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Abstract. We give overcrowding estimates for the Sineβ process, the bulk point process limit of the Gaussian β-ensemble. We

show that the probability of having exactly n points in a fixed interval is given by e− β
2 n2 log(n)+O(n2) as n → ∞. We also identify

the next order term in the exponent if the size of the interval goes to zero.

Résumé. Nous obtenons des résultats asymptotiques pour le surpeuplement du processus Sineβ , le processus ponctuel limite dans
le milieu du spectre de l’ensemble β-gaussien. Nous montrons que la probabilité d’observer n points dans un interval fixé est

donné par la formule e− β
2 n2 log(n)+O(n2) quand n → ∞. Nous obtenons aussi une approximation jusqu’à l’ordre suivant lorsque

la longueur de l’interval tend vers 0.
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1. Introduction

The Gaussian β-ensemble is a family of point processes on the real line given by the joint density function

pm,β(λ1, . . . , λm) = 1

Zm,β

∏
1≤i<j≤m

|λi − λj |β ×
m∏

i=1

e− β
4 λ2

i . (1)

Here β > 0 and Zm,β is an explicitly computable normalizing constant. For the specific values of β = 1,2 and 4 one
obtains the joint eigenvalue density of the classical random matrix ensembles GOE, GUE and GSE.

We study the Sineβ process, the bulk scaling limit of the Gaussian β-ensemble. Fix β > 0, and consider a sequence
of finite point processes �m,β with distribution given by the density (1). Then as m → ∞ the scaled processes
2
√

m�m,β converge in distribution to a translation invariant point process which we call Sineβ . The existence and
description of the limiting process in the β = 1,2 and 4 cases were obtained by Dyson, Gaudin and Mehta (see e.g.
the monographs [3,9,13]), while in the general β case this was done in [14]. We note that in our normalization the
Sineβ process has particle density 1

2π
.

We study the problem of overcrowding for the Sineβ process. We describe the asymptotic probability of having at
least (or exactly) n points in a fixed interval for a large n. Since the process is translation invariant we may assume that
the interval is of the form [0, λ] with λ > 0. We will use the notation Nβ(λ) for the counting function of the process,
for λ > 0 this gives the number of points in [0, λ]. Our main result is as follows.
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Theorem 1. Fix λ0 > 0. There is a constant c > 0 depending only on β and λ0 so that for any n ≥ 1 and 0 < λ ≤ λ0
we have

P
(
Nβ(λ) ≥ n

) ≤ e− β
2 n2 log( n

λ
)+cn log(n+1) log( n

λ
)+cn2

. (2)

Moreover, there exists an n0 ≥ 1 so that for any n ≥ n0, 0 < λ ≤ λ0 we also have

P
(
Nβ(λ) = n

) ≥ e− β
2 n2 log( n

λ
)−cn log(n+1) log( n

λ
)−cn2

. (3)

The theorem implies that for a fixed λ > 0 we have P(Nβ(λ) = n) = e− β
2 n2 logn+O(n2) as n → ∞. If we let n → ∞

and λ → 0 simultaneously then we get

P
(
Nβ(λ) = n

) = e− β
2 n2 log(n/λ)+O(n2+n logn log(λ−1)).

Dyson used Coulomb gas arguments in [6] to predict the asymptotic size of P(Nβ(λ) = n) for a fixed n and large λ.
His predictions were made precise in [4] for β = 1,2 and 4 using the fact that in these classical cases the probabilities
in question have Fredholm determinant representations. For general β the special case of n = 0 (i.e. the large gap
probability) was treated in [15].

Fogler and Shklovskii in [8] extended Dyson’s method to give predictions on the asymptotic size of P(Nβ(λ) = n)

in the regime where n and λ are large. Although this does not cover the case we are interested in (λ bounded, n large),
our results agree with their prediction in the case when n � λ. (See Equation (25) in [8].) Section 14.6 of [9] gives a
nice overview of the Coloumb gas method in the study of the distribution of Nβ(λ).

Our proof uses techniques that we developed in [10], where we proved a large deviation principle for 1
λ
Nβ(λ) with

scale λ2 and a good rate function of the form βI (ρ). One of the consequences of this large deviation result is that if
ρ > 1

2π
then P(Nβ(λ) ≥ ρλ) decays asymptotically as e−βλ2I (ρ)(1+o(1)) as λ → ∞. It was shown in [10] that I (ρ)

grows like 1
2ρ2 logρ as ρ → ∞ so the decay of P(Nβ(λ) ≥ ρλ) is formally consistent with our Theorem 1, even

though it describes a different regime of n,λ.
Rigorous overcrowding estimates have been obtained for certain non-Hermitian random matrix models. Here one

is interested in the asymptotic probability of finding at least n points in a fixed disk. In [12] Krishnapour identified
the overcrowding asymptotics for the complex Ginibre ensemble and also gave similar estimates for zeros of certain
Gaussian analytic functions. In [1] and [2] these results were generalized to point processes obtained by considering
products of complex and quaternion Ginibre ensembles. It is interesting to note that in all of these non-Hermitian
cases the probability of finding at least n points in a fixed disk decays like e−cn2 logn(1+o(1)) where c is a parameter
depending only on the model and not the size of the disk. This is of the same form as our result for the Sineβ process.

The finite version of our problem would be to study the probability of having a large number of points in a small
interval of order m−1/2 in the bulk of the support of (1). This problem has been considered for the spectrum of general
Wigner matrices in the context of showing the universality of the bulk limit process, see e.g. Theorem 3.5 of [7] or
Corollary B.2 of [5]. These results concentrate on giving sufficiently strong (but not necessarily optimal) upper bounds
for the overcrowding probabilities.

