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SPARSE HIGH-DIMENSIONAL VARYING COEFFICIENT MODEL:
NONASYMPTOTIC MINIMAX STUDY

BY OLGA KLOPP AND MARIANNA PENSKY1

University Paris Ouest and University of Central Florida

The objective of the present paper is to develop a minimax theory for
the varying coefficient model in a nonasymptotic setting. We consider a high-
dimensional sparse varying coefficient model where only few of the covari-
ates are present and only some of those covariates are time dependent. Our
analysis allows the time-dependent covariates to have different degrees of
smoothness and to be spatially inhomogeneous. We develop the minimax
lower bounds for the quadratic risk and construct an adaptive estimator which
attains those lower bounds within a constant (if all time-dependent covariates
are spatially homogeneous) or logarithmic factor of the number of observa-
tions.

1. Introduction. One of the fundamental tasks in statistics is to characterize
the relationship between a set of covariates and a response variable. In the present
paper we study the varying coefficient model which is commonly used for de-
scribing time-varying covariate effects. It provides a more flexible approach than
the classical linear regression model and is often used to analyze the data measured
repeatedly over time.

Since its introduction by Cleveland, Grosse and Shyu [8] and Hastie and Tib-
shirani [13], many methods for estimation and inference in the varying coefficient
model have been developed; see, for example, [11, 14, 19, 36] for the kernel-local
polynomial smoothing approach, [15–17] for the polynomial spline approach, [7,
13, 14] for the smoothing spline approach and [12] for a detailed discussion of
the existing methods and possible applications. In the last five years, the varying
coefficient model received a great deal of attention. For example, Wang et al. [34]
proposed a new procedure based on a local rank estimator; Kai et al. [18] intro-
duced a semi-parametric quantile regression procedure and studied an effective
variable selection procedure. Lee et al. [22] extended the model to the case when
the response is related to the covariates via a link function while Zhu et al. [38]
studied the multivariate version of the model. Existing methods typically provide
asymptotic evaluation of the precision of the estimation procedure under the as-
sumption that the number of observations tends to infinity and is larger than the
dimension of the problem.
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Recently few authors consider still asymptotic but high-dimensional approach
to the problem. Wei et al. [35] applied group Lasso for variable selection, while
Lian [23] used extended Bayesian information criterion. Fan et al. [10] applied
nonparametric independence screening. Their results were extended by Lian and
Ma [24] to include rank selection in addition to variable selection.

One important aspect that has not been well studied in the existing literature is
the nonasymptotic approach to the estimation, prediction and variables selection
in the varying coefficient model. Here, we refer to the situation where both the
number of unknown parameters and the number of observations are large and the
former may be of much higher dimension than latter. The only reference that we
are aware of in this setting is the recent paper by Klopp and Pensky [20]. Their
method is based on some recent developments in the matrix estimation problem.
Some interesting questions arise in this nonasymptotic setting. One of them is the
fundamental question of the minimax optimal rates of convergence. The minimax
risk characterizes the essential statistical difficulty of the problem. It also cap-
tures the interplay between different parameters in the model. To the best of our
knowledge, our paper presents the first nonasymptotic minimax study of the sparse
heterogeneous varying coefficient model.

Modern technologies produce very high-dimensional data sets and hence stim-
ulate an enormous interest in variable selection and estimation under a sparse sce-
nario. In such scenarios, penalization-based methods are particularly attractive.
Significant progress has been made in understanding the statistical properties of
these methods. For example, many authors have studied the variable selection, es-
timation and prediction properties of the LASSO in high-dimensional setting; see,
for example, [2, 4, 5, 32]. A related LASSO-type procedure is the group-LASSO,
where the covariates are assumed to be clustered in groups; see, for example, [1,
6, 25, 27, 28, 37], and references therein.

In the present paper, we also consider the case when the solution is sparse, in
particular, only a few of the covariates are present, and only some of them are
time dependent. This setup is close to the one studied in a recent paper of Liang
[23]. One important difference, however, is that in [23], the estimator is not adap-
tive to the smoothness of the time-dependent covariates. In addition, Liang [23]
assumes that all time-dependent covariates have the same degree of smoothness
and are spatially homogeneous. On the contrary, we consider a much more flexible
and realistic scenario where the time-dependent covariates possibly have different
degrees of smoothness and may be spatially inhomogeneous.

In order to construct a minimax optimal estimator, we introduce the block Lasso
which can be viewed as a version of the group LASSO. However, unlike in group
LASSO, where the groups occur naturally, the blocks in block LASSO are driven
by the need to reduce the variance as it is done, for example, in block thresholding.
Note that our estimator does not require the knowledge of which of the covariates
are indeed present and which are time dependent. It adapts to sparsity, to hetero-
geneity of the time-dependent covariates and to their possibly spatial inhomoge-
neous nature. In order to ensure the optimality, we derive minimax lower bounds
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for the risk and show that our estimator attains those bounds within a constant (if
all time-dependent covariates are spatially homogeneous) or logarithmic factor of
the number of observations. The analysis is carried out under the flexible assump-
tion that the noise variables are sub-Gaussian. In addition, it does not require that
the elements of the dictionary are uniformly bounded.

The rest of the paper is organized as follows. Section 1.1 provides formulation
of the problem while Section 1.2 lays down a tensor approach to estimation. Sec-
tion 2 introduces notation and assumptions on the model and provides a discussion
of the assumptions. Section 3 describes the block thresholding LASSO estimator,
evaluates the nonasymptotic lower and upper bounds for the risk, both in proba-
bility and in the mean squared risk sense and ensures optimality of the constructed
estimator. Section 4 presents examples of estimation when assumptions of the ap-
per are satisfied. Section 5 contains proofs of the statements formulated in the
paper.

1.1. Formulation of the problem. Let (Wi , ti , Yi), i = 1, . . . , n be sampled in-
dependently from the varying coefficient model

Y = WT f(t) + ξ.(1.1)

Here, W ∈ R
p are random vectors of predictors, f(·) = (f1(·), . . . , fp(·))T is an

unknown vector-valued function of regression coefficients and t ∈ [0,1] is a ran-
dom variable with the unknown density function g. We assume that W and t are
independent. The noise variable ξ is independent of W and t , and is such that
E(ξ) = 0.

The goal is to estimate vector function f (·) on the basis of observations
(Wi , ti , Yi), i = 1, . . . , n.

In order to estimate f, following Klopp and Pensky [20], we expand it over a
basis (φl(·)), l = 0,1, . . . ,∞, in L2([0,1]) with φ0(t) = 1. Expansion of the func-
tions fj (·) over the basis, for any t ∈ [0,1], yields

fj (t) =
L∑

l=0

ajlφl(t) + ρj (t) with ρj (t) =
∞∑

l=L+1

ajlφl(t).(1.2)

If φ(·) = (φ0(·), . . . , φL(·))T and A0 denotes a matrix of coefficients with elements

A(l,j)
0 = ajl , then relation (1.2) can be rewritten as f(t) = AT

0 φ(t) + ρ(t), where
ρ(t) = (ρ1(t), . . . , ρp(t))T . Combining formulas (1.1) and (1.2), we obtain the
following model for observations (Wi , ti , Yi), i = 1, . . . , n:

Yi = Tr
(
AT

0 φ(ti)WT
i

) + WT
i ρ(ti) + ξi, i = 1, . . . , n.(1.3)

Below, we reduce the problem of estimating vector function f to estimating matrix
A0 of coefficients of f.
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1.2. Tensor approach to estimation. Denote a = Vec(A0) and Bi =
Vec(φ(ti)WT

i ). Note that Bi is the p(L + 1)-dimensional vector with compo-

nents φl(ti)W
(j)
i , l = 0, . . . ,L, j = 1, . . . , p, where W(j)

i is the j th component
of vector Wi . Consider matrix B ∈ R

n×p(L+1) with rows BT
i , i = 1, . . . , n, vec-

tor ξ = (ξ1, . . . , ξn)
T and vector b with components bi = WT

i ρ(ti), i = 1, . . . , n.
Taking into account that

Tr
(
AT φ(ti)WT

i

) = BT
i Vec(A),

we rewrite the varying coefficient model (1.3) in a matrix form

Y = Ba + b + ξ .(1.4)

