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Abstract. In this paper, we investigate the mixing time of the simple exclusion process on the circle with N sites, with a number
of particle k(N) tending to infinity, both from the worst initial condition and from a typical initial condition. We show that the
worst-case mixing time is asymptotically equivalent to (8π2)−1N2 log k, while the cutoff window is identified to be N2. Starting
from a typical condition, we show that there is no cutoff and that the mixing time is of order N2.

Résumé. Nous analysons temps de mélange pour le processus d’exclusion simple sur un cercle de N sommets, avec un nombre
de particules k(N) qui tend vers l’infini avec N , et partant de la pire configuration initiale possible. Nous étudions également le cas
d’une configuration initiale typique. Nous montrons que le temps de mélange est asymptotiquement équivalent (8π2)−1N2 logk,
pour la pire condition initiale, et que la fenêtre de cutoff est d’ordre N2. Dans le cas d’une condition initiale typique nous montrons
qu’il n’y a pas de cutoff et que le temps de mélange est d’ordre N2.
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1. Introduction

The Symmetric Simple Exclusion Process (to which we sometimes refer simply as the Simple Exclusion) is one of
the simplest particle systems with local interactions. It can be considered as a toy model for the relaxation of a gas
of particles and was introduced by Spitzer in [31]. Since then, it has been the object of a large number of studies by
mathematicians and theoretical physicists, who investigated many of its properties such as the evolution rules for the
particle density, tried to derive Fick’s law from microscopic dynamics, and studied to motion of an individual tagged
particle (see [14,23] for reviews on the subject and references therein). More recently [6,7,15,19,29,33] an interest has
been developed for the convergence to equilibrium of the process on a finite graph in terms of mixing time, which is
the object of our study.

1.1. The process

We consider ZN := Z/NZ, the discrete circle with N sites and place k ∈ {1, . . . ,N − 1} particles on it, with at most
one particle per site. With a slight abuse of notation, we use elements of Z to refer to elements of ZN : these numbers
have to be considered modulo N (in particular 0 and N denote the same element in ZN ).

The Simple Exclusion on ZN is a dynamical evolution of the particle system which can be described informally as
follows: each particle tries to jump independently on its neighbors with transition rates p(x, x +1) = p(x, x −1) = 1,
but the jumps are cancelled if a particle tries to jump on a site which is already occupied (see Figure 1 in Section 5 for
a graphical representation).
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More formally, our state-space is defined by

� = �N,k =
{

η ∈ {0,1}ZN

∣∣∣∣ N∑
x=1

η(x) = k

}
. (1.1)

Given η ∈ � define ηx the configuration obtained by exchanging the content of site x and x + 1⎧⎪⎨⎪⎩
ηx(x) := η(x + 1),

ηx(x + 1) := η(x),

ηx(y) = η(y), ∀y /∈ {x, x + 1}.
(1.2)

The exclusion process on ZN with k particle is the continuous time Markov process on �N,k whose generator is
given by

(Lf )(η) :=
∑

x∈ZN

f
(
ηx
)− f (η). (1.3)

The unique probability measure left invariant by L is the uniform probability measure on � which we denote by μ.
Given χ ∈ �, we let (η

χ
t )t≥0 denote the trajectory of the Markov chain starting from χ .

We want to know how long we must wait to reach the equilibrium state of the particle system, for which all
configurations are equally likely. We measure the distance to equilibrium in terms of total variation distance. If α and
β are two probability measures on �, the total variation distance between α and β is defined to be

‖α − β‖TV := 1

2

∑
ω∈�

∣∣α(ω) − β(ω)
∣∣= ∑

ω∈�

(
α(ω) − β(ω)

)
+, (1.4)

where x+ = max(x,0) is the positive part of x. It measures how well one can couple two variables with respective
laws α and β (see [20], Proposition 4.7). We define the worst-case distance to equilibrium at time t > 0 as follows

d(t) = dN,k(t) := max
χ∈�N,k

∥∥P χ
t − μ

∥∥
TV. (1.5)

Similarly we define the typical distance from equilibrium at time t > 0 as

d(t) = dN,k(t) := 1

#�N,k

∑
χ∈�N,k

∥∥P χ
t − μ

∥∥
TV. (1.6)

For a given ε > 0 we define the ε-mixing-time (or simply the mixing time when ε = 1/4) to be the time needed for
the system to be at distance ε from equilibrium

T
N,k
mix (ε) := inf

{
t ≥ 0 | dN,k(t) ≤ ε

}
. (1.7)

Let us mention that the convergence to equilibrium has also been studied in terms of asymptotic rates: it has been
known for a long time (see e.g. [20], Corollary 12.6) that for any reversible Markov chain

lim
t→∞ t−1 logd(t) = lim

t→∞ t−1d(t) = −λ1, (1.8)

exists and that λ1 > 0 is the smallest nonzero eigenvalue of −L, usually referred to as the spectral gap. Note that the
knowledge of the spectral gap also give an information on d(t) for finite t , as we have (cf. [20], Theorem 12.3)

∀t > 0,
1

2
e−λ1t ≤ d(t) ≤ |�|e−λ1t . (1.9)

The exclusion process can in fact be defined on an arbitrary graph and its mixing properties have been the object of
a large number of works. Let us mention a few of them here. Let us start with the mean-field case: In [9], the study of
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the exclusion on the complete graph with N/2 particles is reduced to the study of a birth and death chain and a sharp
asymptotic for the mixing time is given using a purely algebraic approach (see also [17] for a probabilistic approach
of the problem for arbitrary k).

The problem on the lattice is much more delicate. Let us mention a few results that were obtained on the torus
(ZN)d : In [29] (and also independently in [6]), comparisons with the mean-field model were used to prove that
λ1 := O(N−2), and thus via (1.9) that there exists a constant Cd such that

Tmix ≤ CdN2 log

(
Nd

k

)
. (1.10)

In [7,19,33], the related problem of the log-Sobolev constant for the process was studied. In particular, in [33],
a sharp bound (up to multiplicative constant) on the log-Sobolev constant was proved for the exclusion process on the
grid which allowed to improve (1.10) into

Tmix ≤ CdN2 log log

(
Nd

k

)
. (1.11)

In [26], using the chameleon process, this upper bound is improved in the case of small k by showing that

Tmix ≤ C(logd)N2 logk, (1.12)

(see also [27] where the technique is extended to obtain estimates on the mixing time for arbitrary graphs in terms of
the mixing time of a single particle).

In another direction: In [4], it is shown that the spectral gap for the simple-exclusion on any graph is equal to that
of the underlying simple random walk (e.g. in our case λ1 = 2(1 − cos(2π/N))).

Finally concerning the case of dimension 1: In [32], the mixing time of the exclusion process on the segment is
proved to be larger than (2π2)−1N2 logk and smaller than (π2)−1N2 logk, with the conjecture that the lower bound
is sharp. This conjecture was proved in [15].

1.2. The main result

The first result of this paper is a sharp asymptotic for the mixing time of the exclusion process on the circle ZN . For a
fixed ε ∈ (0,1), when N and k goes to infinity we are able to identify the asymptotic behavior of Tmix(ε). We obtain
that when k ≤ N/2 (which by symmetry is not a restriction)

Tmix(ε) = N2

8π2
(logk)

(
1 + o(1)

)
.

Note that here the dependence in ε is not present in the asymptotic equivalent. This means that on a time window
which is o(N2 logk) the distance to equilibrium drops abruptly from 1 to 0. This sudden collapse to equilibrium for a
Markov chain was first observed by Diaconis and Shahshahani [8] in the case of the (mean-field) transposition shuffle
(see also [1] for the random walk on the hypercube). The term cutoff itself was coined in [2] and the phenomenon has
since been proved to hold for a diversity of Markov chains (see e.g. [24,25] for some recent celebrated papers proving
cutoffs). It is believed that cutoff holds with some generality for reversible Markov chains as soon as the mixing time
is much larger than the inverse of the spectral gap, but this remains a very challenging conjecture (see [20], Chapter 18,
for an introduction to cutoff and some counterexamples and [3,5,10] for recent progress on that conjecture).

A natural question is then of course: On what time scale does d(t) decrease from, say, 999/1000 to 1/1000? This
is what is called the cutoff window. We are able to show it is equal to N2. Let us mention that, in spite of numerous
studies on the subject, this is result is, to our knowledge, the first sharp derivation of a cutoff window for a non
mean-field interacting particle system.

Theorem 1.1. Consider the Simple Exclusion on ZN with k(N) particle where the sequence k(N) satisfies k(N) ≤
N/2 for all N and limN→∞ k(N) = ∞. We have for every ε ∈ (0,1)

lim
N→∞

8π2T
N,k
mix (ε)

N2 logk
= 1. (1.13)
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More precisely we have

lim
s→∞ lim sup

N→∞
dN,k

((
8π2)−1

N2 logk + sN2)= 0,

lim
s→−∞ lim inf

N→∞ dN,k
((

8π2)−1
N2 logk + sN2)= 1,

(1.14)

and the window is optimal in the sense that for any u ∈R

lim sup
N→∞

dN,k
((

8π2)−1
N2 logk + uN2)< 1,

lim inf
N→∞ dN,k

((
8π2)−1

N2 logk + uN2)> 0.

(1.15)

Remark 1.2. The result above can be reformulated in the following manner:⎧⎪⎨⎪⎩
Tmix = Tmix(1/4) = (8π2)−1N2 logk + O(N2),

∀ε ∈ (0,1), lim supN→∞
|Tmix(ε)−Tmix|

N2 < ∞,

limε→0 lim infN→∞ Tmix(ε)−Tmix
N2 = limε→0 lim infN→∞ Tmix−Tmix(1−ε)

N2 = ∞.

(1.16)

The second line states that the cutoff window is at most N2 while the third implies not only that this is sharp, but also
that on the time scale N2, the “cutoff profile” has infinite support in both directions.

Remark 1.3. Our result does not cover the case of a bounded number of particles. In this case there is no cutoff
and the mixing time is of order N2 for every ε with a pre-factor which depends on ε (a behavior very similar to the
random-walk: case k = 1). A proof of this fact can be extracted from the method presented in the present paper, but
this fact has been known for long in the field. For instance a more general proof that hold also in higher dimension,
can be deduced from the earlier results presented in [26]. The same phenomenon holds in higher dimension.

We also show that on the other-hand that starting from a typical configuration, the relaxation to equilibrium is not
abrupt and occurs on the time-scale N2.

Theorem 1.4. For any sequence k(N) satisfying k(N) ≤ N/2 and tending to infinity, we have for all u > 0

0 < lim inf
N→∞ dN,k

(
N2u

)≤ lim sup
N→∞

dN,k
(
N2u

)
< 1 (1.17)

and

lim
s→∞ lim sup

N→∞
dN,k

(
N2s

)= 0. (1.18)

Remark 1.5. Note that we will not prove that

lim
s→0

lim inf
N→∞ dN,k

(
N2s

)= 1, (1.19)

which would complete the picture by showing that the system does not mix at all before the N2 time-scale. However
we point out to the interested reader that such a result can be obtained combining ingredients of Section 2 together
with [16], Lemma 3.1, which asserts that the fluctuations of a1(η) defined in (2.4) are asymptotically Gaussian. The
convergence of dN,k(N2·) when N tends to infinity remains an open question.
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1.3. The cutoff for the exclusion on the segment

Let us, in this section, briefly sketch the proof or at least recall the ingredients used in [15] to derive the cutoff for the
exclusion on the segment �1,N �. The state-space of particle configuration on the segment comes with a natural order

η ≤ η′ ⇔ ∀x ∈ �1,N �,

x∑
y=1

ηy ≤
x∑

y=1

η′
y. (1.20)

We set ξx(η) :=∑x
y=1 ηy . It turns out that not only this order is preserved by the dynamics in a certain sense (see

[32] but also [30]), but it has additional properties: If ∧ denotes the maximal configuration for (1.20) then Pt (∧, ·)
is an increasing function (for any t ); we also have positive correlation of increasing events (a.k.a the FKG inequality
after [12]).

