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Abstract

In this note we first consider local times of random walks killed at leaving positive
half-axis. We prove that the distribution of the properly rescaled local time at point N
conditioned on being positive converges towards an exponential distribution. The proof
is based on known results for conditioned random walks, which allow to determine
the asymptotic behaviour of moments of local times. Using this information we also
show that the field of local times of a reflected random walk converges in the sense of
finite dimensional distributions. This is in the spirit of the seminal result by Knight
[10] who has shown that for the symmetric simple random walk local times converge
weakly towards a squared Bessel process. Our result can be seen as an extension of
the second Ray-Knight theorem to all asymptotically stable random walks.
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1 Introduction

Let {Sn} be a random walk on Z with increments {Xk} which are independent copies
of a random variable X. Let τ− be the first weak descending ladder epoch of our random
walk, that is,

τ− := min{n ≥ 1 : Sn ≤ 0}.

We shall always assume that X is integrable and EX = 0. This implies that {Sn} is
recurrent and, in particular, τ− is almost sure finite. Let

A := {1 < α < 2; |β| ≤ 1} ∪ {α = 2, β = 0}

be a subset in R2. For (α, β) ∈ A and a random variable X write X ∈ D (α, β) if the
distribution of X belongs to the domain of attraction of a stable law with characteristic
function

Gα,β(t) := exp

{
−|t|α

(
1− iβ t

|t|
tan

πα

2

)}
=

∫ +∞

−∞
eitugα,β(u)du. (1.1)

This means that there exists an increasing, regularly varying with index 1/α function
c(x) such that Sn/c(n) converges in distribution towards the stable law given by (1.1).
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Universality of local times

By c−1(x) we shall denote the inverse to c(x) function. Clearly, c−1 is regularly varying
with index α.

Let

L(n, x) =

n∑
j=0

I(Sj = x), x ∈ Z

denote the local time of the process {Sn}. We first consider local times of {Sn} killed at
leaving positive half-axis.

In order to formulate our result we have to introduce some notation. Let τ+ be the
first strict ascending ladder epoch and let χ± denote ladder heights corresponding to
τ±. Define

H±(x) :=

∞∑
j=0

P(χ±1 + χ±2 + . . .+ χ±j ≤ x), x ≥ 1,

where {χ±j } are independent copies of χ±. Finally, let h± denote the mass functions of
H±, that is,

h±(x) = H±(x)−H±(x− 1), x ≥ 0.

Theorem 1.1. If X ∈ D(α, β), then there exists cα,β ∈ (0,∞) such that, as N →∞, for
every fixed x ≥ 0,

Px

(
N

c−1(N)
L(τ−, N) > u

∣∣∣L(τ−, N) > 0

)
→ e−ucα,β , u > 0 (1.2)

and

Px(L(τ−, N) > 0) ∼ cα,βU(x,N)
N

c−1(N)
, (1.3)

where

U(x,N) := h+(N − x) +

∞∑
k=1

E

[
h+

(
N − x+

k∑
i=1

χ−i

)
;

k∑
i=1

χ−i < x

]
.

Remark 1.2. Constant cα,β = 1/aα,β(1, 1), where aα,β is the so-called 0-potential density
of a killed stable process. Using [12, Theorem 6] one can show that

aα,β(u, v) = (const.)

∫ u∧v

0

dz(u− z)αρ−1(v − z)α(1−ρ)−1,

where ρ = P(X1 > 0).1

The exponential distribution in (1.2) is not surprising. Indeed, if {Sn} hits N before
it leaves (0,∞) then we may assume that {Sn} starts at N . Thus the conditioned
distribution of the local time is independent of the starting point. Let pN denote the
probability that Sn becomes negative before it returns to N . Clearly, pN is positive. Then

PN (L(τ−, N) > k) = (1− pN )k, k ≥ 0.

Consequently, (1.2) is equivalent to

pN = cα,β
N

c−1(N)
(1 + o(1)).

It is immediate from the definition of U(x,N) that

P0(L(τ−, N) > 0) ∼ cα,β
Nh+(N)

c−1(N)
.