In what follows, we denote

�i = WiWT
i , �i = φ(ti)

(
φ(ti)

)T
, �i = �i ⊗ �i ,(1.5)

where �i ⊗ �i is the Kronecker product of �i and �i . Note that �i , �i and �i

are i.i.d. for i = 1, . . . , n, and that �i1 and �i2 are independent for any i1 and i2.
By simple calculations, we derive

aT BBT a =
n∑

i=1

(
BT

i a
)2 =

n∑
i=1

[
Tr

(
AT φ(ti)WT

i

)]2

=
n∑

i=1

WT
i AT φ(ti)φ

T (ti)AWi =
n∑

i=1

aT (�i ⊗ �i )a,

which implies

BT B =
n∑

i=1

�i ⊗ �i .(1.6)

Let

�̂ = n−1BT B = n−1
n∑

i=1

�i .(1.7)

Then, due to the i.i.d. structure of the observations, one has

� = E�1 = � ⊗ � with � = E
(
W1WT

1
)

and
(1.8)

� = E
(
φ(t1)φ

T (t1)
)
.

2. Assumptions and notation.

2.1. Notation. In what follows, we use bold script for matrices and vectors,
for example, A or a, and superscripts to denote elements of those matrices and
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vectors, for example, A(i,j) or a(j). Below, we provide a brief summary of the
notation used throughout this paper:

• For any vector a ∈ R
p , denote the standard l1 and l2 vector norms by ‖a‖1 and

‖a‖2, respectively. For vectors a, c ∈ R
p , denote their scalar product by 〈a, c〉.

• For any function q(t), t ∈ [0,1], ‖q‖2 and 〈·, ·〉2 are, respectively, the norm and
the scalar product in the space L2([0,1]). Also, ‖q‖∞ = supt∈[0,1] |q(t)|.

• For any vector function q(t) = (q1(t), . . . , qp(t))T , denote

∥∥q(t)
∥∥

2 =
[ p∑

j=1

‖qj‖2
2

]1/2

.

• For any matrix A, denote its spectral and Frobenius norms by ‖A‖ and ‖A‖2,
respectively.

• Denote the k × k identity matrix by Ik .
• For any numbers, a and b, denote a ∨ b = max(a, b) and a ∧ b = min(a, b).
• In what follows, we use the symbol C for a generic positive constant, which is

independent of n, p, s and l, and may take different values at different places.
• If r = (r1, . . . , rp)T and r ′

j = rj + 1/2 − 1/νj for some 1 ≤ νj < ∞, denote
r∗
j = rj ∧ r ′

j and r∗
min = minj r∗

j .
• Denote

t = (t1, . . . , tn), W = (W1, . . . ,Wn);(2.1)

that is, W is the p × n matrix with columns Wi , i = 1, . . . , n.

2.2. Assumptions. We impose the following assumptions on the varying coef-
ficient model (1.3).

(A0). Only s out of p functions fj are nonconstant and depend on the time
variable t , s0 functions are constant and independent of t and (p−s−s0) functions
are identically equal to zero. We denote by J the set of indices corresponding to
the nonconstant functions fj .

(A1). Functions (φk(·))k=0,...,∞ form an orthonormal basis of L2([0,1]), and
are such that φ0(t) = 1 and, for any t ∈ [0,1], any l ≥ 0 and some Cφ < ∞

l∑
k=0

φ2
k (t) ≤ C2

φ(l + 1).(2.2)

(A2). The probability density function g(t) is bounded above and below 0 <

g1 ≤ g(t) ≤ g2 < ∞. Moreover, the eigenvalues of E(φφT ) = � are bounded from
above and below

0 < φmin = λmin(�) ≤ λmax(�) = φmax < ∞.

Here, φmin and φmax are absolute constants independent of L.
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(A3). Functions fj (t) have efficient representations in basis φl , in particular,
for any j = 1, . . . , p, one has

∞∑
k=0

|ajk|νj (k + 1)
νj r ′

j ≤ (Ca)
νj , r ′

j = rj + 1/2 − 1/νj ,(2.3)

for some Ca > 0, 1 ≤ νj < ∞ and rj > min(1/2,1/νj ). In particular, if function
fj (t) is constant or vanishes, then rj = ∞. We denote vectors with elements νj and
rj , j = 1, . . . , p, by ν and r, respectively, and the set of indices of finite elements
rj by J ,

J = {j : rj < ∞}.(2.4)

(A4). We suppose that the variables ξi , i = 1, . . . , n, are i.i.d., centered and
sub-Gaussian. That is, E(ξi) = 0, and there exists a constant K such that

E
[
exp(tξi)

] ≤ exp
(
t2K2/2

)
for all t > 0. (See [33] for discussion of sub-Gaussian random variables.)

(A5). “Restricted isometry in expectation” condition. Let W�,� ⊂ {1, . . . , p}
be the sub-vector obtained by extracting the entries of W corresponding to indices
in �, and let �� = E(W�WT

�). We assume that there exist two positive constants
ωmax(ℵ) and ωmin(ℵ) such that for all subsets � with cardinality |�| ≤ ℵ and all
v ∈ R|�| one has

ωmin(ℵ)‖v‖2
2 ≤ vT ��v ≤ ωmax(ℵ)‖v‖2

2.(2.5)

Moreover, we suppose that E(W(j))4 ≤ V for any j = 1, . . . , p, and that, for any
μ ≥ 1 and for all subsets � with |�| ≤ ℵ, there exist positive constants Uμ and Cμ

and a set Wμ such that

W� ∈ Wμ �⇒ (‖W�‖2 ≤ Uμ

) ∩
(
max
j∈�

∣∣W(j)
�

∣∣ ≤ Cμ

)
,

(2.6)
P(W� ∈ Wμ) ≥ 1 − 2p−2μ.

Here, Uμ = Uμ(ℵ), Cμ = Cμ(ℵ).
(A6). We assume that (s + s0)(1 + logn) ≤ p and that there exists a numerical

constant Cω > 1 such that

log(n) ≥ Cωφmaxωmax((s + s0) logn)

φminωmin((s + s0)(1 + logn))
.(2.7)

We denote

ω∗
max = ωmax

(
(s + s0) logn

)
, ω∗

min = ωmin
(
(s + s0)(1 + logn)

)
.(2.8)

Note that ω∗
max and ω∗

min are functions of ((s + s0) logn) and ((s + s0)(1 + logn)),
respectively.



SPARSE HIGH-DIMENSIONAL VCM 1279

2.3. Discussion of assumptions.

• Assumptions (A0) corresponds to the case when s of the covariates fj (t) are
indeed functions of time, s0 of them are time independent and (p − s − s0) are
irrelevant.

• Assumption (A1) deals with the basis of L2([0,1]). There are many types of
orthonormal bases satisfying those conditions.

(a) Fourier basis. Choose φ0(t) = 1, φk(t) = 2 sin(2πkt) if k > 1 is odd,
φk(t) = 2 cos(2πkt) if k > 1 is even. The basis functions are bounded and
Cφ = 2.

(b) Wavelet basis. Consider a periodic wavelet basis on [0,1]: ψh,i(t) =
2h/2ψ(2ht − i) with h = 0,1, . . . , i = 0, . . . ,2h − 1. Set φ0(t) = 1 and φj (t) =
ψh,i(t) with j = 2h + i +1. If l = 2J , then condition (2.2) is satisfied with Cφ =
‖ψ‖∞. Observing that, for 2J < l < 2J+1, we have (l + 1) ≥ (2J+1 + 1)/2, and
one can take Cφ = 2‖ψ‖∞.