These monotonicity properties are first used to show that after time (1 + δ)(2π2)−1N2 logk, starting the dynamics
from ∧, we can couple a finite dimensional (i.e. whose dimension remains bounded when N grows) projection of
(ξx(ηt ))x∈�1,N � together with the corresponding equilibrium distribution.

The monotonicity is then used again to check that the Peres-Winkler censorship inequality [28], Theorem 1.1,
is valid in our context. The latter result establishes that, if one starts from the maximal configuration for the order
described in (1.20), ignoring some of the updates in the dynamics only makes the mixing slower (as shown in [13],
this can fail to be true if there is no monotonicity). We use this statement to show that the system mixes in a time much
smaller than (2π2)−1N2 logk once a finite projection is close to equilibrium. This method establishes a sharp upper
bound (at first order) for the mixing time starting from ∧ and some additional work is necessary to show that this is
indeed the worst initial condition (we refer to the introduction [15] for more details).

1.4. Differences between the segment and the circle

In view of the previous section, the proof in [15] for the mixing time for the exclusion on the segment heavily relies on
monotonicity arguments in every step of the process. The drawback of this approach is that it is not very robust, and
cannot be used for either higher dimensional graphs (for instance {1, . . . ,N}d with either free or periodic boundary
conditions). It even breaks down completely if one allows jumps between site 1 and N .

With this in mind, our idea when studying the exclusion on the circle is also to develop an approach to the problem
which is more flexible, and could provide a step towards the rigorous identification of the cutoff threshold in higher
dimensions (see Section 2.4 for conjectures and rigorous lower-bounds). This goal is only partially achieved as,
even if we do not require monotonicity, a part of our proof relies on the interface representation of the process (see
Section 5) which is a purely one-dimensional feature. However let us mention that a d dimensional generalization of
Proposition 3.2 can be shown to remain valid for d ≥ 2. A missing ingredient in higher dimension is thus a coupling
which allows to couple particle configurations with typical fluctuation together with equilibrium in a time of order
N2.

Another positive point is that by relying much less on monotonicity, we are able to prove statements about the
mixing time starting from an arbitrary position (cf. Theorem 1.4) instead of focusing only on the extremal ones.

Finally note that the method developed in this paper gives more precise results than the one in [15] as we identify
exactly the width of the cutoff window. However, we could not extract from it the asymptotic mixing time for the
adjacent transposition shuffle, which seem to require novel ideas.

Remark 1.6. In [16], by combining the technique of the present paper with some additionnal new ideas, the author
improved Theorem 1.1 by describing the full cutoff profile, that is, identified the limit of

dN,k
((

8π2)−1
N2 logk + uN2).

Proposition 3.2 as well as the multi-scale analysis used in Section 6 play a crucial role in the proof.
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1.5. Organization of the paper

In Section 2 we prove the part of the results which corresponds to lower-bounds for the distance to equilibrium, that
is to say, the first lines of (1.14) and (1.15). The proof of this statement is very similar to the one proposed by Wilson
in [32], the only significant difference is that we have to work directly with the particle configuration instead of the
height function. Doing things in this manner underlines that the proof in fact does not rely at all on the dimension (see
Section 2.4). While the proof does not present much novelty, we prefer to mention it in full as it is relatively short and
it improves the best existing bound in the literature (see [26]).

The main novelty in the paper is the strategy to prove upper-bound results (second lines of (1.14) and (1.15)). In
Section 3 we explain how the proof is decomposed. In Section 4, we use a comparison inequality of Liggett [22] to

control the (random) fluctuations of the local density of particle after time N2

8π2 logk. Finally we conclude by showing

that configuration which have reasonable fluctuations couples with equilibrium within time O(N2), using interface
representation for the particle system, and a coupling based on the graphical construction. The construction is detailed
in Section 5, and the proof is performed using a multi-scale analysis in Section 6.

2. Lower bound on the mixing time

2.1. The statement

The aim of this section is to prove the lower bound results on the distance to equilibrium. Following the method of
[32], Theorem 4, we achieve such bounds by controlling the first two moments of the first Fourier coefficient of ηt .

Proposition 2.1. For any sequence k(N) satisfying k(N) ≤ N/2 and tending to infinity. We have

lim
s→−∞ lim

N→∞dN,k
((

8π2)−1
N2 logk + sN2)= 1, (2.1)

and for any u ∈ R

lim inf
N→∞ dN,k

((
8π2)−1

N2 logk + uN2)> 0. (2.2)

Moreover we have for any u > 0

lim inf
N→∞ dN,k

(
N2u

)
> 0. (2.3)

2.2. Relaxation of the“first” Fourier coefficient

The main idea is to look at “the first” Fourier coefficient (a coefficient corresponding to the smallest eigenvalue of the
discrete Laplacian on ZN ), of ηt . For η ∈ �N,k , we define

a1(η) :=
∑

x∈ZN

η(x) cos

(
2πx

N

)
. (2.4)

It is an eigenfunction of the generator L (the reason for this being that each particle performs a diffusion for which
cos( 2πx

N
) is an eigenfunction), associated to the eigenvalue −λ1 where

λ1 := 2
(
1 − cos(2π/N)

)
. (2.5)

Lemma 2.2. The function a1 is an eigenfunction of the generator L with eigenvalue −λ1, and as a consequence, for
any initial condition χ ∈ �

Mt := etλ1a1
(
η

χ
t

)
(2.6)



1408 H. Lacoin

is a martingale for the filtration F defined by

Ft := σ
(
(ηs)s≤t

)
.

In particular we have

E
[
a1
(
η

χ
t

)]= e−tλ1a1(χ). (2.7)

Furthermore one can find a constant such that for all t ≥ 0

Var
[
a1
(
η

χ
t

)]≤ 2k. (2.8)

Proof. We use the notation

∇f (x) = f (x + 1) − f (x) and �f = f (x + 1) + f (x − 1) − 2f (x),

and set cos(x) := cos( 2πx
N

). We have

La1(η) :=
∑

x∈ZN

(
a1
(
ηx
)− a1(η)

)= −
∑

x∈ZN

∇η(x)∇cos(x) =
∑

x∈ZN

η(x)�cos(x) = −λ1a1(η), (2.9)

where the second equality comes from reindexing the sum and the last one from the identity

�cos(x) = −λ1cos(x). (2.10)

From the Markov property, we have for every positive t ,

∂sE[Mt+s | Ft ]|s=0 = λ1Mt + etλ1(La1)
(
η

χ
t

)= 0, (2.11)

which implies that it is a martingale. In particular we have

E
[
a1
(
η

χ
t

)]= e−λ1t a1(χ). (2.12)

Now let us try to estimate the variance of Mt : For the process with k particle, the maximal transition rate is 2k (each
of the k particles can jump in an most 2 directions independently with rate one). If a transition occurs at time s, the
value of Ms varies at most by an amount

eλ1s max
x∈ZN

∣∣cos(x) − cos(x + 1)
∣∣≤ eλ1s

2π

N
.

With this in mind we can obtain a bound on the bracket of M (that is: the predictable process such that M2
t − 〈M〉t

is a martingale)

〈M〉t ≤ 2k

∫ t

0
e2λ1s

(
2π

N

)2

ds. (2.13)

Then using the fact that Var(Mt) = E[〈M〉t ], we have, for N sufficiently large, for any χ ∈ �N,k and any t ≥ 0

Var
[
a1
(
η

χ
t

)]= e−2λ1tE
[〈M〉t

]≤ 2k

∫ t

0
e2λ1(s−t)

(
2π

N

)2

ds ≤ 4π2k

N2λ1
≤ 2k, (2.14)

where the last inequality comes from the fact that λ1 ∼ 4π2N−2. �

At equilibrium (i.e. under the distribution μ) a1(η) has mean zero and typical fluctuations of order
√

k. The equi-
librium variance can either be computed directly or one can use (2.8) for t → ∞ to obtain

Varμ
(
a1(η)

)≤ 2k.
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From (2.8), if E[a1(η
χ
t )] is much larger than

√
k then a1(η

χ
t ) is much larger than

√
k with large probability which

implies ‖P χ
t − μ‖ has to be large. We need to use this reasoning for a χ which maximizes a1.

2.3. Proof of Proposition 2.1

Using [20], Proposition 7.8 (obtained from the Cauchy Schwartz inequality) and the estimates (2.12)–(2.14), we have

∥∥P χ
t − μ

∥∥
TV ≥ (E[a1(η

χ
t )])2

(E[a1(η
χ
t )])2 + 2[Var(a1(η

χ
t )) + Varμ(a1(η))]

≥ 1

1 + 8k exp(2λ1t)a1(χ)−2
. (2.15)

Consider χ = χ0 being the configuration which maximizes a1.

χ0(x) :=
{

1{x∈{−p,...,p}} if k = 2p + 1,

1{x∈{−p+1,...,p}} if k = 2p.
(2.16)

It is rather straight-forward to check that for any N ≥ 2, k ≤ N/2, we have a1(χ0) ≥ k/2. Thus using the above

inequality for t = tN := uN2 + N2

8π2 logk (u ∈ R) the reader can check that

lim inf
N→∞

∥∥P χ0
tN

− μ
∥∥

TV ≥ lim
N→∞

1

1 + 32k−1 exp(−2λ1tN )
= 1

1 + 32e8π2u
, (2.17)

which implies both (2.1) and (2.2). To prove (2.3) we need to use (2.15) for the set

AN
δ := {

χ ∈ �N,k | a1(χ) ≥ δ
√

k
}
.

We have

d
(
sN2)≥ μ(AN

δ )

1 + 8δ−2 exp(2λ1N2s)
. (2.18)

To conclude the proof, it is sufficient to prove that lim infN→∞ μN(AN
δ ) > 0 for some small δ > 0. This can be done

e.g. by showing that μ[(a1(η))4] ≤ Ck2 (which is left as an exercise to the reader).

2.4. The exclusion in higher dimensions

Let us shortly present in this section a generalization of Proposition 2.1 for the exclusion process in higher dimension
d ≥ 2.

For N ∈ N, and k ≤ Nd/2 we define the state-space of particle configurations as

�d
N,k :=

{
η ∈ {0,1}Zd

N

∣∣∣∣ ∑
x∈Zd

N

η(x) = k

}
. (2.19)

Given x ∼ y a pair of neighbor on the torus Zd
N , we set

ηx,y :=

⎧⎪⎨⎪⎩
ηx,y(x) = η(y),

ηx,y(y) = η(x)

ηx,y(z) = η(z), for z /∈ {x, y}.
(2.20)
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and define the generator by

Lf (η) :=
∑

x,y∈ZN
x∼y

f
(
ηx,y

)− f (η). (2.21)

We set dN,k,d to be the distance to equilibrium of the chain with generator L at time t (see (1.5)). The we can adapt
the proof of Proposition 2.1 and show that

Proposition 2.3. For any sequence k(N) satisfying k(N) ≤ Nd/2 and tending to infinity. we have

lim
u→∞ lim

N→∞dN,k,d
((

8π2)−1
N2 logk − uN2)= 1, (2.22)

and for any u ∈ R

lim inf
N→∞ dN,k,d

((
8π2)−1

N2 logk + uN2)> 0. (2.23)

Remark 2.4. Note that the result remains valid if the torus is replaced by the grid (i.e. if we drop the periodic boundary
condition) in which case (8π2)−1 has to be replaced by (2π2)−1. In view of this result, and of the content of the next
section, it is natural to conjecture that (8π2)−1N2 logk is the mixing time of the exclusion process on the torus.

