’s formula (details in [32])

Ztφ(Xt ) = φ(x0) +
∫ t

0
Zs[σ,φ](Xs) dWk

s +
∫ t

0
Zs

{
[b,φ] + 1

2

[
σ, [σ,φ]]}(Xs) ds. (4.11)

Taking φ = σ the representation above reduces to

Ztσ (Xt ) = σ(x0) +
∫ t

0
Zs[b,σ ](Xs) ds

= σ(x0) + t[b,σ ](x0) + Lt , (4.12)

with Lt = ∫ t

0 Zs[b,σ ](Xs) − Z0[b,σ ](x0) ds. Notice that Lt ∼O(t3/2). Using A2 one gets

E

[
λ∗
(∫ δε

0
LsL

T
s ds

)q]
≤ E

[∥∥∥∥
∫ δε

0
LsL

T
s ds

∥∥∥∥
q

Fr

]
≤ eC′

(δε)4q, ∀q > 0,∃C′ ∈ C

(eC′
comes from Gronwall inequality). We have

A−1
δ Zsσ (Xs) = A−1

δ

(
σ(x0) + s[b,σ ](x0) + Ls

)
= 1

δ1/2

(
1

−s/δ

)
+ A−1

δ Ls.

For constant c and fixed ε, we introduce the stopping time

Sε = inf

{
s ≥ 0 : λ∗

(∫ s

0
LuL

T
u du

)
≥ c(δε)3

}
∧ δ.

We have

λ∗
(

A−1
δ

∫ Sε

0
LuL

T
u duA

−1,T
δ

)
≤ 4λ∗(A−1

δ

)2
λ∗
(∫ Sε

0
LuL

T
u du

)
≤ C′′

δ3
c(δε)3,
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where C′′ ∈ C. We fix c = 1
64C′′ , so

λ∗
(

A−1
δ

∫ Sε

0
LuL

T
u duA

−1,T
δ

)
≤ ε3

64
. (4.13)

Now we suppose to be on the event {Sε

δ
≥ ε}. Applying first inequality

〈
(v + R)(v + R)T ξ, ξ

〉≥ 1

2

〈
vvT ξ, ξ

〉− 〈RRT ξ, ξ
〉
,

which holds for any vectors v, R, ξ , and then (4.12), we obtain

γ̄δ =
∫ δ

0
A−1

δ Zsσ (Xs)σ (Xs)
T ZT

s A
−1,T
δ ds

≥
∫ Sε

0
A−1

δ Zsσ (Xs)σ (Xs)
T ZT

s A
−1,T
δ ds

≥ 1

2

∫ Sε

0

1

δ

(
1 −s/δ

−s/δ (s/δ)2

)
ds − A−1

δ

∫ Sε

0
LsL

T
s dsA

−1,T
δ .

We have

∫ Sε

0

1

δ

(
1 −s/δ

−s/δ (s/δ)2

)
ds ≥

∫ δε

0

1

δ

(
1 −s/δ

−s/δ (s/δ)2

)
ds ≥

(
ε − ε2

2

− ε2

2
ε3

3

)
≥ Id2

ε3

16
,

so, from (4.13),

〈γ̄δξ, ξ 〉 ≥ 1

2

ε3

16
|ξ |2 − ε3

64
|ξ |2 = ε3

64
|ξ |2, ∀|ξ | = 1.

Now, remark that t → λ∗(
∫ t

0 LsL
T
s ds) is increasing. For any q > 0

P(Sε < δε) ≤ P

(
λ∗
(∫ δε

0
LsL

T
s ds

)q

≥ cq(δε)3q

)

≤ E[λ∗(
∫ δε

0 LsL
T
s ds)q ]

cq(δε)3q

≤ eC′
(δε)4q

cq(δε)3q
≤ eC′

cq
(δε)q ≤ εq/2

for δ ≤ 1, for ε ≤ ε0 = e−C′′′
with C′′′ ∈ C. Therefore, for any q , for any ε ≤ ε0, δ ≤ 1,

P
(〈γ̄δξ, ξ 〉 < ε3/64

)≤ P[Sε < δε] ≤ εq/2.

Now we apply Lemma 4.2. We obtain

Eλ∗(γ̄ −1
δ

)q = Eλ∗(γ̄δ)
−q ≤ eC

for δ ≤ 1, C ∈ C.
We consider now A−1

δ ZδĀδ . Applying (4.11) and A3, one can prove that

Ztσ (x0) = (1 − κσ (x0)Wt

)
σ(x0) + Jt ,
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with Jt ∼O(t). So

ZδĀδ = (√δ
(
1 − κσ (x0)Wδ

)
σ(x0), 0

)+ Mδ,

where Mδ is a 2 × 2 matrix with Eλ∗(Mδ)
q ≤ eCδ3q/2, C ∈ C. This estimate follows again from A2. Since Aδ =

(δ1/2σ(x0), δ
3/2[σ,b](x0))

A−1
δ

(√
δ
(
1 − κσ (x0)Wδ

)
σ(x0), 0

)= (1 − κσ (x0)Wδ 0
0 0

)

and E|1 − κσ (x0)Wδ|q ≤ C ∈ C. Clearly Eλ∗(A−1
δ Mδ)

q ≤ eC , C ∈ C, so

Eλ∗(A−1
δ ZδĀδ

)q ≤ eC, C ∈ C. �

4.3. Two-sided bound for the density of Xδ

In this section we prove the short time density estimate (2.5). We start with the following lemma, which is a density
estimate for the “renormalized” random variable F (see (4.10)). We use Theorem 3.3 to recover estimates for pF from
(4.7). We will need the preliminary estimates of Section 4.2.

Lemma 4.4. Recall (4.6), the definition of C, and that, for fixed δ > 0, we set F = Ā−1
δ (Xδ − x̂0) and pF is its density.

(1) There exist C,C∗,L ∈ C such that the following holds. We set δ∗ = e−C∗
. For any fixed r > 0, if δ ≤ δ∗ exp(−Lr2),

for |z| ≤ r we have

1

C
exp
(−C|z|2)≤ pF (z).

(2) There exists δ∗ ∈ 1/C; C,L ∈ C such that: for any fixed r > 0, if δ ≤ δ∗ exp(−Lr2), for |z| ≤ r , we have

pF (z) ≤ eC exp
(−C−1|z|2).

Proof. We apply Theorem 3.3. Here n = 2, so 32n = 64.
(1) (Lower bound). Let L1 be the constant in Lemma 4.1. We first prove the lower bound for r ≥ 1√

L1
=: r̃ .

We start checking that C1 in Remark 3.4 is in C. From (3.5) and r ≥ 1√
L1

,

mUr (64) ≤ C

(
1 + ‖�‖2

2,64

r2

)
≤ C ∈ C.

Recall that G = � + η̃δ(�), where � is a Gaussian with covariance (and also Malliavin covariance matrix) given by

γ� =
(

1 1/2
1/2 1/3

)
.

This matrix has 2 positive eigenvalues, 0 < λ1 < λ2. Recall also that the Malliavin derivative D is taken with respect
to the Brownian motion W driving (2.1). We consider �G,Ur = 1 + (EUr λ∗(γG)−p)1/p .

〈γGξ, ξ 〉 =
∫ δ

0
〈DsG,ξ 〉2

≥
∫ δ

0

1

2
〈Ds�,ξ 〉2 − 〈Dsη̃δ(�), ξ

〉2
ds

= S1 + S2.
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We have

S2 =
∫ δ

0

〈∇η̃δ(�)Ds�, ξ
〉2

ds =
∫ δ

0

〈
Ds�,∇η̃δ(�)T ξ

〉2
ds ≤ λ2

∥∥∇η̃δ(�)
∥∥2

Fr|ξ |2

and S1 ≥ λ1/2, so

λ∗(γG) ≥ λ1

(
1

2
− λ2

λ1

∥∥∇η̃δ(�)
∥∥2

Fr

)
.