• Assumption (A2) that φmin and φmax are absolute constants independent of L is
guaranteed by the fact that the sampling density g is bounded above and below.
For example, if g(t) = 1, one has φmin = φmax = 1.

• Assumption (A3) describes sparsity of the vectors of coefficients of functions
fj (t) in basis φl , j = 1, . . . , p and its smoothness. For example, if νj < 2, the
vector of coefficients ajl of fj is sparse. In the case when basis φl is formed
by wavelets, condition (2.3) implies that fj belongs to a Besov ball of radius
Ca . If we chose Fourier bases and νj = 2, then fj belongs to a Sobolev ball of
smoothness rj and radius Ca . Note that assumption (A3) allows each noncon-
stant function fj to have its own sparsity and smoothness patterns.

• Assumption (A4) that ξi are sub-Gaussian random variables means that their
distribution is dominated by the distribution of a centered Gaussian random
variable. This is a convenient and reasonably wide class. Classical examples
of sub-Gaussian random variables are Gaussian, Bernoulli and all bounded ran-
dom variables.

• Assumption (A5) is closely related to the restricted isometry (RI) conditions
usually considered in the papers that employ LASSO technique or its versions;
see, for example, [2]. However, usually the RI condition is imposed on the ma-
trix of scalar products of the elements of a deterministic dictionary while we
deal with a random dictionary and require this condition to hold only for the
expectation of this matrix.

Note that the upper bound in condition (2.5) is automatically satisfied with
ωmax = ‖�‖ where ‖�‖ is the spectral norm of the matrix E(WWT ) = �. If the
smallest eigenvalue of �, λmin(�), is nonzero, then the lower bound in (2.5) is
satisfied with ωmin = λmin(�). However, since the λ-restricted maximal eigen-
value ωmax(λ) may be much smaller than the spectral norm of � and ωmin(λ)

may be much larger then λmin(�), using those values will result in sharper
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bounds for the error. Note that in the case when W has i.i.d. zero-mean entries
Wj with E(W(j))2 = ν2, we have ωmax = ωmin = ν2.

• Condition (2.7) is usual in the literature on the high-dimensional linear regres-
sion model; see, for example, Assumption 2 in [2]. For instance, if W has
i.i.d. zero-mean entries Wj and g(t) = 1, this condition is satisfied for any
1 < Cω ≤ log(n). Note that condition (s + s0)(1+ logn) ≤ p is slightly stronger
than the usual condition (s + s0) ≤ 2p. The additional logn factor corresponds
to the block size.

3. Estimation strategy and nonasymptotic error bounds.

3.1. Estimation strategy. Formulation (1.4) implies that the varying coeffi-
cient model can be reduced to the linear regression model and one can apply one of
the multitude of penalized optimization techniques which have been developed for
the linear regression. In what follows, we apply a block LASSO penalties for the
coefficients in order to account for both the constant and the vanishing functions
fj and also to take advantage of the sparsity of the functional coefficients in the
chosen basis.

In particular, for each function fj , j = 1, . . . , p, we divide its coefficients into
M + 1 different groups where group zero contains only coefficient aj0 for the
constant function φ0(t) = 1 and M groups of size d ≈ logn where M = L/d . We
denote aj0 = aj0 and aj l = (aj,d(l−1)+1, . . . , aj,dl)

T the sub-vector of coefficients
of function fj in block l, l = 1, . . . ,M . Let Kl be the subset of indices associated
with aj l . We impose block norm on matrix A as follows:

‖A‖block =
p∑

j=1

M∑
l=0

‖aj l‖2.(3.1)

Observe that ‖A‖block indeed satisfies the definition of a norm and is a sum of
absolute values of coefficients aj0 of functions fj and l2 norms for each of the
block vectors of coefficients aj l , j = 1, . . . , p, l = 1, . . . ,M .

The penalty which we impose is related to both the ordinary and the group
LASSO penalties which have been used by many authors. The difference, how-
ever, lies in the fact that the structure of the blocks is not motivated by naturally
occurring groups (like, e.g., rows of the matrix A) but rather our desire to exploit
sparsity of functional coefficients ajl . In particular, we construct an estimator Â of
A0 as a solution of the following convex optimization problem:

Â = arg min
A

{
n−1

n∑
i=1

[
Yi − Tr

(
AT φ(ti)WT

i

)]2 + δ‖A‖block

}
,(3.2)

where the value of δ will be defined later.
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Note that with the tensor approach which we used in Section 1.2, optimization
problem (3.2) can be re-written in terms of vector α = Vec(A) as

â = arg min
α

{
n−1‖Y − Bα‖2

2 + δ‖α‖block
}
,(3.3)

where ‖α‖block = ‖A‖block is defined by the right-hand side (3.1) with vectors
aj l being sub-vectors of vector α. Subsequently, we construct an estimator f̂(t) =
(f̂1(t), . . . , f̂p(t))T of the vector function f(t) using

f̂j (t) =
L∑

k=0

âjkφk(t), j = 1, . . . , p.(3.4)

In what follows, we derive the upper bounds for the risk of the estimator â
(or Â) and suggest a value of parameter δ, which allows us to attain those bounds.
However, in order to obtain a benchmark of how well the procedure is performing,
we determine the lower bounds for the risk of any estimator Â.

REMARK 1. Assumption that K = L/d is an integer is not essential. Indeed,
we can replace the number of groups K by the largest integer below or equal to
L/d and then adjust group sizes to be d or d + 1 where d = [logn], the largest
integer not exceeding logn.

3.2. Lower bounds for the risk. In this section we will obtain the lower bounds
on the estimation risk. We consider a class F = Fs0,s,ν,r(Ca) of vector functions
f(t) such that s of their components are nonconstant with coefficients satisfying
condition (2.3) in (A3), s0 of the components are constant and (p− s − s0) compo-
nents are identically equal to zero. We construct the lower bound for the minimax
quadratic risk of any estimator f̃ of the vector function f ∈ Fs0,s,ν,r(Ca). Assume
that, conditionally on Wi and ti , variables ξi are Gaussian N (0, σ 2). Let ω∗

max be
given by formula (2.8). Denote rmax = max{rj : j ∈ J } and

nlow = 2σ 2κ

C2
aω∗

maxφmax
max

{
4 log(p/s0)

5
,

8 log(p/s)

5
,

(
6

s

)2rmax+1}
,(3.5)

�lower(s0, s, n, r) = max
{
κσ 2[s log(p/s) + s0 log(p/s0)]

5nω∗
maxφmax

,

(3.6)
1

8

∑
j∈J

C
2/(2rj+1)
a

(
σ 2κ

nω∗
maxφmax

)2rj /(2rj+1)}
.

Then the following statement holds.

THEOREM 1. Let s ≥ 1 and s0 ≥ 3. Consider observations Yi in model (1.3)
with Wi , i = 1, . . . , n and t satisfying assumptions (A5) and (A2), respectively.
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Assume that n ≥ nlow. Then, for any κ < 1/8 and any estimator f̃ of f, one has

inf
f̃

sup
f∈F

P
(‖f̃ − f‖2

2 ≥ �lower(s0, s, n, r)
) ≥

√
2

1 + √
2

(
1 − 2κ −

√
2κ

log 2

)
.(3.7)

Note that condition s0 ≥ 3 is not essential since, for s0 < 3, the first term in (3.6)
is of parametric order. Condition n ≥ nlow is a purely technical condition which is
satisfied for the collection of n’s for which upper bounds are derived. Observe also
that inequality (3.7) immediately implies that

inf
f̃

sup
f∈F

E‖f̃ − f‖2
2 ≥ �lower(s0, s, n, r)

[ √
2

1 + √
2

(
1 − 2κ −

√
2κ

log 2

)]
.(3.8)

3.3. Adaptive estimation and upper bounds for the risk. In this section we
derive an upper bound for the risk of the estimator (3.2). For this purpose, first, we
shall show that, with high probability, the ratio between the restricted eigenvalues
of matrices �̂ defined in (1.7) and � = E�̂ is bounded above and below. This is
accomplished by the following lemma.