Proof. The proof is almost exactly the same. The eigenfunction which one has to consider is

a1(η) :=
∑

x∈Zd
N

η(x) cos

(
x1π

N

)
, (2.24)

where x1 ∈ ZN is the first coordinate of ZN . It is not difficult to check that if χ0 is a maximizer of Zd
N (there might be

many of them) a1(χ
0) is larger than k/2. �

3. Upper bound on the mixing time

3.1. Decomposition of the proof

To complete the proof of the main result, we have to prove

Proposition 3.1. For any sequence k(N) satisfying k(N) ≤ N/2 and tending to infinity, and for any u ∈R, we have

(i)

lim
s→∞ lim sup

N→∞
dN,k

((
8π2)−1

N2 logk + sN2)= 0, (3.1)

(ii)

lim sup
N→∞

dN,k
((

8π2)−1
N2 logk + uN2)< 1. (3.2)

(iii)

lim
s→∞ lim sup

N→∞
dN,k

(
sN2)= 0, (3.3)

(iv)

lim sup
N→∞

dN,k
(
uN2)< 1. (3.4)
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The proof of this statement is much more involved than that of Proposition 2.1 and relies on an explicit coupling
of P

χ
t and the equilibrium measure μ for an arbitrary χ ∈ �, which requires two steps.

In a first step we want to show that after time t0 = (8π2)−1N2 logk, or even shortly before that time, the density
of particle is close to k/N everywhere on the torus and that the deviation from it are not larger than equilibrium
fluctuation (which are of order

√
k). This part of the proof relies on comparison inequalities developed by Liggett

[22], which allow to replace the exclusion process with k independent random walks.
In a second step, we construct a dynamical coupling of the process starting at χ which has fluctuations of order

√
k,

with one starting from equilibrium, using the height-function representation. We show that the two height functions
couple within a time O(N2) which is what we need to conclude. The construction of the coupling and heuristic
explanations are given in Section 5, while the proof is performed in Section 6.

3.2. Control of the fluctuation of the particle density

To present the main proposition of the first step we need to introduce some notation. Given x �= y in ZN , we define
the interval [x, y] to be the smallest (for the inclusion) subset I of ZN which contains x and which satisfies

∀z ∈ I \ {y}, z + 1 ∈ I. (3.5)

Let f be a function defined on ZN . We use the notation

y∑
z=x

f (z) :=
∑

z∈[x,y]
f (z). (3.6)

We define the length of the interval (which we write #[x, y]) to be the number of points in it (e.g. it is equal to y −x +1
if 1 ≤ x ≤ y ≤ N ). We will prove the following result: Given A ≥ 0 we set

tA = N2

8π2
logk − AN2. (3.7)

Proposition 3.2. There exists a constant c > 0 such that, for all A ≥ 0, for all N sufficiently large (depending on A)
for all initial condition χ ∈ �N,k and s > 0,

P

[
∃x, y ∈ ZN,

∣∣∣∣∣
y∑

z=x+1

(
ηtA(z) − k

N

)∣∣∣∣∣≥ (
s + 8e4π2A

)√
k

]
≤ 2 exp

(−cs2). (3.8)

3.3. Coupling with small fluctuations

In the second step of our proof, we show that starting from a configuration with small fluctuations we can relax to
equilibrium within time O(N2). Set

Gs :=
{

η ∈ �

∣∣∣∣ ∀x, y ∈ ZN

∣∣∣∣∣
y∑

z=x+1

(
η

χ
t (z) − k

N

)∣∣∣∣∣≤ s
√

k

}
. (3.9)

The following proposition establishes this diffusive relaxation to equilibrium in two ways: first it shows that one gets
ε close to equilibrium within a time C(s, ε), but also that on the scale N2 the distance becomes immediately bounded
away from one for positive times.

Proposition 3.3. For any s ≥ 1, given ε > 0 there exists a constant C(s, ε) such that

∀χ ∈ Gs ,
∥∥P χ

C(s,ε)N2 − μ
∥∥

TV ≤ ε. (3.10)

For any s, u > 0, there exists c(s, u) > 0 such that

∀χ ∈ Gs ,
∥∥P χ

uN2 − μ
∥∥

TV ≤ 1 − c(s, u). (3.11)
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Now we show that Propositions 3.2 and 3.3 are sufficient to prove Proposition 3.1.

Proof of Proposition 3.1. We use the semi-group property at time tA. We have for any χ ∈ �

P
χ

tA+CN2(·) =
∑
χ ′∈�

P
χ
tA

(
χ ′)P χ ′

CN2(·). (3.12)

Hence, using the triangle inequality, we have for any event G∥∥P χ

tA+CN2 − μ
∥∥≤

∑
χ ′∈�

P
χ
tA

(
χ ′)∥∥P χ ′

CN2 − μ
∥∥≤ P

χ
tA

(
Gc
)+ P

χ
tA

(G) max
χ ′∈G

∥∥P χ ′
CN2 − μ

∥∥. (3.13)

We can now start the proof of (3.1). According to Proposition 3.2, if s and N are sufficiently large, we have

P
χ
t0

(
(Gs)

c
)≤ ε/2. (3.14)

Fixing such an s (which we denote by s(ε)), according to Proposition 3.3 we can find a constant C(ε) such that

max
χ ′∈Gs(ε)

∥∥P χ ′
C(ε)N2 − μ

∥∥≤ ε/2, (3.15)

which is enough to conclude the proof, using (3.13) with A = 0, G = Gs(ε), and C = C(ε).
To prove (3.3), we note that for any G

dN,k
(
uN2)≤ μ

(
Gc
)+ μ(G) max

χ ′∈G
∥∥P χ ′

uN2 − μ
∥∥ (3.16)

and we can conclude similarly using Proposition 3.2 to find s(ε) such that that μ(Gc
s(ε)

) < ε/2 for all N , and then
taking u large enough.

We now prove (3.2). For a fixed u ≤ 1 (by monotonicity of distance to equilibrium this is sufficient to treat that
case), for A = 1 − u ≥ 0, we can find s(u) sufficiently large such that

P
χ
tA

(Gs(u)) ≥ 1

2
. (3.17)

Using (3.11) we obtain that

max
χ∈Gs(u)

∥∥P χ

N2 − μ
∥∥

TV ≤ 1 − c
(
s(u),1

)
. (3.18)

We can then conclude by using (3.13) for A = 1 − u and G = Gs(u), that for large N

dN,k
((

8π2)−1
N2 logk + uN2)< 1 − c(s(u),1)

2
. (3.19)

Concerning (3.4), we choose s0 such that μ(Gs0) ≥ 1/2, and use (3.11) and (3.16) to show that

dN,k
(
uN2)≤ 1 − c(s0, u)

2
. (3.20)

�

4. Proof of Proposition 3.2

Let us first slightly modify the statement
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Proposition 4.1. There exists a constant c > 0 such that for all N sufficiently large, for all t ≥ 3N2 for all χ ∈ �N,k ,
for all s ≥ 0

P

[
∃x, y ∈ ZN,

∣∣∣∣∣
y∑

z=x+1

(
η

χ
t (z) −E

[
η

χ
t (z)

])∣∣∣∣∣≥ s
√

k

]
≤ 2 exp

(−cs2). (4.1)

Proposition 3.2 can be deduced from Proposition 4.1 using the following Lemma which relies on heat-kernel
estimates. The proof is based on the diagonalization of the Laplace operator on the discrete circle. The method is
classic (see e.g. [11]), but as we could not find a reference matching exactly our setup and result, we include the proof
in the appendix for the sake of completeness.

Lemma 4.2. The following statement hold

(i) For N large enough, for all χ , all x ∈ ZN and t ≥ N2∣∣∣∣E[ηχ
t (x)

]− k

N

∣∣∣∣≤ 4kN−1e−λ1t . (4.2)

In particular

E
[
η

χ
t (x)

]≤ 2k

N
. (4.3)

(ii) If Xt is a nearest neighbor random walk starting from x0 ∈ ZN one has for all t ≥ N2, all x, y ∈ ZN

P
[
Xt ∈ [x, y]]≤ 2#[x, y]

N
. (4.4)

Proof of Proposition 3.2. We have for all N sufficiently large and x, y ∈ ZN

y∑
z=x

∣∣∣∣E[ηχ
tA

(z)
]− k

N

∣∣∣∣≤ 4#[x, y]kN−1e−λ1tA ≤ 8
√

ke4π2A. (4.5)

Hence we have∣∣∣∣∣
y∑

z=x

η
χ
ta
(z) − k

N

∣∣∣∣∣≤
y∑

z=x

∣∣∣∣∣ηχ
tA

(z) −
y∑

z=x

E
[
η

χ
tA

(z)
]∣∣∣∣∣+ 8

√
ke4π2A (4.6)

and thus Proposition 3.2 follows from Proposition 4.1. �

Remark 4.3. Note that by taking t = ∞ with A = 0 in (4.1), we also have a result concerning density fluctuation for
the equilibrium measure μ which we will use during our proof.

μ

(
∃x, y ∈ ZN,

∣∣∣∣∣
y∑

z=x+1

(
η(z) − k

N

)∣∣∣∣∣≥ s
√

k

)
≤ 2 exp

(−cs2). (4.7)

The idea of the proof is to control the Laplace transform of the number of particle in each interval (and then we
roughly have to sum over all intervals to conclude). To control this Laplace transform, we use a comparison inequality
due to Liggett [21,22], which allows us to compare the simple exclusion with a particle system without exclusion, that
is: k independent random walks on the circle. With this comparison at hand, the Laplace transform can be controlled
simply by using (4.4).
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4.1. Estimate on the Laplace transform

From now on the initial condition χ is fixed, and for convenience, does not always appear in the notation. For x, y ∈
ZN and we set

Sx,y(t) :=
y∑

z=x+1

(
η

χ
t (z) −E

[
η

χ
t (z)

])
,

Sx(t) := S0,x(t).

(4.8)

Lemma 4.4. For all x ∈ ZN and t ≥ N2

E
[
eαSx(ηt )

]≤ exp

(
2
kx

N
α2
)

. (4.9)

Remark 4.5. Of course the formula (4.9) remains valid for any interval of length x by translation invariance.

Proof of Proposition 4.1. Note that we can always consider in the proof that s is sufficiently large (as the result is
obvious for s ≤ ((log 2)/c)1/2). By the triangle inequality, we have for all x, y ∈ Z∣∣Sx,y(t)

∣∣≤ ∣∣Sx(t)
∣∣+ ∣∣Sy(t)

∣∣. (4.10)

For convenience we decide to replace s by 16s in (4.1) (this only corresponds to changing the value of c by a fac-
tor 256). Hence it is sufficient to prove that for any t ≥ N2 we have

P

[
max
x∈ZN

∣∣Sx(t)
∣∣≥ 8s

√
k
]

≤ 2 exp
(−cs2). (4.11)

Note that if the concentration inequality had to be proven just for one given Sx(t), it would be sufficient to combine
Lemma 4.4 with an appropriate use of the Markov equality. However we need it for the maximum of N variables and
we have to do something smarter than just taking the union bound (that would yield an unwanted N factor). First we
note that for on scale smaller than (N/

√
k) the increments are deterministically bounded by

√
k: More precisely let

q0 be such that

Ns√
k

< 2q0 ≤ 2Ns√
k

. (4.12)

For x ∈ {0, . . . ,N − 1} (here we also consider the element of Z associated to x ∈ ZN ), one can find y ∈
2q0{0, . . . , �(N − 1)2−q0�} (a multiple of 2q0 ) such that

y ≤ x ≤ y+ := max
(
y + 2q0,N

)
.