Recall c∗(η̃δ, h) = sup|x|≤2h maxi,j |∂i η̃
j
δ (x)|, so on the event {Ur �= 0} we have |�| ≤ 4r and ‖∇η̃δ(�)‖Fr ≤

2c∗(η̃δ,16r). We proved in (4.9) that c∗(η̃δ,16r) ≤ 1
4

√
λ1
λ2

, so it follows

∥∥∇η̃δ(�)
∥∥

Fr ≤ 1

2

√
λ1

λ2
,

and therefore λ∗(γG) ≥ λ1/4, which implies �G,Ur (64) ≤ C. Recall (4.4) and (4.10). Standard computations using A2
and Gronwall lemma give nF,G,Ur (p) ≤ eC, C ∈ C, so from Theorem 3.3 we have that ∃C ∈ C such that for |z| ≤ r

pF (z) ≥ pG,Ur (z) − eC‖R̃δ‖64,Ur ≥ K1 exp
(−L1|z|2

)− eC‖R̃δ‖64,Ur .

Recall (4.3). By using A2, one can show that ‖Rδ‖2,p ≤ eCδ2, with C ∈ C. So, from (6.1) with Āδ instead of Aδ ,

‖R̃δ‖64,Ur = ∥∥Ā−1
δ Rδ

∥∥
64,Ur

≤ eCδ2/δ3/2 = eC
√

δ,

so there exists C̄ ∈ C such that pF (z) ≥ K1 exp(−L1|z|2) − eC̄
√

δ. We have that, for r ≥ r̃ , if

δ ≤
(

K1 exp(−C̄) exp(−L1r
2)

2

)2

=
(

K1 exp(−C̄)

2

)2

exp
(−2L1r

2) (4.14)

the following lower bound holds for |z| ≤ r :

pF (z) ≥ K1

2
exp
(−L1|z|2

)
and this implies Lemma 4.4(1) for r ≥ r̃ . We take now 0 < r ≤ r̃ . Remark that exp(−2) = exp(−2L1r̃

2). We can

suppose δ∗ ≤ (
K1 exp(−C̄−1)

2 )2, so

δ ≤
(

K1 exp(−C̄ − 1)

2

)2

=
(

K1 exp(−C̄)

2

)2

exp
(−2L1r̃

2).
If |z| ≤ r , then |z| ≤ r̃ , and we apply what we have just proved for r ≥ r̃ , taking r̃ as radius. The following holds:

pF (z) ≥ K1

2
exp
(−L1|z|2

)
.

(2) (Upper bound). The proof of the upper bound follows again from Theorem 3.3. We deal with C2 exactly as
for the lower bound, with the difference that we need a bound for �F (64) instead of �G,Ur (64). This is proved in
Lemma 4.3. As before, we first suppose r ≥ 1√

L2
, where L2 is the constant in Lemma 4.1. We obtain

pF (z) ≤ K2 exp
(−L2|z|2

)+ eC̄
(√

δ + ‖1 − Ur‖1,28
)
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C̄ ∈ C. We fix L ∈ C and take δ ≤ exp(−Lr2), and we also need to prove that ‖1−Ur‖1,28 decays as C exp(−C−1|z|2)
for |z| ≤ r . This follows from (3.6): ∃C ∈ C such that

‖1 − Ur‖1,28 ≤
∑
i=1,2

P
(|�i | > r

) 1
56 C(1 + 1/r) ≤ Ce−C−1r2

.

We have the desired result for r ≥ 1√
L2

. Now, we take r ≤ 1√
L2

. If |z| ≤ r , then |z| ≤ 1√
L2

, and we can apply the result

already proved for r ≥ 1√
L2

, taking 1√
L2

as radius. Then, we prove as in (1) that the result can be extended to all
r > 0. �

We are now ready to prove the main theorem in short time.

Theorem 4.5. Suppose A1, A2, A3 hold. Let (Xt )t∈[0,T ] be the solution of (2.1), and for t ∈ [0, T ], let pt (x0, y) be
the density of Xt at y.

(1) There exist C,C∗,L ∈ C such that the following holds. We set δ∗ = e−C∗
. For any fixed r > 0, if 0 < δ ≤

δ∗ exp(−Lr2), setting x̂0 = x0 + b(x0)δ, for |y − x̂0|Aδ(x0) ≤ r we have

1

Cδ2
exp
(−C|y − x̂0|2Aδ(x0)

)≤ pδ(x0, y).

(2) There exists δ∗ ∈ 1/C, L,C ∈ C such that: for any fixed r > 0, if 0 < δ ≤ δ∗ exp(−Lr2), setting x̂0 = x0 + b(x0)δ,
for |y − x̂0|Aδ(x0) ≤ r , we have

pδ(x0, y) ≤ eC

δ2
exp
(−C−1|y − x̂0|2Aδ(x0)

)
.

Proof. We write the expectation of f (Xδ) for a function f with support included in B(0, r). We get

E
[
f (Xδ)

]= E
[
f (x̂0 + ĀδF )

]= ∫ f (x̂0 + Āδz)pF (z) dz.

With δ, r satisfying the hypothesis of Lemma 4.4, we can apply the previous density estimates to pF . Then the change
of variable y = x̂0 + Āδz gives that, for |y − x̂0|Āδ(x0)

≤ r , we obtain respectively

(1) 1
C|det Āδ(x0)| exp(−C|y − x̂0|2Āδ(x0)

) ≤ pδ(x0, y),

(2) pδ(x0, y) ≤ eC

|det Āδ(x0)| exp(−C−1|y − x̂0|2Āδ(x0)
),

where pδ(x0, y) is the density of Xδ in y. These estimates and the equivalence between | · |Aδ and | · |Āδ
(see (6.4) in

Section 6.1) imply the thesis. �

Remark 4.6. In the proof of Lemma 4.4 we have used A2, the assumption of uniformly bounded derivatives, to say
that nF,G,Ur (p) ≤ eC and ‖Rδ‖2,p ≤ eCδ2, C ∈ C. If we also ask that∣∣σ(x)

∣∣+ ∣∣b(x)
∣∣≤ ρ, ∀x ∈ R

2 (4.15)

we have that nF,G,Ur ≤ C̃ and ‖Rδ‖2,p ≤ C̃δ2, C̃ ∈ C. This holds because, supposing the boundedness of the coef-
ficients, we do not need anymore to use the Gronwall lemma to estimate the moments, but a direct computation is
enough. These are standard estimates. In particular, in (4.14) we have 1/C̄ instead of exp(−C̄). As a consequence,
if we also suppose (4.15), the lower bound in Lemma 4.4 and Theorem 4.5 holds for δ∗ ∈ 1/C. In particular, taking
r∗ = (L∨C)−1/2 in Theorem 4.5(1) we can state that: ∃r∗, δ∗ ∈ 1/C, C ∈ C such that for δ ≤ δ∗, for |y− x̂0|Aδ(x0) ≤ r∗

1

Cδ2
≤ pδ(x0, y).
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On the other hand, in the upper bound we cannot get rid of the exponential dependence in the constant. Indeed, the
estimate on �F (64) of Lemma 4.3 is involved (the estimate on the “non-degeneracy” of the rescaled diffusion F ). This
has an exponential dependence on the parameters, even supposing (4.15), because it involves the moments of Zt , the
inverse of the flow of X, and in this estimate we always need to use Gronwall lemma. Anyways, taking r∗ = (L)−1/2

in Theorem 4.5(2) we find that: ∃r∗, δ∗ ∈ 1/C, C ∈ C such that for δ ≤ δ∗, for |y − x̂0|Aδ(x0) ≤ r∗

pδ(x0, y) ≤ eC

δ2
.