For any � ⊂ {1, . . . , p}, we denote by (�i )� = (Wi )�((Wi )�)T , �̂� =
n−1 ∑n

i=1(�i )� ⊗ �i and �� = E�̂�. For some 0 < h < 1 and 1 ≤ ℵ ≤ p, we
define

N(ℵ) = 64μℵ(L + 1) log(p + L)C2
φU2

μ(ℵ)φmaxωmax(ℵ)

h2φ2
minω

2
min(ℵ)

.(3.9)

LEMMA 1. Let n ≥ N(ℵ) and μ in (2.6) be large enough, so that

pμ ≥ max
{ √

2V n

8μ
√ℵU2

μ(ℵ) log(p + L)
,2n

}
,(3.10)

where V is defined in assumption (A5). Then, for any � ⊂ {1, . . . , p},
inf

� : |�|≤ℵ
[
P

({‖�̂� − ��‖ < hφminωmin(ℵ)
} ∩W⊗n

μ

)] ≥ 1 − 2p−μ,(3.11)

where Wμ is the set of points in R
p such that condition (2.6) holds and W⊗n

μ is
the direct product of n sets Wμ.

Moreover, on the set W⊗n
μ , with probability at least 1 − 2p−μ, one has simulta-

neously

inf
� : |�|≤ℵ

[
λmin(�̂�)

] ≥ (1 − h)φminωmin(ℵ),

(3.12)
sup

� : |�|≤ℵ
[
λmax(�̂�)

] ≤ (1 + h)φmaxωmax(ℵ).

Lemma 1 ensures that the restricted lowest eigenvalue of the regression matrix
�̂ is within a constant factor of the respective eigenvalue of matrix �. Since p

may be large, this is not guaranteed by a large value of n (as it happens in the
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asymptotic setup) and leads to additional conditions on the relationship between
parameters L, p and n.

The following theorem gives an upper bound for the quadratic risk of the esti-
mator (3.2). We set Uμ = Uμ(s + s0). Denote

r∗
j = rj ∧ r ′

j , r∗ = min
j

r∗
j ,(3.13)

and suppose that r∗ ≥ r∗
0 > (2ς)−1 where 1/2 ≤ ς < 1 and choose L + 1 = nς .

Let

δ̂ = (CKK
√

μ + 1)

√
(1 + h)φmaxωmax(1) logp

n
,(3.14)

where constant CK only depends on the distribution of random variables ξi and is
introduced in (5.26) in [21]. Define

N1 = 64μ(s + s0)C
2
φU2

μ(L + 1)φmaxω
∗
max log(p + L)

h2φ2
min(ω

∗
min)

2
,

N2 = U2
μC2

φ(L + 1)μ logp

g2ωmax(s)
,(3.15)

N3 = (
3C2

ag2sωmax(s)/ logp
)1/(2r∗

0 ς−1)
,

and set N = max(N1,N2,N3).

THEOREM 2. Suppose that μ in (2.6) be large enough, so that

pμ ≥ max
{ √

2V n

8μ
√

s + s0U2
μ log(p + L)

,
2L

logn
,2n

}
.(3.16)

Let â be an estimator of a obtained as a solution of optimization problem (3.3)
with δ = 2δ̂, and the vector function f̂ be recovered using (3.4). If n ≥ N, then one
has

P
(‖f̂ − f‖2

2 ≤ �(s0, s, n, r)
) ≥ 1 − 8p−μ,(3.17)

where

�(s0, s, n, r) = C2
as

n
+ CB(1 + h)ω∗

maxφmax

(1 − h)ω∗
minφmin

×
[
(CKK2μ + 1)(s0 + s) logp

n(1 − h)ω∗
minφmin

× ∑
j∈J

C
2/(2rj+1)
a

(
CKK2μ + 1

n(1 − h)ω∗
minφmin

)2rj /(2rj+1)

× (logn)(2−νj )+/(νj (2rj+1))

(
logp

logn

)2rj /(2rj+1)]
.
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Additionally, the following inequality holds:

P
(
n−1∥∥WT (f̂ − f)

∥∥2
2 ≤ �′(s0, s, n, r)

) ≥ 1 − 8p−μ,(3.18)

where

�′(s0, s, n, r) = C2
as

n
+ CB(1 + h)ω∗

maxφmax

×
[
(CKK2μ + 1)(s0 + s) logp

n(1 − h)ω∗
minφmin

× ∑
j∈J

C
2/(2rj+1)
a

(
CKK2μ + 1

n(1 − h)ω∗
minφmin

)2rj /(2rj+1)

× (logn)(2−νj )+/(νj (2rj+1))

(
logp

logn

)2rj /(2rj+1)]
.

Note that construction (3.3) of the estimator â does not involve knowledge of
unknown parameters r and ν or matrix �. Therefore, estimator â is fully adaptive
with respect to those parameters. Moreover, conclusions of Theorem 2 are derived
without any asymptotic assumptions on n, p and L.

REMARK 2. The combination of parameters ς and r∗
0 provides a trade-off be-

tween adaptivity to the smoothness, sparsity and number of observations required
for carrying out adaptive estimation. This relationship is not surprising since a
larger number of dictionary functions used in the representation of f implies that
we need to estimate a larger number of coefficients. In order to keep the estima-
tor optimal, one has to either reduce the number of parameters in the model by
considering a subclass of smoother functions (larger r∗

0 , smaller L) or increase the
number of observations (larger N3).

Indeed, if ς is a constant close to one, then our estimator adapts to the
smoothness r∗ ≥ (2ς)−1 which is close to 1/2. However, this will imply that
N3 ≥ (3C2

ag2sωmax(s)/ logp)ν where ν is very large; hence, either s/ logp has
to be very small or the number of observations n has to be very large. For larger
values of s and without increasing the number of observations too much, one
should choose smaller values of ς . For example, if ς = 1/2, then the estimator
adapts to smoothness r∗ ≥ r∗

0 = 2 provided n ≥ N3 = 3C2
ag2sωmax(s)/ logp. If

ς = 3/4, then the estimator adapts to smoothness r∗ ≥ r∗
0 = 1 provided n ≥ N3 =

(3C2
ag2sωmax(s)/ logp)2.

In order to assess the optimality of estimator â, we consider the case of the
Gaussian noise; that is, ξi are Gaussian N (0, σ 2) and K = σ . Observe that, un-
der assumption (A2), the values of φmin and φmax are independent of n and p,
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so that the only quantities in (3.17) which are not bounded from above and be-
low by an absolute constant are σ , ω∗

min, ω∗
max, s and s0. Hence, �(s0, s, n, r) ≤

C�upper(s0, s, n, r) with

�upper(s0, s, n, r)

= ω∗
max

ω∗
min

[
σ 2(s0 + s) logp

nω∗
min

(3.19)

+ ∑
j∈J

C
2/(2rj+1)
a

(
σ 2

nω∗
min

)2rj /(2rj+1)

× (logn)(2−νj )+/(νj (2rj+1))

(
logp

logn

)2rj /(2rj+1)]
,

where C is an absolute constant independent of Ca , n, p, σ 2 and vectors ν and r.
Inequality (3.19) implies that for any values of the parameters, the ratio between

the upper and the lower bound for risk (3.6) is bounded by C�(n,p)(ω∗
max/ω

∗
min)

2

where

�(n,p) = max
(

logp

log(p/s0)
,

logp

log(p/s)

)
(3.20)

+ max
j∈J (logn)(2−νj )+/(νj (2rj+1))

(
logp

logn

)2rj /(2rj+1)

.