The starting point of our proof is the following characterization of the counting function of Sineβ , due to [14].

Theorem 2 ([14]). Let λ > 0 and consider the strong solution of the following diffusion:

dαλ = λ
β

4
e− β

4 t dt + 2 sin(αλ/2) dBt , αλ(0) = 0. (4)

Then limt→∞ 1
2π

αλ(t) exists almost surely, and it has the same distribution as Nβ(λ).

This describes the one-dimensional marginals of the counting function Nβ(λ). One can also describe the distribu-
tion of the whole function Nβ(·) in terms of a one-parameter family of diffusions (see [14]), but we will not need this
here. The following proposition summarizes some of the basic properties of the diffusion (4). Most of these properties
are straightforward, see Proposition 9 in [14] for some of the proofs.
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Proposition 3. Let λ > 0.

(i) The process �αλ(t)
2π

	 is nondecreasing in t . In particular for any integer n we have αλ(t) > 2πn if t is larger than
the first hitting time of 2πn.

(ii) If 0 < λ < λ′ and αλ,αλ′ are strong solutions of (4) with the same Brownian motion Bt then αλ(t) ≤ αλ′(t) for
all t ≥ 0.

(iii) For any integer n the process αλ(t)+2nπ solves the same SDE as (4) but with an initial condition of 2nπ instead
of 0.

(iv) For any T > 0 the process φ(t) = αλ(T + t) solves the same SDE as (4) with λe− β
4 T in place of λ, Bt+T in place

of Bt and initial condition φ(0) = αλ(T ).

An important consequence of the previous proposition is the following observation.

Lemma 4. Fix n > 1 and λ > 0. Let τλ be the first hitting time of 2π of the diffusion αλ. (Note that τλ might be ∞.)
Then

P
(
Nβ(λ) ≥ n

) = E
[
g(τλ)

]
where g(t) = P

(
Nβ

(
λe− β

4 t
) ≥ n − 1

)
, (5)

and g(∞) = 0.

Proof. According to Proposition 3, if we condition on {τλ = T } with a T > 0 then the process {αλ(t +T )−2π, t ≥ 0}
will have the same distribution as {α

λe
− β

4 T
(t), t ≥ 0}. Thus

P
(

lim
t→∞αλ(t) ≥ 2πn

∣∣τλ = T
)

= P
(

lim
t→∞α

λe
− β

4 T
(t) ≥ 2π(n − 1)

)
. (6)

Identity (5) now follows by taking expectations in τλ and using the description of Nβ(λ) from Theorem 2. �

We record the following simple corollary of Lemma 4.

Proposition 5. For any λ > 0 and n ≥ 1 we have

P
(
Nβ(λ) ≥ n

) ≤
(

λ

2π

)n

. (7)

Proof. From (4) one gets Eαλ(t) = λ(1 − e− β
4 t ) and using the properties of the diffusion αλ one can show

E limt→∞ αλ(t) = λ. Markov’s inequality now implies the statement of the proposition for n = 1. For larger val-
ues we can use Lemma 4 and the monotonicity of g(t) from (5) to get

P
(
Nβ(λ) ≥ n

) ≤ P(τλ < ∞)P
(
Nβ(λ) ≥ n − 1

) ≤ P
(
Nβ(λ) ≥ 1

)
P

(
Nβ(λ) ≥ n − 1

)
from which the statement follows by induction. �

Our proof of Theorem 1 will rely on the recursion Equation (5) and precise estimates on P(τλ < t). The next
section will state the necessary hitting time estimates while the Sections 3 and 4 will contain the proofs of the lower
and upper bounds in Theorem 1. Finally, Section 5 will contain the proofs of the bounds on P(τλ < t).

2. Hitting time estimates

We will estimate the hitting time τλ by coupling the diffusion αλ(t) of (4) to a similar diffusion with a constant drift
term. Let α̃λ be the strong solution of the SDE

dα̃λ = λdt + 2 sin

(
α̃λ

2

)
dBt , α̃λ(0) = 0, (8)
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using the same Brownian motion as (4). Denote by τ̃λ the first hitting time of 2π by α̃λ. Simple coupling arguments

show that αλ(t) ≤ α̃λ′(t) for all t ≥ 0 with λ′ = β
4 λ, and αλ(t) ≥ α̃λ′′(t) for 0 ≤ t ≤ T if λ′′ = β

4 e− β
4 T λ. This yields

P(τλ ≤ t) ≤ P(τ̃λ′ ≤ t), with λ′ = β

4
λ and (9)

P(τλ ≤ t) ≥ P(τ̃λ′′ ≤ t), with λ′′ = β

4
e− β

4 t λ. (10)

Our bounds will use certain special functions which we now briefly go over. For a < 1 we set

K(a) =
∫ π/2

0

dx√
1 − a sin2 x

, E(a) =
∫ π/2

0

√
1 − a sin2 x dx. (11)

These functions are the complete elliptic integrals of the first and second kind. We note the identity

K(−a) = 1

2

∫ ∞

−∞
1√

cosh2 z + a
dt, a > −1. (12)

We denote by W the lower branch of the Lambert W function (or product log function). This is defined as the unique
solution of

z =W(z)eW(z), with W(z) ≤ −1. (13)

Note that W has domain [−1/e,0), it is strictly decreasing and satisfies W(x logx) = logx for 0 < x ≤ 1/e.
The following proposition summarizes some of the relevant properties of the introduced special functions.