We have, from the definition of (4.8)

Sx(t) ≥ Sy(t) −
x∑

z=y+1

P
[
ηt (z) = 1

]
,

Sx(t) ≤ Sy+(t) +
y+∑

z=x+1

P
[
ηt (z) = 1

]
.

(4.13)

From (4.3) and(
y+ − y

)≤ 2q0 ≤ 2Ns/(
√

k),
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the second term of both equations in (4.13) is smaller than 4Ns/(
√

k) and hence∣∣Sx(t)
∣∣≤ max

(∣∣Sy(t)
∣∣, ∣∣Sy+(t)

∣∣)+ 4s
√

k. (4.14)

Thus, we can reduce (4.11) to proving

P

[
max

y∈2q0 {0,...,�N2−q0�}
∣∣Sy(t)

∣∣≥ 4s
√

k
]

≤ 2 exp
(−cs2). (4.15)

The next idea is to control the increments of Sy on each discrete “dyadic intervals” in ZN .
Let p be such that N ∈ (2p,2p+1]. Given y ∈ 2q0{0, . . . , �(N − 1)2−q0�}, we can decompose in base 2 as follows

y =:
p−q0∑
q=0

εq2p−q, (4.16)

where εq ∈ {0,1}. We set y−1 := 0 and yr :=∑r
q=0 εq2p−q , for r ∈ {0, . . . , p − q0}.

Using the triangle inequality again we have |Sy(t)| ≤∑p−q0
r=0 |Syr−1,yr (t)|, and hence (as

∑∞
r=0(3/4)r ≤ 4).

{∣∣Sy(t)
∣∣≥ 4s

√
k
}⊂

{
∃r ∈ {0, . . . , p − q0},

∣∣Syr−1,yr (t)
∣∣≥ (

3

4

)r

s
√

k

}
, (4.17)

which implies{
max

y∈2q0 {0,...,�N2−q0 �}
∣∣Sy(t)

∣∣≥ 4s
√

k
}

⊂
⋃

q∈{q0,...,p}
y∈{1,...,�N2−q�}

{∣∣S2q (y−1),2qy(t)
∣∣≥ (

3

4

)p−q

s
√

k

}
. (4.18)

The special value 3/4 is not very important: we must choose something smaller than 1 for summability and (strictly)
larger than 2−1/2 so that the probability of the deviation gets smaller when the scale gets smaller. Thanks to this last
property, we will be able to conclude using the union bound.

Thus, the proof of Proposition 3.2 can be reduced to show the following.

Lemma 4.6. Let H(s, t) denote the event in the right-hand side of (4.18). For every t ≥ N2 we have

P
[
H(s, t)

]≤ 2e−cs2
. (4.19)

Indeed from (4.17) and the reasoning taking place before, one has{∃x ∈ ZN,
∣∣Sx(t)

∣∣≥ 8s
√

k
}⊂H(s, t). �

Proof of Lemma 4.6. We have by union bound

P
[
H(s, t)

]≤
p∑

q=q0

�N2−q�∑
y=1

P

[∣∣S2q (y−1),2qy(t)
∣∣≥ (

3

4

)p−q

s
√

k

]

≤
p∑

q=0

2p+1−q max
y

P

[∣∣S2q (y−1),2qy(t)
∣∣≥ (

3

4

)p−q

s
√

k

]
. (4.20)

Thus we have to find a bound on

P

[∣∣S2q (y−1),2qy(t)
∣∣≥ (

3

4

)p−q

s
√

k

]
.
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which is uniform in y and is such that the sum in the second line of (4.20) is smaller than 2e−cs2
. For what follows

we can, without loss of generality consider only the case y = 1, as all the estimates we use are invariant by translation
on ZN .

Using Lemma 4.4 and the Markov inequality, we have for any positive α ≤ log 2

E

[∣∣S2q (t)
∣∣≥ (

3

4

)p−q

s
√

k

]
≤ exp

(
2q+1α2 k

N
− α

√
k

(
3

4

)p−q

s

)
. (4.21)

We can check that the right-hand side is minimized for

α = α0 := 2−(q+2)

(
3

4

)p−q

s
N√
k
.

Note that for all q ≥ q0 (recall (4.12)) one has

α0 ≤ 2−(q0+2)

(
3

4

)p−q0

s
N√
k

≤ 1

4

(
3

4

)p−q0

≤ log 2. (4.22)

This ascertains the validity of (4.21), and hence

P

[∣∣S2q (t)
∣∣≥ (

3

4

)p−q

s
√

k

]
≤ e−s22−q−3N( 3

4 )2(p−q)

. (4.23)

Using the fact that N ≥ 2p we have

P

[∣∣S2q (t)
∣∣≥ (

3

4

)p−q

s
√

k

]
≤ e− s2

8 ( 9
8 )(p−q)

. (4.24)

Using this in (4.20) allows us to conclude (choosing c appropriately). �

4.2. Proof of Lemma 4.4

We use a result of Liggett [22] which provides a way to compare the simple exclusion with a simpler process composed
of independent random walkers. If f is a symmetric function on (ZN)k and η ∈ �N,k we set

f (η) := f (y1, y2, . . . , yk), (4.25)

where

{y1, . . . , yk} := {
x | η(x) = 1

}
.

The above relation defines (y1, . . . , yk) modulo permutation which is sufficient for the definition (4.25). We say that a
function f defined on (ZN)2 is positive definite if and only if for all β such that

∑
x∈ZN

β(x) = 0, we have∑
x,y∈Z2

N

β(x)β(y)f (x, y) ≥ 0. (4.26)

We say that a function defined on (ZN)k is positive definite if all its two dimensional marginals are. Note in particular
that a function that can be written in the form

f (x1, . . . , xk) = C

k∏
i=1

g(xi), (4.27)

where C is a positive constant and g is a non-negative function on ZN , is definite positive.
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Given χ ∈ �N,k , let Xχ
t := (X

χ

1 (t), . . . ,X
χ
k (t)) denote a set of independent random walk on ZN , starting from

initial condition xχ := (x
χ
1 , . . . , x

χ
k ) which satisfies{

x
χ
1 , . . . , x

χ
k

} := {
x | χ(x) = 1

}
. (4.28)

Of course (4.28) defines (x
χ
1 , . . . , x

χ
k ) only modulo permutation but this has no importance for what we are doing (e.g.

we can fix (x0
1 , . . . , x0

k ) to be minimal for the lexicographical order).

Proposition 4.7. If f is a symmetric definite positive then we have for all t ≥ 0

E
[
f
(
η

χ
t

)]≤ E
[
f
(
Xχ

t

)]
. (4.29)

Proof. The proof in the case k = 2 is detailed in [21], Proof of Lemma 2.7, perfectly adapts to the case of general k.
We include it here for the sake of completeness. We let L′ denote the generator of k independent random walks and
Qt the associated semigroup. We define the action of Pt and Qt on functions as follows

Ptf (χ) :=
∑

η∈�N,k

Pt (χ, η)f (η),

Qtf (x) :=
∑

y∈(ZN )k

Qt (x,y)f (y).
(4.30)

As Qt is invariant by permutations of the labels, Qtf is also is a symmetric function and we can also consider Qtf (η)

for η ∈ � (cf. (4.25)).
Using the standard property of Markov semi-group ∂tPt := LPt = PtL, we have

[
Qt(f ) − Pt (f )

]
(χ) =

∫ t

0
∂s

[
Pt−sQs(f )(χ)

]
ds =

∫ t

0
Pt−s

(
L′ −L

)
Qsf (χ)ds (4.31)

and our conclusion follows if we can prove that (L′ − L)Qsf (χ) ≥ 0 for all χ (as composition by Ps−t preserves
positivity). First note that g := Qs(f ) is definite positive. Indeed if

∑
x∈ZN

β(x) = 0 we have∑
x1,x2∈ZN

β(x1)β(x2)Qsf (x1, x2, . . . , xk)

=
∑

y3,...,yN∈ZN

(∏
j≥3

ps(xj , yj )

)( ∑
y1,y2∈ZN

β ′(y1)β
′(y2)f (y1, y2, . . . , yk)

)
, (4.32)

where pt is the discrete heat kernel on the circle (see (A.1), we use that pt is the Markovian semi-group associated to
the simple random walk on the circle) and

β ′(y) :=
∑

x∈ZN

ps(x, y)β(x)

satisfies
∑

y∈ZN
β ′(y) = 0. Thus the l.h.s of (4.32) is non-negative as a sum of non-negative terms. Then, notice that

the generator L′ includes all the transition of L but also allows particle to jump on a neighboring site even if it is
occupied. Hence we have, for all x with distinct coordinates(

L′ −L
)
g(x) =

∑
{i<j |xi∼xj }

g(·, xi, ·, xi, ·) + g(·, xj , ·, xj , ·) − 2g(·, xi, ·, xj , ·), (4.33)

where in the right-hand side, only the i-th and j -th coordinate appears in the argument of g. Note that each term in
the r.h.s. of (4.33) is of the form (4.26) with β(x) := 1{x=xi } − 1{x=xj } (recall that g is symmetric) and thus is positive.

�
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We want to apply Proposition 4.7 to the function

f (x1, . . . , xk) := eα
∑k

i=1(1{xi∈[1,y]}−P[Xi(t)∈[1,y]]) (4.34)

for y ∈ {1, . . . ,N}. Note that it is of the form (4.27) and thus is definite positive.

Lemma 4.8. For all N sufficiently large for all α ∈ R, |α| ≤ log 2 and for all t ≥ N2, we have

E
[
eα

∑k
i=1(1{Xi (t)∈[1,y]}−P[Xi(t)∈[1,y]])]≤ exp

(
2ky

N
α2
)

. (4.35)

To deduce (4.9) from (4.35) we just have to remark that as P[Xi(t) = z] := pt(x
0
i , z) (it can be immediately

deduced from the definition (A.1) of pt )

k∑
i=1

P
[
Xi(t) ∈ [1, y]]=

y∑
z=1

k∑
i=1

pt

(
x0
i , z

)=
y∑

z=1

P
[
ηt (z) = 1

]
.

Proof of Lemma 4.8. We use the inequality

∀x ∈ R, |x| ≤ | log 2| ⇒ ex ≤ 1 + x + x2

for the variable Z = α(1X1(t)∈[1,y] −P[X1(t) ∈ [1, y]]). As E[Z] = 0 and from Lemma 4.2(ii) we have for all t ≥ N2,

E
[
Z2]≤ α2

P
[
X1(t) ∈ [1, y]]≤ 2α2y/N,

the integrated inequality gives

E
[
eα(1{X1(t)∈[1,y]}−P[X1∈[1,y]])]≤ 1 + 2α2y

N
≤ exp

(
2α2(y/N)

)
. (4.36)

The independence of the Xis is then sufficient to conclude. �

5. Coupling P
χ
t with the equilibrium using the corner-flip dynamics

In this section we present the main tool which we use to prove Proposition 3.3: the corner-flip dynamics. The idea is to
associate to each η ∈ � an height function, and consider the dynamics associated with this height function instead of
the original one and use monotonicity properties of this latter dynamics. This idea is is already present in the seminal
paper of Rost investigating the asymmetric exclusion on the line [30] and became since a classical tool in the study
of particle system. In particular it is used e.g. in [15,32] to obtain bounds on the mixing time for the exclusion on the
line.

