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Abstract. We extend the use of random evolving sets to time-varying conductance models and utilize it to provide tight heat kernel
upper bounds. It yields the transience of any uniformly lazy random walk, on Zd , d ≥ 3, equipped with uniformly bounded above
and below, independently time-varying edge conductances, of (effectively) non-decreasing in time vertex conductances, thereby
affirming part of Conjecture 7.1 (Random walk in changing environment (2015) Preprint).

Résumé. Nous généralisons la méthode basée sur l’évolution aléatoire d’ensembles au cas de modèles de conductances variant
avec le temps. Nous l’utilisons pour prouver des bornes supérieures sur le noyau de la chaleur. Ceci montre la transitivité de
n’importe quelle marche aléatoire fainéante, dans Zd , d ≥ 3, avec des conductances par arêtes (bornées uniformément supérieure-
ment et inférieurement) variant indépendamment en temps en fonction des conductances par sites. Ceci répond partiellement à la
Conjecture 7.1 (Random walk in changing environment (2015) Preprint).

MSC: Primary 60J10; secondary 60K37; 60K35
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1. Introduction

There has been much interest in random walks in random environment (see [13]). The challenge often comes from
the highly non-reversible nature of the dynamics, which can leave questions as fundamental as recurrence versus
transience open. For example, the recurrence of linearly edge reinforced random walk with strong enough reinforce-
ment strength on any graphs is just recently solved [2,22,23]. Many questions in this general area are treated in an
ad-hoc manner, and the development of methods in order to fully or partially resolve them is just as interesting as the
questions themselves.

The case when the evolution of the environment is independent of the stochastic process is better understood
(e.g. [9]), and there are conjectures on the emergence of universality (cf. [1, Conjecture 7.1] and [7, Conjecture 1.2,
1.8, 1.10]). Specifically, [7] conjecture that whenever a graph G∞ is recurrent, then any graph sequence {Gt }t∈N
dynamically growing towards G∞ is also recurrent, for the discrete time, simple random walk {Xt }t∈N taking steps in
{Gt }t∈N; and whenever G0 is transient, then any growing sequence {Gt } of uniformly bounded degrees, starting from
G0 is transient.

Essentially the same phenomenon is conjectured in [1] for the general setting of monotonically time varying con-
ductance models, which are also the focus of the present work. That is, the stochastic process {Xt }t∈N on a locally
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finite graph G = (V ,E) constructed as random walk in time varying edge conductances {π(t)(x, y), t ∈ N, (x, y) ∈ E}
which are changed independently of the sample path t �→ Xt . Specifically, the vertex conductances

π(t)(x) =
∑
y∈V

π(t)(x, y), x ∈ V, (1.1)

form the time-dependent reversing measure for Xt , and setting Vt = {x ∈ V : π(t)(x) > 0}, the transition probability
of the in-homogeneous Markov chain Xt ∈ Vt is given by

P(t, x; t + 1, y) = π(t)(x, y)

π(t)(x)
, ∀(x, y) ∈ E,x ∈ Vt . (1.2)

When G is a tree, [1, Theorem 5.1] proves recurrence of such {Xt } provided all edge conductances π(t)(x, y) are
positive, non-decreasing in t , and bounded above by π(∞)(x, y) of a time-invariant recurrent model, while [1, The-
orem 5.2] establishes its transience when all edge conductances are positive, non-increasing in t and bounded below
by π(∞)(x, y) of a transient model. Both results apply when G = N, for which they are complemented by [1, Theo-
rems 4.2 and 4.4] that cover also the non-decreasing transient and non-increasing recurrent cases. We note in passing
that all four theorems allow for non-Markovian processes, where edge conductances depend on the past trajectory of
the walk, but [1, Section 6] shows that in general (specifically, when G = Z

2), these results may fail under such de-
pendence. Nevertheless, [1, Conjecture 7.1] proposes that the aforementioned four theorems hold on any locally finite
graph G, provided its time varying edge conductances are independent of the walk’s trajectory (i.e. for the Markovian
evolution as in (1.2)).

The present work affirms part of the transient case of this conjecture (and a special case of [7, Conjecture 1.8]),
for Zd , d ≥ 3 equipped with uniformly bounded non-decreasing vertex conductances (more generally, extending [1,
Theorem 4.2] from G = N to all graphs having suitable isoperimetric properties). In contrast, the recurrent direction
(i.e. obtaining heat kernel lower bounds), is mostly open.

We prove transience by way of establishing an on-diagonal heat kernel upper bound. The study of heat kernels for
diffusions on manifolds and Markov chains on graphs has a long history, dating back at least to the work of De Giorgi,
Nash, Moser in the late 1950s and early 60s, and that of Aronson (cf. [3]), investigating properties of solutions of
parabolic differential equations. There is a large body of work on Gaussian and sub-Gaussian heat kernel estimates
on diverse spaces, their equivalence to functional inequalities, and related stability theory (see [4,6,12,14,24,26,27]
and the references therein). In the setting of graphs, some associated continuous time, symmetric rate random walks
among uniformly elliptic, time dependent conductances have been studied (cf. [5, Section 4], [10, Appendix B] and
[11, Theorem 1.1]). In particular, it is by now known that the two-sided Gaussian heat kernel estimates hold for any
such random walks on Z

d , and more generally on any bounded degree graphs satisfying volume doubling plus a
uniform Poincaré inequality (cf. [15, Theorem 1.2] and the references therein).

All such continuous time, symmetric rate walks, have time-independent reversing measure. Similarly if the discrete
time-dependent conductance model of (1.2) satisfies a uniform Sobolev inequality, [4, Section 7] claims some of the
Gaussian heat kernel estimates, provided the reversing measure π(t)(x) of (1.1) is held constant in time, and the walk
is uniformly lazy. In contrast, the study of recurrence/transience, and more generally, that of heat kernel estimates, is
rather subtle when t �→ π(t)(x) is not constant. Indeed, some heat kernel estimates are derived in this setting by [25],
but as shown in [15, Propositions 1.4 and 1.5], if the time varying vertex conductances are either non-monotone or
unbounded, then in general neither the upper/lower Gaussian estimates nor recurrence/transience properties are stable
under perturbations (and the same applies for constant speed continuous time random walks).

Random evolving sets have been introduced in [19,20], where they are applied to study the mixing time of possibly
non-reversible Markov chains (with the related notion of size-biased evolving sets already inherent in [8]). For static
weighted graphs it is known that evolving sets serve well in deducing from an isoperimetric inequality, both the heat
kernel upper bound and a Nash inequality. The main tool of this work is the extended notion of random evolving sets
in the parabolic (time-varying) context (see Definition 1.12).
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Turning to state our main result, we use hereafter Ac for V \ A and π(t)(A) = π(t)(A,V ), or more generally
π(t)(A,B) = ∑

x∈A,y∈B π(t)(x, y) for any A ⊂ Vt , B ⊂ V . By analogy to convention, we define the heat kernel of
{Xt } as

h(s, x; t, y) := P(s, x; t, y)

π(t)(y)
, x ∈ Vs, y ∈ Vt . (1.3)

Definition 1.1. Starting with β(0) = 1, suppose that

β(u + 1) := β(u) sup
x∈Vu

{
π(u)(x)

π(u+1)(x)

}
, u ∈ N, (1.4)

are finite. With t �→ β(t)π(t)(x) non-decreasing, we call vertex conductances t �→ π(t)(x) effectively non-decreasing,
if η� = supt>u≥0{β(t)/β(u)} < ∞ (clearly, η� ≤ 1 for non-decreasing t �→ π(t)(x)).