But for positive start points x one needs additional restrictions.

1We are grateful to the anonymous referee for pointing out the reference and the above representation for
aα,β(u, v).
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Universality of local times

Corollary 1.3. If h+(x) is long-tailed then

Px(L(τ−, N) > 0) ∼ cα,βH−(x)
Nh+(N)

c−1(N)
. (1.4)

The assumption that h+ is long-tailed is not easy to check. Furthermore, (1.4) can
be used only if we know the asymptotic behaviour of h+(N). In other words, we need a
strong renewal theorem for positive ladder heights. Some sufficient conditions for this
theorem can be found in [2] and [13].

For random walks with finite second moments h+ is asymptotically constant and,
moreover, one can provide an exact expression for the constant cα,β .

Corollary 1.4. If σ2 := EX2 <∞ then

Px

(
L(τ−, N)

N
> u

∣∣∣L(τ−, N) > 0

)
→ e−uσ

2/2, u > 0. (1.5)

and

Px(L(τ−, N) > 0) ∼ σ2H−(x)

2Eχ+
N−1. (1.6)

We now turn to reflected random walks. More precisely, we shall look at local times
of the process

Wn+1 = (Wn +Xn+1)+, n ≥ 0

which starts at zero, that is, W0 = 0. Set T0 = 0 and define recursively

Tn+1 := min{k > Tn : Wk = 0}, n ≥ 0.

We are interested in the asymptotic behaviour of local times

LW (n, x) :=

n∑
j=1

I(Wn = x), x ≥ 1.

Let M(N) be a sequence of natural numbers. For every N define a rescaled process

l(N)(u) =
N

c−1(N)
LW (TM(N), uN), u ≥ 0.

Theorem 1.5. Assume that X ∈ D(α, β). If h+ is regularly varying then there exists

a process Lα,β = {Lα,β(u), u ≥ 0} such that, for any sequence M(N) ∼ c−1(N)
Nh+(N) , finite

dimensional distributions of l(N) converge to that of Lα,β. In addition, the marginals of
Lα,β are compound Poisson distributions with exponentially distributed jumps. �

The distribution of the limiting process is known for α = 2 only. Knight [10] has
shown that if Sn is a simple random walk then l(N) converges weakly (and not only in
the sense of finite dimensional distributions) towards the square of 0-dimensional Bessel
process. Since the limit is the same for all random walks belonging to the domain of
attraction of the normal distribution, we conclude that L2,0 is the squared 0-dimensional
Bessel process. More precisely, L2,0 is the unique strong solution of the equation

L2,0(t)− L2,0(0) = c

∫ t

0

√
L2,0(s)dB(s), c > 0,

where {B(t), t ≥ 0} is the Brownian motion. Unfortunately, we are not able to determine
the limit for α < 2. Using Corollary 3.5 from Eisenbaum and Kaspi [3] one can give a
characterisation of Lα,β in terms of permanental processes. If, additionally, the limiting
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Universality of local times

stable process is symmetric, that is, β = 1 then Lα,β can be described by a squared
Gaussian process.

The proof in [10] is based on a trick which works for simple random walks only. Let
Xn be Rademacher random variables, that is, P(Xn = ±1) = 1/2. Fix some m ≥ 1 and

for every n > 0 let Q(m)
n denote the number times k < Tm+1 such that Wk−1 = n and

Wk = n + 1. Set also Q(m)
0 = m. The key observation in [10] is that {Q(m)

n , n ≥ 0} is a
Markov chain with transition kernel given by

p(i, j) = (−1)j
(
−i
j

)
2−i−j , i, j ≥ 0. (1.7)

Now it is immediate that Q(m)
n is a martingale. The markovian structure and the martin-

gale property allowed Knight to prove that

q(N)(u) =
1

N
Q(N)(uN), u > 0

converges weakly towards the squared Bessel process. Noting that LW (Tm+1, n) =

Q
(m)
n + Q

(m)
n−1, we then conclude that the limit for l(N) is equal to the limit for q(N)

multiplied by 2. In other words, the limit for l(N) is again a squared Bessel process, but
with a different scaling constant c.

