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LOGARITHMIC TAILS OF SUMS OF PRODUCTS OF POSITIVE
RANDOM VARIABLES BOUNDED BY ONE

BY BARTOSZ KOŁODZIEJEK

Warsaw University of Technology

In this paper, we show under weak assumptions that for R
d= 1 + M1 +

M1M2 + · · · , where P(M ∈ [0,1]) = 1 and Mi are independent copies of
M , we have lnP(R > x) ∼ Cx lnP(M > 1 − 1/x) as x → ∞. The constant
C is given explicitly and its value depends on the rate of convergence of

lnP(M > 1 − 1/x). Random variable R satisfies the stochastic equation R
d=

1 +MR with M and R independent, thus this result fits into the study of tails
of iterated random equations, or more specifically, perpetuities.

1. Introduction. In the present paper, we consider a random variable R given
by the solution of the stochastic equation

R
d= Q + MR R and (Q,M) independent.(1.1)

When R is the solution of (1.1), then following a custom from insurance mathemat-
ics, we call R a perpetuity. In this scheme, Q represents the payment, and M the
discount factor, both being subject to random fluctuations. Then R is the present
value of a commitment to pay the value of Q every year in the future [see (1.3)
below]. Such stochastic equation appears in many areas of applied mathematics;
for a broad list of references see, for example, [7] and [9].

Under suitable assumptions [see (1.4)] on (Q,M), one can think of R as a limit
in distribution of the following iterative scheme:

Rn = Qn + MnRn−1, n ≥ 1,(1.2)

where Rn−1 and (Qn,Mn) are independent, R0 is arbitrary and (Qn,Mn), n ≥ 1,
are i.i.d. copies of (Q,M). Writing out the above recurrence and renumbering the
random variables (Qn,Mn), we see that R may also be defined by

R
d=

∞∑
j=1

Qj

j−1∏
k=1

Mk,(1.3)

provided that the series above converges in distribution. Sufficient conditions for
the almost sure convergence of the series in (1.3) have been given by Kesten [19]
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who also considered a multidimensional case when M is a matrix and Q is a
vector. For a detailed discussion of sufficient and necessary conditions in a one-
dimensional case, we refer to Vervaat [26] and Goldie and Maller [14]; conditions

E ln+ |Q| < ∞ and E ln |M| < 0(1.4)

suffice for the almost sure convergence of the series in (1.3).
The main focus of research is the tail behavior of R. A classical result of

Kesten [19] (see also [12, 16] for one-dimensional case) states that if there exists
a constant κ > 0 such that E|M|κ = 1, E|M|κ ln+ |M| < ∞ and 0 < E|Q|κ < ∞
(supplemented with some additional assumption of nondegeneracy and that the
distribution of ln |M| given M �= 0 is nonarithmetic), then there exists a positive
constant C such that

P
(|R| > x

) ∼ Cx−κ .

Throughout the paper, the symbol f (x) ∼ g(x) means that f (x)/g(x) → 1 as
x → ∞. For representations and bounds for C, see [4, 5, 10, 12]. Note that such κ

exists only if P(|M| > 1) > 0. The complementary case, P(|M| ≤ 1) = 1, is not so
well understood and the exact asymptotic of lnP(R > x) is known in special cases
only. The results in this area with references are given in Section 3.

In the present paper, we find the asymptotic behaviour of lnP(R > x), when
Q is degenerate and P(0 ≤ M ≤ 1) = 1 with some additional weak assumptions
on the tail of M . Under such conditions, we were able to link the behaviour of M

near 1 with the log-tail of R. In particular, we show that if Q = 1 with probability
1 and lnP(M > 1 − 1/x) ∼ −cxα−1 for some α > 1 and c > 0, then R exhibits
Weibull-like tails:

lnP(R > x) ∼ −cβα−1xα,

where β > 1 is such that α−1 + β−1 = 1. We also cover the cases when x 	→
− lnP(M > 1−1/x) is slowly varying or belongs to the class � of rapidly varying
functions.

In the case of Q degenerate, finding the asymptotic of the tail P(R > x) is a
very hard task, which, at the moment, has been solved only when Mα is uniformly
distributed, α > 0. However, the knowledge of asymptotics of log-tail of R is now
fairly complete. At last, we would like to stress that systematic study of the tail
of R under the assumption that |M| ≤ 1 with probability 1 is not as limiting as it
would appear at the first glance and this is due to following observation from [26].

THEOREM 1.1. Let R be a solution of (1.1) for some (Q,M), such that
P(|M| �= 1) > 0 and P(M = 0) = 0. Then for all ε > 0 there exists a random pair
(Q′,M ′) such that P(0 < M ′ < ε) = 1 and R is a solution of (1.1) with (Q′,M ′)
instead of (Q,M).
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The paper is organized as follows. We start in the next section with basic defini-
tions and theorems regarding regular and rapid variation. In Section 3, we briefly
recall some known results regarding the asymptotic behaviour of the tail of R in
the case P(|M| ≤ 1) = 1. Statement of the main result is given in Section 4. For
suitably chosen f , we independently prove the upper bound

lim sup
x→∞

lnP(R > x)

f (x)
≤ B

and the lower bound

lim inf
x→∞

lnP(R > x)

f (x)
≥ B

for some constant B . The proof of the upper bound is based on an inductive argu-
ment given in [18] (Section 5), while for the lower bound we improve the Goldie–
Grübel inequality (Section 6). Section 7 is devoted to the study of negative M and
the case not covered by Theorem 4.1, that is, when x 	→ − lnP(M > 1 − 1/x) is
rapidly varying, but does not belong to the class �.