Theorem 1.2. Suppose the walk is uniformly lazy, namely inft,x P (t, x; t + 1, x) ≥ γ for some γ ∈ (0,1/2] and β(u)

of (1.4) are finite. Fixing d > 1, we consider the isoperimetric growth function

ψd,β(t) :=
t−1∑
u=0

(
β(u)1/dκu

)2
, κu := inf

A⊂Vu,0<|A|<∞

{
π(u)(A,Ac)

π(u)(A)(d−1)/d

}
, (1.5)

with ψd(t) in case the factors β(u)1/d are omitted. If for fixed λ ∈ (0,1/2],

∃r ∈ (s, t),
ψd,β(r) − ψd,β(s)

ψd,β(t) − ψd,β(s)
∈ [λ,1 − λ], (1.6)

then for some c+ = c+(d, γ,λ) finite, any t > s ≥ 0, x ∈ Vs and y ∈ Vt

h(s, x; t, y) ≤ c+β(t)
(
ψd,β(t) − ψd,β(s)

)−d/2
. (1.7)

Let η0 := supx π(0)(x) (positive). For t �→ π(t)(x) effectively non-decreasing and uniformly bounded (i.e. C :=
supt,x π(t)(x) < ∞), we further have that for some c� = c�(d, γ, η0, η�,C) finite and all s, x, t, y as above,

π(s)(x)h(s, x; t, y) ≤ c�

(
e + ψd(t) − ψd(s)

)−d/2
. (1.8)

Remark 1.3. If the right-hand side of (1.8) is summable over t , then
∑

t P (0, x; t, y) is finite for any x ∈ V0, y ∈ V .
Hence, the process {Xt } is then transient in the strong sense that starting at any non-random X0 ∈ V0 yields a finite
expected number of visits to any y ∈ V (and in particular, w.p.1. the sample path t �→ Xt visits any y ∈ V only finitely
many times).

Remark 1.4. Assuming κu are bounded away from zero, even for polynomially growing u �→ β(u) the right-hand
side of (1.7) yields the optimal (t − s)−d/2 bound. For example, this applies when supx |π(t)(x)/π(x)− 1| → 0 at rate
t−1. In contrast, for exponentially growing u �→ β(u) the right-hand side of (1.7) is O(1), so carries no information.
Indeed, the latter happens for the recurrent random walk among oscillating [1 − ε,1 + ε]-valued edge conductances
on Z

2 ×Z+ which is given in [15, Proposition 1.5(i)].

Remark 1.5. For d > p ≥ 1 the d-dimensional Sobolev �p-inequality holds on Gu, if

κ̂u := inf| supp(f )|<∞

{ ‖∇f ‖p,u

‖f ‖pd/(d−p),u

}
(1.9)
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is positive, with the corresponding functional norms for q ≥ 1,

‖f ‖q,u :=
( ∑

x∈Vu

∣∣f (x)
∣∣qπ(u)(x)

)1/q

,

‖∇f ‖q,u :=
(

1

2

∑
x,y∈Vu

∣∣f (y) − f (x)
∣∣qπ(u)(x, y)

)1/q

.

Recall that for d > 1, the Sobolev �1-inequality is equivalent to the isoperimetric inequality of (1.5) with κ̂u = κu,
whereas for d > 2, the Sobolev �2-inequality is implied by the isoperimetric inequality (see [17, Theorem 3.2.7]).

For uniformly lazy walk and time-independent conductances, it is shown in [4] that the Sobolev �2-inequality
with uniformly positive κ̂u = κ yields the Gaussian heat kernel full upper bound (via the discrete integral maximum
principle), and a matching on-diagonal lower bound holds under additional volume condition.

Remark 1.6. In case of delayed random walk one specifies only {π(t)(x, y), x = y}. Then, assuming that for some
γ ∈ (0,1/2],

sup
t,x

π(t)
(
x, {x}c) ≤ 1 − γ,

one lets π(t)(x, x) := 1 − π(t)(x, {x}c). It results with π(t)(x) = 1 for all t, x and the uniformly lazy transition proba-
bilities P(t, x; t + 1, y) = π(t)(x, y) then satisfy the heat-kernel upper bound (1.8).

Here is a direct consequence of Theorem 1.2 (thanks to Remark 1.3).

Corollary 1.7. Suppose G of bounded degree satisfies a uniform isoperimetric inequality of order d > 2 (e.g. the
lattice G = Zd ), and consider a uniformly lazy walk {Xt } on G equipped with uniformly elliptic and bounded edge
conductances (namely, π(t)(x, y) ∈ [C−1

1 ,C1] for all t and edges or self-loops (x, y), with C1 a universal finite
constant).

If t �→ π(t)(x) are effectively non-decreasing, then for any law of X0 the expected number of visits by {Xt } to y ∈ V

is finite (so w.p.1. the sample path visits each site finitely many times).

Indeed, in the setting of Corollary 1.7 we have (1.5) holding with κu at least some universal positive constant times
the edge-isoperimetic constant for G, hence uniformly bounded away from zero. This yields the linear growth of ψd(·)
with P(s, x; t, y) ≤ c�(t − s)−d/2, hence the stated strong transience (when d > 2), uniformly in X0.

We note in passing that having only π(t)(x) ∈ [C−1,C] for all x ∈ V , is not enough (for example the graph Z
d

without all edges connecting finite box Br to B
c
r has uniformly bounded vertex conductances, but κu = 0 in (1.5) and

starting at X0 = 0 any random walk on this graph is confined to Br , hence recurrent).
The analog of Corollary 1.7 applies also for the continuous time, constant speed random walk, the definition of

which we provide next.

Definition 1.8. Suppose G = (V ,E) is locally finite graph equipped with RCLL edge conductances t �→ π(t)(x, y)

such that π(t)(x) > 0 for all x. The V -valued stochastic process {Yt } of RCLL sample path t �→ Yt is called a con-
stant speed random walk (in short CSRW), if it waits i.i.d. exp(1) times between successive jumps, and if YT − = x

just prior to the current random jump time T , then the process jumps across each (x, y) ∈ E with probability
π(T )(x, y)/π(T )(x).

Definition 1.9. We call RCLL vertex conductances t �→ π(t)(x) effectively non-decreasing, if for Lebesgue a.e.
tk ↑ ∞, the sequence k �→ π(tk)(x) is effectively non-decreasing (see Definition 1.1).