We put together those two inequalities in the following two-sided bound, which is the formulation that will be used to
prove the tube estimate: ∃r∗, δ∗ ∈ 1/C, C ∈ C such that for δ ≤ δ∗, for |y − x̂0|Aδ(x0) ≤ r∗

1

Cδ2
≤ pδ(x0, y) ≤ eC

δ2
. (4.16)

5. Tube estimates of the diffusion process

As an application of Theorem 4.5 we prove the tube estimate. We suppose in this section σ, b ∈ C5(R2) and set, for
x ∈ R

2,

n(x) =
5∑

k=0

∑
|α|=k

∣∣∂α
x b(x)

∣∣+ ∣∣∂α
x σ (x)

∣∣, λ(x) = λ∗
(
A(x)

)
.

We consider the diffusion (2.1) on [0, T ], and the skeleton path (2.6): for φ ∈ L2[0, T ], let

xt (φ) = x0 +
∫ t

0
σ
(
xs(φ)

)
φs ds +

∫ t

0
b
(
xs(φ)

)
ds, for t ∈ [0, T ].

Recall H1, H2, H3, H4:

λ(y) ≥ λt , n(y) ≤ nt , ∂σ σ (y) = κσ (y)σ (y), ∀∣∣y − xt (φ)
∣∣< 1,∀t ∈ [0, T ].

Moreover, defining (Rt )t∈[0,T ] the time-dependent radius of the tube, we suppose that

n· : [0, T ] → [1,∞), R· : [0, T ] → (0,1],
λ· : [0, T ] → (0,1], |φ·|2 : [0, T ] → (0,∞)

are in ∈ L(μ,h), for some h > 0, μ ≥ 1, where L(μ,h) is the class of non-negative functions which have the property

f (t) ≤ μf (s) for |t − s| ≤ h.

Denote, for 0 ≤ t ≤ T , for K∗, q∗ positive universal constants,

R∗
t (φ) = exp

(
−K∗

(
μnt

λt

)q∗
μ2q∗
)(

h ∧ inf
0≤δ≤h

{
δ
/∫ t+δ

t

|φs |2 ds

})
. (5.1)

Theorem 5.1. Let (Xt )t∈[0,T ] be a process verifying (2.1), and xt (φ) the skeleton path defined above. If H1, H2, H3,
H4 are satisfied, there exist positive universal constants K̄, q̄ such that

exp

(
−
∫ T

0
K̄

(
μnt

λt

)q̄(1

h
+ 1

Rt

+ |φt |2 dt

))
≤ P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)
.
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Moreover, there exist positive universal constants K̄, q̄,K∗, q∗ such that if R. ≤ R∗
. (φ)

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)

≤ exp

(
−
∫ T

0
K̄

(
μnt

λt

)q̄(exp(−K∗(μnt

λt
)q∗)

Rt

+ |φt |2
)

dt

)
.

Remark 5.2. Remark that for Rt ≤ R∗
t (φ) ≤ h exp(−K∗(μnt

λt
)q∗) the statement in (2.8) is implied by this one.

Proof of Theorem 5.1. A main point in this proof is the choice a sequence of short time intervals in a way that allows
us to apply the short time density estimate. This issue is related to the choice of a an “elliptic evolution sequence” in
[6,7]. We fix φ from the beginning and write xt for xt (φ) to have a more readable notation.

We introduce also the time-dependent version of (4.6). For t ∈ [0, T ]
Ct = {Ct > 0 : Ct = exp

(
K(nt/λt )

q
)
,∃K,q ≥ 1

}
. (5.2)

The constants defined above depend on σ,b through the ratio nt/λt locally along the skeleton path. We stress that
K,q do not depend on σ,b and do not depend on t ∈ [0, T ]. We will also denote by 1/Ct = {δt > 0 : 1/δt ∈ Ct }. We
start proving the lower bound.

Step 1 (Time grid and notations): We set, for large q1,K1 to be fixed in the sequel,

fR(t) = K1

(
μnt

λt

)q1
(

1

h
+ 1

Rt

+ |φt |2
)

.

We use this function to split the time interval [0, T ] is short-enough sub-intervals (our time grid). Recall H4:
|φ.|2, n., λ.,R. ∈ L(μ,h), ∃μ ≥ 1, 0 < h ≤ 1. This implies fR ∈ L(μ2q1+1, h). We also define

δ(t) = inf
δ>0

{∫ t+δ

t

fR(s) ds ≥ 1

μ2q1+1

}
. (5.3)

Since

δ(t)

h
=
∫ t+δ(t)

t

1

h
ds ≤

∫ t+δ(t)

t

fR(s) ds = 1

μ2q1+1
,

for any t ∈ [0, T ], δ(t) ≤ h/μ2q1+1 ≤ h. Therefore we can use on the intervals [t, t + δ(t)] the fact that our bounds
are in L(μ,h). If 0 < t − t ′ ≤ h,

μ2q1+1fR(t)δ(t) ≥
∫ t+δ(t)

t

fR(s) ds = 1

μ2q1+1
=
∫ t ′+δ(t ′)

t ′
fR(s) ds ≥ μ−(2q1+1)fR(t)δ

(
t ′
)
,

so δ(t ′)/δ(t) ≤ μ4q1+2. Also the converse holds, and δ(·) ∈ L(μ4q1+2, h). We set

ε(t) =
(∫ t+δ(t)

t

|φs |2 ds

)1/2

.

We have

1

μ2q1+1
=
∫ t+δ(t)

t

fR(s) ds ≥
∫ t+δ(t)

t

fR(t)

μ2q1+1
ds ≥ δ(t)

fR(t)

μ2q1+1
,

so

δ(t) ≤ 1

fR(t)
≤ Rt

K1

(
λt

μnt

)q1

. (5.4)
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Similarly,

1

μ2q1+1
≥
∫ t+δ(t)

t

K1

(
μns

λs

)q1

|φs |2 ds ≥ 1

μ2q1
K1

(
μnt

λt

)q1

ε(t)2,

and we can write both

δ(t) ≤ 1

K1

(
λt

μnt

)q1

and ε(t)2 ≤ 1

K1

(
λt

μnt

)q1

. (5.5)

We set our time grid as

t0 = 0; tk = tk−1 + δ(tk−1),

and introduce the following notation on the grid:

δk = δ(tk); εk = ε(tk); nk = ntk ; λk = λtk ; Xk = Xtk ; xk = xtk ; Rk = Rtk .

We also define

X̂k = Xk + b(Xk)δk; x̂k = xk + b(xk)δk,

and for tk ≤ t ≤ tk+1,

X̂k(t) = Xk + b(Xk)(t − tk); x̂k(t) = xk + b(xk)(t − tk).

Moreover we denote

|ξ |k = |ξ |Aδk
(xk); Ck = Ctk ,

and r∗
k ∈ Ck the radius r∗ associated to (4.16), when taking as initial condition x0 = xk .

Remark 5.3. Consider Dk = {suptk≤t≤tk+1
|Xt − xt |ARt (xt ) ≤ 1}, and �k = {|Xk − xk|k ≤ rk}, where rk is radius

smaller than 1 that will be defined in the sequel. We denote Pk the conditional probability

Pk(·) = P(·|Wt, t ≤ tk;�k).