2. Regular variation. In this section, we give a brief introduction to the the-
ory of regular and rapid variation. For further details, we refer to Bingham et al. [3].

A measurable function f : (0,∞) → (0,∞) is called regularly varying with
index ρ [denoted f ∈ R(ρ)], |ρ| < ∞, if for all λ > 0,

lim
x→∞

f (λx)

f (x)
= λρ.(2.1)

The convergence above is locally uniform ([3], Theorem 1.5.2). If f ∈ R(0), then
f is called a slowly varying function. The class of slowly varying functions is a
fundamental part of the Karamata’s theory of regular variability, since if f ∈ R(ρ),
then f (x) = xρL(x), where L ∈ R(0).

We say that a positive function varies smoothly with index ρ [f ∈ SR(ρ)], if
f ∈ C∞ and for all n ∈N,

lim
x→∞

xnf (n)(x)

f (x)
= ρ(ρ − 1) · · · (ρ − n + 1).

In particular, if f ∈ SR(ρ) then x2f ′′(x)/f (x) ∼ ρ(ρ−1), hence for ρ > 1 second
derivative f ′′(x) is positive for large x so f is ultimately strictly convex (ultimately
here and later means “for large values of the argument”). By the Smooth Variation
Theorem for any f ∈ R(ρ), there exist f , f̄ ∈ SR(ρ) ⊂ C∞ with f (x) ∼ f̄ (x)

and f ≤ f ≤ f̄ on a neighbourhood of infinity.
If f ∈ R(ρ), ρ > 0, then for any A > 1 and δ ∈ (0, ρ), there exist X = X(A, δ)

such that (Potter’s theorem)

1

A

(
y

x

)ρ−δ

≤ f (y)

f (x)
≤ A

(
y

x

)ρ+δ

, y > x > X.
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Potter’s theorem implies following easy Lemma, which will be very useful later
on.

LEMMA 2.1. If f ∈ R(ρ), ρ > 0, g(x) → ∞ as x → ∞ and

lim
x→∞

f (x)

f (g(x))
= L,

then limx→∞ x/g(x) = L1/ρ .

PROOF. First, observe that Potter bounds imply the existence of constants
λ1, λ2 > 0 such that for x large enough λ1 ≤ x

g(x)
≤ λ2. Let xn → ∞. From any

sequence yn = xn/g(xn), one may select a convergent subsequence (ynk
)k , that is,

ynk
= xnk

/g(xnk
) converges to λ ∈ [λ1, λ2] say. Since the convergence in (2.1)

is uniform, one has f (xnk
)/f (g(xnk

)) = f (ynk
g(xnk

))/f (g(xnk
)) → λρ . Thus,

λρ = L, and so x/g(x) converges to λ = L1/ρ . �

If f : (0,∞) → (0,∞) is measurable and

lim
x→∞

f (λx)

f (x)
=

⎧⎪⎪⎨⎪⎪⎩
∞, λ > 1,

1, λ = 1,

0, 0 < λ < 1,

we call f rapidly varying [denoted f ∈ R(∞)]. The rapidly varying functions,
however, in general do not possess properties that we need in the proof, there-
fore we will restrict our considerations to a subclass of R(∞) called �. This
class appears in a natural way when dealing with convergence in distribution of
sequences of partial maxima of independent, identically distributed random vari-
ables: if X1,X2, . . . are independent random variables with a common distribution
F [assume for simplicity F(x) < 1 for all x], then there exist sequences of real
constants (an) and (bn) such that

P

(
an

(
max
k≤n

Xk − bn

)
≤ x

)
→ exp

(−e−x)
as n → ∞

if and only if the function U(x) = 1/(1 − F(x)) is in � (Gnedenko [11]).
The class � consists of nondecreasing and right-continuous functions f for

which there exists a measurable function g : R → (0,∞) such that (see [3], Sec-
tion 3.10)

lim
x→∞

f (x + ug(x))

f (x)
= eu, u ∈ R.(2.2)

It can be shown that for f ∈ � and any λ > 1 we have f (λx)/f (x)
x→∞−→ ∞, thus

� ⊂ R(∞) except that the domain of definition of functions in � is R, while those
of R(∞) are (0,∞).
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Function g in (2.2) is called an auxiliary function and if f has nondecreasing
positive derivative, then one may take g = f/f ′. In such case, f ′ also belongs to
� with the same auxiliary function as f . Every f ∈ � has a representation [2]

f (x) = exp
{
η(x) +

∫ x

0

1

b(t)
dt

}
,

where η is measurable, b is a positive differentiable function such that η(x) → d

and b′(x) → 0 as x → ∞. Obviously,

h(x) := exp
{
d +

∫ x

0

1

b(t)
dt

}
∼ f (x).