Proposition 1.10. Suppose graph G = (V ,E) of bounded degree that satisfies a uniform isoperimetric inequality
of order d > 2 (e.g. the lattice G = Zd ), is equipped with uniformly elliptic and bounded RCLL edge conductances
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(namely, π(t)(x, y) ∈ [C−1
1 ,C1] for all t ≥ 0 and (x, y) ∈ E, with C1 some universal finite constant). Assuming further

that t �→ π(t)(x) are effectively non-decreasing, w.p.1. the sample path t �→ Yt of the CSRW returns to any y ∈ V only
finitely many times.

In many non-elliptic settings we get fast enough isoperimetric growth for (1.8) to yield the desired a.s. transience.
Even when it does not, such result may be obtained by taking advantage of a-priori bounds on the support of the
relevant evolving set. We next deal with one such example, which partially resolves the open question raised in [7,
Remark 1.12].

Proposition 1.11. Let D0 denote the unique infinite cluster of the correlated percolation model of [21, Theorem 1.2]
(which includes as special case the Bernoulli(p) bond percolation at super-critical p > pc(Z

d)), on Z
d , d > 2,

conditioned to contain the origin. Starting with X0 at the origin, the sample path of any uniformly lazy SRW on
growing connected sub-graphs {Dt } of the lattice Z

d sharing the vertex set V(D0) of D0 (with uniformly bounded
self-loops, hence vertex, conductances), is strongly transient in the sense of Remark 1.3.

As mentioned before, our key tool is the evolving set process {St }, where St is the following random finite subset
of Vt , t ≥ 0.

Definition 1.12. Starting with S0 = {x} for x ∈ V0, sequentially for t = 0,1,2, . . . we let Ut+1 denote a Uniform(0,1)

random variable which is independent of {Ss,Xs,Us,0 ≤ s ≤ t}, and form

St+1 =
{
y ∈ Vt+1 : π(t)(St , y)

π(t+1)(y)
≥ Ut+1

}
.

Assuming t → π(t)(x) are non-decreasing, it follows that Vt ⊆ Vt+1 and for every y ∈ Vt+1

P(y ∈ St+1|St ) = π(t)(St , y)

π(t+1)(y)
(1.10)

(the right-hand side of (1.10) is well defined [0,1]-valued and any y accessible from St must be in Vt+1).

Remark 1.13. For uniformly lazy random walk having π(t)(x) independent of t (so w.l.o.g. Vt = V for all t ), one has
the analogue of [20, Lemma 8]. That is, if (St ) is an evolving set process, then the sequence (Sc

t ) is also an evolving
set process of the same transition probability. The proof in [20, p. 253] can be reproduced using π(t+1)(x) = π(t)(x)

for all t, x, and noting that for Uniform(0,1) random variable U
(d)= 1 − U .

We further utilize the concept of conditioned (or size-biased) evolving set, upon adapting it to our parabolic time-
dependent setting. In particular, it yields the following extension of [18, Theorem 17.23] originally due to [8].

Definition 1.14. We say that (St ⊆ Vt ) is the conditioned evolving set, starting at S0 = {x}, if it has the transition
kernel

K̂(t,A; t + 1,B) = π(t+1)(B)

π(t)(A)
K(t,A; t + 1,B), (1.11)

where K(·; ·) is the transition kernel of the unconditioned evolving set of Definition 1.12.

Proposition 1.15. Suppose t �→ π(t)(x) are non-decreasing and (Xt , St ) starting from (X0, S0) = (x, {x}) follows
the time-varying Markov transition kernel P ∗ on V × 2V , given for x ∈ A ∩ Vt , π(t)(x, y) > 0, by

P ∗(t, (x,A); t + 1, (y,B)
) = P(t, x; t + 1, y)P(St+1 = B|y ∈ St+1, St = A)I{y∈B}

= P(t, x; t + 1, y)K(t,A; t + 1,B)π(t+1)(y)I{y∈B}
π(t)(A,y)

.
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(a) The marginal process t �→ Xt is a time in-homogeneous Markov process having the transition kernel P , and
the marginal process t �→ St is another time in-homogenous Markov chain whose transition kernel is K̂(·, ·) of (1.11).

(b) For any t , x ∈ V0 and w ∈ St ,

P
∗
x,{x}(Xt = w|S0, . . . , St ) = π(t)(w)

π(t)(St )
.

We next list a few open problems.

Problem 1.16. For time-independent conductances [4] relies, in the setting of Remark 1.5, on using the time-reversed
chain.

(a) Can this idea be extended to monotone and genuinely time varying path of reversing measures t �→
{π(t)(x), x ∈ V }?

(b) Alternatively, does the bound (1.8) hold for uniformly elliptic, uniformly lazy and bounded edge conductances
for which t �→ π(t)(x) are strictly monotone decreasing in t?

(c) Is it possible to establish for monotone increasing reversing measures a Gaussian type off-diagonal upper
bound and somewhat comparable lower bounds?

Problem 1.17. Extend Proposition 1.11 to allow adding new vertices as Dt evolves.

(a) For example, start with D0 the unique infinite cluster of super-critical Bernoulli bond percolation on Zd , d > 2
and end with the full lattice D∞ = Z

d .
(b) Alternatively, consider finite graphs {Dt } that grow to a transient infinite graph D∞ of uniformly bounded

degrees. Slow growth can yield recurrence of the walk, with a sharp phase transition from recurrence to transience in
terms of the growth rate predicted for D∞ = Z

d , d > 2 (see [7, Theorem 1.4, Conjecture 1.2]). Extend the scope of
evolving sets to resolve this prediction.

Section 2 is devoted to the proof of Theorem 1.2 which partly builds on [20] (and at places also on [17, Ch. 3]),
while Propositions 1.10, 1.11 and 1.15 are proved in Section 3.

2. Proof of Theorem 1.2

We start with two key facts about the evolving set process of Definition 1.12, in case t �→ π(t)(x) are non-decreasing.

Lemma 2.1. The sequence {π(t)(St )} is a martingale and for any t ≥ 0, x ∈ V0 and y ∈ V

P (0, x; t, y) = π(t)(y)

π(0)(x)
P{x}(y ∈ St ). (2.1)

Proof. Fixing hereafter the starting state S0 = {x} in V0, we have from (1.10) that,

E
(
π(t+1)(St+1)|St

) = E

[ ∑
z∈Vt+1

I{z∈St+1}π(t+1)(z)|St

]

=
∑

z∈Vt+1

P(z ∈ St+1|St )π
(t+1)(z) =

∑
z∈Vt+1

π(t)(St , z)

π(t+1)(z)
π(t+1)(z) = π(t)(St ).

