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Abstract. We study a notion of local time for a continuous path, defined as a limit of suitable discrete quantities along a general
sequence of partitions of the time interval. Our approach subsumes other existing definitions and agrees with the usual (stochastic)
local times a.s. for paths of a continuous semimartingale. We establish pathwise version of the Tanaka—Meyer, change of variables
and change of time formulae. We provide equivalent conditions for existence of pathwise local time. Finally, we study in detail
how the limiting objects, the quadratic variation and the local time, depend on the choice of partitions. In particular, we show that
an arbitrary given non-decreasing process can be achieved a.s. by the pathwise quadratic variation of a standard Brownian motion
for a suitable sequence of (random) partitions; however, such degenerate behaviour is excluded when the partitions are constructed
from stopping times.

Résumé. Nous étudions la notion de temps local pour un processus continu, défini comme la limite de fonctions discrétes le long
d’une suite de partitions de ’intervalle de temps. Notre approche englobe les définitions déja existantes et coincide p.s. avec la
définition (stochastique) usuelle des temps locaux pour les trajectoires de semimartingales continues. Nous établissons une version
trajectorielle des formules de changement de variables, de temps et de Tanaka—Meyer ansi que plusieures conditions équivalentes
pour I’existence du temps local trajectoire par trajectoire. Finalement, nous proposons une étude détaillée de la facon dont le
processus limite, son temps local et sa variation quadratique, dépendent du choix de la suite de partitions. Nous montrons en
particulier qu’un processus non-décroissant donné peut toujours étre obtenu p.s. comme la variation quadratique d’un mouvement
Brownien standard le long d’une suite appropriée de partitions (aléatoires). De tels comportements pathologiques sont cependant
exclus quand les partitions sont construites a 1’aide de temps d’arrét.

MSC: 60G17; 60HO5

Keywords: Pathwise local-time; Itd—Tanaka formula; Random partitions; Brownian variation

1. Introduction

In a seminal paper, Follmer [9] pioneered a non-probabilistic approach to stochastic calculus. For a function x of
real variable, he introduced a notion of quadratic variation (x), along a sequence of partitions (7r,), and proved the
associated It’s formula for f € C2:

1 1 t
f(xz)—f(xo)=/0 f’(xs)dstrE/O I (xs)d(x)s, (1.1)

1Supported by the European Research Council under (FP7/2007-2013)/ERC Grant agreement no. 335421.
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where the integral fot S/ (xs) dxg is defined as the limits of non-anticipative Riemann sums, shown to exist whenever
(x); exists. Follmer also observed that a path of a semimartingale a.s. admits quadratic variation in the pathwise sense
and the usual stochastic integral agrees with his pathwise integral a.s.

The underlying motivation behind our current study was to extend the pathwise stochastic integral and its Itd’s
formula to functions f which are not in C2. This question arose from applications in mathematical finance (see Davis
et al. [6]) but, we believe, is worth pursuing for its own sake. It led us to develop pathwise stochastic calculus featuring
local times, which is the first main contribution of our work. We define a notion of local time L;} («) for a continuous
function x, prove the associated Tanaka—Meyer formula and show that a path of a continuous semimartingale X a.s.
admits pathwise local time L,X(w) (u) which then agrees with the usual (stochastic) local time. Our contribution should
be seen in the context of three previous connected works. First, our results are related to Bertoin [1], who showed
similar results for a large class of Dirichlet processes; see also Coutin, Nualart and Tudor [5] (who consider fractional
Brownian motion with Hurst index H > 1/3) and Sottinen and Viitasaari [22] (who consider a class of Gaussian
processes). Second, related results appeared in the unpublished diploma thesis of Wuermli [26]. Our approach is
similar, however the proof in [26] was complicated and applied only to square integrable martingales. We also have a
slightly different definition of local time which includes continuity in time and importantly we consider convergence
in L? for p € [1, 0o) instead of just p = 2. This allows us to capture the tradeoff between the generality of paths
considered and the scope of applicability of the Tanaka—Meyer formula. Indeed, as the term fR LT (u) f” (du) suggests,
there is a natural duality between LT and f”, so the smaller the space to which LT belongs, the more general f” one
can take.

The latter idea was already exploited in our third main reference, the recent paper by Perkowski and Promel [17]
(and, to a much lesser extent, by Feng and Zhao [8]), in which LT belongs to the space of continuous functions,
and thus f” can be a general measure (i.e. f/ has bounded variation and f is the difference of two arbitrary convex
functions), recovering the Tanaka—Meyer formula in full generality (the authors also consider the case where LT is
continuous and has bounded p-variation, so that f’ can be any function with bounded g-variation). In particular, the
conclusion of their main theorem (Theorem 3.5 in [17]) on the existence of LZX(“}) (u) for a.e. w is stronger than ours;
however, since their local time has to be continuous, extra conditions are required (see Section 6 below), whereas our
Theorem 6.1 applies to a general semimartingale X.

Further, we investigate several questions not considered in [1,26] and [17], as we explain now. The main advantage
of our definition, as compared with these previous works, is that we are able to characterise the existence of pathwise
local time with a number of equivalent conditions (see Theorem 3.1). This feature seems to be entirely new. It allowed
us in particular to build an explicit example of a path which admits a quadratic variation but no local time. Also, while
[6] and [26] (following [9]) consider partitions 1, whose mesh is going to zero (which are well suited for changing
variables), the results [1, Theorem 3.1] and [17, Theorem 3.5] of existence of pathwise local time consider Lebesgue2
partitions. Since neither type of partition is a special case of the other, this makes the results in these papers hard
to compare. We solve this conundrum by proving our existence result (Theorem 6.1) for a general type of partition,
which subsumes both types considered above. Finally, we prove that the existence of L,(u) is preserved by a C!
change of variables (improving on [6, Proposition B.6]) and by time changes, and that g — fot g(x5) dx;s is continuous
(similarly? to [17]).

Finally, we investigate how the limiting objects, quadratic variation and local time, depend on the choice of parti-
tions. We show that for a path which oscillates enough, with a suitable choice of partitions, its quadratic variation can
attain essentially any given non-decreasing function. From this, taking care of null sets and measurability issues, one
can deduce that for a Brownian motion W and a given increasing [0, co]-valued measurable process A with Ag =0
there exist refining partitions (77,,), made of random times such that

(W)= Z (Wiipine — Wisn)* = Ay as.forall £ > 0.

tjemy

This result illustrates, in the most stark way possible, the dependence of the pathwise quadratic variation (and thus
of the pathwise local time) on the partitions (7,),. This may push the reader to dismiss the notion of pathwise

2Which we define in (2.2).
3Note that due to difference in definitions of local time, we use different topologies.
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quadratic variation (and local time). However, it worth recalling that if we restrict ourselves to partitions constructed
from stopping times, the limit of (W) exists and is independent of the choice of partitions, and it always equals .
Analogously, our Theorem 6.1 states that, if we only consider partitions constructed from stopping times, the pathwise
local time LIX(“’) (u) of a semimartingale X exists and is independent of the choice of partitions, and it coincides with
the classical local time.

As already known by Lévy, inf; (x)T = 0 for every continuous function x and sup, (W (w))] = oo for a.e. . Our
analysis builds on these facts and answers in particular two questions: whether for the general path x = W (w) one
can make (x)?” converge to any chosen C = C(w) € R, and what dependence in ¢ we can expect for lim, (x);".
Specifically it is clear that it must be an increasing function, and we wondered whether it is automatically continuous;
indeed, while we followed Follmer [9], who carefully required that lim, (x)]" be continuous,* several authors who
cite [9] do not (see for example [1,6,21]) and our results show that this is a significant omission.

The plan for rest of the paper is as follows. In Section 2 we introduce most of the notations and definitions, and
recall parts of [9]. In Section 3 we identify several conditions equivalent to the existence of pathwise local time, prove
the Tanaka—Meyer formula and the continuity of g — f(; g(xy) dxg. In Section 4 we consider change of variable and
time, and in Section 5 we extend Tanaka—Meyer formula from the case of a Sobolev function f to the case where f
is a difference of convex functions. In Section 6 we prove that a path of a semimartingale a.s. admits the pathwise
local time, and relate this to the downcrossing representation of semimartingale local time proved by Lévy. Finally in
Section 7 we state the results about dependence of quadratic variation on the sequence of partitions, including the con-
vergence (W);" — A, mentioned above. We only give the proof for one path avoiding the (non-trivial) technicalities
related to measurability and null sets.