Note that ω∗
max/ω

∗
min is bounded by the condition number of matrix �� with

|�| = (s + s0)(1 + logn). Hence, if matrix �� is well conditioned, so that
ω∗

max/ω
∗
min is bounded by a constant, the estimator f̂ attains optimal convergence

rates up to a �(n,p) factor.
Suppose now that all functions fj (t) are spatially homogeneous, that is,

minj νj ≥ 2. Additionally, assume that s0 and s are small enough, that is, s0 ≤ pγ1

and s ≤ max(exp[Cn1/(2r+1)],pγ2) for some γ1 < 1, γ2 < 1, C > 0, and n is large
enough, that is, there exists a positive β such that nβ ≥ p. Then it is easy to see
that �(n,p) is uniformly bounded, and the estimator f̂ attains optimal conver-
gence rates up to a constant factor. In particular, if all functions in assumption (A3)
belong to the same space, then the following corollary is valid.

COROLLARY 1. Let the conditions of Theorem 2 hold with rj = r and νj = ν,
j − 1, . . . , p, and matrix � be well conditioned; that is, ω∗

max/ω
∗
min is bounded by

some absolute constant independent of n, p and K . Let there exist β > 0, γ1 < 1,
γ2 < 1 and C > 0 such that nβ ≥ p, s0 ≤ pγ1 and s ≤ max(exp[Cn1/(2r+1)],pγ2).
Then

�upper(s0, s, n, r)
�lower(s0, s, n, r)

≤
{

C(logn)2(2−ν)+/(ν(2r+1)), if 1 ≤ ν < 2,
C, if ν ≥ 2.

(3.21)



1286 O. KLOPP AND M. PENSKY

As an example, consider the case when one knows that all functions fj are
polynomials. In this case, of course, one should use polynomial basis. If the maxi-
mum degree of the polynomials M is known, then one is dealing with a parametric
estimation problem and obtains parametric convergence rates with s0 replaced by
s0 +sM and the second term is absent in (3.19). If the degrees of these polynomials
can grow indefinitely, then the class of functions is nonparametric with ν ≥ 2, and
we can be sure that we obtain convergence rates optimal up to a constant provided
there exist β > 0 and γ < 1 such that nβ ≥ p and s0 ≤ pγ .

3.4. Adaptive estimation with respect to the mean squared risk. Theorem 2 de-
rives upper bounds for the risk with high probability. Suppose that an upper bound
on the norms of functions fj is available due to physical or other considerations,

max
1≤j≤p

‖fj‖2
2 ≤ C2

f .(3.22)

Then ‖a‖2 ≤ pC2
f and â given by (3.3) can be replaced by the solution of the

convex problem

â = arg min
a

{
n−1‖Y − Ba‖2

2 + δ‖a‖block s.t. ‖a‖2 ≤ pC2
f

}
(3.23)

with δ = δ̂ where δ̂ is defined in (3.14), and estimators f̂j of fj , j = 1, . . . , p, are
constructed using formula (3.4). Choose μ in (2.6) large enough, so that

16nC2
f ≤ pμ−1.(3.24)

Then the following statement is valid.

THEOREM 3. Under the assumptions of the Theorem 2, and for any μ satis-
fying condition (3.24), one has

E‖f̂ − f‖2
2 ≤ C�upper(s0, s, n, r),(3.25)

where C is an absolute constant independent of n, p and K .

4. Examples and discussion.

4.1. Examples. In this section we provide several examples when assumptions
of the paper are satisfied. For simplicity, we assume that g(t) = 1, so that φmin =
φmax = 1.

EXAMPLE 1 (Normally distributed dictionary). Let Wi , i = 1, . . . , n, be i.i.d.
standard Gaussian vectors N(0, Ip). Then � = Ip , so that ωmin = ωmax = 1. More-
over, W(j) are independent standard Gaussian variables, and (Wi )

T
�(Wi )� are

independent chi-squared variables with |�| = ℵ degrees of freedom. Using the
inequality (see, e.g., [3], page 67)

P
(
χ2ℵ ≤ ℵ + 2

√ℵx + 2x
) ≥ 1 − e−x, x > 0,
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for any μ1 ≥ 0, derive

P
(
(W1)

T
�(W1)� ≤ (

√ℵ + √
2μ1)

2) ≥ 1 − exp
(−μ2

1
)
.

Choose any μ > 0, and set μ2
1 = 2μ log(p). Then using a standard bound on the

maximum of p Gaussian variables, one obtains that assumption (A5) holds with

Cμ =
√

2 logp, U2
μ = (

√ℵ + 2
√

μ logp)2.

EXAMPLE 2 (Symmetric Bernoulli dictionary). Let W(j)
i , i = 1, . . . , n, j =

1, . . . , p, be independent symmetric Bernoulli variables

P
(
W(j)

i = 1
) = P

(
W(j)

i = −1
) = 1/2.

Then � = Ip , ωmin = ωmax = 1 and, for any μ,

Cμ = 1, U2
μ(ℵ) = ℵ.

In both cases, N in (3.15) is of the form N = C(s + s0)
2(L + 1) log(p). Under

the conditions of Theorem 2, the upper bounds for the risk are of the form

�upper(s0, s, n, r)

= C

[
K2s0 logp

n
+ ∑

j∈J

(
K2

n

)2rj /(2rj+1)

C
2/(2rj+1)
a

× (logn)((2−νj )+−2νj rj )/(νj (2rj+1))(logp)2rj /(2rj+1)

]
,

where C is a numerical constant. Now, it follows from Corollary 1 that the block
LASSO estimator is minimax optimal up to, at most, the logarithmic factor of p.

The two examples above illustrate the situation when estimator (3.4) attains
nearly optimal convergence rates when p > n. This, however, is not always pos-
sible. Note that our analysis of the performance of estimator (3.4) relies on the
fact that the eigenvalues of any sub-matrix �̂� are close to those of matrix ��

(Lemma 1). The latter requires n ≥ N where N depends on the nature of vec-
tors Wi . The next example shows that sometimes n < p prevents Lemma 1 from
being valid.

EXAMPLE 3 (Orthonormal dictionary). Let Wi , i = 1, . . . , n, be uniformly
distributed on a set of canonical vectors ek , k = 1, . . . , p. Then � = Ip/p, so that
ωmin = ωmax = 1/p. Moreover, ‖W1‖2

2 = 1 and |W(j)| ≤ 1. Therefore, for any
μ > 0,

Cμ = 1, U2
μ(ℵ) = 1.
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In the case of the orthonormal dictionary, N in (3.15) is of the form N = C(s +
s0)(L + 1)p log(p). Under conditions of Theorem 2, the upper bound for the risk
is of the form

�upper(s0, s, n, r)

= C

[
K2ps0 logn

n

+ ∑
j∈J

(
pK2

n

)2rj /(2rj+1)

C
2/(2rj+1)
a

× (logn)((2−νj )+−2νj rj )/(νj (2rj+1))(logp)2rj /(2rj+1)

]
,

so n ≥ N implies n > CK2p(s0 + s) logn which also guarantees that the risk of
the estimator is small. This, indeed, coincides with one’s intuition since one would
need to sample more than p vectors in order to ensure that each component of the
vector has been sampled at least once.

4.2. Discussion. In the present paper, we provide a nonasymptotic minimax
study of the sparse high-dimensional varying coefficient model. To the best of our
knowledge, this has never been accomplished before. An important feature of our
analysis is its flexibility: it distinguishes between vanishing, constant and time-
varying covariates, and in addition, it allows the latter to be heterogeneous (i.e., to
have different degrees of smoothness) and spatially inhomogeneous. In this sense,
our setup is more flexible than the one usually uses in the context of additive or
compound functional models; see, for example, [9] or [29].

Our estimator is obtained using a block LASSO approach which can be viewed
as a version of the group LASSO, where groups do not occur naturally but are
rather driven by the need to reduce the variance, as it is done, for example, in
block thresholding. Since we used a tensor approach for derivation of the estima-
tor, we believe that the results of the paper can be generalized to the case of the
multivariate varying coefficient model studied in [38].