That is, {π(t)(St )} is a martingale.
Turning to confirm the identity (2.1), note first that when t = 0, both sides of it equal I{y=x}. Next, if this identity

holds for t , then using Chapman–Kolmogorov, our induction hypothesis, the formula for P(t, z; t + 1, y) and (1.10),
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we find that

P(0, x; t + 1, y) =
∑
z∈Vt

P (0, x; t, z)P (t, z; t + 1, y)

=
∑
z∈Vt

π(t)(z)

π(0)(x)
P{x}(z ∈ St )P (t, z; t + 1, y)

= 1

π(0)(x)
E{x}

[∑
z∈St

π(t)(z)P (t, z; t + 1, y)

]

= 1

π(0)(x)
E{x}

[
π(t)(St , y)

]
= 1

π(0)(x)
E{x}

[
π(t+1)(y)P(y ∈ St+1|St )

] = π(t+1)(y)

π(0)(x)
P{x}(y ∈ St+1).

Thus, by induction (2.1) holds for all t . �

The next result is essential to our proof and the only place where we utilize the assumed isoperimetric inequal-
ity (1.5).

Lemma 2.2. For some c̃ = c̃(γ ) positive, β := α − 2/d , any α ∈ (0,1), t ≥ 0 and x ∈ V0,

E{x}
[
π(t+1)(St+1)

α − π(t)(St )
α|St

] ≤ −c̃α(1 − α)κ2
t π(t)(St )

β
I{π(t)(St )>0}. (2.2)

Further, for α > 1 we have the converse bound

E{x}
[
π(t+1)(St+1)

α − π(t)(St )
α|St

] ≥ c̃α(α − 1)κ2
t π(t)(St )

β
I{π(t)(St )>0}. (2.3)

Proof. Note that π(t)(St ) = 0 iff St =∅, in which case by Definition 1.12 also St+1 =∅ and our claim trivially holds.
Assuming hereafter that π(t)(St ) > 0, since Ut+1 is independent of St we deduce from (1.10) that for every y ∈ Vt+1

p�(y, t) := P(y ∈ St+1|Ut+1 ≤ 1/2, St )

= P

(
Ut+1 ≤ π(t)(St , y)

π(t+1)(y)

∣∣∣Ut+1 ≤ 1/2, St

)
= 1 ∧ 2π(t)(St , y)

π(t+1)(y)
. (2.4)

Next, let

t := 1

π(t)(St )

∑
y∈Vt+1

π(t+1)(y)p�(y, t)

= 1

π(t)(St )

∑
y∈Vt+1

[
π(t+1)(y) ∧ 2π(t)(St , y)

]
. (2.5)

By assumption, our lazy random walk is such that π(t)(y, y) ≥ γπ(t)(y) for some γ ∈ (0,1/2). Consequently, for any
y ∈ St ,

π(t)(St , y) ≥ π(t)(y, y) ≥ γπ(t)(y) ≥ γ

1 − γ
π(t)

(
Sc

t , y
)
. (2.6)
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Now, since t �→ π(t)(y) is non-decreasing, it follows from (2.4) and (2.6) that for y ∈ St ,

π(t+1)(y)p�(y, t) = π(t+1)(y) ∧ 2π(t)(St , y)

≥ π(t)(y) ∧ 2π(t)(St , y)

= π(t)(St , y) + π(t)
(
Sc

t , y
) ∧ π(t)(St , y) ≥ π(t)(St , y) + γ

1 − γ
π(t)

(
Sc

t , y
)
.

Likewise, for y ∈ Sc
t ,

π(t+1)(y)p�(y, t) ≥ π(t)(St , y) + γ

1 − γ
π(t)(St , y).

Letting

Rt := π(t)(St , S
c
t )

π(t)(St )
, �t := π(t+1)(St+1)

π(t)(St )

we find upon combining the preceding inequalities with the definition (2.5) of t , that

t ≥ 1

π(t)(St )

[
π(t)(St ) + 2γ

1 − γ
π(t)

(
St , S

c
t

)] = 1 + 2γ

1 − γ
Rt . (2.7)

Further, with π(t)(St ) a martingale and Ut+1 independent of St , we have that

1 = E(�t |St ) = 1

2
E(�t |Ut+1 ≤ 1/2, St ) + 1

2
E(�t |Ut+1 > 1/2, St ).

But, from the definition of t and of p�(y, t) we deduce that

E(�t |Ut+1 ≤ 1/2, St ) = t, E(�t |Ut+1 > 1/2, St ) = 2 − t .

Considering first α ∈ (0,1), by Jensen’s inequality and the preceding identities,

E
(
�α

t |St

) = 1

2
E

(
�α

t |Ut+1 ≤ 1/2, St

) + 1

2
E

(
�α

t |Ut+1 > 1/2, St

)
≤ 1

2

[
E(�t |Ut+1 ≤ 1/2, St )

]α + 1

2

[
E(�t |Ut+1 > 1/2, St )

]α
= 1

2
α

t + 1

2
(2 − t)

α =: fα(t − 1). (2.8)

Next note that the even function fα(·) is non-increasing on [0,1] when α ∈ (0,1) and non-decreasing on [0,1] for any
other α ∈R. Further, fα(0) = 1 and f ′′

α (y) = α(α − 1)fα−2(y). Hence, for y ∈ [0,1],

fα(y) ≤ 1 + α(α − 1)
y2

2
, α ∈ (0,1), (2.9)

fα(y) ≥ 1 + α(α − 1)
y2

8
, α ≥ 1. (2.10)

It thus follows from (2.7)–(2.9) that when α ∈ (0,1),

E
(
�α

t |St

) ≤ fα(t − 1) ≤ fα

(
2γ

1 − γ
Rt

)
≤ 1 − 2α(1 − α)γ 2

(1 − γ )2
R2

t . (2.11)
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Our assumption that G is locally finite, and the construction of the evolving set {St } guarantees the finiteness of
each St . Hence, from (1.5) we have that for any t ≥ 0,

Rt ≥ κtπ
(t)(St )

−1/d . (2.12)

Thus, from (2.11) we conclude that for some positive c̃ = c̃(γ ) and all t ,

E

[
π(t+1)(St+1)

α

π(t)(St )α
− 1

∣∣∣St

]
≤ −2α(1 − α)γ 2

(1 − γ )2
R2

t

≤ −c̃α(1 − α)κ2
t π(t)(St )

−2/d , (2.13)

and multiplying both sides by π(t)(St )
α yields the upper bound of (2.2).

Turning to the proof of (2.3), similarly to the derivation of (2.8) and (2.11) we get from (2.7) and (2.10) that when
α > 1,

E
(
�α

t |St

) ≥ fα(t − 1) ≥ fα

(
2γ

1 − γ
Rt

)
≥ 1 + α(α − 1)γ 2

2(1 − γ )2
R2

t .

Using (2.12) we find, similarly to the derivation of (2.13), that now,

E

[
π(t+1)(St+1)

α

π(t)(St )α
− 1

∣∣∣St

]
≥ c̃α(α − 1)κ2

t π(t)(St )
−2/d , (2.14)

ending with (2.3). �

Our next lemma embeds {π(t)(St )} as the integer time samples of a continuous martingale (assuming as before that
t �→ π(t)(x) are non-decreasing).