We will lower bound P(supt≤T |Xt − xt (φ)|ARt (xt (φ)) ≤ 1) computing the product of the probabilities Pk(Dk ∩ �k+1),
and this computation relies on the application of the density estimate in short time. Remark that A1, A3 are local
assumption, therefore it is enough to ask for H1, H3 to apply Theorem 4.5. What about A2 (global) and H2 (local)?
Suppose that we have a process X which, for some external reasons, verifies (2.1) for tk ≤ t ≤ tk+1, and such that
suptk≤t≤tk+1

|Xt − xt |ARt (xt ) ≤ 1. From H2

n(y) ≤ nk for
{
y ∈ R

2 : |y − xk| ≤ 1
}
.

A classical theorem (see [39]) tells us that we can define σ̄ , b̄ which coincide with σ,b on {y ∈ R
2 : |y − xk| ≤ 1},

which are differentiable as many times as σ,b but on the whole R
2, and for which

n(y) ≤ αnk for all y ∈R
2, with α constant.

Let X̄ be the strong solution to

X̄t = Xk +
∫ t

tk

σ̄ (X̄s) ◦ dWs +
∫ t

tk

b̄(X̄s) ds, t ∈ [tk, tk+1].
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It is clear that

P(Dk ∩ �k+1) = P

({
sup

tk≤t≤tk+1

|X̄t − xt |ARt (xt ) ≤ 1
}

∩ {|X̄tk+1 − xk+1|k+1 ≤ rk+1
})

,

and therefore we can equivalently prove our estimates supposing that n(y) is globally, and not just locally, bounded
by nk . From now on we assume that n(y) ≤ nk for y ∈ R

2.

Step 2 (Application of the density estimate): Lemmas 6.3, 6.5, 6.6, 6.7 hold for δk and εk small enough, and in
particular Lemma 6.7 says that

1

C1
k

|ξ |Aδ(xk) ≤ |ξ |Aδ(xk+1) ≤ C1
k |ξ |Aδ(xk), (5.6)

for some C1
k ∈ Ck , for any δ ≤ δk . Recall (5.5), and

Rk/μ ≤ Rt ≤ μRk, for tk ≤ t ≤ tk+1,

so that Rt ≥ δk for tk ≤ t ≤ tk+1. Moreover we have |xk+1 − x̂k|k ≤ Ck(εk ∨ √
δk), and for all tk ≤ t ≤ tk+1, applying

also (6.1), |xt − x̂k(t)|ARt (xt ) ≤ Ck(εk ∨ √
δk) for tk ≤ t ≤ tk+1. Recall again (5.5), and we fix q3,K3 such that, for

q1 ≥ q3,K1 ≥ K3, the Lemmas 6.3, 6.5, 6.6, 6.7 hold and

|xk+1 − x̂k|k ≤ r∗
k /8, (5.7)

∣∣x̂k(t) − xt

∣∣
ARt (xt )

≤ 1

4
for all tk ≤ t ≤ tk+1, (5.8)

and moreover δk ≤ δ∗
k associated to (4.16) with initial condition xk .

Now, δ(·) ∈ L(μ4q1+2, h) implies δk/δk+1 ≤ μ4q1+2 and δk+1/δk ≤ μ4q1+2. This, (5.6) and (6.1) give

1

C1
kμ2q1+1

|ξ |k ≤ |ξ |k+1 ≤ μ2q1+1C1
k |ξ |k, (5.9)

where C1
k is in Ck , depending on K3, q3. We now set, for K2, q2 to be fixed in the sequel,

rk = 1

K2μ2q1+2q2+1

(
λk

nk

)q2

, (5.10)

and define as we said before

�k = {|Xk − xk|k ≤ rk
}
, Dk =

{
sup

tk≤t≤tk+1

|Xt − xt |ARt (xt ) ≤ 1
}
,

and Pk as the conditional probability

Pk(·) = P(·|Wt, t ≤ tk;�k).

We find a lower bound for Pk(�k+1 ∩Dk) using our density estimate in short time. We denote pk(Xk, y) = pδk
(Xk, y)

the density of Xk+1 in y with respect to Pk . We prove that on {y : |y − xk+1|k+1 ≤ rk+1} we can apply (4.16) to
pk(Xk, ·) and so there exists Ck ∈ Ck such that

1

Ckδ
2
k

≤ pk(Xk, y). (5.11)

We estimate

|y − X̂k|k ≤ |y − xk+1|k + |xk+1 − x̂k|k + |x̂k − X̂k|k. (5.12)



330 P. Pigato

We already have (5.7). Since we are on |y − xk+1|k+1 ≤ rk+1, from (5.9) and the fact that rk+1/rk ≤ μ2q2

|y − xk+1|k ≤ C1
kμ2q1+1|y − xk+1|k+1 ≤ C1

kμ2q1+1rk+1 ≤ C1
kμ2q1+2q2+1rk ≤ C1

k

K2

(
λk

nk

)q2

.

It also holds |x̂k − X̂k|k ≤ Ck|xk − Xk|k ≤ Ckrk , for some Ck ∈ Ck . Similarly, since Rt ≥ δk , from (6.1) |x̂k(t) −
X̂k(t)|ARt (xt ) ≤ Ckrk , for all tk ≤ t ≤ tk+1. Recalling (5.10), we can fix K2, q2 such that |y − xk+1|k ≤ r∗

k /16, |x̂k −
X̂k|k ≤ r∗

k /16, and

∣∣X̂k(t) − x̂k(t)
∣∣
ARt (xt )

≤ 1/4, for all tk ≤ t ≤ tk+1. (5.13)

From (5.12), (5.7) this implies |y − X̂k|k ≤ r∗
k /4. We also have |xk − Xk|k ≤ rk , so we can also fix K2, q2 such that

rk ≤ α in Lemma 6.5. Therefore

1

4
|ξ |k ≤ |ξ |Aδk

(Xk) ≤ 4|ξ |k.

So |y − X̂k|Aδk
(Xk) ≤ r∗

k and (4.16) holds (which means that (5.11) holds). Now, from Lemma 6.5 and (5.9)

{| · − xk+1|Aδk
(Xk) ≤ rk+1/

(
4C1

kμ2q1+1)}⊂ {| · −xk+1|k ≤ rk+1/
(
C1

kμ2q1+1)}
⊂ {| · −xk+1|k+1 ≤ rk+1

}
,

and rk+1/(4C1
kμ2q1+1) ≥ rk/(4C1

kμ2q1+2q2+1) = 1
4C1

k K2μ
4q1+4q2+2 (

λk

nk
)q2 . So

Leb
(| · − xk+1|k+1 ≤ rk+1

)≥ δ2
k detA(Xk)

(
1

4C1
kK2μ4q1+4q2+2

(
λk

nk

)q2
)2

.

Now, from H1, detA(Xk) ≥ λk . So, from (5.11),

Pk(�k+1) ≥ 1

Ck

(
1

4C1
kK2μ4q1+4q2+2

(
λk

nk

)q2
)2

λk,

where Ck ∈ Ck is the constant in (4.16). This implies

2μ−8q1 exp
(−K4(logμ + lognk − logλk)

)≤ Pk(�k+1)

for some constant K4 (depending on K2,K3, q2, q3; on the contrary, we keep explicit the dependence in q1, which is
not fixed yet).