Let us stress however that in [15,32], the interface represention is used mostly as graphical tool in order to have
a better intuition on an order that can be defined directly on �N,k . In the present we use the interface representation
to construct a coupling which cannot be constructed considering only the original chain. In particular, note that our
coupling is Markovian for the corner-flip dynamics but not for the underlying particle system.

5.1. The ξ dynamics

Let us consider the set of height functions of the circle.

�′
N,k :=

{
ξ : ZN → R

∣∣∣ ξ(0) ∈ Z,∀x ∈ ZN, ξ(x) − ξ(x + 1) ∈
{
− k

N
,1 − k

N

}}
. (5.1)
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Fig. 1. The correspondence between the exclusion process and the corner-flip dynamics. In red, a particle jump and its corner-flip counterpart are
defined. Note that this is not a one-to-one mapping as a particle configuration gives the height function only modulo translation (the height function
is drawn on a cylinder whose base is the circle on which the particles are moving).

Given ξ in �′
k,N , we define ξx as{

ξx(y) = ξ(y), ∀y �= x,

ξx(x) = ξ(x + 1) + ξ(x − 1) − 2ξ(x).
(5.2)

and we let ξt be the irreducible Markov chain on �′
N,k whose transition rates p are given by{

p(ξ, ξx) = 1, ∀x ∈ ZN,

p(ξ, ξ ′) = 0, if ξ ′ /∈ {ξx | x ∈ ZN }. (5.3)

We call this dynamics the corner-flip dynamics, as the transition ξ → ξx corresponds to flipping either a local max-
imum of ξ (a “corner” for the graph of ξ ) to a local minimum and vice versa. It is, of course, not positive recurrent,
as the state space is infinite and the dynamics is left invariant by vertical translation. However it is irreducible and
recurrent.

The reader can check (see also Figure 1) that �′
N,k is mapped onto �N,k , by the transformation ξ �→ ∇ξ defined

by

∇ξ(x) := ξ(x) − ξ(x − 1) + k

N
, (5.4)

and that the image ∇ξt of the corner-flip dynamics ξt under this transformation is the simple exclusion, down and
up-flips corresponding to jumps x → x + 1 and x → x − 1 of the particles respectively. There is a natural order on
the set �′

N,k defined by

ξ ≥ ξ ′ ⇔ ∀x ∈ ZN, ξ(x) ≥ ξ ′(x), (5.5)

which has the property of being preserved by the dynamics in a certain sense (see Section 5.3 for more details).
Given χ ∈ �N,k , we define (ξ0

t ) to be a process with transitions (5.3) starting from initial condition

ξ0
0 (x) :=

x∑
z=0

(
χ(z) − k

N

)
. (5.6)
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It follows from the above remark that for all t ≥ 0 we have

P
[∇ξ0

t ∈ ·]= P
χ
t . (5.7)

Our idea is to construct another dynamic ξ1
t which starts from a stationary condition (the gradient is distributed

according to μ) and to try to couple it with ξ0
t within time O(L2). The difficulty here lies in finding the right coupling.

5.2. Construction of the initial conditions ξ1
0 and ξ2

0

In fact we define not one but two stationary dynamics ξ1
t and ξ2

t , satisfying

P
[∇ξ1

t ∈ ·]= P
[∇ξ2

t ∈ ·]= μ. (5.8)

As μ is invariant for the dynamics ∇ξt , (5.8) is satisfied for all t as soon as it is satisfied for t = 0. As we wish to use
monotonicity as a tool, we want to have

∀t ≥ 0, ξ1
t ≤ ξ0

t ≤ ξ2
t . (5.9)

Then our strategy to couple ξ0
t with equilibrium is in fact to couple ξ1

t with ξ2
t and remark that if (5.9) holds then

∀t ≥ 0, ξ1
t = ξ2

t ⇒ ξ1
t = ξ0

t = ξ2
t . (5.10)

We first have to construct the initial condition ξ1
0 and ξ2

0 which satisfies (5.8) and

ξ1
0 ≤ ξ0

0 ≤ ξ2
0 . (5.11)

Let us start with a variable η0 which has law μ. We want to construct ξ1
0 and ξ2

0 which satisfy

∇ξ i
0 = η0. (5.12)

Somehow, we also want the vertical distance between ξ1
0 and ξ2

0 to be as small as possible. We set for arbitrary
η ∈ �N,k , or ξ ∈ �′

N,k

H(η) := max
x,y∈ZN

∣∣∣∣∣
y∑

z=x+1

(
η(z) − k

N

)∣∣∣∣∣,
H(ξ) := max

x,y∈ZN

∣∣ξ(x) − ξ(y)
∣∣. (5.13)

To justify using the same notation for the two function note that we have for all ξ ∈ �′
N,k ,

H(∇ξ) := H(ξ).

Finally set we set

H0 := ⌈
H(η0) + s

√
k
⌉

(5.14)

and

ξ1
0 (x) :=

x∑
z=1

(
η0(z) − k

N

)
− H0,

ξ2
0 (x) :=

x∑
z=1

(
η0(z) − k

N

)
+ H0.

(5.15)

Note that with this choice, (5.11) is satisfied for χ ∈ Gs (see Figure 2).
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Fig. 2. Representation of the three initial condition for the corner-flip dynamics. ξ1
0 and ξ2

0 are translated version of the same profile. The height H0

is designed so that initially ξ0
0 (whose variation is smaller than s

√
k if χ ∈ Gs is framed by ξ1

0 and ξ2
0 ). As the order is conserved by the graphical

construction. ξ0
t couples with equilibrium when ξ1

t = ξ2
t .

5.3. The graphical construction

Now we present a coupling which satisfies (5.9). Note that in this case ξ1
t = ξ0

t = ξ2
t if and only if the area between

the two paths, defined by

A(t) :=
∑

x∈ZN

ξ2
t (x) − ξ1

t (x), (5.16)

equals zero.
The idea is then to find among the order-preserving couplings, the one for which the “volatility” of A(t) is the

largest possible, so that A(t) reaches zero faster. We want to make the corner-flips of ξ1 and ξ2 as independent as
possible (of course making them completely independent is not an option since (5.9) would not hold).

We introduce now our coupling of the ξ i
t , which is also a grand-coupling on �′

N,k , in the sense that it allows us to
construct ξt starting from all initial condition on the same probability space. The evolution of the (ξt )t≥0 is completely
determined by auxiliary Poisson processes which we call clock processes. Set

� :=
{
(x, z)

∣∣∣ x ∈ ZN and z ∈ Z+ kx

N

}
,

and set T ↑ and T ↓ to be two independent rate-one clock processes indexed by � (T ↑
θ and T ↓

θ are two independent
Poisson processes of intensity one for each θ ∈ �). The trajectory of ξt given (T ↑,T ↓) is given by the following
construction

(i) ξt is a càd-làg, and does not jump until one of the clocks indexed by (x, ξt (x)), x ∈ ZN rings.
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(ii) If T ↓
(x,ξt− (x)) rings at time t and x is a local maximum for ξt− , then ξt = ξx

t− .

(iii) If T ↑
(x,ξt− (x)) rings at time t and x is a local minimum for ξt− , then ξt = ξx

t− .
(iv) If a clock rings in a situation which is not ruled by (ii) or (iii) nothing happens.

The coupling of ξ0
t , ξ1

t and ξ2
t is obtained by using the same clock process for all of them. The reader can check that

with this coupling (5.9) is a consequence of (5.11).

Remark 5.1. In fact, the corner flip dynamics which is considered here, is in one to one correspondence with the
zero-temperature stochastic Ising model on an infinite cylinder. With this in mind the coupling we have constructed
just corresponds to the the graphical construction of this spin flip dynamics. See e.g. [18], Section 2.3 and Figure 3,
for more details for the dynamics on a rectangle with mixed boundary condition.

Remark 5.2. Let us stress that the coupling we use here is not the one of [32] or [30] for which the updates of pair of
neighbors are done simultaneously for the coupled chains. In particular it is not a Markovian coupling for the particle
system (as the height function is not encoded in the particle configuration). This is a crucial point here as this is what
allows the coupling time to be much shorter. Recall in particular in [32] (see Table 1), it is shown that with the usual
Markovian coupling, the coupling time is twice as large as the mixing time.

To prove Proposition 3.3 it is sufficient to prove that ξ1
t and ξ2

t typically merge within a time O(N2). More
precisely,

Proposition 5.3. For all s > 0, given ε > 0 there exists C(ε, s) such that for all sufficiently large N ,

P
[
ξ1
CN2 �= ξ2

CN2

]≤ ε. (5.17)

Similarly for all s, u > 0, there exists c(s, u) > 0 such that

P
[
ξ1
uN2 �= ξ2

uN2

]≤ 1 − c(s, u). (5.18)

Proof of Proposition 3.3. Given s > 0 consider (ξ1
t )t≤0, (ξ2

t )t≥0, constructed as above. Then given χ ∈ Gs , we
construct ξ0

t the dynamics starting from the initial condition (5.6) and using the same clock process as ξ1
t and ξ2

t . By
definition of Gs , (5.11) is satisfied and thus so is (5.9) from the graphical construction. Recalling that from (5.7) and
(5.8) ∇ξ0

t and ∇ξ1
t have respective law P

χ
t and μ, we have for any t > 0,∥∥P χ

t − μ
∥∥

TV ≤ P
[∇ξ0

t �= ∇ξ1
t

]≤ P
[
ξ0
t �= ξ1

t

]≤ P
[
ξ1
t �= ξ2

t

]
. (5.19)

The first inequality comes from [20], Proposition 4.7, and the last one is a consequence of (5.10). According to the
above inequality, Proposition 3.3 obviously is a consequence of Proposition 5.3. �

6. The proof of Proposition 5.3

In order to facilitate the exposition of the proof, we choose to present it in the case k = N/2 first. We also chose to
focus on (5.17). The necessary modifications to prove (5.18) and to adapt the proofs for general k are explained at the
end of the section.

6.1. The randomly walking area

We are interested in bounding (recall (5.16))

τ := inf
{
t ≥ 0 | A(t) = 0

}= inf
{
t ≥ 0 | ξ 1

t = ξ2
t

}
. (6.1)

With our construction, A(t), the area between the two curves is a Z+ valued martingale which only makes nearest
neighbor jumps (corners flip one at a time).
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Hence A(t) is just a time changed symmetric nearest neighbor walk on Z+ which is absorbed at zero. In order to
get a bound for the time at which A hits zero, we need to have reasonable control on the jump rate which depends on
the particular configuration (ξ1

t , ξ2
t ) the system sits on. The jump rate is given by the number of corners of ξ1

t and ξ2
t

that can flip separately. More precisely, set

Ui(t) := {
x ∈ ZN | ξ i

t has a local extremum at x and ∃y ∈ {x − 1, x, x + 1}, ξ2
t (y) > ξ1

t (y)
}
. (6.2)

The jump rate of A(t) is given by

u(t) := #U1(t) + #U2(t). (6.3)

For t ≤ ∫ τ

0 u(t)dt let us define

J (t) := inf

{
s

∣∣∣ ∫ s

0
u(v)dv ≥ t

}
. (6.4)

By construction, the process (Xt )t≥0 defined by

Xt := A
(
J (t)

)
(6.5)

is a continuous time random walk on Z+ which jumps up or down with rate 1. We have from the definition of the ξ i
0

X0 = A(0) = 2H0N

which is of order N3/2 and hence Xt needs a time of order N3 to reach 0. What we used to estimate A(0) is the
following bound which can be derived from (4.7) and the definition of H0 (5.14),

P
[
A(0) ≥ 2(s + r)N3/2]= P

[
H0 ≥ (s + r)N1/2]≤ P

[
H(η0) ≥ rN1/2]≤ 2e−cr2

. (6.6)

If u(t) were of order N for all t this would be sufficient to conclude that A(t) reaches zero within time O(N2).
This is however not the case: the closer ξ1

t and ξ2
t get, the smaller u(t) becomes. A way out of this is to introduce a

multi-scale analysis where the bound we require on u depends on how small A(t) already is.