Moreover, h is at least twice differentiable and h′′(x) = h(x)(1 − b′(x))/b(x)2,
thus h is ultimately strictly convex.

The class � is very rich: If f1 ∈ R(ρ), ρ > 0 and f2 ∈ �, then f1 ◦ f2 ∈ � ([3],
Proposition 3.10.12). The same holds if f1 ∈ � and f ′

2 ∈ R(ρ) with ρ > −1 or
if f1, f

′
2 ∈ � ([3], page 191). An easy example of a function from R(∞) \ � is

f (x) = exp(x − cosx).
If f ∈ � with auxiliary function g, then f −1 (generalized inverse) is slowly

varying and for λ > 0,

lim
x→∞

f −1(λx) − f −1(x)

g(f −1(x))
= lnλ.(2.3)

3. Previous results. In the case of bounded Q and P(|M| ≤ 1) = 1, the
knowledge of asymptotic behaviour of the tail P(R > x) or log-tail lnP(R > x)

is very scarce. The fact that there are few examples of explicit solutions of (1.1)
certainly does not help.

Asymptotic of the tail P(R > x) for the case M = U1/α , where U ∼ U[0,1] and
α > 0, was treated in [25] with the use of asymptotic result from [6]. If α = 1, then
P(R − 1 > x) ∼ �(x), where � is the Dickman–de Bruijn function, which appears,
for example, in the number theory.

Some more recent results appeared in [13], where the authors considered non-
degenerate Q and M such that

P(M = 0) > 0 or E ln+ |Q| < ∞.

The distribution of M is said to be equivalent at 1 to uniform distribution U([0,1])
if for every ε > 0 there exist positive constants c and C such that

cF U([0,1])(1 − δ) ≤ FM(1 − δ) ≤ CF U([0,1])(1 − δ) ∀δ ∈ (0, ε].(3.1)

Here and henceforth, F denotes the tail function F = 1 − F . If the distribution of
M is equivalent at 1 to U([0,1]) and Q is such that for q+ = sup{q : P(Q > q) >

0}, one has 0 < q+ ≤ ∞, then it was shown that

lim
x→∞

lnP(R > x)

x lnx
= − 1

q+
.
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When Q is degenerate, this result follows from [25].
The most recent results come from [18], where three different distributions of

M along with degenerate and positive Q were considered. For instance, the authors
showed that if M has a distribution equivalent at 1 [in the sense of (3.1)] to F(x) =
1 − exp{−β(− ln(1 − x))γ }, for β,η > 0, then

lim
x→∞

lnP(R > x)

β x
q
(lnx)η

→ −1.

This is an example when f (x) := −x lnP(M > 1 − 1/x) = βx(lnx)η ∈ R(1).
Their next example is f ∈ R(r), r > 1. They showed that if the distribution of

M is equivalent at 1 to a distribution with given density, then

−∞ < c1 ≤ lim inf
x→∞

lnP(R > x)

xr
≤ lim sup

x→∞
lnP(R > x)

xr
≤ c2 < 0,

but c2 > c1 and this does not imply that the limit of lnP(R > x)/xr even exists.
Their upper bound however is optimal, but this will follow from the present paper.

In the third example (this time f comes from the class �), they showed that
there exist a distribution of M such that

∀B > q lim sup
x→∞

lnP(R > x)

B exp(x/B)
≤ −1

e

and

∀B < q lim inf
x→∞

lnP(R > x)

B exp(x/B)
≥ ln(1 − B/q)

B
.

This result is even less satisfactory than the one from the previous example, be-
cause here one may not take the same comparison functions (setting B = q one
obtains −∞ ≤ lim inf ≤ lim sup ≤ −1/e).

Some general bounds for arbitrary distribution of M can be obtained from the
following result due to Hitczenko [17]: if Q = q > 0 and P(0 ≤ M ≤ 1) = 1, then
for sufficiently large x,

2 ln 2
x

q
lnP

(
M > 1 − q

2x

)
≤ lnP(R > x) ≤ 4

x

q
lnP

(
M > 1 − 2q

x

)
.(3.2)

Heuristically, one would expect that lnP(R > x) ∼ cx/q lnP(M > 1 − q/x) and
this actually happens to be the proper estimate, as it will be shown below.

The case of bounded Q and P(|M| ≤ 1 − ε) = 1 for ε > 0 is uninteresting,
because then P(R > x) = 0 for x large enough. In order to exclude this case from
further considerations, we will assume that

sup
{
x : P(M > x) > 0

} = 1.(3.3)

If Q is not bounded, the relation between the tail of R and the tail of M in (3.2)
is not always the case. Grincevićius [16] has shown (this result was improved and
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the proof corrected in [15]) that if M is positive with probability 1, EMα < 1,
EMα+ε < ∞ and P(Q > x) ∈ R(−α) for α, ε > 0, then

P(R > x) ∼ 1

1 −EMα
P(Q > x).