Step 3 (Concatenation): Consider now tk ≤ t ≤ tk+1. Recall the definition

Dk =
{

sup
tk≤t≤tk+1

|Xt − xt |ARt (xt ) ≤ 1
}
,

and introduce

Ek =
{

sup
tk≤t≤tk+1

∣∣Xt − X̂k(t)
∣∣
ARt (xt )

≤ 1

2

}
.

We decompose

|Xt − xt |ARt (xt ) ≤ ∣∣Xt − X̂k(t)
∣∣
ARt (xt )

+ ∣∣X̂k(t) − x̂k(t)
∣∣
ARt (xt )

+ ∣∣x̂k(t) − xt

∣∣
ARt (xt )

,
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and, from the previous part of the proof, (5.8) gives |x̂k(t)−xt |ARt (xt ) ≤ 1/4, and (5.13) gives |X̂k(t)− x̂k(t)|ARt (xt ) ≤
1/4. So |Xt − xt |ARt (xt ) ≤ |Xt − X̂k(t)|ARt (xt ) + 1/2, and therefore Ek ⊂ Dk .

Now we have to estimate Ek . A development of Xt − X̂k(t) similar to (4.4) gives that the diffusion moves with
speed δ

1/2
k in the direction of σ(xk), δ

3/2
k otherwise. Taking the | · |ARt (xt ) norm we account precisely of this fact.

Applying the exponential martingale inequality we find that

Pk

(
Ec

k

)≤ exp

(
− 1

K5

(
λk

μnk

)q5 Rk

δk

)

for some constants K5, q5. From (5.4), Rk/δk ≥ K1(μnk/λk)
q1 . We recall that λk ≤ 1 and nk ≥ 1, so choosing and

fixing now q1,K1 large enough we conclude

Pk

(
Ec

k

)≤ μ−8q1 exp
(−K4(logμ + lognk − logλk)

)≤ 1

2
Pk(�k+1),

so

Pk(�k+1 ∩ Dk) ≥ Pk(�k+1 ∩ Ek) ≥ Pk(�k+1) − Pk

(
Ec

k

)≥ 1

2
Pk(�k+1)

≥ exp
(−K6(logμ + lognk − logλk)

)
, (5.14)

for some constant K6. Let now N(T ) = max{k : tk ≤ T }. From definition (5.3)

∫ T

0
fR(t) dt ≥

N(T )∑
k=1

∫ tk

tk−1

fR(t) dt ≥ N(T )

μ2q1+1
.

From (5.14),

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)

≥ P

(
N(T )⋂
k=1

�k+1 ∩ Dk

)

≥
N(T )∏
k=1

exp
(−K6(logμ + lognk − logλk)

)

= exp

(
−K6

N(T )∑
k=1

logμ + lognk − logλk

)
.

Since

N(T )∑
k=1

(logμ + lognk − logλk) = μ2q1+1
N(T )∑
k=1

∫ tk+1

tk

fR(s) ds(logμ + lognk − logλk)

≤
∫ T

0
μ2q1+1fR(t) log

(
μ3nt

λt

)
dt,

the lower bound follows.
Step 4 (Upper bound): We define, with the same K1, q1 as in Step 1,

gR(t) = K1

(
μnt

λt

)q1
(exp(−K∗(μnt

λt
)q∗μ2q∗)

Rt

+ |φt |2
)

.
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Because of (5.1), for all t ∈ [0, T ],

exp(−K∗(μnt

λt
)q∗μ2q∗)

Rt

≥ 1

h
. (5.15)

We define now a new δ(t)

δ(t) = inf
δ>0

{∫ t+δ

t

gR(s) ds ≥ 1

μ2q1+1

}

and, as before,

ε(t) =
(∫ t+δ(t)

t

|φs |2 ds

)1/2

.

As in Step 1, using also (5.15), we can check that (5.5) holds also for this choice of δ:

δ(t) ≤ h

K1

(
λt

μnt

)q1

≤ 1

K1

(
λt

μnt

)q1

and ε(t)2 ≤ 1

K1

(
λt

μnt

)q1

.

In particular, δ(t) ≤ h. With these definitions we set a time grid {tk : k = 0, . . . ,N(T )} and all the associated quantities
as in Step 1. As we did for the lower bound, since we estimate the probability of remaining in the tube for any
t ∈ [tk, tk+1], we can suppose that the bound n(y) ≤ nk holds ∀y ∈ R

2. The short time density estimate (4.16) holds
again. Recall now that R. ∈ L(μ,h), and this gives the analogous to (5.9):

1

C1
k

√
μ

|ξ |ARk
(xk) ≤ |ξ |ARk+1 (xk+1) ≤ C1

k

√
μ|ξ |ARk

(xk).

We define

�k = {|Xk − xk|ARk
(xk) ≤ 1

}
,

P̃k as the conditional probability P̃k(·) = P(·|Wt, t ≤ tk;�k). Now, since δ(t) ≤ h, we can apply the fact that R,λ,n ∈
L(μ,h) and

∫ t+δ(t)

t

K1

(
μns

λs

)q1

|φ|2s ds ≤ μ2q1K1

(
μnt

λt

)q1 ∫ t+δ(t)

t

|φ|2s ds,

∫ t+δ(t)

t

K1

(
μns

λs

)q1 exp(−K∗(μns

λs
)q∗μ2q∗)

Rs

ds ≤ μ2q1+1K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

.

Recall now (5.1)

Rt ≤ R∗
t (φ) = exp

(
−K∗

(
μnt

λt

)q∗
μ2q∗
)(

inf
0≤δ≤h

{
δ
/∫ t+δ

t

|φs |2 ds

})
,

which implies

∫ t+δ(t)

t

|φs |2 ds ≤ exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

.

We obtain

1 = μ2q1+1
∫ t+δ(t)

t

gR(s) ds ≤ 2μ4q1+2K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

.



Tube estimates for diffusion processes under a weak Hörmander condition 333

so

Rt

δ(t)
≤ 2μ4q1+2K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)
. (5.16)

As we did in Step 1, if q∗,K∗ are large enough, Rk is small enough and the upper bound for the density holds on
�k+1. Because of (5.6),

Leb
(| · − xk|ARk

(xk+1) ≤ 1
)≤ Leb

(| · − xk|ARk
(xk) ≤ 1

)(
C1

k

)2 = (C1
k

)2 det
(
A(xk)

)
Rk

2.

Now, using the density estimate,

P̃k(�k+1) ≤ (C1
k

)2 det
(
A(xk)

)
eCk

(
Rk

δk

)2

,

where Ck is the constant in the upper bound of (4.16). Recall (5.16), for t = tk

Rk

δk

≤ 2μ4q1+2K1

(
μnk

λk

)q1

exp

(
−K∗

(
μnk

λk

)q∗)

so we chose now K∗, q∗ large enough to have

P̃k(�k+1) ≤ exp(−K7)

for a constant K7 > 0. From the definition of N(T )

∫ T

0
gR(t) dt =

N(T )∑
k=1

∫ tk

tk−1

gR(t) dt = N(T )

μ2q1+1
≤ N(T ).

As before

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (xt (φ))

≤ 1
)

≤
N(T )∏
k=1

P̃k(�k+1)

≤
N(T )∏
k=1

exp(−K7) = exp
(−K7 N(T )

)≤ exp

(
−K7

∫ T

0
gR(t)

)
,

and we have the upper bound. �

6. Matrix norm and control metric

6.1. Matrix norms

In this work we use a number of properties of norms associated to the matrix A and AR . Recall that in general we can
associate a norm to a matrix M with full row rank via

|y|M =
√〈(

MMT
)−1

y, y
〉
.