Rogers [11] noticed that (1.7) corresponds to a critical Galton-Watson process Zn
with the geometric offspring distribution and Z0 = m. Then one has also LW (Tm+1, n) =

Zn+Zn−1. As a consequence, convergence of local times follows from the corresponding
results for branching processes. The idea of connecting local times and branching
processes has been recently used by Hong and Yang [9], who have extended Knight’s
result to all left-continuous random walks with bounded jumps. This has been achieved
via connecting local times to a 2-type critical branching process. Similar to Knight’s
paper, this embedding into a branching process ensures markovian and martingale
properties, which help to prove weak convergence.

Our approach is based on the derivation of asymptotics for mixed moments of local
times, which seems to go back at least to Darling and Kac [4]. But in order to apply
this method to killed random walks one needs to know asymptotic behaviour of the
corresponding Green (renewal) function. It has become possible due to the recent
result by Caravenna and Chaumont [1] on bridges of random walks conditioned to stay
positive. This method allows to prove convergence of finite dimensional distributions in
a straightforward manner. But at the moment we do not know how to prove the tightness
of the sequence l(N). This was not a problem in papers [10, 9], where the martingale
structure of Galton–Watson processes can be used.

2 Asymptotic behaviour of moments of local times

The following renewal theorem is crucial for our proof.

Proposition 2.1. Assume that xN/N → u > 0 and yN/N → v > 0. Then, there exists
aα,β(u, v) > 0 such that

N

c−1(N)

∞∑
n=1

PxN (Sn = yN , τ
− > n)→ aα,β(u, v), N →∞. (2.1)
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Proof. We split the sum in (2.1) into three parts

∞∑
n=1

PxN (Sn = yN , τ
− > n) = P1 + P2 + P3

:=

 ∑
n<εc−1(N)

+
∑

n∈[εc−1(N),c−1(N)/ε]

+
∑

n>c−1(N)/ε

PxN (Sn = yN , τ
− > n).

In view of the Gnedenko local limit theorem,

Px(Sn = z) ≤ C

cn
, for any x, z ∈ Z and n ≥ 1.

Therefore,

P1 ≤
∑

n<εc−1(N)

C

cn
≤ C1ε

1−1/α c
−1(N)

N
. (2.2)

Further, applying Corollary 13 from Doney [6], we get

PxN (Sn = yN , τ
− > n) ≤ CH

+(xN )H−(yN )

ncn
≤ C(u, v)

c−1(N)

ncn
.

This yields

P3 ≤ C(u, v)c−1(N)
∑

n>c−1(N)/ε

1

ncn
≤ C(u, v)ε1/α c

−1(N)

N
. (2.3)

Further, applying (4.2) from Caravenna and Chaumont [1] to every summand in the
second sum, we obtain

P2 = (1 + o(1))
∑

n∈[εc−1(N),c−1(N)/ε]

1

cn
gα,β

(
yN − xN

cn

)
φα,β

(
xN
cn
,
yN
cn

)

= (1 + o(1))
c−1(N)

N

∑
n∈[εc−1(N),c−1(N)/ε]

(
n

c−1(N)

)−1/α

ψα,β

(
xN
cn
,
yN
cn

)
1

c−1(N)

= (1 + o(1))
c−1(N)

N

∫ 1/ε

ε

x−1/αψα,β

( u

x1/α
,
v

x1/α

)
dx,

where
ψα,β(a, b) = gα,β (b− a)φα,β(a, b)

and

φα,β(a, b) = Pa

(
inf

0≤t≤1
Yt ≥ 0 | Y1 = b

)
,

where Yt is a stable process with Y1 defined by (1.1).
Combining this with (2.2) and (2.3) and letting ε→ 0, we obtain

∞∑
n=1

PxN (Sn = yN , τ
− > n) ∼ c−1(N)

N

∫ ∞
0

x−1/αψα,β

( u

x1/α
,
v

x1/α

)
dx.