2. Pathwise stochastic calculus

In this section we introduce most notations and definitions used throughout the article, and we revisit the part of
[9] which deals with continuous functions, slightly refining its results to include uniformity in ¢ and more general
partitions.

By measure we mean sigma-additive positive measure; a Radon measure will be the difference of two measures
which are finite on compact sets. With || we will denote the total-variation measure relative to a ‘real measure’
u (i.e. u is the difference of two measures), and with max(u, 0) the measure (u + |i])/2 (i.e. the positive part in
the Hahn—Jordan decomposition of ). We will say that g, — g fast in L? (u) if ZneN lgn — g||€p(u) < 00; this
trivially implies that g, — g a.s. and in L”(u). We will denote by B (resp. Br) the Borel sets of [0, c0) (resp.
[0, T]). For a continuous function x = (x4)s>0, X, and X; are respectively the minimum and maximum of x; over
s € [0, 1]. We set xoo = 0, denote by &; the Dirac measure at ¢, and by 7 a partition of [0, 00), i.e. T = (x)xen Where
tr €10,00],t0 =0, tx < tgy1 if tx1 < 00, and limg_, o % = 00. For such x and 7, we set

O (x, ) :==max{|x(b) — x(a)| : a, b € [tx, tx+1) N [0, ] for some k € N}. (2.1)

Follmer works with a sequence of finite partitions (i, ), whose step on compacts converges to zero. This excludes
very commonly used partitions: the Lebesgue partitions, i.e., those of the form 7p = wp(x) = (f)reN,

where 10:=0, tiy1 :=inf{t > 1 : x; € P, x; # Xz, } 2.2)
for some P partition of R, i.e., P = (py)rez With

P € [—o0, 00], lim pg = =00, po=0 and pi < pr+1  if pr, pr+1 €R.
k— =400

We will work instead with partitions i, such that Or(x, 7,) — O for all T < oo; these are very flexible, as they
subsume both Lebesgue partitions and the ones used by Follmer. Moreover they allow us to obtain time-change

4More precisely [9] deals with cadlag x and requires that u,, (defined later in (2.3)) converge weakly to a measure p which assigns mass (Axp)?
to the singleton {r}; if x is continuous this implies continuity of (x)_n.
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results, and have the additional advantage that one can always pass to refinements (since if # C 7’ then O7 (x, ) >
Or(x, 7).

While our aim in this paper is to develop a pathwise, non-probabilistic, theory, it is often the case that we want to
consider paths that arise as sample functions of some stochastic process. Such processes are assumed to be defined
on some underlying filtered probability space (€2, F, (F;)e[0,00), P) satisfying the ‘usual conditions’. We denote
by fol H; d X the stochastic integral of a predictable and locally-bounded integrand H with respect to a continuous
semimartingale X = (X;);>0. Inequalities between random variables are tacitly supposed to hold for P-almost every w.
A sequence of partitions of [0, c0) made of random (resp. stopping) times will be called a random (resp. optional)
partition of [0, c0); more precisely if 7 = (tx)ren, Where 7 are [0, oo]-valued random variables such that tp =
0, Tk < Tk41 With T < Tg41 on {141 < 00}, and limy_, o Tx = 00, then 7 is called a random partition, and if moreover
{tx <t} € F; forall k, t then 7 is an optional® partition.

Definition 2.1. Given a continuous function x : [0,00) — R and a sequence of partitions IT = (), such that
Ot (x, ) converges to zero as n — oo for all T < oo, we will say that x has quadratic variation (sampled along IT)
if the measures

= Y (g = %)% (2.3)

tjET[n

converge vaguely® to a measure without atoms ju as n — oo. We will write x € Q if Oz (x, m,) — 0 for all T < 0o
and x has quadratic variation.

Recall that u, converges weakly to a non-atomic measure w iff its cumulative distribution function converges
pointwise to a continuous function, and thus iff

2
(x);fn = Z (xt]ur]/\l‘ _xtj/\t)

tjemy

converges pointwise to a continuous (increasing) function (x),; the cumulative distribution function of w is then (x),
and is called the quadratic variation of x. Such convergence is then always uniform in 7, and more generally for every
T > 0 and continuous function f :[x;,X7] — R

t
N F @) Gpinr = X0 —> / fx)dix)s uniformlyin € [0, T]: (2.4)
’ 0

tjen,,
indeed if #; <t < ;11 the sum on the left of (2.4) differs from fot f du, by at most
| £ G (Gt — 300 = (o — x1)) | <21 Flloo O (x, 0)2,

and fOt f du, converges to fé f dp uniformly in r < T as the following simple observation applied to the positive and
negative parts of f shows.

Scholium 2.2 (Polya). Let F, F,, : [0, T] — R be cadlag increasing. If F is continuous and F,, — F pointwise then
the convergence is uniform in ¢ € [0, T].

Note that a priori u, (x) and Q depend on IT = (77,,),; when we want to stress this dependence, we will write

w', (x), QM Note also that the series in (2.4) is in fact a finite sum, since every partition is finite on compacts.

5The terminology is justified by the fact that 7 is a stopping time iff 1{;_.} is an optional process.
6Meaning that [ f dp, — [ fdu for every continuous function f with compact support.
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We introduce now some more notation which will be used throughout and in particular in Section 7 and its proofs.
Given numbers a < s <t < b and a finite partition 7 of [a, b] (meaning = = (1‘,-)f.‘:0 with g = a, t; < tj+1 for all i,
and t; = b) we set

(X)?s,t] = Z(X(thrl/\t)Vs - X(tkm)v‘s)z; (2.5)

i

if s = a and r = b the latter expression simplifies and we denote it with
(X = () = D (g — %)%
i

Notice that if 7 is a partition of [a, b] > s, ¢ then

)y = X+ (X Gy ifsemn (2.6)
in particular

(x)j(rs’t] < (x)J(Ta’b] ifs,tem, 2.7)
and if 77 is a partition of [b, c] then

N = 0 + ) 2.8)

We shall now see that the quadratic variation sampled along optional partitions (7,), exists on a.e. path of a
semimartingale and that a.e. it does not depend on (7,),. This is essentially the usual result on the existence of the
quadratic variation for a semimartingale.

Proposition 2.3. Let X be a continuous semimartingale and [X]; := th -2 fé XsdXs. If T1 = (), are optional
partitions such that Ot (X, m,) — 0 a.s. for all T < oo then there exists some subsequence (ny)y such that, for each
w outside a P-null set and setting I1' := (1, )k, we have X (w) € O and (X () = [X](w).

. i L .
Proof. Write , = (rj )j,take H" := Zj er’.’ l(f}’sf}ﬂ,l] and notice that

t t
2/ XdX +[X], =X,2=2/ H"dX, + (X)™. 2.9)
0 0

Since H" converges pointwise to X and is bounded by a locally bounded predictable process,’ the stochastic domi-
nated convergence theorem gives that fo H™dX converges to fo X d X uniformly on compacts in probability, which
implies the thesis. U

We now show that one can identify some of the subsubsequences along which the previous statement holds; in
particular this holds when 7, is the Lebesgue partition wp, corresponding to D, :=27"N (the dyadics of order n).
Given p € [1, oo) we denote by S” the set of continuous semimartingales X = (X;)s¢[0,77 Which satisfy

1/2

T
IXllsr == ||[M]; ||L,,+H/O diV|| <oo,

Lr

where X = M + V is the canonical semimartingale decomposition of X, [M]; := Mt2 -2 fot M d M is the quadratic
variation of M and |V |; is the variation of (V)se[o,r]. We recall the inequality

sup X, |

<CpllXllsr, (2.10)
t<T P)

TFor example |H{'| < X{ with X[ :=sup,, | Xs].
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which holds for local martingales (this being one side of the celebrated Burkholder—Davis—Gundy inequalities) and
thus trivially extends to X € S”. We will also use without further mention that if H is locally-bounded and predictable
then the canonical decomposition of [j HdX is fy HdM + [, HdV and so

. T 1/2 T
U HdXx =H</ thd[M],) / |H|d| V],
0 Sr 0 0

Proposition 2.4. If in Proposition 2.3 we make the stronger assumption that ), Ot (X, w,) < 00 a.s. forall T < 00
then X (w) € Q™ and (X (w))! = [X](w) for a.e. w.