Proposition 6. There exists a constant c > 0, so that the following bounds hold.
∣∣∣∣K(−a) − 1

2
√

a
log(16a)

∣∣∣∣ ≤ c

a3/2
log(a),

∣∣E(−a) − √
a
∣∣ ≤ c

a1/2
log(a), if a > 2. (14)

∣∣K−1(x) + x−2W2(−x/4)
∣∣ ≤ c, if 0 < x < 1/2. (15)∣∣W(−x) −W(−y)

∣∣ ≤ 2
∣∣log(x/y)

∣∣, ∣∣W(−x)
∣∣ ≤ 2 log

(
x−1), if x, y ∈ (

0,2e−2]. (16)

Outline of the proof. The estimates (14) are from the Appendix of [10]. The definition of W allows us to check that
the inverse of the function 1

2
√

a
log(16a) on [e2/16,∞) is exactly x−2W2(−x/4). From this fact and the first bound

in (14) the proof of (15) is a simple exercise. Finally, (16) follows from the observation that W ′(x) = 1
x

· W(x)
1+W(x)

. �

Now we are ready to state the estimates on the hitting times τλ.

Proposition 7. There exist positive constants ε and c (depending only on β) so that if λt < ε then

P(τλ < t) ≤ exp

[
−2

t
W2(−λt) + c

(
1 + 1

t

)
log

(
1

λt

)]
. (17)

For any λ0 > 0 there exist positive constants ε, c (depending only on λ0, β) so that if 0 < λ ≤ λ0, λt < ε and t ≤
ε log( 1

λt
) then

P(t/2 ≤ τλ < t) ≥ exp

[
−2

t
W2(−λt) − c

(
1 + 1

t

)
log

(
1

λt

)]
. (18)

We defer the proof of the proposition to Section 5.
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3. Proof of the lower bound in Theorem 1

Our proof of the lower bound relies on an inductive argument using the recursion identity of Lemma 4 and the bound
(18) of Proposition 7.

Proof of the lower bound in Theorem 1. Choose K > 0 and then c0 > 0 so that

8

β

1

1 + K
< ε, log(c0) <

β

4
min(

√
c0, εc0), 4 log(2) <

log(c0)

1 + K
, (19)

where ε is the constant from the conditions of the lower bound (18) of Proposition 7.
We will prove that there is a sequence fn > 0, and a constant κ > 0 so that for any 0 < λ < λ0 and n ≥ max(c0λ,1)

we have

logP
(
Nβ(λ) = n

) ≥ −fn log

(
n

λ

)
− κn2. (20)

We will use induction on n. Assume that the statement is true for n − 1 ≥ 1 for all relevant values of λ and suppose
that n ≥ max(c0λ,2). Consider the process αλ from (2) and denote the first hitting time of 2π by τ . (Note that this
could be infinite.) Considering the identity in Lemma 4 for n and n + 1, and then taking the difference we get that for
any T > 0:

P
(
Nβ(λ) = n

) = E
[
h(τ)

] ≥ E
[
1(T /2 ≤ τ < T )h(τ)

]
, (21)

where h(t) = P(N(λe− β
4 t ) = n − 1), and h(∞) = 0.

Set T = 4
β

log(n/λ)
n+K

. From (19) it follows that for n ≥ max(c0λ,2) we have

n − 1

n
e

β
4 · T

2 ≥ 1. (22)

This implies n − 1 ≥ c0λe− β
4 t for T/2 ≤ t < T , and using our induction hypothesis we get that for T/2 ≤ t ≤ T we

have

logh(t) = logP
(
N

(
λe− β

4 t
) = n − 1

)

≥ −fn−1 log

(
n − 1

λe− β
4 t

)
− κ(n − 1)2 (23)

≥ −fn−1 log

(
n

λ

)
− fn−1 log

(
n − 1

n

)
− β

4
Tfn−1 − κ(n − 1)2

≥ −
(

1 + 1

n + K

)
fn−1 log

(
n

λ

)
− κ(n − 1)2. (24)

Next we check that T and λ satisfy the conditions of the lower bound (18) of Proposition 7. For this we need to show

λT < ε, T
1

log( 1
λT

)
< ε, (25)

both of which follow from (19). Applying now the lower bound (18) we get

logP(T /2 ≤ τ < T ) ≥ −β(n + K)

2 log( n
λ
)
W2

(
− 4

β
· λ

n + K
log

(
n

λ

))

− c

(
1 + β(n + K)

4 log( n
λ
)

)
log

(
βn

4λ

1

log( n
λ
)

)
.
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Assuming that c0 is large enough we may use (16) to estimate W2(− 4
β

· λ
n+K

log( n
λ
)) with W2(−λ

n
log( n

λ
)) = log2( n

λ
)

plus an error term of size c′ log( n
λ
). This allows us to find positive constants c1, c2 (depending on K,c0) so that

logP(T /2 ≤ τ < T ) ≥ −β

2
n log

(
n

λ

)
− c1 log

(
n

λ

)
− c2n. (26)

This bound with (21) and (24) gives

logP
(
Nβ(λ) = n

) ≥ −
((

1 + 1

n + K

)
fn−1 + β

2
n + c1

)
log

(
n

λ

)
− κ(n − 1)2 − c2n.

If we also assume c > c2 then we can further simplify this to

logP
(
Nβ(λ) = n

) ≥ −
((

1 + 1

n + K

)
fn−1 + β

2
n + c1

)
log

(
n

λ

)
− κn2. (27)

Thus we proved that if fn > 0 solves the recursion

fn =
(

1 + 1

n + K

)
fn−1 + β

2
n + c1 (28)

and (20) holds with n − 1 ≥ 1 for all appropriate λ then it holds for n as well (again, for all appropriate λ).
To initialize our induction we show that (20) holds for n = 1 with a constant f1 > 0. Note that here we assume that

λ < min(λ0,
1
c
). If λ̃ < π then by Proposition 5 we have

P
(
Nβ(λ̃) = 0

) = 1 − P
(
Nβ(λ̃) ≥ 1

)
>

1

2
.