Thus, the proof is complete.

Remark 2.2. The limit aα,β is the so-called 0-potential density of a killed stable process.
�
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We next give an explicit expression for a2,0. Using the reflection principle for the
Brownian motion, one can easily obtain

g2,0(a, b) = 1− e−2ab.

Therefore,

a2,0(u, v) =
1√
2π

∫ ∞
0

x−1/2e−
(u−v)2

2x

(
1− e−2uv/x

)
dx. (2.4)

Substituting x = y−1 we obtain∫ ∞
0

x−1/2e−
(u−v)2

2x

(
1− e−2uv/x

)
dz =

∫ ∞
0

1

y3/2

(
e−y

(u−v)2
2 − e−y

(u+v)2

2

)
dy.

According to formula 3.434(1) from [8]∫ ∞
0

e−νx − e−µx

xρ+1
dx =

µρ − νρ

ρ
Γ(1− ρ).

Consequently,

a2,0(u, v) =
2Γ(1/2)√

2π

[
u+ v√

2
− |u− v|√

2

]
= 2 min{u, v}. (2.5)

We now turn to higher moments of local times.

Corollary 2.3. For every (u0, u1, . . . , um) ∈ Qm+1
+ ,

lim
N→∞

(
c−1(N)

N

)−m
Eu0N

 ∑
j1<j2<...<jm

I
(
Sj1 = u1N, . . . , Sjm = umN, τ

− > jm
)

=

m−1∏
i=0

aα,β(ui, ui+1) (2.6)

and

lim
N→∞

(
c−1(N)

N

)−m
Eu0N

 ∑
j1≤j2≤...≤jm

I
(
Sj1 = u1N, . . . , Sjm = umN, τ

− > jm
)

=

m−1∏
i=0

aα,β(ui, ui+1). (2.7)

Proof. It is immediate from the Markov property that

Eu0N

 ∑
j1<j2<...<jm

I
(
Sj1 = u1N, . . . , Sjm = umN, τ

− > jm
)

=

∞∑
j1=1

Pu0N (Sj1 = u1N, τ
− > j1)

∞∑
j2=j1+1

Pu1N (Sj2−j1 = u2N, τ
− > j2 − j1) . . .

=

m−1∏
i=0

∞∑
i=1

PuiN (Sj = ui+1N, τ
− > j). (2.8)

Applying Proposition 2.1, we get (2.6). The proof of (2.7) is identical.
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Proposition 2.4. Let Sm be the set of permutations of {1, . . . ,m}. Then,

lim
N→∞

(
c−1(N)

N

)−m
Eu0N

[
m∏
i=1

L(τ−, uiN)

]

=
∑
σ∈Sm

aα,β(u0, uσ(1))

m−1∏
i=1

aα,β(uσ(i), uσ(i+1)). (2.9)

Remark 2.5. The right hand side of (2.9) is a specialisation of Kac’s moment formula
(see [4]) for local times of a killed stable process.

Proof. It is clear that

m∏
i=1

L(τ−, uiN) =
∑

j1,...,jm≥1

I(Sj1 = u1N, . . . , Sjm = umN, τ
− > max

k≤m
jk)

≤
∑
σ∈Sm

∑
j1≤j2≤...≤jm

I(Sj1 = uσ(1)N, . . . , Sjm = uσ(m)N, τ
− > jm).

Similarly,

m∏
i=1

L(τ−, uiN) ≥
∑
σ∈Sm

∑
j1<j2<...<jm

I(Sj1 = uσ(1)N, . . . , Sjm = uσ(m)N, τ
− > jm).

Taking expectations and applying (2.6) and (2.7) we get the desired result.

It remains to consider the case when the random walk starts at a fixed point x.