"

LP LP

Proof. Fix a compact time interval [0, 7] on which we will work. By prelocalizing we can assume that X € S*
(see® Emery [7, Théoreme 2]) and passing to an equivalent probability we can moreover’ assume that K :=
>, 01X, my) € L* Take H" as in Proposition 2.3, K" := H" — X and notice that sup, |K}'| < O7(X, ), so
>, sup, |K"| < K and in particular }_, sup, |[K"|?> < K% € L%. Using (2.10) and (a + b)? < 2(a® + b?) gives that
sup, | fy K" dX| converges to zero fast in L? if

(e (] )

is finite, which is true since it is bounded above by E(K 2(M]1r + |V|2T)), which is finite by Holder inequality since
K € L* X € 8*. Since Sup; <7 |f0' K" dX|— 0 fastin L? and thus a.s., (2.9) yields sup, [(X)7" —[X]| = O0as.O

Theorem 2.5 (Follmer [9]). Ifx € Q, g € C' and t € [0, 00) the limit

im ) g (xe,) (ot ar = it ) 2.1

tjemy

exists uniformly on compacts and defines a continuous function of t denoted fot g(x5) dxs. This integral satisfies It0’s
formula: for f € C*(R),

1 1 t
fx) —f(xo)=/0 f’(xs)dxs+§/0 I/ (xs)d(x)s. (2.12)

Notice that the series defining the Follmer integral in (2.11) and later in this paper are in fact finite sums, since
every partition is finite on compacts.

Proof of Theorem 2.5. By using the second order Taylor’s expansion write

Z FOtppne) = Fxejae) (2.13)
tjemy
as
1
Z f/(xt_,)(xt”mt = Xtjar) + 3 Z f//(xtj)(xthAt - xt_//\t)2 + G (1), (2.14)
rj€my tj€my

where the correction term Cj,(¢) is bounded by

Z ¢(|Xt_,-+mt - xtj/\t|)(xt_/-+mt - )Ctj/\t)2 (2.15)

tjen,,

8This statement also appears in [18, Chapter 5, Theorem 14], without proof.
If X € S*(P) and (dQ/dP)(w) := C exp(—K (w)) then K € L*(Q), and X € S*(Q) since dQ/dP € L™ (P).
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for some increasing function ¢ which is continuous at 0 and such that ¢ (0) = 0. Since x € Q)| the term (2.15)
converges to O (for t = T, and thus also uniformly in # < 7). Since (2.4) states that the second term of (2.14) converges
to the last term of (2.12) uniformly on compacts, by difference the first term of (2.14) also converges, uniformly on
compacts; moreover (2.12) holds since the telescopic sum (2.13) equals f(x;) — f(xp). O

Remark that Follmer [9] considers sums of the form

Z g(xlj)(xl]ur] _xfj) and Z g(xtj)(xth _xl‘j)za

Tp 3t <t T3t <t

whereas we consider

> 8 iy — Xea0) and Y () (e ar — Xej a0 (2.16)

tiemy, tjemy
Since the difference between these two sums is
2 2
g(-xl,')(xt,url - xl) and g(xt,')((xtlur] - xt,‘) - (xt,‘+1 - xl) )

(where i :=max{j : m, > t; <t}), which goes to zero as O7(x, w,) — 0, these expressions are equal in the limit. The
reason we prefer to use (2.16) is that it involves only non-anticipative quantities (i.e. their value of time ¢ does not
depend on the value of x at later times), which better fits with the theory of stochastic integration and thus allows us
to obtain formulae like (2.9) and (6.5).

3. Pathwise local time

As already suggested in [9], there should be an extension of ‘Itd formula’ valid also when f” is not a continuous
functions, as it is in (2.12). In the theory of continuous semimartingales, such an extension proceeds via local times
and the Tanaka—Meyer formula; what follows is a pathwise version.

If f/ is the left-derivative of a convex function f, and f” is the second derivative of f in the sense of distributions
(i.e. the unique positive Radon measure which satisfies f”([a, b)) = f’ (b) — f’ (a)) we obtain for a < b

b b
f(b)—f(a)=/ fl(y)dy=/ <fl(a)+ )f”(du)>dy

[a,y

=fi(a)(b—a)+/ (b —u)f"(du), so that

[a,b)

o]

f) = f@) = fl(a)b—a)+ f Yanb.ave) @b —ulf"(du) Va,beR.

—0o0

So if given a function x and a partition 7 = (¢;) ;, we set foru, v € R

A {[u,v), ifu<v,

[v,u), ifu>v,
and define the discrete local time (along ) as

LT@): =2 Y, prox; ) 0¥ty nr — ul, 3.1)

tjem

then, if f equals the difference of two convex functions, we have the following discrete Tanaka—Meyer formula

1
FO) = fx0) =Y L) Cerjpinn — Xija) + 5/ LT () f"(du). (3.2)

tjemw R
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A simple but important remark is that only the values of f in the compact interval [x,, X;] are relevant. Note that
LT (u)=0foru ¢ [x,,x;] and LT (-) is cadlag, thus it is bounded; in particular LT (-) is f”-integrable.

In the remainder of this section we will restrict our attention to those functions whose second derivative is not
a general Radon measure but instead one which admits a density with respect to the Lebesgue measure. Thus, the
underlying measure space will be R with its Borel sets, endowed with the Lebesgue measure £!(du) (sometimes
denoted simply by du). We will consider L7 (-) as a function in L”, and denote by WX the (Sobolev) space of
functions whose kth derivative in the sense of distributions is in L?, so that W17 is the set of absolutely continuous
functions whose classical derivative (which exists a.e.) belongs to WOr = P and W2P is the set of C! functions
whose classical derivative belongs to W7 The following is our main theorem in this section.

Theorem 3.1. Let x be continuous function and fix a sequence of partitions Il = (1), such that O;(x, m,) — 0 as
n — oo forallt € [0,00). Then, for 1 < p <oo,q = p/(p — 1), the following are equivalent:

(1) sz e, 8 Xt;)(Xej At — Xi;ar) converges for every g € W9 and t € [0, 00) to a continuous function of t, which
we denote by fot g(xy) dx.

) th e, g(x,/.)(x,jH A — x,_m.) converges uniformly on compacts for every g € wha.

(3) (L™, converges weakly in LP to some L, for all t € [0, 00), and [0, 00) >t + L, € LP is continuous if L? is
endowed with the weak topology.

(4) Forallt € [0, 00) there exists L; € LP s.t. fR LT (w)h W) du — fR L.(u)h(u) du uniformly on compacts for every
held.

(5) x € QM and for all M € [0, <) there exists t > M such that (LT™)y is bounded in LP.

If the above conditions are satisfied then (L"), is bounded in LP for all t € [0, 00), and for all f € W24 and
t € [0, 00)

t 1
£ — fxo) = fo Fdxs + 3 /R LoGu) £ () du, (33)

and for all Borel bounded h

t
/h(xs)d(x)sszt(u)h(u)du. (34
0 R

The statements above hold for p = 0o, q = 1 if the weak topology on LP is replaced by the weak™® topology on L.
Moreover, they also hold for p =1, g = oo if in item (5) boundedness in LP is replaced by equintegrability.

In Theorem 3.1 we slightly modify!? the setting of [26] in order to obtain a stronger theorem with equivalent
conditions; the main novelty is that item (5) implies the others. In particular we can exactly describe the difference
between functions that only admit (pathwise) quadratic variation and the ones that also have local time. In Example 3.6
below we show that the two notions are strictly different and give an explicit construction of a path which admits
quadratic variation but not a pathwise local time.

We will henceforth denote by £, the space of continuous functions x for which the equivalent conditions of
Theorem 3.1 hold. We will call L;(u) the pathwise local time of x at time t at level u. Observe that £, and L,(u) a
priori depend on IT = (7,,),, and that L;(u) depends on x. We will write con L,“(u), L} (u) or Lf’n(u) only when
we want to highlight these dependencies; as in the remainder of this section IT = (77,,),, will be fixed, we will never
do that, and we will simply write L” for L;".

Notice that since L} (u) =0 for u ¢ [x,,x;], we can consider L} (u) as an element of L”(u) with u being the

restriction of the Lebesgue measure to [x,,X,]. In particular, Theorem 3.1 holds if Wk is replaced with Wllf)’cq.
Moreover, if p < p, since u is finite, L” () embeds continuously in LP?(1), and so £ p © L and the limits of (L7
in the weak L” and L? topology coincide, so L; does not really depend on p.