Lemma 2.3. There exists a martingale (Mu,u ≥ 0) of a.s. continuous sample path, such that Mi = π(i)(Si) for i ∈N

and τ = inf{u ≥ 0 : Mu ≤ 0} is N∪ {∞}-valued.

Proof. With �(·) the standard normal CDF and (Bs, s ≥ 0) a standard Brownian motion, let S0 = {x} and Ui+1 =
�(Bi+1 − Bi) the i.i.d. Uniform(0,1) variables used to construct Si+1 from Si in Definition 1.12. The process {Si} is
then adapted to Fu := σ {Bs, s ∈ [0, u]}. Considering the Fu-adapted process

Mu := E
[
π(i+1)(Si+1)|Fu

]
, ∀u ∈ [i, i + 1), i ∈N, (2.15)

we have by the independence of Brownian increments and Lemma 2.1, that for any i ∈ N,

Mi = E
[
π(i+1)(Si+1)|Fi

] = E
[
π(i+1)(Si+1)|Si

] = π(i)(Si). (2.16)

Clearly, (Mu,Fu) is a (Doob) martingale within each interval [i, i + 1). Upon plugging (2.16) at i + 1 within (2.15),
the martingale property extends to [i, i + 1], which by the law of iterated expectations yields that (Mu,Fu) is a
martingale for all u ≥ 0. Turning to the continuity of u �→ Mu, for any i ∈N, y ∈ Vi+1 and A ⊆ Vi let

Hi(A,y) := �−1
(

π(i)(A,y)

π(i+1)(y)

)
.

By Definition 1.12 and the independence of Brownian increments, we have that for any s ∈ [0,1) and i ∈N,

Mi+s =
∑

y∈Vi+1

π(i+1)(y)P
(
Hi(Si, y) ≥ Bi+1 − Bi |Si,Bi+s − Bi

)
=

∑
y∈Vi+1

π(i+1)(y)�

(
Hi(Si, y) − Bi+s + Bi√

1 − s

)
. (2.17)
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With s �→ Bi+s continuous, each term of the sum on the right-hand side of (2.17) is continuous in s ∈ [0,1). Having G

locally finite, only finitely many y ∈ V for which Hi(Si, y) = −∞ contribute to that sum, hence u �→ Mu is continuous
on [i, i + 1). Further, a.s. Hi(Si, y) = Bi+1 − Bi for all y ∈ Vi+1, in which case by the continuity of u �→ Bu at i + 1,

lim
s↑1

�

(
Hi(Si, y) − Bi+s + Bi√

1 − s

)
= I

{
Hi(Si, y) ≥ Bi+1 − Bi

}
.

Upon comparing (2.17) with Definition 1.12, this extends the continuity of u �→ Mu to [i, i + 1] and thereby to all
u ≥ 0.

Finally, Mu is non-negative by (2.15), whereas by (2.17) it is strictly positive on [i, i + 1) unless Hi(Si, y) = −∞
for all y, namely Si =∅ (in which case Mu = 0 for all u ≥ i). �

Proof of Theorem 1.2. It suffices to prove (1.7) and (1.8) for s = 0, as s ∈ (0, t) then follows by considering the edge
conductances {π(s+·)} starting at Xs = x ∈ Vs (and consequently, using β(u)/β(s) and ψd,β(t) − ψd,β(s) instead of
β(u) and ψd,β(t)).

Fixing hereafter s = 0, we start with a short derivation of the sub-optimal bound P(0, x; t, y) ≤ C′ψd(t)−(1−α)d/2

for α ∈ (0,1), non-decreasing t �→ π(t)(y) ≤ C, and some C′ = C′(d,α, γ,C) finite. Indeed, (2.1) then result with
P(0, x; t, y) ≤ C1−αmt for mt = E{x}[Mα

t ]/M0 and Mt = π(t)(St ). Further, with β = α − δ(1 − α), the elementary
bound

E
[
Zβ

IZ>0
] ≥ (

E
[
Zα

])1+δ
, (2.18)

holds for Z = Mt/M0 ≥ 0 of mean one and δ > 0. Taking the expectation of (2.2), it thus follows from (2.18) that for
δ = 2/((1 − α)d),

mt+1 ≤ mt exp
(−c̃α(1 − α)κ2

t mδ
t

)
, (2.19)

and consequently mt ≤ c′ψd(t)−1/δ for some c′(α, d, γ ) finite, as claimed.
However, the sharp bound (1.8) (where α = 0), requires the more elaborate argument provided next, where we

first derive (1.8) out of (1.7) in case π(u)(x) are effectively non-decreasing and uniformly bounded. Indeed, by its
definition in (1.5),

κi ≤ inf
v∈Vi

π(i)
({v})1/d ≤ C1/d , ∀i ≥ 0 (2.20)

and consequently β(u)1/dκu ≤ (η�C)1/d . Thus, condition (1.6) holds (for λ = 1/3) whenever ψd,β(t) ≥ 3(η�C)2/d .
Since π(t)(x) ≤ C, it follows from (1.4) that

β(t) ≥ sup
x

{
π(0)(x)

π(t)(x)

}
≥ η0

C
,

hence the condition (1.6) holds whenever

ξ(t) := (
η�/β(t)

)2/d
ψd,β(t) ≥ 3

(
η2

�C
2/η0

)2/d
, (2.21)

in which case multiplying the inequality (1.7) by π(0)(x) yields the bound

π(0)(x)h(0, x; t, y) ≤ c+Cη�ξ(t)−d/2 ≤ c�

(
e + ξ(t)

)−d/2
, (2.22)

for some c� = c�(d, c+, η0, η�,C) finite. Next, recall that by (1.3) and (2.1), for any t ∈N,

π(0)(x)h(0, x; t, y) = P{x}(y ∈ St ) ≤ P{x}(St =∅) = P{x}(Mt = 0), (2.23)

for the continuous, non-negative P-martingale {Mu}u≥0 of Lemma 2.3. In view of (2.23), the left-hand side of (2.22)
is at most one, hence increasing c� guarantees that (2.22) trivially holds whenever (2.21) fails. Having effectively
non-decreasing t �→ π(t)(x), implies further that ξ(t) ≥ ψd(t) and thus (1.8) is a consequence of (2.22).
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Turning to the proof of (1.7), note that multiplying all edge conductances {π(u)(x, y)} by a common factor does not
effect the transition probabilities of the associated random walk at step u. Hence, re-defining the edge conductances

π̂ (u)(x, y) = β(u)π(u)(x, y), u ∈ N, (x, y) ∈ E,

results with h(s, x; t, y) = β(t )̂h(s, x; t, y), ψd,β(·) = ψ̂d(·) and non-decreasing u �→ π̂ (u)(x). We consequently pro-
ceed to bound the right-hand side of (2.23), for non-decreasing u �→ π(u)(x) and β(u) ≡ 1. To this end, we utilize the
stopping times