The case when x 	→ P(Q > x) ∈ R(0) was treated recently in [8].
The tail and log-tail asymptotics of a perpetuity R = ∫ ∞

0 exp(−X(s)) ds, where
X is a Lévy process, was studied in [21, 23].

Some bounds for the density as well as for the tail functions of R were also
obtained in [20].

4. Main result.

THEOREM 4.1. Let R satisfy (1.1) with P(M ∈ [0,1)) = 1. Assume that (3.3)
holds and Q = q > 0 with probability 1. Define f (x) = −x lnP(M > 1 − 1/x),
x ≥ 1.

If f ∈ R(r∗), r∗ > 1, then

lim
x→∞

lnP(R > x)

f (x
q
)

= −rr∗−1,

where 1/r + 1/r∗ = 1.
If f ∈ � ⊂ R(∞), then

lim
x→∞

lnP(R > x)

f (x
q
)

= −e.

If f ∈ R(1) is ultimately strictly convex, then

lim
x→∞

lnP(R > x)

f (x
q
)

= −1.

REMARK 4.1. Under the assumptions of Theorem (4.1), the series in (1.3)
converges and the perpetuity R exists.

REMARK 4.2. Note that if 1/r + 1/r∗ = 1, then

lim
r∗→1+ rr∗−1 = 1 and lim

r∗→∞ rr∗−1 = e,

therefore, we have a kind of continuity of the constant here.

Also, we have the following result, which complements Theorem 4.1.

COROLLARY 4.1. Let R satisfy (1.1) with P(M ∈ [0,1]) = 1 and P(M = 1) ∈
(0,1). If Q = q > 0 with probability 1, then

lim
x→∞

lnP(R > x)

x
= 1

q
lnP(M = 1).
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PROOF. From [1], Theorem 1.7, specialized to our case, it follows that EeλR

exists if λ < − lnP(M = 1)/q . By Markov’s inequality, we have for λ > 0.

P(R > x) ≤ e−λx
EeλR.

Taking the logarithms of both sides, dividing by x, taking lim supx→∞ and passing
with λ to − lnP(M = 1)/q , we obtain

lim sup
x→∞

lnP(R > x)

x
≤ 1

q
lnP(M = 1).

Recall that R
d= q

∑∞
j=1

∏j−1
k=1 Mk and let R∗

n := q
∑n+1

j=1
∏j−1

k=1 Mk . Since
P(R∗

n = q(n + 1)) = P(M = 1)n, we have

P(R > x) ≥ P
(
R∗

� x
q
� > x

) ≥ P(M = 1)
� x

q
�
,

therefore,

lim inf
x→∞

lnP(R > x)

x
≥ 1

q
lnP(M = 1). �

Note that an upper bound under the assumptions of Corollary 4.1 was consid-
ered in [13], Corollary 2.2, but there it was shown there only that

lim sup
x→∞

lnP(R > x)

x
≤ 1

q
lnEM.

5. Upper bound. In this section, we will prove that

lim sup
x→∞

lnP(R > x)

−x
q

lnP(M > 1 − q
x
)

≤ −B

for some constant B . We start with the following easy result with large deviations’
flavour, which can be proved quickly by Markov’s inequality.

PROPOSITION 5.1. Suppose that

EezX ≤ ef (z), z > 0,

for some function f : R+ →R+. Then

lnP(X > x) ≤ −f ∗(x),

where

f ∗(x) = sup
{
zx − f (z) : z > 0

}
.(5.1)
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The function f ∗ is called the convex conjugate of f . By the very definition
f ∗ is convex and f (x) + f ∗(z) ≥ xz for any x, z > 0 (Young’s inequality). Note
that Young’s inequality implies that f ∗(x)/x → ∞ as x → ∞. If f is convex and
lower-semicontinuous, then f ∗∗ = f [24]. Convex-conjugacy is order-reversing,
that is, if f ≤ g, then f ∗ ≥ g∗.

If f is differentiable and strictly convex, then the supremum (5.1) is attained
at z = (f ′)−1(x) and thus f ∗(x) = x(f ′)−1(x) − f ((f ′)−1(x)). Moreover, f ′ ◦
(f ∗)′ = (f ∗)′ ◦ f ′ = Id. Thus,

f ∗(x) = x
(
f ∗)′

(x) − f
((

f ∗)′
(x)

)
.(5.2)

We begin with a proof of the upper bound. Let

f (x) :=
⎧⎪⎨⎪⎩−x lnP

(
M > 1 − 1

x

)
, x ≥ 1,

0, x < 1.

The function f is right-continuous and strictly increasing. Without loss of gener-
ality, we may assume that Q = 1 with probability 1, that is, q = 1.