101ndeed [26] does not require ¢ — L; to be continuous, and considers strong convergence in L2 instead of weak convergence in LP.



Pathwise stochastic calculus with local times 9

Note also that for x € £, using standard regularisation techniques, we can define a modification (/;); of the
pathwise local time (L;); which is cadlag and increasing in ¢ for a.e. u. The occupation time formula then extends to
all Borel bounded &

T T
/ h(t,xﬂd(x),:// h(t,u)dl,(u)du. 3.5)
0 R JO

Finally, we show that if x € £, the Follmer integral is a continuous linear functional on W14 This fact could have
been used to define Follmer’s integral for g € W14 as the continuous extension of the Follmer’s integral for g € C!
defined in Theorem 2.5, as done in [1]. Note that the following result would not hold if we only assumed uniform
convergence on compacts of g, to g.

Proposition 3.2. Let p € (1, o0] (resp. p = 1) with conjugate exponent q. If x € L, gn, g € W, g, (x0) — g(x0)
and g, — g in the weak (resp. weak™) topology of L4, then fot gn(xs)dxs — fé g(xs)dxs forall t € [0, 00), and the
convergence is uniform on compacts if moreover |g),| — |g’| weakly (resp. weakly*) in L9.

Proof. Define f(u) := fxbz)g(y) dy and analogously f, from g,, and notice that f,(#) — f(u) for all u € R, so
Tanaka—Meyer formula (3.3) gives the thesis. If moreover |g,| — |g’| weakly in L9 then since the positive part
max(h, 0) of h equals (& + |h|)/2, Polya’s Scholium 2.2 shows local uniformity of the convergence

/ Ly (u) max(g,,(u), 0) du — / L, (u) max(g' (), 0) du;
R R
working analogously with the negative parts we get the thesis. (]

In the rest of this section we establish Theorem 3.1 via a series of lemmas; if not explicitly stated otherwise, p is
assumed to be in (1, 00).

Lemma 3.3. x € Q iff fR L} (u) du converges to a continuous function \; of t € [0, 00). In this case the convergence
is uniform on compacts and (x) = .

Proof. Applying formula (3.2) with f(x) = xte Ll([gt, X¢]) we obtain

x,2j+]/\t - xtzj/\t = 2x¢; (Xej ar — Xejar) = /R L (u)du. (3.6)

tjEmy
The statement follows rewriting the left side of (3.6) as sz eny (x,_/, A= X /\t)2~ ([l

Given x € Q, v, will denote the occupation measure of (x5)s<; (along IT), defined on the Borel sets of [0, t] by
vi(A) = [o 1) dx)s.
Lemma 3.4. [fx € Q and t € [0, 00) the following are equivalent.
(1) For every g € W4 the following sequence converges

Z 8 (Xt ) (Xt At — Xejar)- 3.7

tjemy

(2) The sequence (L} (-)), converges in the weak topology of L? (to a quantity which we denote by L;(-)).

The above conditions imply that (L} (-)), is bounded in L? and (3.3) holds. Conversely, if (L} (-)), is bounded in
L? and x € Q then items (1) and (2) hold, and v; has a density L, with respect to L.
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Proof. The equivalence between items (1) and (2), and the fact that these imply (3.3), follows immediately applying
(3.2) with f(u) := fxi g(y)dy. That item (2) implies the boundedness of (L} (-)), follows from Banach—Steinhaus
theorem. For the opposite implication notice that since x € Q we can use Theorem 2.5, which together with (3.2)
shows that

t
Ellimf L?(u)h(u)du:/ h(xs)d(x)sthdvt forall h e C°. (3.8)
T JRrR 0

Since L7 is reflexive (see [3, Theorem 4.10]), its unit ball is sequentially compact in the weak topology [3, Theorem
3.18], so we can get convergence of L} along some subsequence (of any subsequence) to some L, and all we have
to show is that the limit does not depend on the subsequence. Considering (L}), as elements of the measure space
([x,, x¢1, £') we have that CO C L?, so fg(u)vt(du) = fg(u)L,(u) du for all continuous g. Thus L;(u) du = v;(du);
in particular the limit L, does not depend on the subsequence, proving item (2). (]

Lemma 3.5. If the equivalent conditions (1) and (2) of Lemma 3.4 are satisfied for all t € [0, 00), the following
conditions are equivalent.

(1) For every g € W4 the function fot g(xs)dxs is continuous in t € [0, 00).

(2) For every g € W4 the convergence in (3.7) is uniform on compacts.

(3) The map [0,00) >t +> L;(-) € L? is continuous in the weak topology of L?.

(4) Forevery h € LY the convergence fR LY (w)h(u)du — fIR L;(u)h(u) du is uniform on compacts.

Proof. The identity (3.2) shows that items (2) and (4) are equivalent. The identity (3.3) shows that (1) and (3) are
equivalent. Trivially item (2) implies item (1). Finally Scholium 2.2 shows that item (3) implies item (4). (]

Proof of Theorem 3.1. If item (5) holds, since the last term in the decomposition (4.3) is bounded by O;(x, w) and
the two sums are increasing in ¢, (L}), is bounded in L? for all ¢ € [0, 00); moreover Lemma 3.4 shows that for all
held

t
Ellim/ L;'(u)h(u)du=/Ll(u)h(u)du=/hdv,=/ h(xg)d(x)s. 3.9)
n Jr 0

Since (3.9) shows that f L;(u)h(u)du is a continuous function of ¢, Lemma 3.5 implies that item (3) holds. That
item (3) implies x € Q follows applying Lemma 3.3 since 1, 7,1 € L and L = 0 outside [x,, X;]. Lemma 3.4 states
that v, has a density L;; thus, formula (3.4) holds. All other assertions follow directly from Lemmas 3.4 and 3.5.

If p=1 or p = oo the proofs hold with the following minor modification in the part of the proof of Lemma 3.4
which deals with the sequential compactness of (L}),. If p = oo, the unit ball of L is sequentially compact since it
is compact (and metrizable) in the weak* topology because of Banach—Alaoglu theorem (and since L! is separable),
see [3, Theorem 3.16] (and see [3, Theorems 3.28 and 4.13]). If p =1, since L} > 0, Lemma 3.3 implies that (L}),
is bounded in L', so if (L})n is equintegrable then it is weakly sequentially compact (by the Dunford—Pettis theorem,
see [3, Theorem 4.30]). O

We end this section with the following
Example 3.6. There exists a function that admits pathwise quadratic variation but no pathwise local time.

Put differently, we show that the inclusion Ell_[ c QM can be strict. This proves that the additional requirement
in (5) in Theorem 3.1 is not automatic and is indeed needed. More precisely, we now construct a continuous function
x : [0, 1] = R and a sequence of refining partitions I1 = (7,), of [0, 1] whose mesh is going to zero and such that
(x)7™ converges for all ¢ to the (continuous!) Cantor function c(¢) (a.k.a. the Devil’s staircase) but (LT”)n does not
converge weakly in L'(du); in particular x has no pathwise local time along (17,),, no matter which definition we

se.!! Our construction was inspired by a remark by Bertoin on page 194 of [1].

11Meaming that if one replaced the weak topology of L' with any stronger topology (e.g. the weak/strong topology of L7, or the uniform topology
as done in [17, Definition 2.5]) one would still not obtain convergence of L;T" .
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Divide [0, 1] into three equal subintervals and remove the middle one / 11 = (%, %). Divide each of the two re-
maining closed intervals [0, 1] and [2 1] into three equal subintervals and remove the middle ones I : (32, 22) and
122 = (32, 32) Continuing in this fashion, at each step i we remove the middle intervals I, ..., Iéi,l, each of length

1/3!. The Cantor set is defined as

oo 2i—1

C =10, 1]\U 1

i=1j=1

and the function which we will consider is x(¢) := /2 mingec |s — t]. To construct our partitions 7, of [0, 1] we
deﬁn.e first a refining sequence (nr’;’ j),, of Lebesgue partitions of / j’ setting 77, . = (tk Ji )kn o with t}’?; =inf/ j’ (so that
x(t,) = 0), and

b 1nf{t >t 1X; € <2 ni supx(t))Z X #X, i } (3.10)

n,j
te]’

2L i —ni nyi
so that 7, j =sup Ij and [x k+10 — X ki | =27 sup, i x (1) = 1/(+/32™)! and so
’ n,j n,j J

; oni+l_q
<x>; =2 (xk+.,—x“)2—2"’“3 Pyt = 3ighni, (3.11)
k=0

Then deﬁne our refining sequence (i), of partitions of [0, 1] whose mesh is going to zero setting 7, := {0, 1} U

Ui_ ]U] 17T andwesetenzz%sothatasn—>oo

n211

n/ 1_1_(8 )n+1
=) ) ), Z( n) . L (3.12)

i=1 j=1

Now, the Cantor function c is defined on [0, 1] to be the only continuous extension of the function f which is defined
on the set D :={0, 1} U U?il Ui:ll I_; in this Way:12 f(0)=0, f(1) =1, and each time we remove the middle third
1 ]’ from a parent interval Jj’., f is defined on the closure / j’ of 1 j’ to be the average of its values at the extremes of J ]’
(so f=1/20n I_ll, f=1/40n 1_12 and f =3/4 on 1_22 etc.).