The lower bound (21) holds for n = 1. If we choose c0 > 1/π then the bound 0 < λ < min(1/c0, λ0) implies h(t) >

1/2 for any t > 0 which gives

P
(
Nβ(λ) = 1

) ≥ 1

2
P(T /2 ≤ τ ≤ T ).

Choosing the same T as before (with n = 1) and using (26) gives

P
(
N(λ) = 1

) ≥ 1

2
exp

[
−

(
β

2
+ c1

)
log

(
1

λ

)
− c2

]
≥ e−f1 log( 1

λ
)−κ

with a positive f1 as long as we choose κ > c2 + log 2.
A straightforward induction argument shows that if fn solves the recursion (28) with f1 > 0 then there is a b > 0

so that

fn ≤ β

2
n2 + bn log(n + 1)

for all n ≥ 1. This completes the proof of lower bound in Theorem 1 with the choice n0 = �c0λ0 + 1
. �

4. Proof of the upper bound in Theorem 1

The upper bound will use a two step strategy similar to that of the lower bound, but our recursive step will be a bit
more involved.

Proof of the upper bound in Theorem 1. Recall from Proposition 5 that

P
(
Nβ(λ) ≥ n

) ≤
(

λ

2π

)n

≤ exp
(−n log(1/λ)

)
.
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By choosing c1 > 1 we get −n log(1/λ) ≤ −n log(n/λ) + c1n
2 which yields

logP
(
Nβ(λ) ≥ n

) ≤ −n log(n/λ) + c1n
2. (29)

Now assume that n ≥ 2 and there are positive constants fn−1 ≤ β
2 (n − 1)2, c1 so that for all 0 ≤ λ ≤ λ0 we have

P
(
Nβ(λ) ≥ n − 1

) ≤ exp

[
−fn−1 log

(
n − 1

λ

)
+ c1(n − 1)2

]
. (30)

Our goal is to show that we can choose an n0 (depending only on λ0, β) so that if n ≥ n0 and c1 is larger than a fixed
constant then we can get an upper bound of a similar form for P(Nβ(λ) ≥ n) as well.

Let T0 = 0 < T1 < · · · < TM . Then

P
(
Nβ(λ) ≥ n

) =
M−1∑
i=0

P
(
Nβ(λ) ≥ n,Ti ≤ τλ ≤ Ti+1

) + P
(
Nβ(λ) ≥ n, τλ ≥ TM

)
. (31)

Choose real numbers γ1 < · · · < γM with γ1 = 1/3, γM = 3, M ≤ 3n and γi+1 − γi ≤ 1/n. We set Ti = γi
4 log(n/λ)

βn

for i = 1, . . . ,M , if n ≥ λ0 then these are positive numbers. We will estimate the sum (31) term by term.
Using the identity (6) from the proof of Lemma 4 we can show that

P
(
Nβ(λ) ≥ n,Ti ≤ τ ≤ Ti+1

) ≤ P
(
Nβ

(
λe− β

4 Ti
) ≥ n − 1

)
P(τ < Ti+1). (32)

Note that λTi ≤ 12
β

λ
n

log(n/λ) which can be made as small we wish by choosing n0 large enough. Thus we can apply

the upper bound in Proposition 7 to get

logP(τ < Ti+1) ≤ − 2

Ti+1
W2(−λTi+1) + c

(
1 + 1

Ti+1

)
log

(
1

λTi+1

)

≤ − β

2γi+1

n

log(n/λ)
W2

(
λ

n
log

(
λ

n

))
+ C

(
1 + β

4γi+1

n

log(n/λ)

)
log

(
n

λ

)

≤ − β

2γi+1
n log

(
n

λ

)
+ C log

(
n

λ

)
+ Cn. (33)

Here we used the bounds (16), γi+1 ≥ 1/3 and the identity W(x logx) = logx. The constant C depends only on β

and λ0, but may change from line to line.

Using the assumption (30) for λe− β
4 Ti ≤ λ0 we get

P
(
Nβ

(
λe− β

4 Ti
) ≥ n − 1

) ≤ exp

[
−fn−1 log

(
n − 1

λe− β
4 Ti

)
+ c1(n − 1)2

]
. (34)

Note that from the definition of Ti (if n > max(1, λ0)) we get

(
1 + γi

1

n

)
log(n/λ) − 1

n − 1
≤ log

(
n − 1

λe− β
4 Ti

)
. (35)

Using (34) and (35) we can write

−fn−1 log

(
n − 1

λe− β
4 Ti

)
≤ −fn−1

(
1 + γi

n

)
log(n/λ) + fn−1

n − 1

≤ −
(

fn−1

(
1 + γi+1

n

)
− β

2

)
log(n/λ) + β

2
(n − 1),
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where we used fn−1 ≤ β
2 (n − 1)2 and γi+1 − γi ≤ 1

n
, which holds for i ≥ 1. We also have

log

(
1

λTi+1

)
= log(n/λ) − log log(n/λ) − log(4γi+1/β) ≤ log(n/λ),

where we used 1/3 ≤ γi ≤ 3 and that n/λ can be made sufficiently large by choosing n0 appropriately.
Collecting all our estimates we get that for 1 ≤ i ≤ M − 1 we have

logP
(
Nβ(λ) ≥ n,Ti ≤ τ ≤ Ti+1

)

≤ −
(

fn−1

(
1 + γi+1

n

)
+ β

2γi+1
n

)
log(n/λ) + c1(n − 1)2 + C log

(
n

λ

)
+ Cn.