6.2. Multi-scale analysis

We construct a sequence of intermediate stopping time (τi)i≥0 as follows.

τi := inf
{
t ≥ 0 | A(t) ≤ N3/22−i

}
. (6.7)

We are interested in τi for i ∈ {0, . . . ,K} with

K = KN :=
⌈

1

2
log2 N

⌉
. (6.8)

Note that a number of τi can be equal to zero if A(0) ≤ N3/2. We set τ−1 := 0 for convenience. To bound the value
of τ , our aim is to control each increments �τi = τi − τi−1 for i ≤ K as well as (τ − τK). A first step is to get
estimates for the equivalent of the �τ for the time rescaled process Xt (recall 6.5). We set for i ∈ {0, . . . ,K}

Ti :=
∫ τi

τi−1

u(t)dt,

T∞ :=
∫ τ

τK

u(t)dt.

(6.9)

As X is diffusive, Ti is typically of order (N3/22−i )2 = N34−i , and T∞ is of order N2. With this in mind, it is not too
hard to believe that
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Lemma 6.1. Given ε, s > 0 there exists a constant C(ε, s) such that

P
[{∃i ∈ {0, . . . ,K},Ti ≥ CN33−i

}∪ {
T∞ ≥ CN2}]≤ ε. (6.10)

Proof. Let Zt denote a nearest neighbor walk on Z starting from 0 and Ta the first time Z reaches a. It is known that
there exists a constant C1 such that for every a ≥ 1 and every u ≥ 0

P
[
Ta ≥ ua2]≤ C1u

−1/2. (6.11)

Note that for i ≥ 1, ignoring the effect of integer rounding, Ti has the same law as Ta with a = N3/22−i and thus
applying (6.11) we obtain that

P
[
Ti ≥ uN33−i

]≤ C1u
−1/2(3/4)i/2. (6.12)

In the same manner we have

P
[
T∞ ≥ uN2]≤ C1u

−1/2. (6.13)

We can then choose u0(ε) large enough in a way that

C1
[
u0(ε)

]−1/2

(
K∑

i=1

(3/4)i/2 + 1

)
≤ ε/2. (6.14)

Concerning T0, from (6.6), one can find C2(ε, s) such that

P
[
A(0) ≥ C2N

3/2]≤ ε/4. (6.15)

Conditionally on the event A(0) ≤ C2N
3/2, T0 is stochastically dominated by Ta with a = C2N

3/2 and hence using
(6.11) and fixing u1(ε, s) large enough (depending on C1, C2 and ε) we obtain

P
[
T0 ≥ u1(C2)

2N3]≤ P
[
A(0) ≥ C2N

3/2]+ P
[
T0 ≥ uA(0)2]≤ ε/2. (6.16)

Then we conclude by taking C(ε, s) := max(u0, u1(C2)
2). �

What we have to check then is that the value of u(t) is not too small in the time interval [τi−1, τi) for all i ∈
{0, . . . ,K}. What we want to use is that for any t ≥ 0, ∇ξ1

t is at equilibrium so that ξ1
t has to present a “density of

flippable corners”. We introduce an event A which is aimed to materialize this fact. Given x and y in ZN , x �= y we
set

j (x, y, ξ) := #
{
z ∈ [x, y] | ξ(z) is a local extremum

}
. (6.17)

We have

μ
(
j (x, y, ξ)

)= N#[x, y]
2(N − 1)

. (6.18)

We define

A :=
{
∀t ≤ N3,∀(x, y) ∈ Z

2
N,#[x, y] ≥ N1/4 ⇒ j

(
x, y, ξ1

t

)≥ 1

3
#[x, y]

}
, (6.19)

the event that a “large” interval with an anomalously low density of corner does not appear before time N3.

Lemma 6.2. For all N sufficiently large

P
[
Ac

]≤ 1

N
. (6.20)
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Proof of Lemma 6.2. Note that for any given time t , ∇ξ1
t is distributed according to μ (because this is the case for

t = 0 and μ is the equilibrium measure for the ∇ξ dynamics). Now let us estimate the probability of

E :=
{
η

∣∣∣ ∃x, y ∈ ZN,#[x, y] ≥ N1/4 and j (x, y, η) ≥ 1

3

(
#[x, y])},

under the measure μ where j (x, y, η) is defined like its counter part for the height function (6.17) replacing “x is a
local extremum” by “η(x) �= η(x + 1)”.

We consider μ̃ an alternative measure on {0,1}ZN , under which the η(x) are i.i.d. Bernoulli random variable with
parameter 1/2. As a consequence of Stirling’s formula we have μ̃(

∑
x∈ZN

η(x) = N/2) ≥ cN−1/2 and hence

μ(E) := μ̃

(
E
∣∣∣ ∑

x∈ZN

η(x) = N/2

)
≤ C1

√
Nμ̃(E). (6.21)

Let us now estimate μ̃(E), by a simple union bound. By translation invariance we juste need to compute the probability
of μ̃(j (0, x, η) ≥ x/3) ≥ 1, for x ∈ {1, . . . ,N − 2}. The case x = 1 which corresponds to the case where the interval
is the full circle could also be treated but it is not necessary since{

j (0,N − 1, η) ≥ N/3
}⊂ {

j
(
0, (N/2) − 1, η

)≥ N/6
}∪ {

j
(
(N/2),N − 1, η

)≥ N/6
}
.

Note that under μ̃, the variables 1{η(z)�=η(z+1)}, z ∈ {1, . . . , x} are IID Bernoulli of parameter 1/2, and hence by
standard large deviation results there exists a constant C2 > 0 such that

μ̃

(
x∑

z=1

1{η(z)�=η(z+1)} ≤ x/3

)
≤ e−C2x. (6.22)

Then, summing over all intervals and using (6.21), we deduce that there exists C3 such that, for all N sufficiently large
μ(E) ≤ e−cN1/4

.
Now, we set (Ti)i≥0 to be the times where the chain ξ1 makes a transition. The chain (ξ1

Ti
)i≥0 is a discrete time

Markov chain with equilibrium probability μ and hence by union bound

P
[∃t ≤ Ti,∇ξ1

t (t) ∈ E
]≤ ie−C3N

1/4
. (6.23)

This implies for all i ∈ N

P
[
Ac

]= P
[∃t ≤ N3,∇ξ1

t (t) ∈ E
]≤ ie−C3N

1/4 + P
[
Ti ≤ N3]. (6.24)

As the transitions occur with a rate which is at most N , the second term is exponentially small e.g. for i = N5 and
this concludes the proof. �

Then when A holds, we can derive an efficient lower bound on u(t) which just depend on A(t). Recall (5.13)

Lemma 6.3. When A holds we have for all t ≤ N3

u(t) ≥ 1

3
min

(
N,

A(t)

max(H(ξ1
t ) + H(ξ2

t ),N1/2)

)
. (6.25)

Proof. We prove in fact

u(t) ≥
{

N
3 if ∀x ∈ ZN, ξ1

t (x) > ξ2
t ,

A(t)

max(H(ξ1
t )+H(ξ2

t ),N1/2)
, in the other cases.

(6.26)
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Fig. 3. The decomposition in maximal connected component: The maximal intervals can either be “bubbles” (like [a, b]) or a sequence of adjacent
“bubles” separated either by one edge or one vertex. The large circle dots corresponds to corner which do not flip simultaneously for ξ1

t and ξ2
t , the

total number of them is u(t). Among those, the white circles are the one which are counted in one of the u[a,b](t) (note that some of the corners on

ξ1
t are not counted). The smaller circles corresponds to corners that flip together for ξ1

t and ξ2
t and thus do not contribute to u(t).

In the first case, if ξ1
t and ξ2

t have no contact with each other, then u(t) is equal to the total number of flippable corners
in ξ2

t and ξ1
t . If A holds, this number is larger than N/3, which, by definition of A, is a lower bound for the number

of corners on ξ1
t alone.

When there exists x such that ξ1
t (x) = ξ2

t (x), we consider the set of active coordinates

C(t) := {
x | ∃y ∈ {x − 1, x, x + 1}, ξ1

t (y) < ξ2
t (y)

}
. (6.27)

Note that when one of the ξ i
t (or both) have a local maximum at x ∈ C(t) then when the corresponding corner flips, it

changes the value of A(t). Our idea is to find a way to bound from below the number of x in C(t) for which ξ1
t has a

flippable corner, using the assumption that A holds.
Let us decompose C(t) into maximal connected components (for the graph ZN ) Assume that [a, b] is a connected

component of C(t), it corresponds either to a “bubble” between ξ1
t and ξ2

t or to a sequence of neighboring bubbles
(see Figure 3). For each such intervale, we want to have a bound on the number of flippable corners and compare it to
the area of the bubble. Set

u[a,b](t) := j
(
a, b, ξ1

t

)
. (6.28)

and

A[a,b](t) :=
b∑

x=a

ξ2
t (x) − ξ1

t (x). (6.29)

Note that

u(t) ≥
∑

maximal intervals of C(t)

u[a,b](t),

A(t) =
∑

maximal intervals of C(t)

A[a,b](t).
(6.30)

For small bubbles (of length smaller than N1/4), A does not give any information on the number of flippable
corners. However, we can simply observe that in any bubble, there is at least one flippable corners (e.g. where
minx∈[a,b] ξ1

x is attained). If #[a, b] ≤ N1/4, the area of the bubble satisfies

A[a,b](t) ≤ N1/2. (6.31)

This is because ξ2
t − ξ1

t is a Lipchitz function and equals zero at both ends. Hence necessarily

u[a,b](t) ≥ A[a,b](t)
N1/2

. (6.32)
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For large bubbles (#[a, b] ≥ N1/4) we can use the fact that A hold. First, let us control the area: as ξ1
t and ξ2

t are in
contact we have

max
x∈ZN

[
ξ2
t (x) − ξ1

t (x)
]≤ H

(
ξ1
t

)+ H
(
ξ2
t

)
, (6.33)

and hence

A[a,b](t) ≤ #[a, b](H (
ξ1
t

)+ H
(
ξ2
t

))
. (6.34)

By the definition of A there are at least #[a, b]/3 flippable corners on the path ξ1
t restricted to [a, b]. Thus

u[a,b](t) ≥ A[a,b](t)
3(H(ξ1

t ) + H(ξ2
t ))

. (6.35)

and we can deduce (recall (6.32)) that for any value #[a, b] we have

ua,b(t) ≥ A[a,b](t)
3 max(H(ξ1

t ) + H(ξ2
t ),

√
N))

. (6.36)

We conclude by summing (6.36) over all bubbles and using (6.30). �

The previous lemma gives us some control over u(t) (if A holds) provided we can control A(t) and

H(t) := H
(
ξ1
t

)+ H
(
ξ2
t

)
. (6.37)

To control the area, we use our multi-scale construction: for t ∈ [τi−1, τi), we have

A(t) ≥ N3/22−i .

To obtain a good control on H(t) we use the following concentration result.

Lemma 6.4. There exists a constant c such that for any t ≥ 0 and r ≥ 0.