Since the difference between (x);" and the increasing function Zﬂ St; <Xty — X j)2 is going to zero for all ¢

as n — 00, and since c¢ is continuous and increasing, to conclude that (x )”" — ¢(¢) for all ¢ it is enough to show
it for all ¢ in the dense set D, see also Lemma 7.2 below. We already know this for # = 1 and (trivially) for ¢t = 0.
Since (x)’(T(;’ T (x )7(73 e and (3.11) shows that (x)”" P 0, (3.12) and (2.6) give that (x);" — 1/2 = c(t) for all
'3
te [3 3)] = I1 Analogously (x )(0 5= = (x )(2 1y and (3.11) shows that (x )(’f 2 — 0, 50 (x)7" — 1/2 and (2.6) give
93 99 3

that (x)" — 1/2> =c¢(¢) forall t € [9, 2] =I2. In this way we see that (x)]" — c(¢) for all t € D and thus for all
t €[0,1].

To conclude, let us prove that the pathwise local time ler" (u) converges to 0 for all u # 0, so that (LT”)n does
not converge weakly in Ll(du) (because otherwise, by the Dunford—Pettis theorem [3, Theorem 4.30], it would be
uniformly integrable and would thus converge o zero strongly in L'(du), whereas we know that fol Lf” (u)du =

(x)I" = c(1) = 1). Since x(r) > 0 for all #, LT"(u) =0 for all n if u < 0. For each i, j the function (x(1));ex, i

crosses!'? each level u > 0 at most twice, and since sup{x () : ¢ ¢ Ul 1 U/ 1 ] = 1/+/3%*1 is strictly smaller than

125uch extension exists and is unique since f is continuous and D is dense in [0, 1].
13 : : - i
Meaning that either x;, <u < Xippy OF Xpy g S U <Xpy where (1) :==m, N Ij'
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any u > 0 for big enough i = i (1), the number of times (x(¢));ex, crosses level # > 0 is bounded above independently
of n; since O (x, m,) = 1/(~/3n) — 0 as n — oo, this implies that LT” (u) — 0.

4. Change of variables and time-change

In applications to the study of variance derivatives, for example [6], one starts with a continuous positive price func-
tion S, and the ‘variance’ is defined as the quadratic variation of the log price x =log S. In this connection it is useful
to be able to change variables, and to relate for example the local time of log(x) with the one of x. We recall that, al-
though being a semimartingale is preserved only by C? transformations, possessing a quadratic variation (in the sense
of Definition 2.1) is more generally invariant under C' transformations; indeed f € C! and x € Q™ imply f(x) € Q!
and (f ()c))}_I = fé f (xs)z(x)? (see [21, Proposition 2.2.10]). We prove below a similar result for the pathwise local
time (if f is monotone), extending the C? case treated in [6]; then we show that time-change preserves the pathwise
local time.

For Propositions 4.1 and 4.2 we consider a fixed sequence of partition (77,,),, such that O;(x, m,) — 0 as n — oo
for all r € [0, 00).

Proposition4.1. Letx € L, andlet f :R — R be C U and strictly monotone. Then f(x) € L p and the pathwise local
times of x and f(x) are related by

LI (F@) = @)L w). @.1)

In Proposition 4.1 one considers the same sequence of partitions (7,), for x and for f(x). This seems to be
problematic, since ideally we would like Proposition 4.1 to hold also for Lebesgue partitions, and clearly if P is a
partition of R then wp (f(x)) differs from 7 p (x). However Proposition 4.1 does apply to suitably chosen Lebesgue
partitions since 7 ¢(p)(f(x)) = 7p(x) if f is strictly increasing.

To prove Proposition 4.1 and better understand the behavior of L™, let t; := max{t; e w : t; <t} and

JTIU(M) ={tjem PXp SU<Xp gt S t},

b 4.2)
mou)={tjem Ty SU <X, tipr < t},
and notice that, since all the terms in (3.1) with ¢ < ¢; are equal to zero,
LT)/2= Y Gy —w+ Y @=x,)+ 1y, @l —ul. (4.3)

tiexl (u) tiexP w)
Proof of Proposition 4.1. Since including ¢ in any partition 7w does not change the value of LT (1) and insures that the
last term in (4.3) is zero, we assume without loss of generality that our partitions contain ¢. If f is strictly increasing
and a < b then

Yo <u<xp iff fxg) = fu) < flxp),

and thus (4.3) implies that L )7 ( £ (1)) /2 equals

Yo (fu)—f@)+ Y (f@) = flx,)). (4.4)

tj en,U (u) tj en,D (u)
Ift; € y'rtU (u), since f € C! there exists zj(u) € (u, x;,,) such that

F i) = f) = /(2 ) (. — w0),
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so we can write the first sum in (4.4) as

S (i) = F@) @, —w+ @) D Gy —w). (4.5)

tj E?TtU (u) tj G?TtU (u)

Treating analogously the second sum in (4.4) we get that

LI (f@) = £/ L™ @) we)
is bounded by
2 > ) = £y, —ul. 4.7)
tien! wunp )
Now define
Ri(g, )= max{|g(6) - g(d)] ce,d €x,, %], le —d] < O/(x, m)}. 48)

Clearly (4.7) with 7 = 7, is bounded by R, (f', 7,)L; "™ (u), so since L;™ converges to LY and R,(f', 7,) — 0 we
get that (4.6) with m = m,, converges to 0, proving the thesis.

If f is strictly decreasing then the argument is the same save for the sign change, which comes from the fact that
upcrossings are now transformed in downcrossings and conversely, so x;;,, — u needs to be replaced by u — x;;,,. U

Proposition 4.2. Let T : [0, 00) — [0, 00) be an increasing cadlag function such that x is continuous and t(0) = 0.
Given Il = (1), let T(I1) := (Tx,)n Where, given m = (t})j, T, denotes the partition (I,j)j. If O, (x, T7,) — O for
all t € [0,00) and x € [,;,(n) then O;(x o t,m,) — 0 for all t € [0, 00), x; € L-;I and the pathwise local times are
related by

I
L") = L5 ).

Moreover if T is bijective'* then x o T is continuous, 01;1 (xor, 1’;1) = O;(x, ) for any partition 7, and if P is a

partition of R then the Lebesgue partitions of x o T and x satisfy ip(x oT) =1 nPl(x).

Proof. Even if 7 is not strictly increasing, the identity
{rs:s €lti,tix) N0, 11} = [1, 7, N[0, 1N ([0, 00)),

holds, and it trivially implies that O;(x o 7, 7,;) < Oy, (x, T, ), with equality if 7 is a bijection. Trivially L;°"" (u) =
L7, ™ (u) holds for every partition 7, and everything else follows easily. (]

Note that Propositions 4.1 and 4.2 hold (with the same proof) with other definitions of existence of the pathwise
local time; for example if one replaced the weak topology of L? for p € [1, 00) (resp. the weak™ topology on L°°)
with the strong one in item (3) of Theorem 3.1, or if one considered Definition 2.5 in [17].

5. Extension to convex functions

The choice of how to define the existence of the pathwise local time is intrinsically linked to the class of functions for
which one is able to establish the pathwise Tanaka—Meyer formula (3.3). To establish it for all convex functions one
needs to restrict significantly the set of paths for which the local time exists; nonetheless, in [17] it is shown that this
approach works for general enough paths (namely, for the ‘typical path’ in the sense of Vovk [25]).