Hitczenko and Wesołowski [18], making use of [13], have developed a method
for obtaining an upper bound for moment generating function of R, which then
through Proposition 5.1 gives an upper bound for the tail of R. However, there is
an important nuance in their inductive argument. First, they show that if for some
function ψ ,

Iψ(z) := ez
Eeψ(zM)−ψ(z) ≤ 1(5.3)

for all z > 0, then the inductive assumption EezRn ≤ eψ(z) for all z > 0 holds for
every n. Indeed,

EezRn+1 = ez
EezMn+1Rn ≤ ez

Eeψ(zM) ≤ eψ(z).

There is no problem with starting the induction, since R0 may be taken arbitrary.
The authors of [18] later state that it is enough to assume that (5.3) holds for
large values of z only (z > N0, say). If it is so, we are able only to show that
E exp(zR1) ≤ exp(ψ(z)) for z > N1 > N0. This then implies that E exp(zRn) ≤
exp(ψ(z)) holds for large z and the lower bound for such z’s may depend on n.
Therefore, letting n → ∞ does not justify the upper bound for E exp(zR). Note
that if (5.3) holds for large z, this does not imply that it holds for all z > 0.

Luckily, there is a way out of this situation. Assume that P(M = 1) = 0 (only
such situation will be considered using the following scheme). We will show that
there exists a constant D such that E exp(zR) ≤ exp(ψ(z) + D) for large z. Let
N > 0 be such that (5.3) holds for z > N . Define ψ̃(x) = ax − D for x ∈ [0,N]
and ψ̃(x) = ψ(x) for x > N . If a > 1/(1 −EM), then I ′̃

ψ
(0) = 1 − a + aEM < 0,

thus there exists ε > 0 such that Iψ̃ (z) ≤ 1 for z ∈ [0, ε). For z ∈ [ε,N ] we have

Iψ̃ (z) ≤ eN
Ee−aε(1−M)
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and the right-hand side tends to 0 as a → ∞, thus for a large enough one has
Iψ̃ (z) ≤ 1 for all z ∈ [0,N]. On the other hand, for z > N one has

Iψ̃ (z) = Iψ(z) + ez
E

(
eazM−ψ(z)−D − eψ(zM)−ψ(z))I (zM ≤ N),

and one may choose D in such a way that ax − D < ψ(x) for any x ∈ [0,N],
so that the second term above is nonpositive. Thus, Iψ̃ (z) ≤ 1 for all z > 0. The
inductive argument holds for ψ̃ , and finally we obtain the desired bound

EezR ≤ eψ(z)+D

for large z (z > N ). Note that as x → ∞ the supremum in (5.1) is attained at z →
∞, thus for large x one has ψ̃∗(x) = (ψ + D)∗(x) = ψ∗(x) − D. Proposition 5.1
then implies that

lim sup
x→∞

lnP(R > x)

ψ∗(x)
≤ −1.(5.4)

To obtain this result, we will actually show much more:

Eez+ψ(zM)−ψ(z) → 0 as z → ∞
and this will be done using asymptotic properties of ψ only.

The proof is divided into three cases:

Case I f ∈ R(r∗), r∗ > 1,
Case II f ∈ �,
Case III f ∈ R(1).

Case I. We will show that for some B > 0,

I (z) := E exp
{
f ∗

B
(zM) − f ∗

B
(z) + z

}
(5.5)

converges to 0 as z → ∞, where f ∈ SR(r∗), as in the Smooth Variation Theorem,
is such that f (x) ∼ f (x), f ≤ f and f ∗

B
(x) := Bf ∗(x/B). Note that f ∗

B
may be

chosen to be nondecreasing.
Let FM denote the cumulative distribution function of M . For ε1 ∈ (0,1), we

have

I (z) ≤ exp
{
f ∗

B

(
z(1 − ε1)

) − f ∗
B
(z) + z

}
FM(1 − ε1)

−
∫ 1

1−ε1

exp
{
f ∗

B
(zx) − f ∗

B
(z) + z

}
dFM(x).

Since f ∈ SR(r∗) we have f ′ ∈ SR(r∗ − 1), thus (f ∗)′ ∈ SR(1/(r∗ − 1)) and
f ∗ ∈ SR(r), where 1/r + 1/r∗ = 1 (see also [3], Theorem 1.8.10).

The first term converges to zero, since

f ∗
B

(
z(1 − ε1)

) − f ∗
B
(z) + z = f ∗

B
(z)

(
z

f ∗
B
(z)

+ f ∗
B
(z(1 − ε1))

f ∗
B
(z)

− 1
)

→ −∞,
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and limz→∞ f ∗
B
(z(1 − ε1))/f

∗
B
(z) = (1 − ε1)

r < 1. After integrating by parts (the
integrand is continuous) and changing the variable x 	→ 1 − t , we obtain

I (z) ≤ z
(
f ∗

B

)′
(z)

∫ ε1

0
FM(1 − t)e

f ∗
B
(z(1−t))−f ∗

B
(z)+z

dt + o(1).

f ∗ is ultimately convex, so, for z large enough we have

f ∗
B

(
z(1 − t)

) − f ∗
B
(z) ≤ −zt

(
f ∗

B

)′(
z(1 − t)

) ≤ −zt
(
f ∗

B

)′(
z(1 − ε1)

)
.