Assuming c1 > C this yields

logP
(
Nβ(λ) ≥ n,Ti ≤ τ ≤ Ti+1

)

≤ −
(

fn−1

(
1 + γi+1

n

)
+ β

2γi+1
n − C

)
log(n/λ) + c1n

2 − c1n

≤ −(fn−1 + √
2βfn−1 − C) log(n/λ) + c1n

2 − c1n. (36)

In the last step we used that x(1 + γ
n
) + β

2γ
n ≥ x + √

2βx if x > 0, γ > 0.

For the i = 0 case we can use a similar argument (and the fact that γ1 = 1
3 ) to show that

logP
(
Nβ(λ) ≥ n,T0 ≤ τ ≤ T1

) ≤ −
(

fn−1 + β

2
3n − C

)
log(n/λ) + c1n

2 − c1n.

Since fn−1 ≤ β
2 (n − 1)2 we have β

2 3n ≥ √
2βfn−1 and so inequality (36) holds for i = 0 as well.

To bound the last term in (31) we start with the bound

P
(
Nβ(λ) ≥ n,TM ≤ τ

) ≤ P
(
Nβ

(
λe− β

4 TM
) ≥ n − 1

)
.

Recalling that γM = 3 and using arguments similar to what we used to obtain (36) we get

P
(
Nβ(λ) ≥ n,TM ≤ τ

) ≤ −fn−1

(
1 + 3

n

)
log(n/λ) + c1n

2 − c1n. (37)

Applying the upper bounds (36) and (37) on the respective terms of the sum in (31) yields

logP
(
Nβ(λ) ≥ n

) ≤ −min

(
fn−1 + √

2βfn−1 − c2, fn−1

(
1 + 3

n

))
log(n/λ)

+ c1n
2 − c1n + log(3n + 1),

with constants c1, c2 that only depend on λ0, β . By choosing c1 > 2 we can simplify this as

logP
(
Nβ(λ) ≥ n

) ≤ −min

(
fn−1 + √

2βfn−1 − c2, fn−1

(
1 + 3

n

))
log(n/λ) + c1n

2.

Combining this result with (29) we get the following statement. There is a positive integer n′
0, and positive constants

c, c1 (all depending only on λ0, β) so that if we set fn0 = n0 for an n0 > n′
0 and

fn = min

(
fn−1 + √

2βfn−1 − c2, fn−1

(
1 + 3

n

)
,
β

2
n2

)
for n > n0, (38)
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then

logP
(
Nβ(λ) ≥ n

) ≤ −fn log

(
n

λ

)
+ c1n

2

for all n ≥ n0, λ ≤ λ0.
To finish our proof we just have to show that we can choose a large enough n0 as our starting point so that the

solution of the recursion (38) satisfies fn ≥ β
2 n2 − cn log(n + 1) with a constant c.

This is fairly straightforward although somewhat technical. A simple computation shows that if we choose n0 large
enough then the following statements hold:

(i) fn is strictly increasing,
(ii) fn = fn−1(1 + 3

n
) for n0 < n < n1 for a certain n1,

(iii) fn = min(fn−1 + √
2βfn−1 − c2,

β
2 n2) for n ≥ n1, and

(iv) if n is large enough and fn−1 ≥ β
2 (n − 1)2 − c(n − 1) logn with a large enough c then we also have

fn−1 + √
2βfn−1 − c ≥ β

2
n2 − cn log(n + 1).

Putting these statements together we get that fn ≥ β
2 n2 − cn log(n + 1) for a large enough n which gives

logP
(
Nβ(λ) ≥ n

) ≤ −
(

β

2
n2 − cn log(n + 1)

)
log

(
n

λ

)
+ c1n

2 (39)

for a large enough n. Using (29) we can now modify c, c1 so that (39) holds for all n and λ ≤ λ0, which finishes the
proof. �

5. Proof of Proposition 7

We prove the upper and lower bounds separately. In both cases we will prove the estimate for τ̃λ first, then use (9) and
(10) to get the corresponding statement for τλ.

By introducing the new variable Xλ = log(tan(α̃λ/4)) we can transform (8) into the SDE

dXλ = λ

2
coshXλ dt + 1

2
tanhXt dt + dBt , Xλ(0) = −∞. (40)

Under this transformation τ̃λ becomes the hitting time of ∞ for the process Xλ. Following [10] we compare Xλ with
another family of diffusions. For a ≥ −1 consider the SDE

dYλ,a = λ

2

√
cosh2 Yλ,a + a dt + 1

2
tanhYλ,a dt + dBt , Yλ,a(0) = −∞, (41)

and denote by τY,λ,a the hitting time of ∞. In [10] the Cameron–Martin–Girsanov formula was used for diffusions
with explosions to compare Xλ and Yλ,a and the following results were obtained.

Proposition 8 ([10]). For a > −1 and s1 < s2 we have

P
(
τ̃λ ∈ [s1, s2]

) = E
[
1
(
τY,λ,a ∈ [s1, s2]

)
e
−GτY,λ,a

(Y )]
. (42)

Here GτY,λ,a
(Y ) is the Girsanov factor for which the following estimate holds:

∣∣∣∣GτY,λ,a
(Y ) + λ2aτY,λ,a

8
− λ

(
(1 + a)K(−a) − E(−a)

)∣∣∣∣ ≤ λ
√|a|
4

τY,λ,a. (43)

Moreover,

Ee− λ2a
8 τ̃λ− λ

√|a|
4 τ̃λ ≤ e−λ((1+a)K(−a)−E(−a)). (44)
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The proof of these statements are contained in Section 3 of [10]. Note the slight notational inconsistency, in the
statements in [10] −a is used in place of a.

