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Rejoinder: The Ubiquitous Ewens
Sampling Formula
Harry Crane

The main article and extended discussion point to
Ewens’s sampling formula (ESF) as one of a few es-
sential probability distributions. Arratia, Barbour and
Tavaré explain the emergence of ESF by the Feller cou-
pling and also touch on number theoretic considera-
tions; Feng provides deeper background on diffusion
processes and nonequilibrium versions of ESF; and
McCullagh regales us with a story from the works of
Fisher and Good, putting historical context around the
more specialized topics covered by Favaro and James
and Teh. The breadth of these comments exemplifies
the expansive sphere of influence of Ewens’s sampling
formula on integer partitions, Ewens’s distribution on
set partitions, and the Ewens process. I thank all of the
discussants for their participation in this important sur-
vey.

For the most part, these contributions bolster my
main thesis which, in the words of Arratia, Bar-
bour and Tavaré, emphasizes the universal charac-
ter of the Ewens sampling formula. As McCullagh
notes, the contents and subsequent discussion com-
prise an impressive list stretching from literary stud-
ies to population genetics and probabilistic number
theory. Both comments accord with my opening re-
mark that Ewens’s sampling formula exemplifies the
harmony of mathematical theory, statistical applica-
tion, and scientific discovery. As a whole, however, the
discussion skews disproportionately toward Bayesian
nonparametrics in a way that works against the theme
of ubiquity. I attempt to rebalance the conversation in
these final pages.

1. EWENS’S SAMPLING FORMULA IN MODERN
STATISTICS

Wherever random partitions appear, with few excep-
tions, so does Ewens’s sampling formula. Teh com-
pares its inevitability to that of the Gaussian distribu-
tion for real-valued sequences, and McCullagh makes
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a further analogy between the Ewens process and the
Poisson process for events in time or space. Its tan-
gible connections to population genetics, inductive in-
ference, stochastic process theory, prime factorization,
and statistical applications earn Ewens’s sampling for-
mula and the Poisson–Dirichlet distribution a place
alongside the Bernoulli, Gaussian, and Poisson in the
pantheon of probability distributions.

The applicability of Ewens’s sampling formula is
neither limited to specific methods nor tied to ongoing
trends: Teh centers his commentary around contempo-
rary topics in machine learning and big data, Favaro
and James deal with problems in survival modeling
and species sampling, and McCullagh showcases the
adaptability of ESF with an enlightening application to
a problem considered by Fisher three decades before
Ewens’s discovery. As McCullagh details, Ewens’s
sampling formula and its derivatives, the Ewens distri-
bution and Ewens process, could have—indeed, should
have—been first discovered in a purely parametric con-
text, when data sets were small and computers were in
their infancy.

McCullagh rightly identifies Ewens’s process as one
of a small number of processes that deserves to be a
central part of the statistical curriculum. Indeed, there
are compelling reasons to teach ESF at every level of
statistics, and yet it is often reserved for special topics
or not covered at all. Its most salient features, namely,
exchangeability, sampling consistency, and noninter-
ference, highlight subtleties that do not arise in i.i.d.
sampling models and which can be covered without
any need to delve into population genetics, stochastic
processes, or Bayesian nonparametrics.

2. EWENS’S SAMPLING FORMULA AND
BAYESIAN NONPARAMETRICS

Of the three commentaries covering statistical el-
ements of ESF, two (Favaro and James, Teh) focus
on recent work in Bayesian nonparametrics while the
other (McCullagh) presents an application from sev-
enty years ago. Together these comments fit into a
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broader, but misleading, narrative that Bayesian non-
parametrics is the lifeblood of ESF in present-day sta-
tistical research. Though several authors do build sub-
stantially on the prior work of Ewens, Kingman, and
Pitman, for example, Ishwaran and James’s [10] work
on the generalized Chinese restauarant process, Favaro,
et al.’s [8] analysis of conditional sampling formulas,
and Ruggiero and Walker’s [12] study of the Fleming–
Viot process, the Dirichlet process prior remains the
primary mechanism by which Ewens’s sampling for-
mula arises in Bayesian nonparametrics. I have two
major comments regarding how this connection is cov-
ered in the larger literature.

First, of all the recent surveys cited by Teh ([8, 11,
12, 13, 14, 21, 22] in Teh’s numbering), only one [14],
page 108, acknowledges Ewens’s 1972 article or refers
to Ewens’s sampling formula by name. This tendency
isolates the occurrence of ESF in Bayesian nonpara-
metrics from the rest of the literature, fostering the im-
pression that ESF is a byproduct of purely nonpara-
metric Bayesian concerns. Second, the Dirichlet pro-
cess is primarily chosen to address practical concerns
of tractability [and] computational convenience ([9],
page 37), which sell short the ESF’s more critical sta-
tistical and inferential properties (Sections 3 and 7).
Both of these oversights undermine the significance of
the Ewens family of distributions: the first completely
ignores the larger body of work on ESF and the second
presents ESF merely as a quick fix for computational
challenges.