It is natural to ask if the above can be extended even further, to all continuous functions. As already remarked in
[9], the next proposition shows that, if one wants to consider a generic path of a local martingale, the answer is no —

W1 ifris strictly increasing, continuous and such that t(0) =0, lim;— o 7(#) = c0.
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to define stochastic integrals in a pathwise manner for more general integrands one has to consider partitions which
depend both on the integrator and the integrand as in [2, Theorem 7.14] and [12].

Proposition 5.1 (Stricker [23]). Let x € C[0, T]. If for every sequence of partitions (1), with Ot (x, ;) — 0 and
every bounded continuous function f on R the Riemann sums Zz,-em, S e ) (X541 — x1,) converge, then x has finite
variation.

In what follows we take a different route from [17] to further extend Follmer’s integral and Tanaka—Meyer formula
beyond f € C2. We consider f which is a difference of two convex functions and write f for its left-continuous
derivative and f” for the second distributional derivative. In a way somewhat reminiscent of [1, Proposition 1.2],
we define fot f! (x5)dxg as the limit of fot f,; (x5) dxg, where f, are some special C? functions converging to f and
f(; S (xs) dxg is defined in Theorem 2.5 as a limit of Riemann sums.

We now fix IT = (i), such that O;(x, ;) — 0 as n — oo for all ¢ € [0, 00), and we consider a function g which
is C2, positive and with compact support in [0, cc0), and such that fR g(x)dx = 1. We will then approximate the target
fuction f with f, := g, * f, where x denotes the convolution between a function and a measure (or a function), g,
is the mollifier g, (u) := ng(nu). Recall that, if x € £1, L,(-) is seen an element of L!(du); the following theorem
assumes that there exists a modification of L; which is cadlag in u, i.e., a function i,(u) cadlag in u and such that,
for each ¢, the set {u : I:,(u) # L;(u)} has zero Lebesgue measure; this is not an unreasonable assumption, as it is
satisfied by a.e. path of a semimartingale (indeed the local time of a continuous semimartingale has a modification
which is jointly cadlag in # and continuous in ¢).

Theorem 5.2. Assume that x € L1 and there exists a modification L;(u) of the pathwise local time which is cadlag in
u forall t. If f is convex then f, is C* and for all t € [0, 00) the Féllmer integral fé Ji(xs) dxs converges to a finite

limit, denoted by fot f! (x5) dxg, which is independent of the choice of g and satisfies

! 1
J(xe) —f(XO)=/0 fi(xx)dxs+§fRLt(u)f"(du)- (5.1

Moreover if L;(u) is jointly cadlag in u and continuous in t then the convergence is uniform on compacts and t
f(; ! (xs) dx; is continuous.

Theorem 5.2 allows us to define!® fé g—(x5)dx, for any function g of finite variation on compacts, since
then f(u) := [ XMO g(y)dy is the difference of convex functions. We now study the continuity properties of g —

f() g—(xs) dxs.

Proposition 5.3. Let x € L1 and assume that there exists a modification L;(u) of the pathwise local time which is
continuous in u. If g,, and g are functions of finite variation on compacts, g,(xo) — g(xo) and g, — g’ weakly
(seen as measures), then fot gn(xs)dxs — fé g(xs)dxs for all t € [0, 00). Moreover, if |g,| — |g'| weakly then the
convergence is uniform on compacts.

Proof. Define f(u) := fxbz) g(y)dy and analogously f, from g,, and notice that f, () — f(u) for all u € R, so

Tanaka—Meyer formula (5.1) gives the thesis. If moreover |g/,| — |g’| weakly then, since the positive part max(h, 0)
of h equals (h + |h|)/2, Polya’s Scholium 2.2 shows local uniformity of the convergence

/ L (u) max(g),, 0)(du) — / L;(u) max(g’, 0)(du);
R R
working analogously with the negative parts we get the thesis. (|

15A¢ pointed out to us by Follmer [10] another possible definition of fé f(xs) dxg for non-smooth convex f is as the limit of fé flé (xg) dxg for
any (f)r € C? such that J{ (x) dx (considered as a measure) converges weakly to f”(x) dx. It follows from (3.3) that this definition makes sense
(i.e. the limit exists and is independent of the approximating sequence ( fx ) ), and agrees with ours, if L; (1) has a modification which is continuous
inu.
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It is then natural to ask for which paths the above given definition of fé f (xg) dxg coincides with the one used in
Theorem 3.1 for f € W>4. The answer is that the limit of the Riemann sums then,, fr (%t ) (Xt 4y At — Xejar) €XISts

and equals fot S (xs) dxg iff fo’”" (u) f"(du) converges to [ Ly (u) f"(du), as it follows from (3.2) and (5.1). In
particular this holds if x € £, C Ly, so the definition of the Follmer’s integral given in Theorem 5.2 is indeed an
extension of the one given in Theorem 3.1.

Proof of Theorem 5.2. Since f is uniformly continuous on compacts, f, — f pointwise. Thus, if we can prove
that [p L;df; — [p Lidf”, the thesis follows applying (3.3) to f, and taking limits; indeed (5.1) shows that
f(; fL(x5)dxs does not depend on g. Define g,(u) := g,(—u) and apply Fubini’s theorem and the identity f, =
gn * [ to get that

/ Lodf! = / (o % L) df". 52)
R R

Since L, is zero outside [x,, X;] and g has compact support, L;, g and &n * L, are all 0 outside a common compact
interval [—A, A]. In particular since L,(-) is cadlag it is bounded; since sup,, |, * L;(u)| < sup, |L;(u)|, the thesis
follows from the dominated convergence theorem and (5.2) if we prove that g, % L;(u) — L,(u) for all u. Notice that

(§n* Ly — L) (u) = ngn WD (Li(u = y) = L (w)) dy. (5.3)
Since L,(-) is right continuous, for every ¢ > 0 and u there is an n such that
|Li(u—y)—Liw)| <e ifye[—A/n,0] (5.4)

since g = 0 outside [0, A], the integral on the right side of (5.3) is actually over [—A/n, 0], 50 | gy * L; (u) — L, (u)| < &.

Finally if L,(u) is jointly cadlag in u and continuous in ¢ then n such that (5.4) holds can be chosen as to hold
simultaneously for all # in any given compact set. This implies that the convergence is uniform on compacts, and so
Jo f1(xs) dxy is continuous. O

6. Upcrossing representations of local time

In this section we will consider a continuous semimartingale X = (X;); (with ¢ € [0, c0) or ¢ € [0, T']) with canonical
semimartingale decomposition X = M + V and with (classical'®) local time £, («) which is (jointly) continuous in
¢t and cadlag in u (such a version exists, see [13, Chapter 3, Theorem 7.1]). Some of our results specialise to the
case where £ is jointly continuous in ¢ and u, which happens for example when dV is absolutely continuous with
respect to d[M]: as explained17 in [27, Example 2.2.3], since (6.4) below gives that ¥ := fo 1ix,—uydM; =0, so
that if dV = od[M] then using (6.4) again we get that £.(u) — £.(u—) = 2f6 1ix,=uyos d[M]s = 2f0' 05d[Y]y=0.In
particular dV = od[M] holds if V =0, i.e. if X is a local martingale (under the original probability P or a Q such
that P <« Q).

The following is the main theorem of this section. It essentially says that the pathwise local time sampled along
optional partitions (7,), exists on a.e. path of a semimartingale, and that a.e. it equals the (classical) local time (in
particular, it does not depend on (7,),,).

Theorem 6.1. Assume that f : R — R is the difference of two convex functions, that w, are optional partitions such
that Or (X, mt,) — 0 a.s. and that X = (X;)te[0,00) IS a continuous semimartingale. If X has a jointly continuous local

16We refer to the semimartingale local time, i.e. the one for which the Tanaka—Meyer formula holds; this is in general different from the parallel
notion of local time for Markov processes.
17We thank an anonymous referee for this observation and reference.
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time £, or if f is C', then there exists a subsequence (ny)y such that, for w outside a P-null set (which may depend on
f//)’

X(w),mn
sup|L, (@), 75y, (@)

t<T

W) — (@, u)| =0 in LP(| f"|(du)) as k — oo (6.1)

simultaneously for all p € [1,00), T < co.

Note that applying Theorem 6.1 with f(x) = x%/2 € C! gives in particular that a.e. path of a continuous semi-

X, n .
martingale is in £, for all p < oo; indeed, L, ik (u) = £;(u) strongly (and thus weakly) in L?(du) a.s., locally
uniformly in 7.
The previous theorem follows from the following technical statement.