Recall that FM(1 − t) = exp{−tf (1
t
)} ≤ exp{−tf (1

t
)}, thus

I (z) ≤ ε1z
(
f ∗

B

)′
(z) exp

{
z − inf

t∈(0,ε1)

{
tf

(
1

t

)
+ zt

(
f ∗

B

)′(
z(1 − ε1)

)}}
+ o(1).

(5.6)

The infimum is attained at the point t0 = t0(z) such that

1

t0
f ′

(
1

t0

)
− f

(
1

t0

)
= z

(
f ∗

B

)′(
z(1 − ε1)

)
.(5.7)

Set f ′(1/t0) = x, that is, 1/t0 = (f ∗)′(x). Substituting these into the left-hand
side of (5.7) shows that it equals (f ∗)′(x)x − f ((f ∗)′(x)), which, by (5.2), equals
f ∗(x). Thus, (5.7) reads

f ∗(x) = z
(
f ∗)′(1 − ε1

B
z

)
.(5.8)

For z → ∞, we have x = x(z) → ∞. Moreover,

t0f

(
1

t0

)
+ zt0

(
f ∗

B

)′(
z(1 − ε1)

) = x.(5.9)

Thus, (5.6) simplifies to

I (z) ≤ ε1z
(
f ∗

B

)′
(z)ez−x + o(1).(5.10)

Since f ∗ ∈ SR(r), r > 1, we know that z(f ∗)′(z) ∼ rf ∗(z). Hence

f ∗(x) = z
(
f ∗)′(1 − ε1

B
z

)
∼ r

(
1 − ε1

B

)r−1
f ∗(z)

and Lemma (2.1) implies that

x

z
→

(
r

(
1 − ε1

B

)r−1)1/r

.(5.11)

Combining (5.10) and (5.11), we obtain

I (z) ≤ ε1z
(
f ∗

B

)′
(z) exp

{
z

(
1 − x

z

)}
+ o(1)

= ε1z
(
f ∗

B

)′
(z) exp

{
z

(
1 − r1/r

(
1 − ε1

B

)1/r∗
+ o(1)

)}
+ o(1),
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thus if 1 − r1/r ((1 − ε1)/B)1/r∗
< 0, then I (z) → 0 as z → ∞. This is true if

B < (1 − ε1)r
r∗−1. Passing to the limit as ε1 → 0 and B → rr∗−1, by (5.4) we

obtain

lim sup
x→∞

lnP(R > x)

f (x)
= lim sup

x→∞
lnP(R > x)

f ∗∗(x)
≤ −rr∗−1.

The above equality follows from the fact that f is ultimately strictly convex, and
thus

f ∗∗
B

(x) = Bf (x) ∼ Bf (x).

Case II. For ε > 0, define f (x) = e−εh(x), where h(x) is defined as in Sec-
tion 2. We have h(x) ∼ f (x), h(x) is ultimately strictly convex and f (x) ≤ f (x)

for large values of x. Since f ′ ∈ �, we know that (f ′)−1 = (f ∗)′ is slowly vary-
ing, and thus f ∗ ∈ R(1). Following the same approach as in Case I, we obtain [see
(5.11), here r = 1]

x

z
→ 1,

thus in this case we need a more sophisticated approach.
Again using the fact that (f ′)−1 = (f ∗)′, by (2.3) we obtain

lim
x→∞

(f ∗)′(λx) − (f ∗)′(x)

g((f ∗)′(x))
= lnλ.(5.12)

Moreover, g = f /f ′, thus g((f ∗)′(x)) = f ((f ∗)′(x))/x.

Recall that f ∗(x) = x(f ∗)′(x) − f ((f ∗)′(x)). Hence, using (5.8) we get

z − x = zf ((f ∗)′(x))

f ∗(x)

(
x(f ∗)′(x) − f ((f ∗)′(x))

f ((f ∗)′(x))
− xz(f ∗

B
)′(z(1 − ε1))

zf ((f ∗)′(x))

)

= zf ((f ∗)′(x))

f ∗(x)

(
x(f ∗)′(x) − x(f ∗

B
)′(z(1 − ε1))

f ((f ∗)′(x))
− 1

)
.

Since x ∼ z, (5.12) implies that

x(f ∗)′(x) − x(f ∗)′(1−ε1
B

z)

f ((f ∗)′(x))
→ ln

B

1 − ε1
.

By (5.10), we have

I (z) ≤ ε1z
(
f ∗

B

)′
(z) exp

{
zf ((f ∗)′(x))

f ∗(x)

(
ln

B

1 − ε1
− 1 + o(1)

)}
+ o(1).

Since
zf ((f ∗)′(x))

f ∗(x)
∼ f ((f ∗)′(x))

(f ∗)′(x)
→ ∞, we see that if ln(B/(1 − ε1)) − 1 < 0, then

I (z) → 0. This happens if B < (1 − ε1)e.
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Passing to the limit as ε1 → 0 and B → e, we obtain

lim sup
x→∞

lnP(R > x)

f (x)
≤ −e.

Since f (x) ∼ e−εf (x), we get

lim sup
x→∞

lnP(R > x)

f (x)
≤ −e1−ε.