P
[
H(t) ≥ r

√
N
]≤ 2 exp

(−cr2). (6.38)

Proof. This just comes from the fact that for any t > 0, i = 1,2, ∇ξ i
t are distributed according to μ, and then we use

(4.7). �

We use it to show that most of the time H(t) is of order
√

N . In fact we need a slightly more twisted statement that
fits the multi-scale analysis. For the remainder of the proof set

α :=
(∑

i≥0

(i + 1)−2
)−1

. (6.39)

Lemma 6.5. For any ε > 0, there exists a constant C(ε) such that for any T ≥ 0

P

[
∃i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥C(i+1)2

√
N} dt ≥ (α/2)(i + 1)−2T

]
≤ ε. (6.40)

Proof. For a fixed i from Lemma 6.4, we have

E

[∫ T

0
1{H(t)≥r(i+1)2

√
N} dt

]
≤ 2T e−cr2(i+1)4

. (6.41)
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Hence from the Markov inequality

P

[∫ T

0
1{H(t)≥r(i+1)2

√
N} dt ≥ (α/2)(i + 1)−2T

]
≤ 4α−1(i + 1)2 exp

(−cr2(i + 1)4). (6.42)

Hence we obtain the result by choosing C = r0 sufficiently large so that

4
∑
i≥0

α−1(i + 1)2 exp
(−cr2(i + 1)4)≤ ε. (6.43)

�

Combining Lemmas 6.1, 6.2, 6.3, and 6.5 we can now conclude.

Proof of (5.17). Let ε be fixed. We fix a constant C1(ε) such that Lemma 6.5 holds for ε/3 instead of ε. C2(ε, s) is
chosen so that Lemma 6.1 holds for ε/3. We define the events

B :=
{
∀i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥C1(i+1)2

√
N} dt ≤ (α/2)(i + 1)−2T

}
,

C := {∀i ∈ {0, . . . ,K},Ti ≤ C2N
33−i

}∩ {
T∞ ≤ C2N

2}, (6.44)

where

T := 6N2C1C2α
−1 max

i≥0

[
(i + 1)4(2/3)i

]
. (6.45)

We also set

T ′ := T + C2N
2. (6.46)

We assume also that N is large enough so that A holds with probability larger than 1 − ε/3 (cf. Lemma 6.3). Hence
we have

P[A∩B ∩ C] ≥ 1 − ε.

Now what remains to prove is that

{A∩B ∩ C} ⊂ {
τ ≤ T ′}. (6.47)

This implies (5.17), with

C(ε, s) = T ′/N2 = C2

(
6C1α

−1 max
i≥0

[
(i + 1)4(2/3)i

]+ 1
)
. (6.48)

We split the proof of (6.47) in two statements. We want to show first that on the event A∩B ∩ C,

τ − τK ≤ C2N
2. (6.49)

Secondly, we must prove that

∀i ∈ {0, . . . ,K}, (τi − τi−1) ≤ C3(i + 1)−2N2, (6.50)

where

C3 := 6C2C1 max
i≥0

[
(i + 1)4(2/3)i

]
.
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Combining these inequalities, we have

τ ≤ C2N
2 +

K∑
i=0

C3(i + 1)−2N2 ≤ T ′. (6.51)

Note that the (6.49) is an immediate consequence of C as

T∞ =
∫ τ

τK

u(t)dt ≥ τ − τK. (6.52)

Let us turn to (6.50). Let us assume that the statement is false and let i0 denote the smallest i such that

(τi − τi−1) > C3(i + 1)−2N2.

The definition of i0 (the fact that it is the smallest) implies that

τi0−1 + C3(i0 + 1)−2N2 ≤ T . (6.53)

From B we have (using (6.53) inequality for the second inequality)∫ τi0

τi0−1

1{H(t)≤C1(1+i0)
2
√

N} dt ≥
∫ τi0 +C3(i0+1)−2N2

τi0−1

1{H(t)≤C1(1+i0)
2
√

N} dt

≥ C3(i0 + 1)−2N2 −
∫ T

0
1{H(t)≥C1(1+i0)

2
√

N} dt

≥ C3(i0 + 1)−2N2 − (α/2)T (i0 + 1)−2

≥ 1

2
C3(i0 + 1)−2N2. (6.54)

For all t ≤ τi0 , we have A(t) ≥ N3/22−i0 by definition and thus from Lemma 6.3 and the assumption that A holds, we
have

u(t) ≥ 1

3
min

(
N,

A(t)

max(H(t),N1/2)

)
≥ N3/22−i0

3C1(i0 + 1)2
√

N
1{H(t)≤C1(i0+1)2

√
N}. (6.55)

Hence from (6.54)

Ti0 ≥ N3/22−i0

3C1(i0 + 1)2
√

N

∫ τi0

τi0−1

1{H(t)≤C1(i0+1)2
√

N} dt ≥ 1

6C1
C3N

32−i0(i0 + 1)−4 ≥ 3−i0C2N
2, (6.56)

where the last inequality comes from the definition of C3. This brings a contradiction to the fact that C holds and ends
the proof of (6.49). �

6.3. Proof of (5.18)

We want to prove now that starting from χ ∈ Gs , we get significantly closer to equilibrium after a time uN2. By
mononicity in u and s we can restrict to the case where u = 2s−1 (to avoid using too many letters) and assume that s

is sufficiently large. The elements of the proof are essentially the same that for (5.17) but we have to be more careful.
Instead of Lemma 6.1 we have to prove the following statement

Lemma 6.6. There exists a constant C such that for all s sufficiently large

P
[{∀i ∈ {0, . . . ,K},Ti ≤ s−7N33−i

}∩ {
T∞ ≤ s−1N2}]≥ e−Cs9

. (6.57)
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Proof. A first observation is that, by the Markov property for the random walk Xt = A(J (t)) (recall (6.5)), the Ti are
independent. To evaluate P[Ti ≤ s−6N33−i], we are going to use a classical estimate of first hitting time of a given
level for a simple symmetric random walk: there exists a constant C1 such that for all a ≥ 1, for all v ≤ a one has
(using the notation of (6.11))

P
[
Ta ≤ a2/v

]≥ e−C1 max(v1/2,v) (6.58)

(it is sufficient to check the estimate when v is large as for v close to zero it is just equivalent to (6.11)). The time T∞
is stochastically dominated by TN and thus

P
[
T∞ ≤ s−1N2]≥ e−C1s . (6.59)

Neglecting the effect of integer rounding, for i ≥ 0, Ti is equal in law to T2−iN3/2 . Hence from (6.58) we have

P
[
Ti ≤ s−7N33−i

]≥ e−C1 max((4/3)−i/2s7/2,(4/3)−i s7). (6.60)

Then note that there exists a constant C2 such that for all s ≥ 1

C1

K∑
i=1

max
(
(4/3)−i/2s7/2, (4/3)−i s7)≤ C2s

7. (6.61)

For i = 0, T0 depends on the initial value of the area. Now let us note that from (6.6) we have for s sufficiently large

P
[
A(0) ≤ 4sN3/2]≥ 1 − 2e−cs2 ≥ 1/2. (6.62)

Then conditioned on the event {A(0) ≤ 4sN3/2}, T0 is dominated by T4sN3/2 and hence

P
[
T0 ≤ s−7N3 | A(0) ≤ 4sN3/2]≥ exp

(−16C1s
9). (6.63)

Combined with (6.62), this gives us

P
[
T0 ≤ s−4N3]≥ e−16C1s

9
/2. (6.64)

Using the independence and multiplying the inequalities (6.64), (6.60) and (6.59) (and using (6.61)) we obtain the
result for some appropriate C. �

We also need an estimate on the probability that H(t) (recall (6.37)) is too large which slightly differs from
Lemma 6.5

Lemma 6.7. Recall α := (
∑

i≥0(i + 1)−2)−1. There exists a constant C such that for all s sufficiently large and all T

P

[
∃i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥s5(i+1)2

√
N} dt ≥ (α/2)(i + 1)−2T

]
≤ e−Cs10

. (6.65)

Proof. As for Lemma 6.5 we just use Lemma 6.4 and the Markov inequality. �

Proof of (5.18). Set T := s−1N2 and

B′ :=
{
∀i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥s5(i+1)2

√
N} dt ≤ (α/2)(i + 1)−2T

}
,

C′ := {∀i ∈ {0, . . . ,K},Ti ≤ s−7N33−i
}∩ {

T∞ ≤ N2s−1}. (6.66)
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Then from Lemmas 6.6, 6.2, and 6.7 we have for s sufficiently large, for N large enough (depending on s)

P
[
A∩B′ ∩ C′]≥ exp

(−C1s
9)/2. (6.67)

What remains to prove is that τ ≤ 2s−1N2 on the event A ∩ B′ ∩ C′. First, we notice that from the definition of T∞
(6.9), C′ readily implies that

τ − τK ≤ T∞ ≤ N2s−1.

Hence to conclude we need to show that

∀i ∈ {0, . . . ,K}, τi − τi−1 ≤ α(i + 0)−2T . (6.68)

Assume the statement is false and let i0 be the smallest index such that it is not satisfied. Using Lemma 6.3 we have

Ti0 =
∫ τi0

τi0−1

u(t)dt ≥
∫ τi0

τi0−1

1

3
min

(
N,

A(t)

max(H(t),N1/2)
dt

)

≥ 2−i0N

3s5(i + 1)2

∫ τi0

τi0−1

1{H(t)≤s5(i+1)2
√

N} dt. (6.69)

Then one has from the definition of i0

τi0−1 + α(i0 + 0)−2T ≤ T .

Hence from B′∫ τi0

τi0−1

1{H(t)≤s5(i+1)2
√

N} dt

≥
∫ τi0−1+α(i0+1)−2T

τi0−1

1{H(t)≤s5(1+i0)
2
√

N} dt

≥ α(i0 + 1)−2T −
∫ T

0
1{H(t)≥s5(1+i0)

2
√

N} dt ≥ (α/2)(i0 + 1)−2T , (6.70)

and thus (recall T = N2s−1)

Ti0 ≥ (α/6)2−i0(i0 + 1)2N3s−6 ≥ C23−i0N3s−6 (6.71)

for an explicit C2. This brings a contradiction to C′ if s is chosen sufficiently large. �

6.4. Proof of Proposition 5.3 for arbitrary k

The overall strategy is roughly the same, except that we start with an area which is of order k1/2N . Hence most of the
modifications in the proof can be performed just writing

√
k instead of N1/2. However Lemma 6.2 does not hold for

small values of k and one needs a deeper change there. We define the (τi)i≥0 as follows (τ−1 := 0)

τi := inf
{
t ≥ 0 | A(t) ≤ k1/2N2−i

}
(6.72)

and we set

K = K(N,k) :=
⌈

1

2
log2 k

⌉
. (6.73)

Note that a number of τi can be equal to zero if A(0) ≤ N
√

k.
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The time changed version Ti , i ∈ {0, . . . ,K} ∪ {∞} of �τi are defined as in (6.9). We first write down how
Lemma 6.1–6.6 and 6.5–6.7 can be reformulated in the context of k particles (the proofs are exactly the same and
thus are not included).