Recall that, for R > 0,

A = (σ, [σ,b]), AR = (R1/2σ,R3/2[σ,b]).
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Lemma 6.1. For every y ∈ R
2 and 0 < R ≤ R′ ≤ 1,

(
R/R′)1/2|y|AR

≥ |y|AR′ ≥ (R/R′)3/2|y|AR
, (6.1)

1

R1/2λ∗(A)
|y| ≤ |y|AR

≤ 1

R3/2λ∗(A)
|y|. (6.2)

Proof. Writing explicitly the inequalities (6.1), we easily see that they are verified if 0 < R ≤ R′ ≤ 1. Taking R′ = 1,
we have

R1/2|y|AR
≥ |y|A ≥ R3/2|y|AR

and so

1

R1/2λ∗(A)
|y| ≤ |y|AR

≤ 1

R3/2λ∗(A)
|y|. �

Remark 6.2. Recall the following properties of matrices:

∀ξ, C |ξ |2B ≥ |ξ |2A ⇔ C
(
BBT

)−1 ≥ (AAT
)−1 ⇔ BBT ≤ C AAT

and, denoting with Mi the columns of M ,

〈
MMT ξ, ξ

〉=∑
i

〈Mi, ξ 〉2,

so that

λ∗(M)2 = inf|ξ |=1

∑
i

〈Mi, ξ 〉2 and λ∗(M)2 = sup
|ξ |=1

∑
i

〈Mi, ξ 〉2.

Taking M = A(x) = (σ (x), [σ,b](x)) we have in particular that

λ∗
(
A(x)

)2|ξ |2 ≤ 〈σ(x), ξ
〉2 + 〈[σ,b](x), ξ

〉2 ≤ λ∗(A(x)
)2|ξ |2 ∀ξ ∈R

2. (6.3)

We prove now some equivalences between norms that will be needed especially in the concatenation along the tube.
We state them for tk = t0 = 0 to lighten the notation. Recall that x0 is the initial condition of (2.1), and that in the
concatenation (Section 5) we have

H1 λ∗(A(x)) ≥ λ0,∀|x − x0| < 1.
H2 n(x) ≤ n0,∀x ∈R

2 (this is justified in Step 1 of the proof).
H3 ∂σ σ (x) = κσ (x)σ (x),∀|x − x0| < 1, |κσ | ≤ n0, |∇κσ | ≤ n0.

Moreover, we recall that λ0 ≤ 1 and n0 ≥ 1. In (5.2) we define a class of constants that in the case t = 0 is

C0 = {C > 0 : C = (K(n0/λ0)
q
)
,∃K,q ≥ 1

}
.

Lemma 6.3. There exists C ∈ C0, δ
∗ ∈ 1/C0 such that for δ ≤ δ∗, with x̂0 = x0 + b(x0)δ, for any ξ ∈R

2

1

C
|ξ |Aδ(x0) ≤ |ξ |Āδ(x0)

≤ C|ξ |Aδ(x0), (6.4)

1

C
|ξ |Aδ(x0) ≤ |ξ |Aδ(x̂0) ≤ C|ξ |Aδ(x0). (6.5)

Remark 6.4. This lemma is used also in Section 4, when Ct has not yet been defined. It is clear that in that case the
constants must be taken in C defined in (4.6).
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Proof of Lemma 6.3. We take M = Aδ(x0) and M = Āδ(x0) in Remark 6.2. Recall that λ0 ≤ 1 and n0 ≥ 1 and notice
that

∣∣∂bσ (x0)
∣∣≤ 4n2

0 ≤ 4n2
0

λ∗(A(x0))
λ∗
(
A(x0)

)≤ Cλ∗
(
A(x0)

)
, with C ∈ C0

so, from (6.3)

δ3〈∂bσ (x0), ξ
〉2 ≤ δ3Cλ2∗

(
A(x0)

)|ξ |2 ≤ C
(
δ
〈
σ(x0), ξ

〉2 + δ3〈[σ,b](x0), ξ
〉2)

.

We have

δ
〈
σ(x0) + δ∂bσ (x0), ξ

〉2 + δ3〈[σ,b](x0), ξ
〉2

≤ 2δ
〈
σ(x0), ξ

〉2 + 2δ3〈∂bσ (x0), ξ
〉2 + δ3〈[σ,b](x0), ξ

〉2
≤ C
(
δ
〈
σ(x0), ξ

〉2 + δ3〈[σ,b](x0), ξ
〉2)

,

so |ξ |2Aδ(x0)
≤ C|ξ |2

Āδ(x0)
. Analogously,

δ
〈
σ(x0), ξ

〉2 + δ3〈[σ,b](x0), ξ
〉2 ≤ C

(〈
δσ (x0) + δ∂bσ (x0), ξ

〉2 + δ3〈[σ,b](x0), ξ
〉2)

,

so |ξ |2
Āδ(x0)

≤ C|ξ |2Aδ(x0)
. From

∣∣σ(x̂0) − σ(x0)
∣∣= ∣∣σ (x0 + b(x0)δ

)− σ(x0)
∣∣≤ ∫ δ

0

∣∣∇σ
(
x0 + b(x0)t

)
b(x0)

∣∣dt ≤ Cδ,

applying again Remark 6.2 as in the previous point, also (6.5) follows. �

The following lemma establish the equivalence of matrix norms of this kind when the matrix is taken in two points
that are close in such matrix norms.

Lemma 6.5. Consider x0, x, y ∈R
2, with |x − x0| < 1. There exist α ∈ 1/C0 such that if and |x − y|Aδ(x) ≤ α,

1

4
|ξ |Aδ(x) ≤ |ξ |Aδ(y) ≤ 4|ξ |Aδ(x), ∀ξ ∈ R

2.

Proof. Remark that (6.2) implies

|x − y| ≤ δ1/2C1|x − y|Aδ(x) ≤ αC1δ
1/2 ≤ δ1/2

for α ≤ 1/C1. A Taylor development gives

σ(x) − σ(y) = ∇σ(x)(x − y) +O
(|x − y|2),

so

〈
σ(x), ξ

〉2 ≤ 4
〈
σ(y), ξ

〉2 + 4
〈∇σ(x)(x − y), ξ

〉2 + C2|x − y|4|ξ |2.

Since Aδ(x) is invertible,

∇σ(x)(x − y) = ∇σ(x)Aδ(x)A−1
δ (x)(x − y).
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From Cauchy–Schwarz inequality and |A−1
δ (x)(x − y)| ≤ α,

∣∣〈∇σ(x)(x − y), ξ
〉∣∣= ∣∣〈A−1

δ (x)(x − y),
(∇σ(x)Aδ(x)

)T
ξ
〉∣∣

≤ α
∣∣(∇σ(x)Aδ(x)

)T
ξ
∣∣.

We are supposing H3, so ∂σ σ = κσ σ holds in x, and

∇σ(x)Aδ(x) = ∇σ(x)
(
δ1/2σ(x), δ3/2[σ,b](x)

)
= (δ1/2κσ (x)σ (x), δ3/2∂[σ,b]σ(x)

)
,

so ∣∣(∇σ(x)Aδ(x)
)T

ξ
∣∣2 = δκ2

σ (x)
〈
σ(x), ξ

〉2 + δ3〈∂[σ,b]σ(x), ξ
〉2

and therefore

〈∇σ(x)(x − y), ξ
〉2 ≤ α2(δκ2

σ (x)
〈
σ(x), ξ

〉2 + δ3〈∂[σ,b]σ(x), ξ
〉2)

≤ C3α
2δ
〈
σ(x), ξ

〉2 + C3α
2δ3|ξ |2.