Theorem 6.2. Let m, be optional partitions such that O (X, n,) — 0 a.s., p € [1,00),T <00, X € SP, u be a
sigma-finite positive Borel measure on R, and define

K (u) =

sup| 17 w) — ¢, (@, w|
t<T

. ueR. 6.2)
LP(P(dw))

Then h™ () is bounded and (h™ (-)), converges pointwise (resp. i a.e.) to 0 if £ is jointly continuous (resp. if (L is a
measure with no atoms).

The fact that (k™ (-)), converges pointwise to zero was given an involved proof'® in [26] in the case where X
is a continuous martingale bounded in L?, p =2 and 7, are deterministic partitions such that ||7,|| — 0. In the
case where X is in a class of continuous Dirichlet processes which includes S? semimartingales and the partitions
are of Lebesgue-type, it is shown in [1, Theorem 2.5 and Proposition 2.7] that L,X(w)’”" @) (u) = £;(w, u) weakly in
L'(dP x du) for each r.

Moreover, Lemieux [14, Theorem 2.4] has derived a version of Theorem 6.1 where the L? (| f”|(du)) convergence
is replaced by the uniform convergence, in the special case where the partitions are of Lebesgue-type. For the case
of continuous local martingales one can also consult Perkins [16] or Chacon et al. [4, Theorem 2 and Remark 2], or
Perkowski and Promel [17, Theorem 3.5 and Remark 3.6], who actually prove convergence not only for P a.e. w but
even quasi surely with respect to the set of all local martingale measures. Although our approach yields a weaker type
of convergence, it has a simple proof and it works for continuous semimartingales and general optional partitions such
that O7 (X, m,) — O a.s.

In the special case of Lebesgue partitions 7 = 7,7, Theorem 6.2 closely relates to the downcrossing representa-
tion of local time conjectured by Lévy (proved by It6 and McKean for Brownian motion, extended by El Karoui to
semimartingales, and found in [19, Theorem VI.1.10]), which states that, for an X € S?,

sup|e D (», 0) — £;(w, 0)]

t<T

lim
E—>

L? (P(dw)) -

where Dj (w, 0) (defined in (6.3) below) is the number of downcrossings at level 0. Indeed, as we now explain, Lévy’s
representation above is equivalent to the fact that A% (0) — 0 whenever 0 < &, — O.

Given a continuous path x = (x;)s<; and a < b, we set ag‘b =0, rg’h = inf{¢ : x, = b} and, for k > 1, we define
ab._ . ab . _ ab._ . ab . . _
o ==inf{t > 17 1 x; = a}, o7 =inf{t > 0" : x; = b},

(6.3)
Df (u) == max{k : 0" " <1},

It turns out that the downcrossings Dy (1) of (X;)s<; from u + € to u are closely related to the local time along ;7.

Indeed, the upcrossings U (1) := max{k : r,:”r's’” <t} of (Xg)s< from u to u + ¢ differ from D7 (u) by at most 1, so

18The uniformity in 7, not stated in [26], follows easily by Doob’s L2—inequality since (6.5) shows that (L;T”’X(u) —4i(u))s is a L? bounded
martingale for each u, n.
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using (4.3) we get that
LT (u) /2 = U () (e — u) + D" (wu 4 11y, x) @)% — ul.

The last term is bounded by O;(x, 7.7) < € and, considering u = 0, we get that
|L7*%(0)/2 — e D} (0)| < 2e,

which concludes the proof of equivalence.
We recall the following fact, for which we refer to [19, Chapter 6, Theorem 1.7]:

2/ 1x,—) dXs = 2/ Lix,—ydVs =L.(u) — £.(u—) as.,VueR. (6.4)
0 0

Proof of Theorem 6.2. Consider the convex function f(x) := |x —u| and let sign(x — u) be its left-derivative and 2§,
its second (distributional) derivative. Subtracting from the discrete-time Tanaka—Meyer formula (3.2) its continuous-
time stochastic counterpart we get that

t
0 =f (HT () — Hy @) d X, + (L7 () — ¢, ) /2, (6.5)
0
where using , = (ri”)i we define the predictable processes

H"(u) =) " sign(Xen — ) on 1(s) and  H(u) :=sign(X, — ).

1

Now A (u) — 0 follows from (2.10) and (6.5) if we show that fo H" W) dX, — fo Hy(u)dXg in SP. To this end
notice that

|H]" (u) — Hy(u)| < K" () := 2 X 110, (X,7,)= | X —ul} (6.6)

and that since X. and O.(X, m,) are continuous adapted processes, K" (1) is predictable, so it is enough to prove that
fo' K" (u)dX; — 01in SP. Since 0;” — 0 a.s. implies that K;"" (u) — 0 a.s. on {X; # u} for all t < T, and since
K™ < 2, the thesis follows from the (deterministic) dominated convergence theorem if || fo 1ix,=uydXsllsr =0,
which by (6.4) holds for all u if € is continuous. Since Minkowski inequality for integrals says that

T
H f Lixoea IV
0

which is zero for u which has no atoms. Using (6.4), considering L” (1 ® P) norm and using Fubini, we conclude
that || fo 1ix,—u) dXsllsr =0 for u a.e. u, and so K™ — 0 p a.e. Finally (2.10), (6.5) and (6.6) imply that

T T
1
5/ ||1{X3=u}||LP(u)d|V|s:/ (N({Xs})) /pd|V|Sv
LI’(I,L) 0 0

™ (u) < Cp

| 2tz ~ ) ax,
0

<4C,||X|lsp forallueR,
Sr

concluding the proof. (I

Proof of Theorem 6.1. Let (7,,),, a sequence of stopping times which prelocalizes X to S? (see Emery [7, Theo-
reme 2]), i.e. T, 1 oo a.s. and X"~ € SP for all m. Let ; (A) := | f”|(AN[—i,i]) and set

Gu(@, T u) = sup| L™ ) — 0,(u, )|
t<T

and G := 1y7<,)G,. Since ; is a finite measure, Theorem 6.2 implies that, as n — oo, GI' converges to 0 in
LP(P x w;), forall m,i € N and T > 0. Passing to a subsequence (without relabelling) we can get convergence fast
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in L? (P x pu;) and so, for w outside a P-null set Nl.pl;lT, G (w,T,-) converges to 0 in L”(1;). Then along a diagonal

subsequence we obtain that G (w, T, -) converges to 0 in L? (u;) for all i, m, p, T € N\ {0} for every w outside the
null set N¢r := Ui’m’T‘peN\{o} Ni{’;nT. Since G, = G} on {T < 1,4}, G, — 0in L?(u;) for all i, p, T € N\ {0} for
every w outside N ¢». Since outside a compact set G, (w, T, -) = 0 for all n, convergence in L?(u;) for arbitrarily
big i, p implies convergence in L?(| f”|) for all p € [1, 00). Since G, (w, -, u) = 0 is increasing, convergence for
arbitrarily big 7" implies convergence for all 7 € [0, 00). ]

7. Dependence on the partitions

In this section we investigate the extent to which the pathwise quadratic variation (x)™ := lim, (x)™ depends on the
sequence of partitions I := (77,,),,. Instead of constructing explicit examples we show that, for functions with a highly
oscillatory behaviour, the pathwise quadratic variation depends in the most extreme way possible on (7,),. We then
build on this fact and extend the result to a stochastic setting considering paths of a Brownian motion. We only give a
detailed proof of the main statement for a fixed path. Extending this to an a.s. statement in a Brownian setting involves
thorny technicalities which arise from the dependence in w (i.e. tracking the null sets and ensuring measurability) and
we only briefly outline the necessary steps.'”

Our work builds on two facts already mentioned (without proof) by Lévy in [15, p. 190]: that inf, (x)] = 0 for
every continuous function x and that for a.e. path B(w) of a Brownian motion sup, (B(w))] = co. Proofs can be
found in Freedman [11, p. 47-48]; the second fact can be found in a strengthened form and with an alternative proof
in Taylor [24, Corollary in Section 4]. Our first result combines and generalises the above: we show that, with a
suitable choice of (r,),, the pathwise quadratic variation may be equal to an arbitrary given increasing process a.
Notice that we do not even assume a is right-continuous. We will denote with D,, the dyadics of order n in [0, 1], i.e
D, :=[0,1]NN27",

Theorem 7.1. Let x : [0, 1] — R be a continuous function such that for every 0 < ¢ < d < 1 there exist partitions
(ftn)n of [c, d] such that lim,, (x)j(rc"d] = 00. Then, if a : [0, 1] — [0, 00) is an increasing function such that ag = 0,
there exist refining partitions (7,), of [0, 1] such that D, C w, for all n and

(xX)f" —a, forallt €0, 1] asn— oo, (7.1)

and the convergence is uniform if (a;); is continuous. Moreover, given arbitrary partitions (T,),, one can choose the
(7n)n such that @, C 7, for all n.