Lemma 6.8. Given ε there exists a constant C1(ε, s) such that

P
[{∃i ∈ {0, . . . ,K},Ti ≥ C1N

2k3−i
}∪ {

T∞ > C1N
2}]≤ ε (6.74)

and a constant C2 independent of the parameters such that

P
[{∃i ∈ {0, . . . ,K},Ti ≥ N2ks−6}∪ {

T∞ > N2}]≥ exp
(−C2s

8). (6.75)

Lemma 6.9. Recall α := (
∑

i≥0(i0 + 1)−2)−1. For any ε > 0, exists a constant C1(ε) such that for any T ≥ 0

P

[
∃i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥C1(4/3)i

√
k} dt ≥ (α/4)(i + 1)−2T

]
≤ ε. (6.76)

Moreover there exist a constant C2 such that for any T ≥ 0,

P

[
∃i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥s5(4/3)i

√
k} dt ≥ (α/4)(i + 1)−2N2

]
dt ≤ e−C2s

10
. (6.77)

A significant modification is however needed for Lemma 6.2, as for small k, we cannot define an event similar to
(6.19) which holds with high probability. We introduce the following subset of �′

N,k (recall (6.17))

A :=
{
ξ

∣∣∣ ∀x, y ∈ ZN,#[x, y] ≥ N/k(logk)2 ⇒ j (x, y, ξ) ≥ k

10N
#[x, y]

}
∩ {

ξ | ∀x, y ∈ ZN,#[x, y] ≤ N/k(logk)2 ⇒ ∣∣ξ(x) − ξ(y)
∣∣≤ (logk)4}=:A1 ∩A2. (6.78)

Note that A is invariant by vertical translation of ξ and thus only depends on ∇ξ . Hence we can (improperly) consider
it as a subset of �N,k .

Lemma 6.10. We have

μ
(
Ac

)≤ 1

k2
, (6.79)

as a consequence one has for every T ≥ 0

P

[∫ T

0
1{ξ1

t ∈Ac} dt ≥ (T /k)

]
≤ 1/k. (6.80)

Proof. In this proof it is somehow easier to work with the particle system, hence we let μ be the uniform measure on
�N,k . We consider μ̃ an alternative measure on {0,1}ZN , under which the η(x) are i.i.d. Bernoulli random variable
with parameter k/N . From the Local Central Limit Theorem (which in this simple case can be proved using Stirling’s
Formula), there exists a constant C1 such that for all choices of k and N

μ̃

( ∑
x∈ZN

η(x) = k

)
≥ 1

C1
√

k
. (6.81)

Hence for any event A ⊂ {0,1}ZN , we have

μ(A) = μ̃

(
A |

∑
x∈ZN

η(x) = k

)
≤ C1

√
kμ̃(A). (6.82)
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Hence to prove the result, we just have to prove a slightly stronger upper-bound for the probability μ̃(Ac). We start
proving that

μ̃
(
Ac

2

)≤ 1

k3
. (6.83)

In terms of particle, Ac
2 holds if any interval of length smaller than N/k(logk)2 contains at most (log k)4 particles.

Set

mk,N = m := ⌈
N/k(logk)2⌉.

It is a standard large deviation computation (computing the Laplace transform and using the Markov inequality) to
show that there exists a constant c such that

μ̃

(
m∑

x=1

η(x) ≥ (logk)4

2

)
≤ exp

(−c(logk)6). (6.84)

Hence by translation invariance, the probability that there exists an interval of the form [(i − 1)m + 1, im], i ∈
{1, . . . , �N/m� + 1} which contains at most (log k)4/2 particles is smaller than

2k(logk)2 exp
(−c(logk)6)≤ k−2.

As every interval of length smaller than m is included in in the union of at most two intervals of the type [(i − 1)m +
1, im] we have

μ̃
(
Ac

2

)≤ μ̃

(
∃i ∈ {

1, . . . , �N/m� + 1
}
,

mi∑
x=(m−1)i+1

η(x) ≥ (log k)4

2

)
≤ k−2.

We now prove

μ̃
(
Ac

1

)≤ 1

k3
. (6.85)

In terms of particle, having a local extremum at x just corresponds to η(x) �= η(x + 1). Note that if Ac
1 occurs then,

by dichotomy, there exists necessarily an interval of length comprised between m and 2m in which the density of
extremum is smaller than k/10N and hence the total number of extrema in it is smaller than km

5N
. Setting m′ = �m/2�

this interval must include an interval of the type [(i − 1)m′ + 1, im′], with i ∈ {1, . . . , �N/m′�}, in which there are at
most k/5Nm extrema. Hence, noting that

km

5N
≤ (logk)2

5
and

⌈
N/m′⌉≤ 3k(logk)2,

we have

μ̃
(
Ac

1

)≤ μ̃

(
∃i ∈ {

1, . . . ,
⌈
N/m′⌉}, im′∑

x=(i−1)m′+1

1{η(x)�=η(x+1)} ≥ (log k)2

5

)

≤ 3k(log k)2μ̃

(
m′∑
i=1

1{η(x)�=η(x+1)} ≥ (log k)2

5

)
. (6.86)

Now we remark that

μ̃
(
η(x) �= η(x + 1)

)= 2k(N − k)

N2
≥ k

N
.
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As the variables 1{η(2x−1)�=η(2x)} are i.i.d for x ∈ {1, �m′/2�} we can use standard large deviation techniques for sums
of i.i.d. variables and obtain that there exists a constant c for which

μ̃

(
m′∑
i=1

1{η(x)�=η(x+1)} ≥ (logk)2

5

)
≤ μ̃

(�m′/2�∑
x=1

1{η(2x−1)�=η(2x)} ≥ (logk)2

5

)
≤ e−c(log k)2

. (6.87)

This combined with (6.86) allows us to conclude. �

Lemma 6.11. When ξ1(t) ∈A we have

u(t) ≥ 1

10
min

(
k,

A(t)k

N max(H(t), (log k)6)

)
. (6.88)

Proof. If ξ1
t ∈ A and ξ2

t (x) > ξ1
t (x), for all x ∈ ZN , then all corners of ξ1

t give a contribution to u(t) and from the
assumption ξ1(t) ∈ A there are at least k/10 of them.

If there are some contacts between ξ1
t and ξ2

t , the idea of the proof is to control the contribution to the area and
to u(t) of each maximal connected component of C(t) (recall (6.27) and (6.29)). Assume that the interval [a, b] with
#[a, b] ≤ N/k(logk)2 is a bubble. It has at least one flippable corner. For any x ∈ [a, b], i = 1,2, using the fact that
increments of ξ are larger than −k/N we obtain

ξ1
t (a) − k#[a + 1, x]

N
≤ ξ i

t (x) ≤ ξ1
t (b) + k#[x + 1, b]

N
, (6.89)

and hence

max
x∈[a,b]

(
ξ2
t − ξ1

t

)
(x) ≤ (

ξ1
t (b) − ξ1

t (a)
)+ k#[a, b]

N
. (6.90)

From the definition of A, the right-hand side is smaller than 2(logk)4 and hence

A[a,b](t) ≤ 2(logk)4#[a, b] ≤ (N/k)(logk)6. (6.91)

And hence (recall (6.28), (6.29))

u[a,b](t) ≥ 1 ≥ A[a,b](t)k
N(logk)6

. (6.92)

For large bubbles with #[a, b] ≥ 2N
k

(logk)2

A[a,b](t) ≤ H(t)#[a, b] (6.93)

and thus from the definition of A

u[a,b](t) ≥ k

10N
#[a, b] ≥ A[a,b](t)k

10NH(t)
. (6.94)

The lemma is then proved by summing (6.92) and (6.94) over all bubbles. �

We are now ready to combine the ingredients for the the of Proposition 5.3 for arbitrary k. We prove only (5.17),
as (5.18) can also be obtained in the same manner by adapting the technique used in the case k = N/2.
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Proof of (5.17) for arbitrary k. We fix a constant C1(ε) such that (6.74) holds for ε/3 instead of ε. C2(ε, s) is chosen
so that (6.76) holds for ε/3.

A :=
{∫ T

0
1{ξ1(t)/∈A} dt ≤ (T /k)

}
,

B :=
{
∀i ∈ {0, . . . ,K},

∫ T

0
1{H(t)≥C1(i+1)2

√
k} ≤ (α/4)(i + 1)−2T

}
,

C := {∀i ∈ {0, . . . ,K},Ti ≤ C2N
2k3−i

}∩ {
T∞ < C2N

2},
(6.95)

where

T := 40N2C1C2α
−1 max

i≥0

[
(i + 1)4(2/3)i

]
,

T ′ := T + C2N
2.

(6.96)

From our definitions one has

P[A∩B ∩ C] ≥ 1 − ε. (6.97)

Then we conclude by doing the same reasoning as in the case k = N/2 that

A∩B ∩ C ⊂ {
τ ≤ T ′}

using that for k sufficiently large, on the event A∩B we have

∀i ∈ {0, . . . ,K},
∫ T

0
1{H(t)≥C1(i+1)2

√
k or ξ1(t)/∈A} ≤ (α/2)(i + 1)−2T . (6.98)

Concerning (5.18) we set T = s−1N2

A′ :=
{∫ T

0
1{ξ1(t)/∈A} dt ≤ (T /k)

}
,

B′ :=
{
∀i ∈ {0, . . . ,K},

∫ N2

0
1{H(t)≥s6(i+1)2

√
k} dt ≤ (α/4)(i + 1)−2N2

}
,

C′ := {∀i ∈ {0, . . . ,K},Ti ≤ s−7N2k3−i
}∩ {

T∞ < s−1N2/2
}
,

(6.99)

and use (6.75) , (6.77) and (6.11) to have for all sufficiently large s,

P
[
A′ ∩B′ ∩ C′]≥ e−Cs−6

(6.100)

and conclude as in the proof for k = N/2 that{
τ ≤ 2N2}⊂A′ ∩B′ ∩ C′,

using that if N (and thus k) is sufficiently large we have on the event A′ ∩B′

∀i ∈ {0, . . . ,K},
∫ N2

0
1{H(t)≥s6(i+1)2

√
k or ξ1(t)/∈A} dt ≤ (α/4)(i + 1)−2N2. (6.101)

�
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Appendix: Estimate for the discrete heat equation: Proof of Lemma 4.2

Let pt(x, y) denote the heat kernel of on the discrete circle ( pt(x, ·) corresponds to the probability distribution of a
simple random walk starting from x at time t ). For fixed x ∈ ZN , the function

u(y, t) := pt(x, y)

is the solution of the discrete heat equation on ZN

∂tu(y, t) = u(y + 1, t) + u(y − 1, t) − 2u(y, t),

u(y,0) := 1{y=x}.
(A.1)

Without loss of generality one restrict to the case x = 0. The solution of the above equation can be found by a
decomposition on a base of eigenvalues the discrete Laplacian. We set for all i ∈ {1, . . . , �N/2�}

λi := 2

(
1 − cos

(
2πi

N

))
,

to be the eigenvalue associated to the normalized eigenfunction,

y �→√
2/N cos(2iπy/N),

the factor in front being
√

1/N instead of
√

2/N for i = N/2. We have to add also sine eigenfunctions to have a base
but the projection of 1{y=0} on these eigenfunction is equal to zero. By Fourier decomposition, we have

∣∣∣∣u(y, t) − 1

N

∣∣∣∣=
∣∣∣∣∣ 1

N

�N/2�∑
i=1

(2 − 1{i=N/2})e−λi t cos(2iπy/N)

∣∣∣∣∣≤ 2

N

�N/2�∑
i=1

e−λi t ≤ 2

N

1

eλ1t − 1
, (A.2)

where in the last inequality we just used e−λi t ≤ e−iλ1t . When t ≥ N2, we have eλ1t ≥ 3 and hence we have

u(y, t) ≤ 2

N
,∣∣∣∣u(y, t) − 1

N

∣∣∣∣≤ 4

N
e−λ1t .

(A.3)

Both statements in Lemma 4.2 are derived from these inequalities. For the first one we need to use that E[ηt (x)] is a
solution of the discrete heat equation.
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