An important feature of our estimator is that it is fully adaptive to the unknown
sparsity and the smoothness of the time-varying covariates. Indeed, application
of the proposed block LASSO technique does not require the knowledge of the
number of the nonzero components of f. It only depends on the highest diagonal
element of matrix � which can be estimated with high precision, even when n is
quite small due to Lemma 1.

Note that, even when p is larger than n, the vector function f is completely
identifiable due to assumption (A5). We consider some examples of the dictionar-
ies such that this assumption holds. The latter ensures identifiability of f provided
n ≥ N where N is specified for each type of the random dictionary and depends on
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the sparsity level of f. On the other hand, large values of p ensure great flexibility
of the choice of f, so one can hope to represent the data using only few components
of it.

Finally, we want to comment on the situation when the requirement n ≥ N is
not met due to lack of sparsity or insufficient number of observations. In this case,
f is not identifiable, and one cannot guarantee that f̂ is close to the true function f.
However, these kinds of situations occur in all types of high-dimensional problems.

5. Proofs.

5.1. Proofs of the lower bounds for the risk. In order to prove Theorem 1, we
consider a set of test vector functions fω(t) = (f1,ω, . . . , fp,ω)T indexed by binary
sequences ω with components

fk,ω(t) = ωk0uk +
2l0k−1∑
l=l0k

ωklvkφl(t),(5.1)

where l0k ≥ 1 and ωkl ∈ {0,1} for l = l0k, l0k + 1, . . . ,2l0k − 1, k = 1, . . . , p. Let
K0, K1 and K2 be disjoint sets of indices such that

fk,ω(t) = ωk0u if k ∈ K0,(5.2)

fk,ω(t) = ωk0ũ + ṽφ1(t) if k ∈ K1(5.3)

and

fk,ω(t) = v

2l0k−1∑
l=l0k

ωklφl(t) if k ∈ K2.(5.4)

In order for assumption (2.3) to hold, one needs u ≤ Ca , ũ ≤ Ca/2, ṽ ≤
Ca2−(rk+1/2) and

vνj

2l0k−1∑
l=l0k

(l + 1)νj rj
′ ≤ (Ca)

νj , j ∈ ϒ.(5.5)

By simple calculations, it is easy to verify that condition (5.5) is satisfied if we set

v = Ca(2l0k)
−(rk+1/2),(5.6)

where the constancy of v implies that l0k in (5.6) are different for different values
of k.

Consider two binary sequences ω and ω̃ and the corresponding test functions
f(t) = fω(t) and f̃(t) = fω̃(t) indexed by those sequences. Then the total squared
distance in L2([0,1]) between fω(t) and fω̃(t) is equal to

D2 = u2
∑

k∈K0

|ωk0 − ω̃k0| + ũ2
∑

k∈K1

|ωk0 − ω̃k0|
(5.7)

+ v2
∑

k∈K2

2l0k−1∑
l=l0k

|ωkl − ω̃kl|.
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Let Pf and Pf̃ be probability measures corresponding to test functions f and f̃,
respectively. We shall consider three cases. In case 1, s0 functions are constants of
the form (5.2), and the rest of the functions are equal to identical zero. In case 2,
s functions are time-dependent of the form (5.3), and the rest of the functions are
equal to identical zero. In case 3, s functions are time-dependent of the form (5.4),
and the rest of the functions are equal to identical zero. In all three cases, f(t) and
f̃(t) contain at most (s + s0) nonzero coordinates. Using the fact that conditionally
on Wi and ti , the variables ξi are Gaussian N (0, σ 2), we obtain that the Kullback–
Leibler divergence K(Pf,Pf̃) between Pf and Pf̃ satisfies

K(Pf,Pf̃) = (
2σ 2)−1

E

n∑
i=1

[
Qi(f) − Qi(f̃)

]2 = (
2σ 2)−1

nE
[
Q1(f) − Q1(f̃)

]2
,

where

Qi(f) = WT
i f(ti),

and, due to conditions (A2) and (A5),

E
[
Q1(f) − Q1(f̃)

]2 = E
(
(f − f̃)T (t1)W1W

T
1 (f − f̃)(t1)

)
= E

(
(f − f̃)T (t1)�(f − f̃)(t1)

)
≤ ω∗

maxE
(∥∥(f − f̃)(t1)

∥∥2
2

) ≤ ω∗
maxφmaxD

2,

where ω∗
max and D2 are defined in (2.8) and (5.7), respectively.

In order to derive the lower bounds for the risk, we use Theorem 2.5 of
Tsybakov [31] which implies that if a set � of cardinality (M + 1) contains
sequences ω0, . . . ,ωM with M ≥ 2 such that, for any j = 1, . . . ,M , one has
‖fω0 − fωj

‖ ≥ D > 0, Pωj
� Pω0 and K(Pfj , Pf0) ≤ κ logM with 0 < κ < 1/8,

then

inf
ω̃

sup
fω,ω∈�

P
(‖fω − fω̃‖2 ≥ D/2

) ≥
√

M

1 + √
M

(
1 − 2κ −

√
2κ

logM

)
.(5.8)

Now, we consider three separate cases.

Case 1. Let s0 functions be constant, of the form (5.2), and the rest of the func-
tions be identically equal to zero. Use Lemma 4.10 of Massart and Picard [26]
(with α = 3/4, β = 1/4 and ρ = 0.233 ≥ 0.2) to choose a set � of binary se-
quences of length p with exactly s0 ones such that the distance between any two
sequences is at least s0/2 and log[card(�)] ≥ 0.2s0 log(p/s0). Then D2 ≥ u2s0/2
and inequality

K(Pfj , Pf0) ≤ (
2σ 2)−1

nω∗
maxφmaxu

2s0/2 ≤ 0.2κs0 log(p/s0)

holds if u2 = 4σ 2κ log(p/s0)/(5nω∗
maxφmax). Then

D2 = (
2s0 log(p/s0)σ

2κ
)
/
(
5nω∗

maxφmax
)

and u ≤ Ca provided n ≥ 8σ 2κ log(p/s0)/(5C2
aω∗

maxφmax).
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Case 2. Let s functions be time-dependent of the form (5.3) and the rest of the
functions be identically equal to zero. Use Lemma 4.10 of Massart and Picard
[26] (with α = 3/4, β = 1/4 and ρ = 0.233 ≥ 0.2) to choose a set � of binary
sequences of length p with exactly s ones such that the distance between any two
sequences is at least s/2 and log[card(�)] ≥ 0.2s log(p/(s0 + s)). Then D2 ≥
ũ2s/2, and inequality

K(Pfj , Pf0) ≤ (
2σ 2)−1

nω∗
maxφmaxũ

2s/2 ≤ 0.2κs log(p/s)

holds if ũ2 = 4σ 2κ log(p/s)/(5nω∗
maxφmax). Then

D2 = (
2s log(p/s)σ 2κ

)
/
(
5nω∗

maxφmax
)

and ũ ≤ Ca/2 provided n ≥ 16σ 2κ log(p/s)/(5C2
aω∗

maxφmax).
Case 3. Let the first s functions be time-dependent of the form (5.4) and the

rest of the functions be equal to identical zero. Then u = 0, ṽ = 0, v is given by
formula (5.6) and K2 = {1, . . . , s}. Let rk, k ∈ K2 coincide with the values of finite
components of vector r. Denote

L =
s∑

k=1

l0k.

Use the Varshamov–Gilbert lemma to choose a set � of ω with card(�) ≥ 2L/8

and D2 ≥ v2L/8. Inequality K(Pfj , Pf0) ≤ κL/8 holds if

v2 ≤ (
σ 2κ

)
/
(
4nω∗

maxφmax
)
,

which, together with (5.6) and (5.7) imply that

l0k =
⌊

1

2

(
4C2

anω∗
maxφmax

σ 2κ

)1/(2rk+1)⌋
+ 1,

D2 ≥ C2
a

16

s∑
k=1

(
4C2

anω∗
maxφmax

σ 2κ

)−2rk/(2rk+1)

,

where �x� denotes the integer part of x. Condition L ≥ 3 is satisfied for any s ≥ 1
provided n ≥ nlow.