τk := inf
{
u ≥ 0 : Mu ≥ ek

}
, T ′

k := inf
{
i ∈ N∩ (τk,∞) : Mi = 0

}
(2.24)

and note that for r ∈ (0, t) of (1.6) and any k ∈ Z,

{Mt = 0} ⊆ {τk > r} ∪ {
τk ≤ r, T ′

k > t
}
. (2.25)

Further, for M̃ := supu≥0{Mu} and Ek := {ek ≤ M̃ < ek+1}, by Doob’s inequality

P{x}(Ek) ≤ P{x}
(
M̃ ≥ ek

) ≤ π(0)(x)e−k. (2.26)

Thus, fixing ε ∈ (0,1) and setting k0 := �logπ(0)(x)�, L := �log(ε2ψd(t)d/2)�, we get from (2.25) and (2.26) that

P{x}(Mt = 0) ≤ P{x}
(
M̃ ≥ eL

) +
L−1∑
k=k0

P{x}
({Mt = 0} ∩ Ek

)

≤ π(0)(x)

[
e−L +

L−1∑
k=k0

e−k
P{x}

(
τk > r|M̃ ≥ ek

) +
L−1∑
k=k0

e−k
P{x}

(
T ′

k > t |Ek, τk ≤ r
)]

. (2.27)

Noting that e−L is of O(ψd(t)−d/2) size, the remainder of the proof consists of three steps. First, by the continuity
of our non-negative martingale, and the lower bound of (2.3) on its quadratic variation, we show in Step I that condi-
tioning on {M̃ ≥ ek} transforms the law of {S0, . . . , Sr} to that of Definition 1.14. Then, Step II shows that the proba-
bility of maxi≤r{π(i)(Si)} not exceeding ek for such size-biased evolving sets, is at most O(exp(−cψd(r)e−2k/d)) and
as a result the left sum in (2.27) is at most O(ψd(r)−d/2) (see (2.35)). Noting that under {τk ≤ r} the probability of
Ek = {τk+1 = ∞} is bounded away from zero, Step III controls the right sum over k in (2.27), as {Ek, τk ≤ r} dictates
a downward path eai+1 driving u �→ π(u)(Su), u = �τk� + i, to zero at u = t , or else the super-martingale Qi∧σ ≥ 0
with Q0 ≤ c5e

k/2ψd(t)−d , must exceed O(e−3k/2), an event whose probability is O(e2kψd(t)−d).
Step I. The P-martingale (Mu,Fu) is non-negative, continuous, hence converges P-almost surely to a finite limit

M∞. Further, Mu = M0 +W〈M〉u for a standard Brownian motion (Ws, s ≥ 0), time changed by the quadratic variation
〈M〉u (e.g. [16, Theorem 3.4.6, Problem 3.4.7]). In particular, having a.s. finite M∞ implies the same for 〈M〉∞. In
view of Lemma 2.3, for any i ∈ N,

〈M〉i ≥
i∑

j=1

E
[
M2

j − M2
j−1|Fj−1

] ≥ 2̃c

i−1∑
j=0

κ2
j M

2−2/d
j ,

with the right inequality due to Lemma 2.2 (for α = 2 > 2/d). Since ψd(∞) = ∞, it then follows that

lim inf
i→∞

〈M〉i
ψd(i)

≥ 2̃c lim inf
i→∞

1

ψd(i)

i−1∑
j=0

κ2
j M

2−2/d
j = 2̃cM

2−2/d∞ .

We thus see that with probability one, if M∞ > 0 then 〈M〉∞ = ∞, out of which we deduce that necessarily M∞ = 0.
The a.s. convergence to zero of Mt allows us in turn to deduce that for any u ≥ 0 and z > 0,

P

(
sup
t≥u

{Mt } ≥ z|Fu

)
= Mu

z
∧ 1. (2.28)
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Indeed, in case Mu = 0 the martingale condition implies that a.s. Mt ≡ 0 for all t ≥ u, whereas for Mu ∈ (0, z) we get
(2.28) by applying for example [16, Problem 1.3.28(i)].

Turning to bound the left-sum in (2.27), note that subject to I{τk > r}, the probability of {M̃ ≥ ek} given Fr is
precisely the left-hand side of (2.28) for z = ek and u = r . With the unconditional probability given by (2.28) with
u = 0, it thus follows that

P{x}
(
τk > r|M̃ ≥ ek

) = E{x}
[

Mr

M0
I(τk > r)

]
≤ E{x}

[
Mr

M0
I(Tk > r)

]
, (2.29)

where Tk = inf{i ∈N : π(i)(Si) ≥ ek} is the discrete-time analog of τk of (2.24) (hence necessarily Tk ≥ τk). Next note
that the right-hand side of (2.29) equals P̂(Tk > r) for the martingale change of measure

dP̂

dP
(S0, . . . , Sr ) = π(r)(Sr)

π(0)(x)
.

The measure P̂ is thus given by the time-in-homogeneous Doob h-transform of the evolving sets process, for h(t,A) =
π(t)(A), namely the measure corresponding to the transition kernel K̂(·, ·) of (1.11). That is, P̂ is the law of the
conditioned (size-biased) evolving set of Definition 1.14.

Step II. Under P̂ with probability one Si are non-empty and Yi := π(i)(Si)
−1/2I{Tk>i} finite, whereby from Markov’s

inequality and (2.29) we deduce that for any k,

P{x}
(
τk > r|M̃ ≥ ek

) ≤ P̂{x}(Tk > r)

= P̂{x}
(
Yr > e−k/2) ≤ ek/2

Ê{x}(Yr). (2.30)

Further, by Lemma 2.2 with α = 1/2 and c = c̃/8 > 0, we have that P̂-a.e. if Yi > 0, namely Tk > i, then

Ê{x}(Yi+1|Yi) = E{x}
(

π(i+1)(Si+1)
1/2

I{Tk>i+1}
π(i)(Si)

∣∣∣Yi

)
≤ Y 2

i E{x}
(
π(i+1)(Si+1)

1/2|Yi

) ≤ Yi

(
1 − 2cκ2

i Y
4/d
i

)
.