The motivation behind introducing the diffusions Yλ,a can be explained as follows. The expected value of the blow-
up time τ̃λ is 2π

λ
. If we want to estimate the probability that the diffusion Xλ blows up a lot faster (in time T � 2π

λ
)

then we can first try to find the “cheapest” (or most likely) way for Xλ to do that. This leads to a variational problem
whose solution gives the modified diffusions Yλ,a (with a as a function of T ).

5.1. Proof of the upper bound in Proposition 7

The proof of the upper bound will rely on the estimate (44) on the moment generating function of τ̃λ.

Proof of the upper bound in Proposition 7. By Markov’s inequality we have

P(τ̃λ ≤ t) ≤ (
EeAτ̃λ

)
e−At for A < 0.

We will choose A = −λ2a
8 − λ

√
a

4 with a = −K(−1)(tλ/4) ≥ −K(−1)(ε/4) > 0. Using the estimate (44) of Proposi-
tion 8 we get

EeAτ̃λ ≤ e−λ((1+a)K(−a)−E(−a)).

This gives the upper bound

P(τ̃λ ≤ t) ≤ e−λ((1+a)K(−a)−E(−a))+ λ2a
8 t+ λ

√
a

4 t ≤ eK(−1)(tλ/4) λ2 t
8 +λE(−a)+ λ

√
at

4 ,

where we used our specific choice of a. If ε is small enough we will have a ≥ −K(−1)(ε/4) > 2 which allows us to
use the asymptotics of Lemma 6. This gives the bound a ≤ C

λ2t2 log2( 1
λt

) with a positive constant C, and also

K(−1)(tλ/4)λ2t

8
+ λE(−a) + λ

√
at

4
≤ −2

t
W(−λt/4)2 + C

t
+ C

(
1 + 1

t

)
log

(
1

λt

)

(with a possibly different C). Using the bounds in (16) and changing the value of C again we get

K(−1)(tλ/4)λ2t

8
+ λE(−a) + λ

√
at

4
≤ −2

t
W(−λt)2 + C

(
1 + 1

t

)
log

(
1

λt

)
,

which finishes the proof for τ̃λ.
To get the similar statement for τλ we use (9) to obtain

P(τλ ≤ t) ≤ P(τ̃ β
4 λ

≤ t) ≤ 2

t
W2

(
−λβ

4
t

)
+ c

(
1 + 1

t

)
log

(
1

λβ
4 t

)
. (45)

Note that we are allowed to use the just proved bound on τ̃ if we choose the upper bound ε on λt small enough.
To complete the proof we use (16) to replace λβ

4 with λ everywhere by choosing ε small enough and modifying the
constant in front of the last term of (45). �

5.2. Proof of the lower bounds in Proposition 7

Our lower bound proof will rely on the following lemma, which will be proved at the end of this subsection.

Lemma 9. There is a constant c > 0 so that for any a,λ with λ
√

a ≥ 2 and a > 2 we have

P

(
λτY,λ,a ∈

[
4K(−a)

(
1 − 5

λ
√

a

)
,4K(−a)

(
1 + 5

λ
√

a

)])
≥ c

√
K(−a). (46)
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Now we are ready to prove the lower bounds in Proposition 7.

Proof of the lower bounds in Proposition 7. We first prove that the following (weaker) lower bound holds if t and
λ satisfy the listed conditions

P(τλ < t) ≥ exp

[
−2

t
W2(−λt) − c

(
1 + 1

t

)
log

(
1

λt

)]
. (47)

We first show the inequality for τ̃λ instead of τλ.
We use (42) and (43) with an a > 0 to get

P(λτ̃λ ≤ s2) ≥ P
(
λτ̃λ ∈ [s1, s2]

)
= E

[
1
(
λτY,λ,a ∈ [s1, s2]

)
e
−GτY,λ,a

(Y )]

≥ E
[
1
(
λτY,λ,a ∈ [s1, s2]

)
e

λ2aτY,λ,a
8 −λ((1+a)K(−a)−E(−a))− λ

√
a

4 τY,λ,a
]
.

Assuming λ
√

a ≥ 2 we see that the exponential term under the last expectation is nondecreasing in τY,λ,a and because
of the indicator function we get the bound

P(λτ̃λ ≤ s2) ≥ P
(
λτY,λ,a ∈ [s1, s2]

)
e

λas1
8 −λ((1+a)K(−a)−E(−a))−

√
a

4 s1 .

Now choose [s1, s2] = [4K(−a)(1 − 5
λ
√

a
),4K(−a)(1 + 5

λ
√

a
)], and assume a > 2. With Lemma 9 we can estimate

the probability on the right and we can use the asymptotics (14) of Proposition 6 to estimate the exponential term.
Collecting all the terms gives

P

(
λτ̃λ ≤ 4K(−a)

(
1 + 5

λ
√

a

))
≥ exp

[
−λa

2
K(−a) − C(1 + λ) log(a)

]
(48)

with an absolute constant C.
Now assume that λ0 > 0 is fixed, choose a small ε̂ > 0 and assume that 0 < λ ≤ λ0, λT ≤ ε̂ and T ≤ ε̂ log( 1

λT
).