Proposition 2.6. As N →∞,

E0

[
m∏
i=1

L(τ−, uiN)

]
∼
(
c−1(N)

N

)m−1 ∑
σ∈Tm

h+(uσ(1)N)

m−1∏
i=1

aα,β(uσ(i), uσ(i+1)). (2.10)

Proof. Let x be a fixed number. Replacing u0N by x in the first equality of (2.8), we get

Ex

 ∑
j1<j2<...<jm

I
(
Sj1 = u1N, . . . , Sjm = umN, τ

− > jm
)

=

∞∑
j1=1

Px(Sj1 = u1N, τ
− > j1)

∞∑
j2=j1+1

Pu1N (Sj2−j1 = u2N, τ
− > j2 − j1) . . .

=

∞∑
j1=1

Px(Sj1 = u1N, τ
− > j1)

m−1∏
i=1

∞∑
i=1

PuiN (Sj = ui+1N, τ
− > j). (2.11)

Thus, additionally to Proposition 2.1, we have to determine the asymptotic behaviour of∑∞
j1=1 Px(Sj1 = u1N, τ

− > j1). First, by the duality lemma for random walks,

P0(Sj = l, τ− > j) = P(Sj = l, j is a strict ascending ladder epoch).

Consequently, for each l ≥ 1,

∞∑
j=1

P0(Sj = l, τ− > j) =

∞∑
k=1

P(χ+
1 + · · ·+ χ+

k = l) = h+(l). (2.12)
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Second, for every positive x we split τ− into descending ladder epochs. Then, using the
Markov property and (2.12), we get

∞∑
j=1

Px(Sj = l, τ− > j) = U(x,N).

Now, similarly to the proof of Proposition 2.4 we obtain, using (2.11) and Proposition 2.1

E0

[
m∏
i=1

L(τ−, uiN)

]
≥
∑
σ∈Sm

P0

(
Sj1 = u1N, . . . , Sjm = umN, τ

− > jm
)

∼
(
c−1(N)

N

)m−1 ∑
σ∈Tm

h+(uσ(1)N)

m−1∏
i=1

aα,β(uσ(i), uσ(i+1)).

The bound from above can be obtained similarly.

3 Proof of Theorem 1.1

Recall that the distribution of L(τ−, N) conditioned on L(τ−, N) > 0 does not depend
on the starting point. Using Proposition 2.4 with u0 = u1 = . . . = um = 1, we conclude
that

lim
N→∞

(
c−1(N)

N

)−m
EN

[
Lm(τ−, N)

]
= m! (aα,β(1, 1))

m
.

Thus, by the method of moments,

lim
N→∞

PN

(
N

c−1(N)
L(τ−, N) > x

)
= e−xcα,β , x > 0.

Since Px(L(τ−, N) ≥ k|L(τ−, N) > 0) = PN (L(τ−, N) ≥ k) for all k ≥ 1 and all x, we get
(1.2).

As we have shown in the previous section,

ExL(τ−, N) = U(x,N).

Furthermore, by the Markov property,

ExL(τ−, N) = Px(L(τ−, N) > 0)ENL(τ−, N).

Consequently,

Px(L(τ−, N) > 0) =
U(x,N)

ENL(τ−, N)
.

Applying Proposition 2.4 with m = 1 and u0 = u1 = 1 we obtain (1.3) with cα,β :=

1/aα,β(1, 1). Thus, the proof of Theorem 1.1 is finished.
If σ2 := EX2 is finite then c(n) = σ

√
n and c−1(N) = N2/σ2. Furthermore, according

to (2.5), c2,0 = 1/2. Finally, recalling that Eχ+ <∞ for random walks with finite variance
and applying the strong renewal theorem, we get h+(N) ∼ 1

Eχ+ for random walks with
finite variance. As a result we have the relations from Corollary 1.4.

4 Proof of Theorem 1.5

We start with the Laplace transform of the vector(
N

c−1(N)
L(τ−, u1N),

N

c−1(N)
L(τ−, u2N), . . . ,

N

c−1(N)
L(τ−, umN)

)
.
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Obviously, for every r ≥ 1,

2r+1∑
j=0

(−1)j
xj

j!
≤ e−x ≤

2r∑
j=0

(−1)j
xj

j!
, x ≥ 0.