5.2. Proofs of the upper bounds for the risk.

PROOF OF THEOREM 2. For any α ∈R
p(L+1), one has

n−1‖Bâ − Y‖2
2 + δ‖â‖block ≤ n−1‖Bα − Y‖2

2 + δ‖α‖block.

Consider a set F1 ⊆ W⊗n
μ such that (3.12) holds for any t and W ∈ F1, and a set

F2 ⊆ W⊗n
μ such that (5.35) in [21] hold. Let F = F1 ∩ F2. Inequality (5.25) of

Lemma 2 in [21] implies that, on the event F ,

2|〈â − α,BT b〉|
n

≤ δ̂‖â − α‖block.
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Consider a set � of values of the vector ξ such that

2n−1∣∣〈â − α,BT ξ
〉∣∣ ≤ δ̂‖â − α‖block for ξ ∈ �.(5.9)

By (5.24) in [21], one has P(�) ≥ 1 − 5p−μ. Using (1.4), for ξ ∈ �, any t and
W ∈ F , one obtains

‖B(â − a)‖2
2

n
≤ ‖B(α − a)‖2

2

n
− 2δ̂‖â‖block

(5.10)
+ 2δ̂‖α‖block + δ̂‖â − α‖block.

Since α is an arbitrary vector, setting α = a in (5.10) yields

δ̂‖â‖block − δ̂‖a‖block ≤ 0.5δ̂‖â − a‖block.

Let the set J0 contain the indices of nonzero blocks of a0,

J0 = {
(j, l) :‖aj l‖2 �= 0

}
.(5.11)

Then the last inequality implies∑
(i,j)∈JC

0

∥∥(a − â)ij
∥∥ ≤ 3

∑
(i,j)∈J0

∥∥(a − â)ij
∥∥.(5.12)

From Lemma 1 it follows that

λmin(�̂) ≥ (1 − h)φminω
∗
min and λmax(�̂) ≤ (1 + h)φmaxω

∗
max,

where ω∗
min and ω∗

max are defined in (2.8). For 1 ≤ j ≤ p, consider the sets

G00 = {j : 1 ≤ j ≤ p,αj0 = 0}, G01 = {j : 1 ≤ j ≤ p,αj0 �= 0},
Gj0 = {

l : 1 ≤ l ≤ M,‖αj l‖2 = 0
}
, Gj1 = {

l : 1 ≤ l ≤ M,‖αj l‖2 �= 0
}
.

We choose αj0 = aj0 if aj0 �= 0 and αj0 = 0 otherwise. Let the sets Gj1 be so that
l ∈ Gj1 if and only if

‖aj l‖2
2 > ε0 = 82(CKK2μ + 1) logp

nλmin(�̂)
.

We set αj l = aj l if j ∈ J and l ∈ Gj1 and αj l = 0 otherwise where J is the set of
indices corresponding to nonconstant functions fj .

With δ = 2δ̂, inequality (5.12) and Lemma 3 in [21] guarantee that

‖B(â − a)‖2
2

n
≥ CBλmin(�̂)‖â − a‖2

2.(5.13)

On the other hand, Lemma 1 and the definition of α imply that

‖B(α − a)‖2
2

n
≤ λmax(�̂)‖α − a‖2

2.(5.14)
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Then, using (5.13) and (5.14), we rewrite inequality (5.10) as

CBλmin(�̂)‖â − a‖2
2 ≤ λmax(�̂)

∥∥(α − a)
∥∥2

2 + 4δ̂
∑

j∈G01

|âj0 − aj0|

+ 4δ̂
∑
j∈J

∑
l∈Gj1

‖âj l − aj l‖2.

Using inequality 2x1x2 ≤ x2
1 + x2

2 for any x1, x2, we derive

4δ̂
∑
j∈J

∑
l∈Gj1

‖âj l − aj l‖2 ≤ CBλmin(�̂)

2

∑
j∈J

∑
l∈Gj1

‖âj l − aj l‖2
2

+ ∑
j∈J

8δ̂2 card(Gj1)

CBλmin(�̂)
,

and similar inequality applies to the first sum in (5.15). By subtracting
0.5CBλmin(�̂)‖â − a‖2

2 from both sides of (5.15) and plugging in the values of
δ̂ and α, derive∥∥(â − a)

∥∥2
2 ≤ CBλmax(�̂)

λmin(�̂)

[ p∑
j=1

∑
l∈Gj0

‖aj l‖2
2 + 82(CKK2μ + 1)(s0 + s) logp

nλmin(�̂)

(5.15)

+ ∑
j∈J

82(CKK2μ + 1) card(Gj1) logp

nλmin(�̂)

]
.

Observe that for any 1 ≤ j ≤ p, one has∑
l∈Gj0

‖aj l‖2
2 + 82(CKK2μ + 1) card(G1j) logp

nλmin(�̂)

≤
M∑
l=1

min
(
‖aj l‖2

2,
82(CKK2μ + 1) logp

nλmin(�̂)

)
.

Application of inequality (5.31) in [21] with ε = 82(CKK2μ+1) logp

nλmin(�̂) logn
(see Lemma 4

in [21]) yields

‖â − a‖2
2 ≤ CBλmax(�̂)

λmin(�̂)

×
[
(CKK2μ + 1)(s0 + s) logp

nλmin(�̂)
(5.16)

× ∑
j∈J

C
2/(2rj+1)
a

(
CKK2μ + 1

nλmin(�̂)

)2rj /(2rj+1)

× (logn)((2−νj )+−2νj rj )/(νj (2rj+1))(logp)2rj /(2rj+1)

]
.
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Using (5.33) in [21] and L + 1 = nς , we obtain

‖f̂ − f‖2
2 ≤ ‖â − a‖2

2 + C2
asn−2r∗ς .

Condition r∗ ≥ (2ς)−1 yields

‖f̂ − f‖2
2 ≤ ‖â − a‖2

2 + C2
as

n
.

Now, (5.16) together with Lemmas 1, 2 and 4 imply

P
(‖f̂ − f‖2

2 ≤ �(s0, s, n, r)
) ≥ 1 − 8p−μ,

which proves upper bound (3.17) on the estimation error.
In order to prove upper bound (3.18) in the same way as (3.17), we derive the

inequality

n−1∥∥B(â − a)
∥∥2

2

≤ CBλmax(�̂)

[
(CKK2μ + 1)(s0 + s) logp

nλmin(�̂)

× ∑
j∈J

C
2/(2rj+1)
a

(
CKK2μ + 1

nλmin(�̂)

)2rj /(2rj+1)

× (logn)((2−νj )+−2νj rj )/(νj (2rj+1))(logp)2rj /(2rj+1)

]
.

Now, upper bound (3.18) on the prediction risk follows from Lemma 5 in [21],
condition L+ 1 = nς and n−1‖WT (f̂− f)‖2

2 ≤ 2n−1‖B(â − a)‖2
2 + 2n−1‖b‖2

2. �

PROOF OF THEOREM 3. Let sets F̃ be such that (5.16) holds. Then P(F̃) ≥
1 − 8p−μ and (5.16) yields

E‖â − a‖2
2 ≤ E

[‖â − a‖2
2I(F̃)

] +E
[‖â − a‖2

2I
(
F̃C)]

≤ C
ω∗

max

ω∗
min

[
K2s0 logn

nω∗
min

+ ∑
j∈J

C
2/(2rj+1)
a

(
K2

nω∗
min

)2rj /(2rj+1)

× (logn)((2−νj )+−2νj rj )/(νj (2rj+1))(logp)2rj /(2rj+1)

]
+ 16C2

f p1−μ

≤ C�upper(s0, s, n, r),

due to (3.24). �
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5.3. Proof of Lemma 1. In order to simplify the notation, we set ωmax(ℵ) =
ωmax and Uμ = Uμ(ℵ). Let Wμ be the set of points described in condition (2.6) of
assumption (A5). Denote the direct product of n sets Wμ by W⊗n

μ . Then

P
(
W⊗n

μ

) ≥ 1 − 2np−2μ.