ε → 0 gives the result.
Case III. Function x 	→ − lnFM(1 − 1

x
) is slowly varying (still, nondecreasing)

and we need a different approach. The one we will present here has been inspired
by [18], where a similar technique was used to solve the case lnP(M > 1−1/x) =
−β(lnx)η. We will prove that for 0 < B < 1

I (z) = E exp
{
f ∗

B
(zM) − f ∗

B
(z) + z

}
converges to 0 as z → ∞, where f ∗

B
(x) := Bf ∗(x/B) and f ∈ SR(1) is as in

Case I. The function f is assumed to be ultimately strictly convex and this implies
f is also ultimately strictly convex.

We have for α ∈ (0,1),

I (z) ≤ ez
∫ 1

1−α
dFM(x) + exp

{
z + f ∗

B

(
z(1 − α)

) − f ∗
B
(z)

} ∫ 1−α

0
dFM(x)

≤ ezFM(1 − α) + exp
{
z + f ∗

B

(
z(1 − α)

) − f ∗
B
(z)

}
≤ exp

{
z − αf

(
1

α

)}
+ exp

{
z − zα

(
f ∗

B

)′(
z(1 − α)

)}
,

where the last inequality follows from FM(1 − α) = exp{−αf ( 1
α
)} ≤

exp{−αf ( 1
α
)}.

Define the function α = α(z) by the identity z − αf (1/α) = −ρ, where ρ > 0
is fixed. Obviously, α(z) → 0 as z → ∞. We will show that the second term above
goes to 0 for some B > 0. We are to show that

lim
z→∞

{
1 − α

(
f ∗

B

)′(
z(1 − α)

)}
< 0.(5.13)

This will happen if for z large enough

1

α
<

(
f ∗

B

)′(
z(1 − α)

)
,

which is equivalent to

f ′
(

1

α

)
<

z(1 − α)

B
.
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By the definition of α(z) and Monotone Density Theorem z ∼ αf (1/α) ∼
f ′(1/α), thus, if B < 1, (5.13) holds true for large z and we obtain

lim
z→∞ I (z) ≤ e−ρ → 0 as ρ → ∞

and so (after taking B → 1)

lim sup
x→∞

lnP(R > x)

f ∗∗(x)
≤ −1.

f is ultimately strictly convex, thus f is also ultimately strictly convex. This im-
plies that f ∗∗(x) = f (x) for large x and since f (x) ∼ f (x), we finally obtain
that

lim sup
x→∞

lnP(R > x)

f (x)
≤ −1.

6. Lower bound. We start with (1.2), in which (Mn)n are i.i.d. copies of M

and R0 = 1. Again, without loss of generality we may assume that Q = q = 1.
Define the sequence

xn = 1 + (1 − δn)xn−1, n ≥ 1,

with x0 = 1 and δn ∈ (0,1) for each n. Then P(R1 > x1) = P(M1 > 1 − δ1) and

P(Rn > xn) = P
(
MnRn−1 > (1 − δn)xn−1

)
≥ P(Mn > 1 − δn)P(Rn−1 > xn−1)

≥
n∏

i=1

P(M > 1 − δi).

Since

R
d=

∞∑
j=1

j−1∏
k=1

Mk ≥
n+1∑
j=1

j−1∏
k=1

Mk
d= Rn,

we get for any n ≥ 1,

P(R > xn) ≥
n∏

i=1

P(M > 1 − δi).

In each of the considered cases there exists a strictly convex differentiable function
h such that f (x) ∼ h(x). We take the logarithms and divide both sides by h(xn) to
obtain

lnP(R > xn)

h(xn)
≥

∑n
i=1 lnP(M > 1 − δi)

h(xn)
.
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Our aim is to choose a sequence (δn)n in such way that the right-hand side of the
above inequality tends to the optimal constant, which was obtained in the previous
section.

If xn → ∞ and xn is strictly monotone, we may use Stoltz–Cesàro theorem
(see [22], Problem 70) to get

I = lim
n→∞

∑n
i=1 lnP(M > 1 − δi)

h(xn)
= lim

n→∞
lnP(M > 1 − δn)

h(xn) − h(xn−1)
.

Recall that lnP(M > 1 − δn) = −δnf (1/δn) and that by convexity of h we have
h(xn) − h(xn−1) ≥ h′(xn−1)(xn − xn−1). So,

I ≥ lim
n→∞

−δnf ( 1
δn

)

h′(xn−1)(xn − xn−1)
.(6.1)

We distinguish two cases:

Case I f ∈ R(r∗), r∗ ≥ 1,
Case II f ∈ �.

Case I. f ∈ R(r∗), r∗ ≥ 1. For a ∈ (0,1), take δn = (1 − a)/xn−1. Then xn =
an + 1. For such a choice by (6.1), we obtain

I ≥ lim
n→∞

− 1−a
xn−1

f (
xn−1
1−a

)

h′(xn−1)a
= −(1 − a)1−r∗

ar∗ =: −i(a).