Set a = −K(−1)( λT
4 ). If ε̂ is chosen small enough then using the bounds of Proposition 6 one can readily show that

1

2

log( 1
λT

)

λT
≤ √

a ≤ 10
log( 1

λT
)

λT
, (49)

which yields both λ
√

a ≥ 2 and a > 2 (using λ ≤ λ0) for small enough ε̂. Thus we can use (48) to get

logP

(
τ̃λ ≤ T

(
1 + 10T

log(1/(λT ))

))
≥ −λa

2
· λT

4
− C(1 + λ) loga

≥ − 2

T
W2

(
−λT

16

)
− C log

(
1

λT

)

≥ − 2

T
W2(−λT ) − C log

(
1

λT

)
, (50)

where we again used Proposition 6 and the constant C can change from line to line (but only depends on λ0 and ε̂).
Now set t = T (1 + 10T

log(1/(λT ))
), we can see that T ≤ t ≤ T (1 + 10ε̂). The bound (50) gives

logP(τ̃λ ≤ t) ≥ −2

t
W2(−λT )

(
1 + 10T

log(1/(λT ))

)
− C log

(
1

λT

)

= −2

t
W2(−λT ) − 20T

t
W2(−λT )

1

log(1/(λT ))
− C log

(
1

λT

)
.
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Using the second bound of (16) (which is allowed since λT ≤ ε̂) together with 1 ≤ t
T

≤ 1 + 10ε̂ we get that

20T

t
W2(−λT )

1

log(1/(λT ))
+ C log

(
1

λT

)
≤ C′ log

(
1

λt

)
.

Using the first and then the second bound of (16) we get

−2

t
W2(−λT ) ≥ −2

t

(
W2(−λt) + C log

∣∣∣∣Tt
∣∣∣∣ ·W(−λt)

)
≥ −2

t
W2(−λt) − C′

t
log

(
1

λt

)
.

Putting everything together gives

logP(τ̃λ ≤ t) ≥ −2

t
W2(−λt) − c

(
1 + 1

t

)
log

(
1

λt

)

with a constant c. The only thing left to show is that for small enough ε′ > 0 if λt ≤ ε′, t ≤ ε′ log(1/(λt)) then we can
find T with t = T (1 + 10T

log(1/(λT ))
) which satisfies λT ≤ ε̂ and T ≤ ε̂ log( 1

λT
). This is fairly straightforward, one can

check that if ε′ is small enough then we can find a T with (1 − 10ε′)t ≤ T ≤ t satisfying all the listed conditions.

Finally, to prove (47) for τλ we use the comparison (10). Note that if we have the bound λ ≤ λ0 then λ′′ = β
4 e− β

4 t λ ≤
λ′′

0 = β
4 λ0. By choosing a small enough ε in the bounds λt ≤ ε and t ≤ ε log( 1

λt
) we can use the just proved lower

bound for τ̃λ′′ to give

logP(τλ ≤ t) ≥ −2

t
W2

(
−λ

β

4
e− β

4 t t

)
− c

(
1 + 1

t

)(
log

(
1

λt

)
+ β

4
t + log

4

β

)
.

The fact that the right-hand side is bounded from below by − 2
t
W2(−λt) − c′

t
log( 1

λt
) with a new constant c′ follows

along the line of the already seen arguments using Proposition 6 and our assumptions on λ, t .
To prove (18) we use (47) together with the upper bound from Proposition 7 to get the final lower bound.

P(t/2 ≤ τλ < t) = P(τλ < t) − P(τλ < t/2)

≥ exp

[
−2

t
W2(−λt) − c

(
1 + 1

t

)
log

(
1

λt

)](
1 − exp

[
E(t)

])
,

where

E(t) = 2

t
W2(−λt) − 4

t
W2(−λT/2) + c

(
1 + 2

t

)
log

(
2

λt

)
+ c

(
1 + 1

t

)
log

(
1

λt

)

≤ − 2

T
W2(−λt/2) + c̃

(
1 + 1

t

)
log

(
1

λt

)

≤ −c

t
log2

(
1

λt

)
+ c̃

(
1 + 1

t

)
log

(
1

λt

)
.

In the last two steps we used the bounds from Proposition 6. By choosing ε > 0 small enough our conditions on λ and
t together with the just proved inequality gives E(t) ≤ −1. Hence

P(t/2 ≤ τλ < t) ≥ exp

[
−2

t
W2(−λt) − c

(
1 + 1

t

)
log

(
1

λt

)](
1 − e−1)

≥ exp

[
−2

t
W2(−λt) − c′

(
1 + 1

t

)
log

(
1

λt

)]

with an appropriate c′ > 0. �
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Now we return to the proof of Lemma 9.

Proof of Lemma 9. Our main tool is again a coupling argument. We introduce the diffusions

dY− = λ

2

√
cosh2 Y− + a dt − 1

2
dt + dB,

dY+ = λ

2

√
cosh2 Y+ + a dt + 1

2
dt + dB

driven by the same Brownian motion as Y . Comparing the drifts of Y−, Y+ to that of Y we see that Y− ≤ Y and
Y ≤ Y+ until the blowup of the larger diffusions.

We also introduce Z− = Y− + t/2 − Bt and Z+ = Y+ − t/2 − Bt which satisfy the differential equations

Z′− = λ

2

√
cosh2(Z− − t/2 + Bt) + a > 0 and

Z′+ = λ

2

√
cosh2(Z+ + t/2 + Bt) + a > 0

until their blowup times. Note that Z− blows up exactly when Y− blows up, and Z+ blows up when Y+ does. Thus
Z+ will blow up before Y does and Z− will blow up after.