To prove that convergence occurs at all times simultaneously, we will need the following simple lemma.

Lemma 7.2. Let a : [0, 1] — [0, 00) be increasing, x : [0, 1] — R be continuous and (ww,), be partitions of [0, 1]
such that O (x, m,) — 0, and assume that

(x)™" —a(t) forallt e F C[0,1]asn— oo.

Tn

If F is dense in [0, 1] and contains the times of jump of a then (x).
the convergence is uniform.

— a. pointwise on [0, 1], and if a is continuous

Proof. Although (x)™ is not necessarily an increasing function, it differs from the increasing function a"(¢) :=
wn ([0, £]) (where w, is as in (2.3)) by at most O (x, ), and so it is enough to prove the statement with a” replacing
(x)™ . By hyphothesis (x);" — a(t) for all ¢ at which a is not continuous. If a is continuous at ¢ then for each & > 0
there exist 51,52 € F s.t. 51 <t < s and a(s2) —a(sy) < &, and so a(t) — e < a(sy) = lim, (x)5" < liminf, (x);"
and analogously limsup, (x);" < a(t) + ¢. Letting ¢ | 0 we see that lim,, (x)" exists and equals a(¢). Scholium 2.2
concludes the proof. O

19 An interested reader can find the full detailed proof in an earlier version of our work at arXiv:1508.05984v2.
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Proof of Theorem 7.1. Note that, as observed already by Freedman [11], given k € N\ {0} and = we can build a
partition 7’ 2 7 such that (x)7 = (x)7 /k; indeed it is enough to do so on each subinterval of 7, so we can assume
that 7 = {c, d}. If x(c) = x(d) take 7’ := {c, d}; if x(c) # x(d) we define 7’ = (tl-)f.‘:0 setting ty := ¢ and

ti = min{t €le,d]:x(t) =x(c) + (x(d) —x(c))i/k} fori=1,... k;

indeed (x)7 = Zi-:é ((x(d) — x(c))/k)? = (x)T / k holds. We will denote by F (7, k) the partition 7z’ built with the
above construction starting from 7 and k.

We now fix a 1 € [0, 1] and prove the existence of some 7’ such that |(x>f/ —a(t)| <1/2". Todoso we take i € N
suchthat a(r) € [i /2", (i +1)/2") and show that there exists 7 such that (x)7 € [i, i + 1) and then take 7’ = F (7, 2").
Note that we automatically know such 7 exists when i = 0 (by taking # = F (7, k) where 7 is an arbitrary partition
and k a big enough integer), so let us now consider the case i > 1. By assumption, there exist a partition 7 such that

(x);% > i2. Now using Freedman’s construction with k equal to be the integer part of (x)f[ /i we obtain 7 := F(7, k)
such that (x)7 = (x)f/k €li,i +i/k) C[i,i + 1), concluding our proof of the existence of 7 and thus of some 7’
such that | (x)7 —a()| < 1/2".

Now, given any 7,, by applying the above reasoning to the increments of a on each subinterval of 77,,, we can find
a 7, 2 7, such that [(x);" —a(t)| < 1/2" simultaneously for all ¢ € 7,,. If we define (7,, 7,) by induction setting
70 := {0, 1} =: mo and taking 77, to be the union of D, U, with the times when a has a jump of size bigger than 1/n
and with | J, _,, 7k, and then building 7, from 77, as explained at the beginning of this paragraph, we obtain a refining
7, which contains D,, U7, and such that (x)7™ — a(t) holds for any dyadic time and any time of jump of a, and thus

holds simultaneously for all by Lemma 7.2. (]

One can apply Theorem 7.1 to the paths of Brownian motion; indeed, as Lévy first remarked, for a.e. @ there exist
partitions w,, = 7, (w) s.t. lim, (B(w))?é” 1) = 0. However, to obtain an interesting result one needs to show that the
partitions can be chosen in a measurable way. This requires first to correspondingly strengthen Levy’s result in the
following way.

Lemma 7.3. If0 < ¢ < d there exist random partitions ©"* of [c, d] such that

n

(B)’(Tcﬁd] — 00 a.s.asn— oo.

To prove Lemma 7.3, one needs to revisit the proof of [24, Theorem 1 and its Corollary in Section 4] and delve into
the proof of the existence of a Vitali subcover to show how one can choose a measurable one (on a set of probability
arbitrarily close to 1); although this essentially follows from an application of the section theorem, the proof is not
simple and we do not include it here.

Having established Lemma 7.3, one can follow the logic of the proof of Theorem 7.1 and with laborious but entirely
elementary proofs?® one can check measurability to obtain a similar result for the paths of Brownian motion, which
we state below. To slightly generalize Theorem 7.1 to include the case of a positive but potentially non-finite process
A, we identify [0, 1] (with the Euclidean topology) with [0, co] using the bijection 1 — exp(—x) (where e~° :=0),
and thus we endow [0, co] with the distance d(a, b) := |e™% — e |, which makes it homeomorphic to [0, 1] and for
all M < oo satisfies d(a,b) <|a —b| < Cd(a,b) for all a,b € [0, M] and some C = C(M). Of course, if A.(w) is
finite valued the convergence under the Euclidean distance |a — b| is equivalent to the convergence under the distance
d(a, b). In all that follows, if # = (), is a random partition we denote by  (w) the sequence (7, (w))nen. Given sets
C, D which depend on w, we write that C C D if C(w) € D(w) for a.e. w, and in particular we say that a sequence of
random partition (77, ), eN i8S refining if w,, C m, 41 for all n.

Theorem 7.4. Let B be a Brownian motion and A a jointly-measurable®' increasing process with values in [0, 00]
and such that Ag = 0. Then, there exist refining random partitions 1, of [0, 00) such that N27" C 7, and for all ®

20The proofs rest entirely on Borel Cantelli’s lemma and on the fact that, given a cadlag adapted process D, its jumps of size bigger than a given
constant are stopping times, see [20, Theorem 3.1].

210f course any cadlag increasing process A is jointly-measurable. However this is not true for general increasing processes: for example if
A= Y17} + 1(z,00) Where 7 is an exponentially distributed random time and Y is a non-measurable function with values in (0, 1) then A is a
process with respect to the completed sigma-algebra (A, is measurable since A; =0 a.e.), yet A is clearly not jointly-measurable.
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outside a null set

(B = Aw) forallt €10,00) asn — oo; (7.2)
if 0 <c¢ < d < oo the convergence in (7.2) is uniform on t € [c, d] for the w’s at which (A;(®))ie[c,d) IS continuous.
Moreover, given arbitrary random partitions (7,), one can choose wt, = (t),); such that &, C m, for all n and, if A is
adapted, t), + 27" is a stopping time for each i, n.

It is insightful to contrast this result with the well known fact that, if (7,), is a sequence of optional partitions

such that Or (B, m,) — 0 ae., (B(a))_)f" @ converges to ¢ uniformly on compacts in probability (see the proof of
Proposition 2.3). The random times (t,,); making up 7, do not need to look far into the future to break the convergence

of (B(a)))f" @) {5 ¢: as the theorem states, one could take the (r,’;)i to look only an arbitrarily small amount of time
into the future. Notice that the random times making up 7, are bounded (since (t); = 7, 2 N27" implies 7/} <i/2").

Although we stated Theorem 7.4 only for Brownian motion, it holds for any continuous stochastic process with an
oscillatory behavior wild enough to have infinite 2-variation on any interval, in the sense that for every 0 <c¢ <d <
oo there exist random partitions i, of [c, d] along which the quadratic variation of B converges a.s. to infinity. In
particular our proof of Lemma 7.3 shows that Theorem 7.4 applies whenever B is a continuous adapted®? process for
which there exists some continuous strictly increasing function v such that ¥ (h)/h?> — 0 as h |, 0 and

B, — B
foreveryr >0 limsup M >1

.S. 7.3
e p a.s (7.3)
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