Now,

C2|x − y|4|ξ |2 ≤ C2C
4
1α4δ2|ξ |2.

So

〈
σ(x), ξ

〉2 ≤ 4
〈
σ(y), ξ

〉2 + 4C3α
2δ
〈
σ(x), ξ

〉2 + 4C3α
2δ3|ξ |2 + C2C

4
1α4δ2|ξ |2.

Taking α ≤ 1
8C3C2C

2
1

, this implies

〈
σ(x), ξ

〉2 ≤ 8
〈
σ(y), ξ

〉2 + αδ2|ξ |2.

In the direction [σ,b] we have [σ,b](x) − [σ,b](y) =O(|x − y|)
〈[σ,b](x), ξ

〉2 ≤ 2
〈[σ,b](y), ξ

〉2 + C4|x − y|2|ξ |2 ≤ 2
〈[σ,b](y), ξ

〉2 + C4C
2
1α2δ|ξ |2.

We take now α ≤ 1/(C4C
2
1), and we conclude that

δ
〈
σ(x), ξ

〉2 + δ3〈[σ,b](x), ξ
〉2 ≤ 8δ

〈
σ(y), ξ

〉2 + 2δ3〈[σ,b](y), ξ
〉2 + 2αδ3|ξ |2.

Using now (6.3) and H1,

|ξ |2 ≤ C5
(〈
σ(y), ξ

〉2 + 〈[σ,b](y), ξ
〉2)

.

So taking α ≤ 4/C5 we have

δ
〈
σ(x), ξ

〉2 + δ3〈[σ,b](x), ξ
〉2 ≤ 16δ

〈
σ(y), ξ

〉2 + 16δ3〈[σ,b](y), ξ
〉2

.

From Remark 6.2 we have |ξ |Aδ(x) ≤ 4|ξ |Aδ(y). The converse inequality follows from an analogous reasoning. Remark
that all the conditions we need on α are satisfied taking α ∈ 1/C0 small enough, since |x − x0| < 1 and H1, H2, H3. �
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We prove now that moving along a control φ ∈ L2[0, T ] for a small time, the trajectory remains close to the initial
point in the Aδ-norm. Define, for fixed δ,

ε =
(∫ δ

0
|φs |2 ds

)1/2

.

Recall that we have

xt (φ) = x0 +
∫ t

0
σ
(
xs(φ)

)
φs ds +

∫ t

0
b
(
xs(φ)

)
ds.

Lemma 6.6. There exist δ∗, ε∗ ∈ 1/C0, C ∈ C0 such that if δ ≤ δ∗, ε ≤ ε∗∣∣xδ(φ) − (x0 + b(x0)δ
)∣∣

Āδ(x0)
≤ C
(
ε ∨ δ1/2).

Proof. Via computations analogous to decomposition (4.4) it is possible to write

xδ(φ) − (x0 + b(x0)δ
)= Āδ(x0)(Gφ + R̃φ,δ),

where

Gφ = �φ + η̃δ(�φ), �φ =
(

δ−1/2
∫ δ

0 φs ds

δ−3/2
∫ δ

0 (δ − s)φs ds

)

and

|R̃φ,δ| ≤ C
(
ε ∨ δ1/2).

Remark that, by Hölder inequality,

∣∣∣∣δ−1/2
∫ δ

0
φs ds

∣∣∣∣≤ ε,

∣∣∣∣δ−3/2
∫ δ

0
(δ − s)φs ds

∣∣∣∣≤ ε

so |�φ | ≤ 2ε and by (4.2) |η̃δ(�φ)| ≤ 4ε2. Therefore |Gφ | ≤ 4ε and

∣∣Āδ(x0)
−1(xδ(φ) − (x0 + b(x0)δ

))∣∣= |Gφ + R̃φ,δ| ≤ C
(
ε ∨ δ1/2). �

Lemma 6.7. There exist δ∗, ε∗ ∈ 1/C0, C ∈ C0 such that for δ ≤ δ∗, ε ≤ ε∗

1

C
|ξ |Aδ(x0) ≤ |ξ |Aδ(xδ) ≤ C|ξ |Aδ(x0).

Proof. Recall x̂0 = x0 + δb(x0). Applying in this order (6.5), (6.4), Lemma 6.6 we obtain

|xδ − x̂0|Aδ(x̂0) ≤ C
∣∣xδ − (x0 + b(x0)δ

)∣∣
Aδ(x0)

≤ C
∣∣xδ − (x0 + b(x0)δ

)∣∣
Āδ(x0)

≤ C
(
ε ∨ δ1/2).

Now, choosing δ∗, ε∗ small enough, we can apply Lemma 6.5 to the points xδ, x̂0, and

1

4
|ξ |Aδ(x̂0) ≤ |ξ |Aδ(xδ) ≤ 4|ξ |Aδ(x̂0).

Now again (6.5) concludes the proof. �
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6.2. The control metric

Recall (2.1), (2.2), (2.3). In the spirit of [28], we want to express our results is some control norm. Let

� = {x ∈R
2 : λ(x) = λ∗

(
A(x)

)
> 0
}
.

A natural way to associate a quasi-distance to the matrix norm | · |AR(·) used in this paper is to define

d(x, y) <
√

R ⇔ |x − y|AR(x) < 1

(we take
√

R because it is the “diffusive” regime). With this definition, d is a quasi-distance on �, verifying the
following properties (see [30]):

(i) for every x ∈ �, for every r > 0, the set {y ∈ � : d(x, y) < r} is open,
(ii) d(x, y) = 0 if and only if x = y,

(iii) for every compact set K � � there exists C > 0 such that d(x, y) ≤ C(d(x, z)+d(z, y)) holds for every x, y, z ∈
K .

We say that two quasi-distances d1 : � × � → R
+ and d2 : � × � → R

+ are equivalent if for every compact set
K � � there exists a constant C such that for every x, y ∈ K

1

C
d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y). (6.6)

In particular if d1 is a distance and d2 is equivalent with d1 then d2 is a quasi-distance.
On the other hand, the distance usually considered in the framework of hypoelliptic stochastic differential equations

is the control distance defined as follows: denote, for x, y ∈ �,

C(x, y) = {φ ∈ L2(0,1) : dvs = σ(vs)φs ds, x = v0, y = v1
}
. (6.7)

The control distance dc between x and y is

dc(x, y) = inf

{(∫ 1

0
|φs |2 ds

)1/2

: φ ∈ C(x, y)

}
.

Geometrically speaking, this corresponds to take the geodesic (i.e. the length-minimizing curve) joining x and y on
the sub-Riemannian manifold associated with the diffusion coefficient σ . In our case this notion looks inadequate: we
are supposing just a weak Hörmander condition, and this means that we have to use the drift coefficient b to generate
the whole space R

2. Therefore any reasonable associated distance should incorporate b as well. Moreover it should
account of the different speed associated to the vector field [σ,b]. This is the reason for the following definition.

Definition 6.8. We first introduce a function which accounts of the different scale of propagation in the direction
[σ,b]. For φ = (φ1

s , φ2
s ) ∈ L2((0,1),R2),

‖φ‖2
1,3 =

∫ 1

0

∣∣φ1
s

∣∣2 ds +
(∫ 1

0

∣∣φ2
s

∣∣2 ds

) 1
3

.

We generalize (6.7) to

CA(x, y) = {φ ∈ L2((0,1),R2) : dvs = A(vs)φs ds, x = v0, y = v1
}
.