Note that either Yi = 0, that is {Tk ≤ i}, in which case necessarily Yi+1 = 0 and the preceding inequality holds, or else
by definition Yi > e−k/2. Thus, P̂-a.e. for all i and Yi ,

Ê{x}(Yi+1|Yi) ≤ Yi

[
1 − 2cκ2

i

(
Y

4/d
i ∨ e−2k/d

)]
. (2.31)

Recall [20, Lemma 12] that E[2Zf (2Z)] ≥ (EZ)f (EZ) for any Z ≥ 0 and non-decreasing f :R+ �→ R+. In partic-
ular, with li := Ê{x}(Yi) and f (y) = (y/2)4/d ∨ e−2k/d , we deduce upon taking the expectation of (2.31) that

li+1 ≤ li − cκ2
i lif (li) ≤ lie

−cκ2
i f (li ). (2.32)

With f (li) strictly positive it thus follows that either li = 0, or else∫ li

li+1

dz

zf (z)
≥ 1

f (li)

∫ li

li+1

dz

z
= 1

f (li)
log

li

li+1
≥ cκ2

i . (2.33)

Hence, if lr > 0 then by (2.32), li > 0 for i < r and summing (2.33) over 0 ≤ i < r , yields

cψd(r) ≤
∫ ∞

lr

(
24/dz−1−4/d

) ∧ (
e2k/dz−1)dz (2.34)

(which trivially holds also when lr = 0). We proceed to rule out having lr > 2e−k/2. Indeed, in that case we get from
(2.34) that

cψd(r) ≤
∫ ∞

lr

24/dz−1−4/d dz = 24/d(d/4)l
−4/d
r ,
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whereby lr ≤ c′ψd(r)−d/4 for c′ = 2(4d/c)d/4. As k < L, this yields in view of (1.6) and our choice of L that

ε−1ψd(t)−d/4 ≤ e−(L−1)/2 < 2e−k/2 < lr ≤ c′ψd(r)−d/4 ≤ c′3d/4ψd(t)−d/4,

yielding a contradiction when ε = (1/c′)3−d/4. Taking hereafter such ε we thus have that lr ≤ 2e−k/2 in which case
(2.34) yields

cψd(r) ≤ e2k/d

∫ 2e−k/2

lr

dz

z
+ 24/d

∫ ∞

2e−k/2

dz

z1+4/d
≤ e2k/d

(
log

(
2e−k/2/lr

) + c0
)
,

for some finite c0 = c0(d). That is, for c1 = 2ec0 finite,

lr ≤ c1e
−k/2 exp

{−cψd(r)e−2k/d
}
.

Plugging this bound in the right-hand side of (2.30), we bound the left sum in (2.27) after change of variable s =
e−2k/dψd(r), by

L−1∑
k=k0

e−k
P{x}

(
τk > r|M̃ ≥ ek

) ≤ c1

L−1∑
k=k0

e−k exp
{−cψd(r)e−2k/d

}
≤ c2

∫ ∞

0
e−cs

(
s/ψd(r)

)d/2
s−1 ds ≤ c3ψd(r)−d/2, (2.35)

for some finite constants cj = cj (d, γ ), j = 2,3.
Step III. Moving next to bound the right sum in (2.27), conditioning on {F�τk�, τk ≤ r} we have by the strong

Markov property at �τk� that,

S̃i := S�τk�+i , i ≥ 0,

is an evolving set process for conductances π̃ (i)(·) := π(�τk�+i)(·), with which we also associate

κ̃i := κ�τk�+i , ψ̃d(i) := ψd

(�τk� + i
) − ψd

(�τk�
)
.

Note that if k ≥ k0 then τk > 0 and hence Mτk
= ek whenever τk < ∞. Thus, from (2.28) at the stopping time

u = τk ≤ r , we deduce that

P{x}(Ek|τk ≤ r) = P{x}(τk+1 = ∞|τk ≤ r) = 1 − e−1.

Consequently, for c4 = 1/(1 − e−1), k ≥ k0 and any F�τk�+i -stopping time

σ := inf
{
i ≥ 0 : π̃ (i)(S̃i) > eai+1

}
,

with at−�τk� = −∞, one has that

P{x}
(
T ′

k > t |Ek, τk ≤ r
) = c4P{x}

(
T ′

k > t, τk+1 = ∞|τk ≤ r
)

≤ c4P{x}
(
σ < t − �τk�, τk+1 = ∞|τk ≤ r

)
. (2.36)

In particular, we shall employ (2.36) for the non-increasing ai such that

c̃

4
κ̃2
i = 2

∫ ai

ai+1

e2z/d dz, 0 ≤ i < t − �τk�. (2.37)

To this end, we first show that (Qi∧σ ,F�τk�+i ), i < t − �τk� is a super-martingale, for

Qi := e−2ai Ỹi , Ỹi := π̃ (i)(S̃i)
1/2

I
(
τk+1 > �τk� + i

)
I(τk ≤ r).
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Indeed, applying Lemma 2.2 (for α = 1/2), to the evolving process {S̃i}, if τk ≤ r and τk+1 > �τk� + i then

E{x}[Ỹi+1|F�τk�+i] ≤ Ỹi

(
1 − c̃

4
κ̃2
i Ỹ

−4/d
i I{Ỹi>0}

)
.

This inequality trivially holds if either {τk+1 ≤ �τk� + i} or {τk > r} (whereby both sides are zero), yielding that for
i < t − 1 − �τk�

E{x}[Qi+1|F�τk�+i] ≤ Qi exp

{
2(ai − ai+1) − c̃

4
κ̃2
i (Ỹi )

−4/d
I{Ỹi>0}

}
. (2.38)

Recall that our choice of ai in (2.37), implies that

c̃

4
κ̃2
i ≥ 2(ai − ai+1)e

2ai+1/d ≥ 2(ai − ai+1)(Ỹi)
4/d , (2.39)

when Ỹi ≤ eai+1/2. Thus, the exponent on the right-hand side of (2.38) is non-positive when both i < σ and Ỹi > 0, in
which it follows from (2.38) that

E{x}(Q(i+1)∧σ |F�τk�+i ) ≤ Qi∧σ .

As this inequality trivially holds with equality when i ≥ σ , as well as when Ỹi = 0 (for then also Ỹi+1 = 0), we have
the claimed super-martingale property.

Now, since Ỹi < e(k+1)/2, if τk ≤ r then by (2.37),

Q0 ≤ e−2a0e(k+1)/2 ≤ c5e
k/2(ψd(t) − ψd(r)

)−d
,

for some c5 = c5(d, γ ) finite. Further, by the definition of σ , if i = σ < t − �τk� then S̃i is non-empty, hence
π̃ (i)(S̃i )

1/d ≥ κ̃i (see (2.20)). It then follows from (2.37) that

e2ai/d = e2ai+1/d + c̃

4d
κ̃2
i ≤ e2ai+1/d + c̃

4d
π̃(i)(S̃i)

2/d

which by definition of σ implies that also

π̃ (i)(S̃i ) ≥ c6e
ai (2.40)

for c6 := (1 + c̃/(4d))−d/2 positive. In case τk+1 = ∞ it further suffices to consider only those i ≥ 0 for which the
right-hand side of (2.40) is at most e(k+1), implying in turn that (when also τk ≤ r),

Qi = e−2ai π̃ (i)(S̃i)
1/2 ≥ c2

6

(
c6e

ai
)−3/2 ≥ c2

6e
−3(k+1)/2.