The infimum of i(a) is attained at the point a = (r∗)−1. Finally,

I ≥ −rr∗−1.

Particularly, if r∗ = 1, then I ≥ −1.
Case II. Since f (x) ∼ h(x) and both f and h belong to �, they have common

auxiliary function g = h/h′. Take x1 = 1+ε and 1/δn = xn−1 +g(xn−1) for n > 1.
We have

xn − xn−1 = 1 − δnxn−1 = g(xn−1)

xn−1 + g(xn−1)
.

For such a choice by (6.1), we obtain

I ≥ − lim
n→∞

f (xn−1 + g(xn−1))

h(xn−1)
.

If xn → ∞, then by (2.2) we get I ≥ −e. Assume that xn �→ ∞. Thus, xn being
increasing, converges to some p > x1 = 1 + ε, say. Then we have 0 = g(p)

p+g(p)
—

a contradiction, since g(x) > 0 for any x > 1.
Let us get back to the general situation. From lim infn→∞ lnP(R>xn)

f (xn)
≥ −B , we

need to conclude that

lim inf
x→∞

lnP(R > x)

f (x)
≥ −B.(6.2)
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Observe first that if xn−1 < x ≤ xn, then lnP(R>x)
f (x)

≥ lnP(R>xn)
f (xn−1)

. Therefore,

lim inf
x→∞

lnP(R > x)

f (x)
≥ lim inf

n→∞
f (xn)

f (xn−1)

lnP(R > xn)

f (xn)
.

It is left to show that

f (xn)

f (xn−1)
→ 1.

But xn − xn−1 ∈ (0,1), so the only case that needs some more attention is when
f ∈ �. In this case, we have

f (xn)

f (xn−1)
= f (xn−1 + 1

xn−1+g(xn−1)
g(xn−1))

f (xn−1)
→ 1,

since the convergence in (2.2) is uniform (see [3], Proposition 3.10.2). Thus, (6.2)
holds and we finally obtain

−B ≤ lim inf
x→∞

lnP(R > x)

f (x)
≤ lim sup

x→∞
lnP(R > x)

f (x)
≤ −B.

7. Concluding remarks.

1. In Theorem 4.1, the assumption of ultimate strict convexity of f when f ∈
R(1) implies that f is ultimately continuous and so M may not have atoms in the
left neighbourhood of 1. Lower bound can be obtained without this assumption by
the use of Goldie–Grübel inequality (see (5.7) in [13] or Proposition 1 in [18] for
general formulation). The problem is with the upper bound as it is not true that
f (x) ∼ f ∗∗(x) for f ∈ R(1) in general. Possibly this case can be proved without
the assumption of convexity using the approach of Hitczenko [17].

2. Consider Theorem 4.1 and Corollary 4.1 with P(M ∈ [0,1]) = 1 replaced by
P(|M| ≤ 1) = 1. It turns out that the same conclusion holds if additionally

lnP
(
|M| > 1 − 1

x

)
∼ lnP

(
M > 1 − 1

x

)
.(7.1)

Indeed, following the idea of [13],

P(R > x) ≤ P
(|R| > x

) ≤ P

(
q

∞∑
j=1

j−1∏
k=1

|Mk| > x

)
.

We therefore obtain that

lim sup
x→∞

lnP(R > x)

−x
q

lnP(|M| > 1 − q
x
)

≤ −B,
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where B is the optimal constant. On the other hand, the approach laid out in Sec-
tion 6 for the lower bound holds also when M is allowed to take negative values,
thus

lim inf
x→∞

lnP(R > x)

−x
q

lnP(M > 1 − q
x
)

≥ −B

and if (7.1) holds, then

lim
x→∞

lnP(R > x)

−x
q

lnP(M > 1 − q
x
)

= −B.

3. It is very interesting that we were able to show the asymptotic of log-tail of
R for f ∈ �, but not for f ∈ R(∞)\�. The latter case is much harder since neither
(2.2) nor (2.3) hold, which were crucial in the proof of Theorem 4.1 when f ∈ �.

If f ∈ R(∞) is nondecreasing (this is our case), then by [3], Proposition 2.4.4,
f ∈ KR(∞), that is, f has the following representation:

f (x) = exp
{
η(x) + z(x) +

∫ x

0

ε(t)

t
dt

}
,

where η(x) → d and ε(x) → ∞ as x → ∞ and z(·) is nondecreasing, but unfor-
tunately this seems of little help.

One of the examples of f ∈ R(∞)\� is f (x) = exp(2x − cosx), which is even
strictly convex. In this case, we have

f (x + ug(x))

f (x)
= exp

{
cosx − cos

(
x + u

2 + sinx

)
+ 2u

2 + sin(x)

}
,

which is periodic, thus (2.2) does not hold. The best we can get in this situation is

−e3 ≤ lim inf
x→∞

lnP(R > x)

f (x)
≤ lim sup

x→∞
lnP(R > x)

f (x)
≤ −e−1,

using e2x−1 ≤ f (x) ≤ e2x+1. This is much stronger than (3.2), but still not fully
satisfactory.
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