A classic result by Carathéodory says that for any x, y ∈ � there exist a piecewise smooth φ ∈ CA(x, y). We set

dc(x, y) = inf
{‖φ‖1,3 : φ ∈ CA(x, y)

}
.
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We are interested in establishing an equivalence between d , the quasi-distance defined via the matrix-norm, and dc,
the quasi-distance in terms of the control.

Lemma 6.9. Let ξ ∈ �. Suppose that there exists a neighborhood Uξ of ξ such that for all x ∈ Uξ :

A1′ λ∗(A(x)) > λξ > 0,
A2′ ∑

0≤|α|≤5 |∂α
x σ (x)| + |∂α

x b(x)| ≤ ρξ ,
A3′ ∂σ σ (x) = κσ (x)σ (x), where κσ is a differentiable scalar function, |κσ (x)| ≤ ρξ and |∇κσ (x)| ≤ ρξ .

Then there exist a neighborhood Vξ of ξ and a constant Cξ such that, for any x, y ∈ Vξ

1

Cξ

d(x, y) ≤ dc(x, y) ≤ Cξd(x, y). (6.8)

Remark 6.10. This implies, using the fact that every open cover of a compact has a finite subcover, Corollary 2.2.
Moreover, again via a standard compactness argument, we have that if A1′, A2′, A3′ hold for any ξ ∈ �, then d and
dc are equivalent quasi-distances on �.

Proof of Lemma 6.9. We use in this proof some notions on similar metrics and pseudo-metrics for which we refer to
[30]. For any φ ∈ L∞((0, T ),R2) we set

‖φ‖1,3,∞ = sup
0≤s≤1

∣∣φ1
s

∣∣+ sup
0≤s≤1

∣∣φ2
s

∣∣ 1
3

and define

ρ(x, y) = inf
{‖φ‖1,3,∞ : φ ∈ CA(x, y)

}
.

It is also possible to allow only constant linear combinations of the vector fields:

C̄A(x, y) = {θ ∈R
2 : dvs = A(vs)θ ds, x = v0, y = v1

}
. (6.9)

Analogously, we define

ρ2(x, y) = inf
{∣∣θ1
∣∣+ ∣∣θ2

∣∣1/3 : θ ∈ C̄A(x, y)
}
.

In [30] the quasi-distances ρ and ρ2 are defined in a slightly different way, but clearly equivalent to ours. It is also
proved that ρ and ρ2 are locally equivalent. We use here only the trivial inequality ρ ≤ ρ2. Remark that the difference
between ρ and dc is that we take ‖φ‖1,3,∞ instead of ‖φ‖1,3, so dc ≤ ρ follows easily from the fact that the L2(0,1)

norm is dominated by the L∞(0,1) norm.
We prove that, for fixed ξ , there exist Vξ and Cξ such that

d(x, y) <
√

R ⇒ ρ2(x, y) < Cξ

√
R,

for x, y ∈ Vξ . Since x, y ∈ Vξ , we can suppose |x − y| < γξ small. By definition, d(x, y) <
√

R means |x −
y|AR(x) < 1. We prove that this implies the existence of θ ∈ C̄A(x, y) with |θ1| < CξR

1/2, |θ2| < CξR
3/2. Indeed,

for fixed x, consider the function

θ → �(θ) =
∫ 1

0
A(vs)θ ds,

with v satisfying dvs = A(vs)θ ds, v0 = x. Remark that � : R2 → R
2, �(0) = 0 and ∇�(0) = A(x), which is non-

degenerate because of A1′. Therefore it is locally invertible: there exist two neighborhoods of 0 such that � is a
diffeomorphism from one to the other, and therefore for y − x in the neighborhood in the image we can find θ such
that �(θ) = y − x. Moreover, from the fact that A1′ and A2′ are uniform around ξ , the size of the neighborhoods can
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be taken uniformly in x. Therefore we can find a neighborhood of ξ such that for given x, y in this neighborhood,
there exist θ for which �(θ) = y − x. Again from A1′ and A2′, we can also suppose that |θ | ≤ C

ξ
1 |�(θ)|. So, there

exists Vξ neighborhood of ξ such that, for x, y ∈ Vξ , there exists θ ∈ C̄A(x, y), and moreover

|θ | ≤ C
ξ
1

∣∣�(θ)
∣∣≤ C

ξ
1 |x − y| < C

ξ
1 γξ .

We now show∣∣θ1
∣∣< CξR

1/2,
∣∣θ2
∣∣< CξR

3/2.

It is clear from (6.2) that |θ1| ≤ |θ | ≤ C
ξ
1 |x − y| < C

ξ
2 R1/2. Now, with a development similar to (4.5), we can write

∫ 1

0
A(vs)θ ds = [σ,b](x)θ2 + σ(x)θ1 + η

(
θ1)+ L(θ),

with |L(θ)| ≤ C
ξ
3 |θ | (|θ2| + |θ1|3) for |θ | < C

ξ
1 γξ and η defined as in (4.1):

η(u) =
(

κσ (x)

2
u2 + (∂σ κσ + κ2

σ )(x)

6
u3
)

σ(x) = (α(x)u2 + β(x)u3)σ(x)

(we have used again A3′). So

A(x)−1
∫ 1

0
A(vs)θ ds =

(
θ1 + α(x)(θ1)2 + β(x)(θ1)3

θ2

)
+ A(x)−1L(θ).

Since |θ | < C
ξ
1 γξ and |θ1| ≤ C

ξ
2 R1/2,

∣∣A(x)−1L(θ)
∣∣≤ C

ξ
4 |θ | (∣∣θ2

∣∣+ ∣∣θ1
∣∣3)≤ C

ξ
4 C

ξ
1

(
C

ξ
2

)3
γξ

(∣∣θ2
∣∣+ R3/2)≤ |θ2| + R3/2

2
,

choosing γξ ≤ (2C
ξ
4 C

ξ
1 (C

ξ
2 )3)−1. In particular, the second component of A(x)−1L(θ) is in absolute value smaller than

(|θ2| + R3/2)/2. Then the second component of A(x)−1
∫ 1

0 A(vs)θ ds is in absolute value larger than |θ2| − (|θ2| +
R3/2)/2 = (|θ2| − R3/2)/2. As a consequence, the second component of AR(x)−1

∫ 1
0 A(vs)θ ds is in absolute value

larger than R−3/2(|θ2| − R3/2)/2. Since | ∫ 1
0 A(vs)θ ds|AR(x) = |x − y|AR(x) ≤ 1, we have R−3/2(|θ2| − R3/2)/2 ≤ 1

and so we conclude |θ2| ≤ 3R3/2.
We now prove

dc(x, y) <

√
R

C
ξ
6

⇒ d(x, y) <
√

R.

We suppose φ ∈ CA(x, y) with ‖φ‖1,3 ≤
√

R

C
ξ
6

, which implies

∫ 1

0

∣∣φ1
s

∣∣2 ds ≤ R

(C
ξ
6 )2

and
∫ 1

0

∣∣φ2
s

∣∣2 ds ≤ R3

(C
ξ
6 )6

.

Developing as before and applying A3′,

|x − y|AR(x) =
∣∣∣∣AR(x)−1

∫ 1

0
A(vs)φs ds

∣∣∣∣≤ C
ξ
7

√∫ 1
0 |φ1

s |2 ds

R
+
∫ 1

0 |φ2
s |2 ds + (

∫ 1
0 |φ1

s |2 ds)3

R3
.
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Therefore

|x − y|AR(x) ≤ C
ξ
7

√
3

C
ξ
6

< 1

if C
ξ
6 is a large enough constant. �
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