In conclusion, when τk ≤ r ,{
σ < t − �τk�, τk+1 = ∞} ⊆ {

σ < t − �τk�,Qσ ≥ c2
6e

−3(k+1)/2}.
Applying Doob’s optional stopping to the non-negative super-martingale {Qi∧σ } we further bound the right-hand side
of (2.36) by

c4P{x}
(
σ < t − �τk�,Qσ ≥ c2

6e
−3(k+1)/2|τk ≤ r

) ≤ c7e
3k/2

E{x}(Q0|τk ≤ r)

≤ c8e
2k

(
ψd(t) − ψd(r)

)−d
,

for some finite cj (d, γ ), j = 7,8. In view of (2.36) the right sum of (2.27) is thus bounded by

L−1∑
k=k0

e−k
P{x}

(
T ′

k > t |Ek, τk ≤ r
) ≤ c9e

L
(
ψd(t) − ψd(r)

)−d
. (2.41)

For our choice of L, the bound (1.7) follows from (2.27), (2.35) and (2.41). �
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3. Proofs of Propositions 1.10, 1.11 and 1.15

Proof of Proposition 1.10. Let {τj } be a collection of i.i.d exp(2) random variables. We simulate the CSRW using
Tk := ∑k

j=1 τj as our successive Poisson clocks and independently designate that each time Tk the clock rings, with
probability (1/2) the walk Yt stays put, and with probability (1/2) it makes a jump according to the given edge
conductances at time Tk . By the thinning property of the Poisson process, the simulated process t �→ Yt is the CSRW

of Definition 1.8. On the other hand, the sampled process Xk = YTk
has the law of (1/2)-lazy discrete time random

walk on G, with time-varying edge conductances π(Tk)(x, y) that are in [C−1
1 ,C1] for every realization ω of {Tk}.

Consequently, denoting Nt = max{k ∈ N : Tk ≤ t}, a Poisson process of rate 2, we have as in Corollary 1.7 that for
some C2 = C2(d,C1) > 0, any t ≥ s ≥ 0 and all ω,

ψω
d (t) − ψω

d (s) ≥ C2(Nt − Ns).

From Definition 1.9 of the effectively non-decreasing RCLL conductances t �→ π(t)(x) and (1.8), for a.e. ω = {Tk}
there exists cω∗ = cω∗ (d,C1) finite, such that the quenched heat-kernel bound

P ω(s, x; t, y) ≤ cω∗
[
e + C2(Nt − Ns)

]−d/2 =: cω∗ φ(Nt − Ns), (3.1)

applies for the transition probabilities P ω(s, x; t, y) of the CSRW {Yt }. With φ(·) positive and decreasing on R+, we
have that

φ(Nt − Ns) ≤ φ(0)I{Nt−Ns≤t−s} + φ(t − s),

and consequently∫ ∞

0
E

[(
cω∗

)−1
P ω(0, x; t, y)

]
dt ≤ φ(0)

∫ ∞

0
P(Nt ≤ t) dt +

∫ ∞

0
φ(t) dt (3.2)

is finite. Thus, by Fubini’s theorem
∫ ∞

0 (cω∗ )−1P ω(0, x; t, y) dt is finite for a.e. ω, which together with the finiteness
of cω∗ implies that

∫ ∞
0 P ω(0, x; t, y) dt is finite. That is, starting at any non-random x ∈ V we have a finite total local

time for the CSRW at any y ∈ V . Hence, for a.e. ω the sampled process at jump times {YTk
}, visits every y ∈ V only

finitely often. �

Proof of Proposition 1.11. In view of Theorem 1.2 with V = V(D0) and Remark 1.3, with d/2 > 1, we have the
stated claim upon showing that for any θ = θiso > 0, there exists some T = T (ω, θ) < ∞ and constant c′(θ, d) > 0
such that the isoperimetric growth function satisfies

ψd(t) ≥ c′t1−θ(1−1/d), ∀t ≥ T ,P ω-a.s. (3.3)

(as then ψd(t)−d/2 would be summable upon taking θ sufficiently small).
To this end, let D�

u denote the vertices of Du ∩ [−�, �]d and recall that starting at x = 0 we have that the evolving
set Su ⊆ D

u
u (because the SRW has at most linear growth in each direction). Here π(u)(x, y) ∈ {0,1} so we are just

counting edges. Further, with all degrees of vertices of Du within [1,2d], we replace π(u)(A) by the size |A|(u) of
A ∩Du with |∂A|(u) = π(u)(A,Ac). By [21, Theorem 1.2] (together with Borel–Cantelli lemma), the unique infinite
percolation cluster D0 of [21] satisfies the following isoperimetric inequality for some c = c(θ) > 0 and all l ≥ l0(ω, θ)

large enough

inf
A⊆D

l
0,|A|≤|Dl

0|/2

{ |∂
D

l
0
A|

|A|(d−1)/d

}
≥ cl−θ(1−1/d), P ω-a.s. (3.4)

Moreover, since to Du we only add edges and no new vertices, clearly |∂A|(u) ≥ |∂A|(0), and |A|(0) = |A|(u), with the
inequality (3.4) holding uniformly for all {Du}. Applying (3.4) to sets Su ⊆D

2u
u , we have that

κu ≥ c′u−θ(1−1/d),
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yielding all t ≥ 2T , the claimed growth of (3.3),

ψd(t) ≥
t−1∑
u=T

κ2
u ≥ c′2(t − T )t−θ(1−1/d) ≥ c′2

2
t1−θ(1−1/d).

�

Proof of Proposition 1.15. With (a) and (b) trivially holding at t = 0, we proceed by induction on t . Specifically,
we assume that both (a) and (b) hold for some t ≥ 0. Then, with St = (S0, . . . , St ), by the definition of P(·; ·) and
P ∗(·; ·), our hypothesis of (b) holding for t implies that for any v ∈ B such that π(t)(St , v) > 0,

P
∗
x,{x}(Xt+1 = v,St+1 = B|St )

=
∑
w∈St

P
∗(Xt+1 = v,St+1 = B|Xt = w,St )P

∗
x,{x}(Xt = w|St )

=
∑
w∈St

P (t,w; t + 1, v)K(t, St ; t + 1,B)π(t+1)(v)

π(t)(St , v)

π(t)(w)

π(t)(St )

= π(t+1)(v)

π(t)(St )

∑
w∈St

π(t)(w)P (t,w; t + 1, v)

π(t)(St , v)
K(t, St ; t + 1,B)

= π(t+1)(v)

π(t)(St )
K(t, St ; t + 1,B). (3.5)

By Definition 1.14, the conditioned evolving set is such that Xt+1 ∈ St+1 so the left-hand side of (3.5) is zero when
π(t)(St , v) = 0. Consequently, summing in (3.5) over v ∈ B we find that

P
∗
x,{x}(St+1 = B|St ) = π(t+1)(B)

π(t)(St )
K(t, St ; t + 1,B) = K̂(St ,B), (3.6)

and thereby verify that our claim (a) extends up to t + 1. Further, the ratio of (3.5) and (3.6) results with

P
∗
x,{x}(Xt+1 = v|St+1 = B,St ) = π(t+1)(v)

πt+1(B)
,

which amounts to the claimed property (b) at t + 1. �
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