Consider random matrices

Zi = (�i )� − �� = (�i )� ⊗ �i − �� ⊗ �,

ζ i = (�i )�I(Wμ) −E
(
(�i )�I(Wμ)

)
.

Then ζ i are i.i.d. with Eζ i = 0. We apply the matrix version of Bernstein’s in-
equality, given in Tropp [30]:

PROPOSITION 1 (Theorem 1.6, Tropp [30]). Let ζ 1, . . . , ζ n be independent
random matrices in R

m1×m2 such that E(ζ i ) = 0. Define

σζ = max

{∥∥∥∥∥1

n

n∑
i=1

E
(
ζ iζ

T
i

)∥∥∥∥∥
1/2

,

∥∥∥∥∥1

n

n∑
i=1

E
(
ζ T

i ζ i

)∥∥∥∥∥
1/2}

,

and suppose that ‖ζ i‖ ≤ T for some T > 0. Then, for all t > 0, with probability at
least 1 − e−t , one has∥∥∥∥∥1

n

n∑
i=1

ζ i

∥∥∥∥∥ ≤ 2 max
{
σζ

√
t + log(d)

n
,T

t + log(d)

n

}
,(5.17)

where d = m1 + m2.

In order to find σζ , note that∥∥∥∥∥1

n

n∑
i=1

E
(
ζ iζ

T
i

)∥∥∥∥∥
= ∥∥E(

ζ 1ζ
T
1

)∥∥
≤ ∥∥E(

(�1)�(�1)
T
�I(Wμ)

)∥∥ + ∥∥E(
(�1)�I(Wμ)

)∥∥∥∥E(
(�1)

T
�I(Wμ)

)∥∥
= ∥∥E[(

(�1)� ⊗ �1
)(

(�1)� ⊗ �1
)
I(Wμ)

]∥∥ + ∥∥E[(
(�1)� ⊗ �1

)
I(Wμ)

]∥∥2

= ∥∥E[(
(�1)�(�1)�

) ⊗ (�1�1)I(Wμ)
]∥∥ + ∥∥E(

(�1)�I(Wμ)
)∥∥2∥∥E(�1)

∥∥2

≤ ∥∥E(�1�1)
∥∥∥∥E[(

(�1)�(�1)�
)
I(Wμ)

]∥∥ + ∥∥E(
(�1)�I(Wμ)

)∥∥2∥∥E(�1)
∥∥2

,

and, similarly,∥∥∥∥∥1

n

n∑
i=1

E
(
ζ T

i ζ i

)∥∥∥∥∥ ≤ ∥∥E(�1�1)
∥∥∥∥E[(

(�1)�(�1)�
)
I(Wμ)

]∥∥
+ ∥∥E(

(�1)�I(Wμ)
)∥∥2∥∥E(�1)

∥∥2
.
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Here, ∥∥E(�1�1)
∥∥ ≤ ∥∥C2

φ(L + 1)�
∥∥ = C2

φ(L + 1)φmax

and ∥∥E[(
(�1)�(�1)�

)
I(Wμ)

]∥∥ = ∥∥E[
W�WT

�W�WT
�I(Wμ)

]∥∥
≤ U2

μ

∥∥E(
W�WT

�

)∥∥
= U2

μ‖��‖ = U2
μωmax,

so that

σ 2
ζ ≤ 2C2

φU2
μ(L + 1)φmaxωmax.(5.18)

Now, observe that, since matrix E((�i )�I(Wμ)) is nonnegative definite and ma-
trices �i and (�i )� have rank one for any i, one has

T = sup‖ζ 1‖ ≤ 2 sup
∥∥(�1)�I(Wμ)

∥∥
= 2 sup

∥∥(�1)�I(Wμ)
∥∥‖�1‖(5.19)

≤ 2C2
φU2

μ(L + 1).

Apply Bernstein’s inequality (5.17) with σ 2
ζ and T given by formulas (5.18) and

(5.19), respectively. Then we obtain for any t > 0, with probability at least 1−e−t ,∥∥∥∥∥1

n

n∑
i=1

ζ i

∥∥∥∥∥ ≤ 4 max
{
CφUμ

√
(L + 1)(t + log(Lℵ)φmaxωmax)√

n
,

(5.20)
C2

φU2
μ(L + 1)(t + log(Lℵ))

n

}
.

In order to apply inequality (5.20) to Zi , observe that Zi − ζ i = (�i )�I(Wc
μ) −

E(�i )�I(Wc
μ) and∥∥E(

(�i )�I
(
Wc

μ

))∥∥2 = ∥∥E(
(�i )�I

(
Wc

μ

)) ⊗E(�i )
∥∥2

≤ ∥∥E(
(�i )�I

(
Wc

μ

))∥∥2∥∥E(�i )
∥∥2

(5.21)
≤ (

E
∥∥(�i )�I

(
Wc

μ

)∥∥
2

)2
E‖�i‖2

2

≤ 2C4
φV ℵp−2μ(L + 1)2,

due to the fact that E(W(j))4 ≤ V for any j = 1, . . . , p.
Now, we use the union bound over all � such that |�| ≤ ℵ, the inequality

(p
ℵ
) ≤

(
ep
ℵ )ℵ and choose t = 2μℵ log(

ep
ℵ ). Combining (5.20) and (5.21), for all � such
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that |�| ≤ ℵ, we derive

inf
� : |�|≤ℵP

({∥∥∥∥∥1

n

n∑
i=1

Zi

∥∥∥∥∥ < z

}
∩ {

W ∈ W⊗n
μ

})

≥ inf
� : |�|≤ℵP

({∥∥∥∥∥1

n

n∑
i=1

ζ i

∥∥∥∥∥ < z − ∥∥E(
(�1)�I

(
Wc

μ

))∥∥}
∩ {

W ∈ W⊗n
μ

})

≥ 1 − sup
� : |�|≤ℵ

P

({∥∥∥∥∥1

n

n∑
i=1

ζ i

∥∥∥∥∥ ≥ z − C2
φ(L + 1)p−μ

√
2V ℵ

}

∩ {
W ∈ W⊗n

μ

})

≥ 1 − (ep)−μ − 2np−2μ

for any z such that

z ≥ 8 max
{
CφUμ

√
μℵ(L + 1) log(p + L)φmaxωmax√

n
,

μℵC2
φU2

μ(L + 1) log(p + L)

n

}
(5.22)

+ C2
φ(L + 1)p−μ

√
2V ℵ.

Note that, under condition (3.10), one has

C2
φ(L + 1)p−μ

√
2V ℵ ≤ 8μℵC2

φU2
μ(L + 1) log(p + L)n−1.

It is easy to check that, whenever n ≥ N(ℵ) where N(ℵ) is defined in (3.9), con-
dition (5.22) is satisfied with

z = 8CφUμ

√
μℵ(L + 1)φmaxωmax log(p + L)√

n
+ 9μℵC2

φU2
μ(L + 1) log(p + L)

n

≤ hωminφmin,

which, together with condition pμ ≥ 2n, implies that

inf
� : |�|≤λ

P
(‖�̂� − ��‖ ≤ hωminφmin

) ≥ 1 − p−μ − p−μ.(5.23)

In order to complete the proof, observe that λmin(�̂�) ≥ λmin(��) − ‖�̂� − ��‖
and λmax(�̂�) ≤ λmax(��) + ‖�̂� − ��‖.
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SUPPLEMENTARY MATERIAL

Supplement to “Sparse high-dimensional varying coefficient model: Non-
asymptotic minimax study” (DOI: 10.1214/15-AOS1309SUPP; .pdf). The sup-
plemental material contains omitted proofs.
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