We introduce the constants

ε1 = 10K(−a)

λ
√

a
, ε2 = K(−a)

8λ
, θ = 4K(−a) + ε1

λ
,

and we record for further use that since λ
√

a ≥ 2 we have

ε1 >
4ε2 + θ√

a
. (51)

We will show that on the event H = {supt≤θ |Bt | ≤ ε2} the process Z− will blow up before θ and the process Z+ will
blow up after λ−1(4K(−a) − 2ε1). The final bound will come from an estimate on the probability of the event H .

Note that Z′− >
2
√

a
λ

> 0 until its blowup, in particular Z− is strictly increasing. Moreover, on the event H for
t ≤ θ we have

Z−(t) − θ/2 − ε2 ≤ Z−(t) − t/2 + Bt ≤ Z−(t) + ε2.

Let η1 be the hitting time of −ε2 by Z−. Then for t ≤ η1 ∧ θ on the event H we have

Z′−(t) = λ

2

√
cosh2(Z−(t) − t/2 + Bt

) + a ≥ λ

2

√
cosh2(Z−(t) + ε2

) + a.

Rearranging, integrating and using identity (12):

λ

2
(η1 ∧ θ) ≤

∫ η1∧θ

0

Z′−(t)√
cosh2(Z−(t) + ε2) + a

dt ≤
∫ −ε2

−∞
1√

cosh2(z + ε2) + a
dz = K(−a),

which gives

λ(η1 ∧ θ) ≤ 2K(−a) ≤ λθ and λη1 ≤ 2K(−a).

Next we bound the travel time of Z− from −ε2 to θ/2 + ε2 which we denote by η2. Since Z′− ≥ λ
2

√
a we have the

bound

λη2 ≤ 4ε2 + θ√
a

≤ ε1.
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Note that we have η1 + η2 ≤ λ−1(2K(−a) + ε1) < θ on H . Consider now the travel time η3 the from θ/2 + ε2 to ∞.
Denote by η̂3 the minimum of η3 and θ − η1 − η2 > 0. On the event H if Z− ≥ θ/2 + ε2, η1 + η2 ≤ t ≤ θ then we
have the lower bound

Z′−(t) = λ

2

√
cosh2(Z−(t) − t/2 + Bt

) + a ≥ λ

2

√
cosh2(Z−(t) − θ/2 − ε2

) + a.

Rearranging the inequality and integrating from η1 + η2 to η1 + η2 + η̂3 we get

λη̂3 ≤ 2K(−a).

Collecting our estimates we see that on the event H we have

λ(η1 + η2 + η̂3) ≤ 4K(−a) + ε1 = λθ.

This immediately implies η̂3 = η3 and since η1 + η2 + η3 is the blowup time of Y− we also get that τY,λ,a ≤ θ on H .
To show that the blow up time of Z+ is greater than λ−1(4K(−a) − 2ε1) on the event H we carry out a similar

calculation. The process Z+ is strictly increasing and on the event H for t ≤ θ we have

Z+(t) − ε2 ≤ Z+(t) + t/2 + Bt ≤ Z−(t) + θ/2 + ε2.

Let ζ1 be the hitting time of −θ/2 − ε2 for process Z+. Since the blowup time of Z+ is smaller than that of Z− we
get that ζ1 < θ on the event H . For Z+ < −θ/2 − ε2 on H we get

Z′+(t) = λ

2

√
cosh2(Z+ + t/2 + Bt) + a ≤ λ

2

√
cosh2(Z+(t) − ε2

) + a,

which gives us

λ

2
ζ1 ≥

∫ ζ1

0

Z′+(t)√
cosh2(Z+(t) − ε2) + a

dt = K(−a) −
∫ 0

−θ/2−2ε2

1√
cosh2(z) + a

dz

≥ K(−a) − θ + 4ε2

2
√

a
≥ K(−a) − ε1/2.

In the last step we used (51). Now take ζ3 to be the time spent by Z+ traveling from ε2 to ∞. Again note that the blow
up time of Z+ is bounded by that of Z− which is bounded by θ on H . Therefore on H for ε2 ≤ Z+ we have

Z′+(t) = λ

2

√
cosh2(Z+(t) + t/2 + Bt

) + a ≤ λ

2

√
cosh2(Z+(t) + θ/2 + ε2

) + a.

This yields

λ

2
ζ3 ≥ K(−a) −

∫ θ/2+2ε2

0

1√
cosh2(z) + a

dz ≥ K(−a) − ε1/2.

These estimates give

λ(ζ1 + ζ3) ≥ 4K(−a) − 2ε1.

Our last bound shows that on H the process Y blows up after λ−1(4K(−a) − 2ε1). Putting everything together yields

P

(
λτY,λ,a ∈

[
4K(−a)

(
1 − 5

λ
√

a

)
,4K(−a)

(
1 + 5

λ
√

a

)])
≥ P(H).

On the other hand we have

P(H) = P
(

sup
t≤λ−1θ

|Bt | ≤ ε2

)
= P

(
sup
t≤1

|Bt | ≤ λ1/2θ−1/2ε2

)
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and

λ1/2θ−1/2ε2 = K(−a)

8
√

4K(−a)(1 + 10
λ
√

a
)

≥ 1

40

√
K(−a).

It is known that P(supt≤1 |Bt | ≤ δ) ≥ 2(2�(δ/4) − 1) for δ > 0 (see e.g. Proposition 2.8.10 in [11]) which can be
bounded from below by cδ if we have an upper bound on δ. Since a > 2 we have an upper bound on 1

40

√
K(−a)

which finishes the proof. �
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