From this we infer that

E0

[
exp

{
−

m∑
i=1

λi
N

c−1(N)
L(τ−, uiN)

}]

≤
2r∑
j=0

(−1)j

j!

(
N

c−1(N)

)j
E0

(
m∑
i=1

λiL(τ−, uiN)

)j
(4.1)

and

E0

[
exp

{
−

m∑
i=1

λi
N

c−1(N)
L(τ−, uiN)

}]

≥
2r+1∑
j=0

(−1)j

j!

(
N

c−1(N)

)j
E0

(
m∑
i=1

λiL(τ−, uiN)

)j
. (4.2)

Let {µ = (µ1, µ2, . . . , µm)} be the set of m-dimensional multi-indices. Then, by the
binomial formula,

E0

(
m∑
i=1

λiL(τ−, uiN)

)j
=

∑
µ:|µ|=j

j!

µ!
λµE0

[
m∏
i=1

Lµi(τ−, uiN)

]
. (4.3)

Recall that h+ is assumed to be regularly varying. Thus, it follows from Proposition 2.6
that there exists φj(u, µ) such that

E0

[
m∏
i=1

Lµi(τ−, uiN)

]
∼ h+(N)

(
c−1(N)

N

)j−1

φj(u, µ). (4.4)

Furthermore, this proposition gives also the following bound for φj

φj(u, µ) ≤ j! (minuj)
αρ−1

(
max
k,l

aα,β(uk, ul)

)j−1

. (4.5)

Combining (4.3) and (4.4), we obtain

E0

(
m∑
i=1

λiL(τ−, uiN)

)j
∼ h+(N)

(
c−1(N)

N

)j−1

ψj(u, λ) (4.6)

with some function ψj satisfying

ψj(u, λ) ≤ j! (minuj)
αρ−1

(
max
k,l

aα,β(uk, ul)

)j−1
(

m∑
k=1

λk

)j
. (4.7)

This estimate is immediate from (4.3) and (4.5).
Plugging (4.6) into (4.1) and (4.2), we obtain

lim sup
N→∞

c−1(N)

nh+(N)

(
E0

[
exp

{
−

m∑
i=1

λi
N

c−(N)
L(τ−, uiN)

}]
− 1

)

≤
2r∑
l=1

(−1)j

j!
ψj(u, λ).
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and

lim inf
N→∞

c−1(N)

nh+(N)

(
E0

[
exp

{
−

m∑
i=1

λi
N

c−1(N)
L(τ−, uiN)

}]
− 1

)

≥
2r+1∑
l=1

(−1)j

j!
ψj(u, λ)

respectively. Note that estimate (4.7) allows to let r →∞ for all λk small enough. As a
result, there exists δ > 0 such that if λk ∈ [0, δ) for all k then

lim
N→∞

c−1(N)

nh+(N)

(
E0

[
exp

{
−

m∑
i=1

λi
N

c−(N)
L(τ−, uiN)

}]
− 1

)
= Ψ(u, λ), (4.8)

where

Ψ(u, λ) :=

∞∑
j=1

(−1)j

j!
ψj(u, λ).

Notice also that (4.3) implies the continuity of λ 7→ Ψ(u, λ) on [0, δ)m.
It is clear that (LW (TM , x1), LW (TM , x2), . . . , LW (TM , xm)) is equal in distribution to

the sum of M independent copies of (L(τ−, x1), L(τ−, x2), . . . , L(τ−, xm)). Then, in view
of (4.8),

lim
N→∞

E0

[
exp

{
−

m∑
i=1

λil
(N)(ui)

}]
= e−Ψ(u,λ)

for any sequence M(N) which is asymptotically equivalent to nh+(N)/c−(N).
By the continuity theorem for the Laplace transformation, the distribution of the vec-

tor (l(N)(u1), l(N)(u2), . . . , l(N)(um)) converges weakly to a law Fu, which is characterised
by the Laplace transform λ 7→ e−Ψ(u,λ). The continuity of functions Ψ(u, λ) implies, in
particular, the consistency of the family of finite dimensional distributions {Fu}. Thus,
the proof is completed.
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