3. THREE VIGNETTES ON EWENS’S SAMPLING
FORMULA IN POPULATION GENETICS

While it is true that Bayesian nonparametrics is one
of the most active areas of statistical research, the field
of population genetics provides the primary context
and is the most prominent venue for ESF. Notwith-
standing Feng’s account, which provides an insight-
ful overview of how variants of ESF arise by diffusion
process approximations, the population genetics angle
warrants much more attention than it has received so
far. Below I touch on three direct consequences of ESF
in population genetics.

First, Ewens’s derivation had an immediate impact
on mutation rate estimation. Before [7], geneticists es-
timated θ , or functions of θ , from the empirical allele
frequencies. Ewens showed that the number K of al-
leles is a sufficient statistic for θ , indicating that these
early procedures used precisely the wrong part of the
data in estimation of θ . This is a rare, and perhaps

unique, example of a case where a previously unsus-
pected sufficient statistic changed standard inference
procedures.

Second, some geneticists, including Wright [13],
claimed that in the selectively neutral case all alleles
observed in a sample should have approximately equal
frequencies. Ewens’s sampling formula shows that this
is the least likely outcome under selective neutrality.
The two main reasons for this phenomenon are sim-
ple random sampling and history—older alleles have a
greater probability of reaching a high frequency than
alleles that have recently arisen by mutation. This ob-
servation is relevant when testing whether data from a
sample of genes supports the neutrality hypothesis.

The third and most lasting effect of Ewens’s sam-
pling formula is that it partially influenced Kingman’s
development of the coalescent [11], now the main ve-
hicle for research in population genetics. The coales-
cent leads not only to a beautiful mathematical the-
ory, which still provides the most elegant derivation of
ESF, but also to a practical scientific framework which
has moved the field of theoretical population genet-
ics toward largely retrospective questions like: “When
did the most recent ancestor of all humans alive today
live?” and “How can we detect the signatures of past
selective events in contemporary genomes?”

4. OTHER INSTANCES OF EWENS’S SAMPLING
FORMULA

4.1 Independent Process Approximation and the
Feller Coupling

Arratia, Barbour, and Tavaré expound a clear and
well-motivated account of how Ewens’s sampling for-
mula emerges from the Feller coupling, which rightly
deserves a place in the main survey alongside the Chi-
nese restaurant process (CRP). The Feller coupling is
more mathematically natural than the CRP construc-
tion, and it also illustrates the powerful technique of
approximating statistics of combinatorial structures us-
ing independent processes; see [2].

4.2 Markov Survival Processes

Favaro and James discuss a connection between
Ewens’s sampling formula and neutral to the right sur-
vival models in Bayesian nonparametrics. Dempsey
and McCullagh [6] observe the same connection but
without resorting to the Bayesian nonparametrics
framework. In the so-called pilgrim process, risk sets
evolve according to an asymmetric version of Aldous’s
beta-splitting model [1] with parameter β > −1. The
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β = 1 case yields a random partition distributed ac-
cording to Ewens’s distribution which, upon extension
to recurrent events, elicits a connection to the so-called
Indian buffet process.

4.3 Scale-Free Interaction Networks

The family of Ewens distributions also comes up in
ongoing work on statistical network analysis. The de-
gree distributions of many observed networks behave
according to a power law, that is, the proportion pk

of vertices with degree k ≥ 1 grows like pk ∼ k−γ

as k → ∞ for some γ > 1. Barabási and Albert’s [3]
preferential attachment model is the most widely cited
generating mechanism for power-law networks, but
its dynamics do not translate to a viable statistical
model for two important reasons. First, its dynamics
are too rigid to adequately reflect how most networks
form, and its lack of exchangeability often prevents in-
ference beyond selected summary statistics. Second,
the preferential attachment dynamics can only explain
power-law behavior in the range γ > 2, but Crane and
Dempsey [4] have recently found that many networks
formed by repeated interactions within a population ex-
hibit power-law behavior with exponent in the comple-
mentary range 1 < γ < 2. Based on the Ewens–Pitman
two-parameter family (Section 5.1), we have put forth
a new model that produces a network with the power-
law exponent in the correct range. Our model is a pre-
cursor to the broader framework of edge exchangeable
network models [5], which is the correct notion of in-
variance for many network data sets.
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